MIPS

MIPS32® Architecture for Programmers
Volume IV-i: Virtualization Module of the
MIPS32® Architecture

Document Number: M D00846
Revision 1.03
April 29, 2013

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2010-2012 M1 PS Technologies Inc. All rights reserved.

MIPS;Y

Copyright © 2010-2012 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government (" Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSI1I, MIPS 1V, MIPSV, MIPSr3, MIPS32, MIPS64, microM1PS32, microM|PS64, MIPS-3D, MIPS16, MIPS16e, M1 PS-Based,
MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS Technologies logo, MIPS-VERIFIED logo,
proAptiv logo, 4K, 4K c, 4Km, 4Kp, 4KE, 4K Ec, 4KEm, 4KEp, 4K S, 4K Sc, 4K Sd, M4K, M14K, 5K, 5K c, 5Kf, 24K, 24K c, 24K f, 24KE, 24K Ec, 24K Ef, 34K,
34Kc, 34Kf, 74K, 74K c, 74Kf, 1004K, 1004K ¢, 1004Kf, 1074K, 1074Kc, 1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS,
Navigator, OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered trademarks of MIPS
Technologies, Inc. in the United States and other countries. All other trademarks referred to herein are the property of their respective owners.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.02, Built with tags: 2B ARCH IMPL MIPS32 MIPS32andIMPL

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table of Contents

(Of g o1 (=T i AN o Yo T U A I 1S = 0 01 1
1.1: TypographiCal CONVENTIONSc.iuiiiiiiiitii ettt e et e et e e ekt e e e et r e e e e e nbe e e e e e annnes 1
R O | = o I SRR 2

g = 1o] o B = PSR 2

R O o U 1T g I PSPPSR 2

1.2: UNPREDICTABLE and UNDEFINEDccuiitiiiiaiiite ittt sttt e st e e sneeeaetaee s aneeeaaneeaeaneeeeannes 2
1.2.1: UNPREDICTABLE ...ttt ettt ettt ettt ekt e et e e e mt e e ek e e et e e e ente e e aneeeeanbeeeanneean 2

1.2.2: UNDEFRFINED ...ttt ettt ettt ettt e ekttt e e st e e e ek bt e e e m ke e e em b e e e e ke e e ente e e e embeeeanseeeanbeeeanneeas 3

R MU | S Y = PSR 3

1.3: Special Symbols in PSEUAOCOTE NOTATIONuviiiiiiiiiie ettt 3
e o g |V (o {3 [0 g =1 o o RSP PEERRR 6
Chapter 2: The Virtualization Module of the MIPS32® Architecturecccovveveiiiiiiiiicee 7
2.1: Base ArchiteCture REQUITEIMENTSuuiiiiiiieeieees e e ieetie e e e e e e e e e e e s st eeeeeaeaesssaasesbaaaaeeeeeeeeesanannssnnnnereees 7
2.2: Software Detection Of the MOUUIEoiiiiii e 7
2.3: ComplianCe and SUDSEIING........ciiiiiiiiie e e e e e e e s e e e eer e e e e e e s s s ssne et aareaeeeeeesanannrrnrrnareees 7
2.4: Overview of the Virtualization MOGUIEc.ooiiiiiiii e 7
P2 [1Sy (0 o 1o g T = 11l =1 o Lo 1T RO 7
Chapter 3: Overview of Virtualization SUPPOIt ..., 11
I R O YT [TP PP PP PP PP P PPPPPPPPOPPPPRN 11
Chapter 4: The Virtualization Privileged Resource ArchiteCtureccccceevvvvviiiii e 13
T 1o o 11 o3 1 T o I EEUR 13
A @ YT 4V T RPN 13
T Oe] 440] L= o[PP PO PP PRTPPP 13
N @l o T=T = 11 g o 1Y oo [RO PO PP PRTPPP 15
ot e I T @ T 1T o T 1Y o To = SRR 16

N =Y 0411 Vo] (0o | O PP T T OPPPPP 17

4.4.3: Definition Of GUESE IMIOUE. ...ttt ettt e e e e e e e e e e ettt e e e e e aeeeeaeaannneneeees 19

N N T U 1] A O o]] 1= SRR R 22

A5 VIFTUBI MEBIMIOTY ..ttt ettt e o4 a bttt e 4okttt e 4o e bttt e o4kttt e ettt e e e et e e e s anenee s 26
4.5.1: Virtualized MMU GUESEID USEueeeiiiiiieeeeee ittt ettt e e e e e e e e e e et eeeaaaaeeeaeaannneenenes 30

4.5.2: Root and Guest Shared TLB OPEIatioNc.uueiiiiiiiiieiiiiii et 33

4.6: COPIOCESSON O .ttt ettt e oo oottt e e e e oo e e oo e bt ettt et e e e e e e e e e bbb e et et e e e e e e e nea e 34
4.6.1: New and Modified CPO REGISTEISoiueiiiieiiiitii ettt e e e e 35

I A N[A O o O [1S i (1 Tox 1 o] o SRR 36

4.6.3: GUESE CPO FEOISTEIS ...ttt ettt ettt e ookt e ookt e e ekt e e et e e e e b e e e e et e e e e e nees 37

4.6.4: Guest Privileged SENSItIVE FEAIUINESiiiiiiiiii ettt 42

4.6.5: Access Control for Guest CPO Register FIeldSuuiviiiiiiiiie e 42

4.6.6: Guest Config REGISIET FIIASuiiiiiiiie et 43

4.6.7: Guest Context Dynamically Set Read-only FIelds ..o 45

S T U= ES) T 1= SRR 46

4.6.9: GUESE CACNE OPEIALIONS. eeieiiieiet ettt ettt et e e e e e e e et e e e et e e e e et e e e e e nees 48

4.6.10: UNPREDICTABLE and UNDEFINED in GUESt MOE..........ccouuiiiiiieiiiee it 48

R (ot o1 1T 1 RO P PP PPPRTPPP 50
MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 3

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.7.1: EXCEPLONS IN GUEST IMIOUE ...ttt ettt e ettt et e e e e e e e e s e bbb e bt e e e e e aaeeeaeaannneeneees 50

4.7.2: Faulting Address for Exceptions from GUESE MOUE........ccooiiiiiiiiiiiiiiiii e 51
4.7.3: Guest initiated ROOt TLB EXCEPLION ..ceiiiiiiiiiiiiiiiiiei ittt e e e e e e e e e e e e e aneeeeeees 51
o oY o110 o I o T T 1 AT PRUPP TR 52
4.7.5: EXCEPON VECION LOCALIONS. ... ueiiieiiieiteie e e e ettt e e e e e e e ettt et e e e e e e e e e s e nbabb e e e e e e e aaeeeeaaaannnnennees 56
4.7.6: Synchronous and Synchronous Hypervisor EXCEPLIONSccccuiiiiiiiiiiiiaaaaei e 56
4.7.7: Guest Privileged Sensitive INStrUCtioN EXCEPLIONcuiiiiii ittt e e 57
4.7.8: Guest Software Field Change EXCEPLION ...t e e e e e e e e aeneeees 58
4.7.9: Guest Hardware Field Change EXCEPLION.......cc..uuiiiiiiiiiie ettt e e e 60
4.7.10: Guest Reserved INStrUCtiON REINECTcuiiiiiiiiiie e 61

o N o 1Y/ o1 o= 1| I (ot =T o] (o o EO TP PRTPP TR 62
4.7.12: Guest Exception Code iN ROOt CONTEXEiiiiiiiiiiiiiieiie ettt e e e ee e e e e e e e e e e e anneeees 62
N 01 (T ¢ (U] o TP PSS UUUPPPPTPTP 64
T T (=T g = L L1 (T A (0] o] £ PTUPP TR 65
4.8.2: Derivation of GUESE.CAUSEIP/RIPL.uiiiiiiiiii et 70

T TG T T 0o LT 1 =T £ (U o] £ TP PRTP PR 72
4.8.4: Performance COUNTET INTEITUDLS.e ittt ettt e e e e e e e e e e bbb eeeaaaaeeeaeaannneeneees 72
4.9: Instructions and Machine State, other than CPO ... 73
4.9.1: General Purpose Registers and Shadow RegiSter SetsScccuuiiiiiiiiiiiiiiii e 73
4.9.2: MUItIPlIEr RESUIL REGISIEISttt e e e e e e e e e e bbb et e e e e e aaaeeaeaennneeeeees 75
4.9.3: DSP MOUUIE ...ttt e et e et e e et e e e e 75
4.9.4: Floating Point UNit (COPIrOCESSON 1) ...ciiiiiiiiiiiiiiiiiiee et e ettt et e e e e e e e e s anbbebeeeeeaaaaaeaesaaannnnees 76
4.9.5: COPIOCESSON 2. ittt o oo 444 o4 2o 22 e e e ee e e ettt et e e e e ebe bt be b e bk e e e e o2 4 e oo e e e e e eeeaeaaaeeeeeeeneesnbnbnrnnns 76
4.9.6: MSA (MIPS SIMD AICRITECIUIE)etteeiteieee ettt ettt et e e e e e e e e e et e e e e e e e e e e e e aennneeeeees 76
4.10: Combining the Virtualization Module and the MT MOAUIEoooiiiiiiiiiiii e 77
4.11: Guest Mode and DebUQ fFEATUIESuuiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e e anneeaeees 80
4.12: Watchpoint DEDUG SUPPOIT ..ottt e e e e e e ettt e e e e e e e e e s e e nabbebeeeeaaaeaeeaaaannenneees 81
4.13: Virtualization Module features and Hypervisor SOftWAIecooi it 83
o S W o o V=TT | VAT (U E= 2= L4 o o F PP PEURT TR 89
o el [g (0T [8o 1 o o O PO O PP PPPPRPP 89
4.14.2: Support for Lightweight VirtUaliZation............ooiiiiiie et 89
Chapter 5: Coprocessor 0 (CPO) REGISTEIS .o, 93
5.1: CPO REQISTEI SUMIMAIY ...eiieiitiiiee ettt e e ettt e e ettt e e e sttt e e s sa b et e e a4kt et e e e e 1a ke et e e e e ahbb et e e e anbbeeeeeeanbaeeeeesbbreeaeaas 93
5.2: GuestCtl0 Register (CPO RegiSter 12, SEIECE B)cciiuriiiiiiiiiiiieiiiiii et 94
5.3: GuestCtl1l Register (CPO RegiSter 10, SEIECE 4)ooiiiiiiiiiiiiiiie ettt 103
5.4: GuestCtl2 Register (CPO RegiSter 10, SEIECE D)oiiiiiiiiiiiiiiiiie et 105
5.5: GuestCtl3 Register (CPO RegiSter 10, SEIECE B)cciiuuiiiiiiiiiiiie ittt 109
5.6: GuestCtIOExt Register (CPO RegiSter 11, SEIECE 4)uuuiiiiiiiiiiiie ittt 110
5.7: GTOffset Register (CPO ReQIStEr 12, SEIECE 7)uuiiiiiiiiiiie ittt 113
5.8: Cause Register (CPO RegiSter 13, SEIECT 0) ...coiuuiiiiiiiiiiiieeiiiiie ettt 114
5.9: Configuration Register 3 (CPO Register 16, SEIECE 3)uuviiiiiiiiiiiiiiiiiie et 115
5.10: WatchHi Register (CPO REGISIEN 19)iuuuiiiiiiiiiiiiee ittt ettt ettt e e e e e s aneneeas 116
5.11: Performance Counter Register (CPO REJISIEN 25)uuuiiiiiiiiiiiie ittt 117
5.12: NOtE ON fULUIE CPO FEALIUMNESceiiiiiiieee ettt ettt e e ettt e e sttt e e st e e e s nnaneeas 119
Chapter 6: INSIrUCTION DESCIIPIIONS ...iiiiiiiiiitiie ittt e e e e e e eeeeeaans 121
8.7 OVEBIVIEW ...ttt ettt etttk e ke 44 H e e h et 4o h e oAbt e et e ekt e e n et e e s 121
HY P CALL .tttk ekt o4 bt a 4o R4t E Rt b et b e 124
1Y O O T TP TP PP PP PP PPRPPPPP 125
1Y T O T P PP PP PP PP PPRPPPPPN 127
TLBGINV Lttt et h e et a e bR R Rt b et 128
TLBGINV ettt a e ettt oo et e bt e oAbt e ekt e e Rt e R e bt et 130

4

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

LI 1 PSPPSR 136
LB G WV Lot e et e et e et ee et e e e et e e et e et et eeeeta e e et ettt aeeetn e e et raaaaearanns 138
TLBGWVR ..ot e et e e et e et e e e e e et e e et ee ittt eeeeta e eetaeeetaaeeeta e eetaeeraaaeatanns 140

LI =1 N AV PP PP 142
LI = PSPPSR 144
L = PSPPSR 145
L = PSPPSR 147

L =YL U P PSPPSR 150

(O F= 1oL LT A N\ o = 153
7.1: Potential areas Of IMPIrOVEIMENT.iiiii et e st e et e e e s aneneeas 153
MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 5

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 4.1: State Transitions between Operating MOUESuiiiii i ere e e 15
Figure 4.2: Virtualization Module ONION MOUEcooiiiiiee et e e e e e eeeaeeas 16
Figure 4.3: Virtualization Module Onion Model and @XCEPLIONScoiiiiiiiiiiiiiiee e ee s 17
Figure 4.4: Simplified processor operation in FOOt MOTE..........cuiiiiii ittt e e e eeeaaeeas 24
Figure 4.5: Virtualization Module Onion Model applied to simplified processor (full virtualization)......................... 25
Figure 4.6: Outline of AddreSs TranSIAtION.ciiii it e e e e e e e e e e e nnbb e eeaeeaeas 27
Figure 4.7: ROOt @nNd GUESTE TIMEIS ...ttt e ettt et e e e e e e s ottt bttt e e e e e e e e e e s e nbbbbeeeeeeeaaeaeeaaannnsbebeeeeaaaaens a7
Figure 4.8: Interrupts in the Virtualization Module 0nion MOdel ... 64
Figure 4.9: Guest and Root CauselP (Non-EIC) VirtualiZation.............oooiiiiiiiiiiicieeee e 67
Figure 4.10: A MT Module processor equipped With thre@ VPES ..ot 77
Figure 4.11: A MT Module processor equipped with three VPEs and the Virtualization Module............................ 78
Figure 5.1: GUESLCHO REQISIEI FOIMMALuuitiiiiiiieeee ittt et e e e e e e e e e s e bbb e e e e e e e e aeaeeaaannnbsbeeeeaaaeeas 94
Figure 5.2: GUESICHL REQISIEI FOIMMALuuiiiiiiiiiiieeae ettt e ettt et e e e e e e e e e et bt e e e e e e e e e e s aaannnneneeees 103
Figure 5.3: GuestCtl2 Register Format for NON-EIC MOUE.........euiiiiiiiiiiiiiiieee et 105
Figure 5.4: GuestCtl2 Register Format for EIC MOTEuuiiiiiiiiiiaai e 105
Figure 5.5: GUESICH3 REQISIEI FOIMMALuuiitiiiiiiiie ettt e e e e e e e e e s et r e e e e e e e e e s aaannneeeeeees 109
Figure 5.6: GUESTCHOEXt REGISIET FOIMIALueeiiiiiieiei ittt e e e e e e e et r e e e e e e e e e s e e ennneeeeeees 110
Figure 5.7: GTOMSEt REQISTEr FOIMMAL..........uiiiiiiiiiiiie ettt e e e e e e e e s et e e e e e e e e e e e s aaannneeeeeees 113
Figure 5.8: Virtualization Module Cause RegiSter FOIMALeeiiiiiiiiiiiiieee e 114
Figure 5-9: Config3 REQISIEr FOIMMAL........cc.iiiitieiieiiee ettt e et e e e e e e e e e e s e e e bbb be e e e e e aaaaeeesaaannnneneeees 115
Figure 5-10: WatChHi REQISTEr FOIMIALuiiiiiiiiiiie ittt e e e e e e e e st e e e e e e e e e e s e e annnneeeeees 116
Figure 5-11: Performance Counter Control RegiSter FOrMAL..........oooaiiiiiiiiiiiiii e 117
6 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1.1: Symbols Used in Instruction Operation StatemMeENTS...........ueeiiiiaaaiiiiiiiii e e e e e e e e aneeees 3
Table 2.1: Symbols Used in the Instruction ENcoding TabIes............ueiiiiiiiiiiiie e 8
Table 2.2: Virtualization Module Encoding of the Opcode FIeldoiiiii e 8
Table 2.3: Virtualization Module COPO Encoding Of 1S fielduuiiiiiiiie e 9
Table 2.4: MIPS32 COPO Encoding of Function Field WHeN IS=V ...t 9
Table 2.5: Virtualization Module COPO Encoding of Function Field When rS=CO ... 9
Table 4.1: Guest, ROOt and DEDUQG MOUEScoiiiiiiiieei ettt e e e e e e e e s s e nnb b e e e e e e e aaeaeaaaanns 20
Table 4.2: GuestID Translation Related Usage Mode CONLIOl...........ueiiiiiiiiiiiiiiiieie e 31
Table 4.3: GUestID USe DY TLB INSITUCHIONS. ..ottt ettt e e e e ettt e e e e e e e e e s e e annbbesreeeaaaaeaaaaaanns 32
Table 4.4: CPO Registers Introduced by the Virtualization MOAUIE..............oooiiiiiiiiii e 35
Table 4.5: CPO Registers Modified by the Virtualization MOAUIE ... 35
Table 4.6: CPO Instructions Introduced by the Virtualization ModUle............oooiiiiiiiiiiii e 36
Table 4.7: CPO RegiSters i GUEST CPO CONTEXEuuuiiiiiiiiiiee ettt e e e e e e e e e sttt e e e e e e e e e e s s e annbbeseeeeaaaaeaaaaaanns 38
Table 4.8: Root Modification of Guest CPO CoNfIgUIatioNuuuiiiiiiiiaei it 41
Table 4.9: Guest CPO Fields Subject to Software or Hardware Field Change Exception............ccccccvieiieiiiiiiinnns 43
Table 4.10: Guest CPO Read-only Config Fields Writable from ROOt MOAEueiiiiiiiiiiiiiiiiiiiececeee e 44
Table 4.11: Guest CPO Read-only Fields Writable from ROOt MOde...........oooiiiiiiiiiiiie e 45
Table 4.12: Priority OF EXCEPLIONSuuiiiiiiiiiiaaaie ittt e ettt et e e e e e e e e e e e ek bbb beeeeeeeaaeeaesaanbnbbssseeeaaaaeaaaasanns 52
Table 4.13: EXception TyPe CharaCteriStCS.ciiiuiiiiiiiiiiiie ettt e e ettt e e e e e e e e e s et be e e e eaaaaaeeaaaanns 56
Table 4.14: Hypervisor EXCepPtion CONITIONScc..uiiiiiiiieiiie ettt e e e ettt e e e e e e e e e s e e annbbesreeeaaaaeeeaaaanns 57
Table 4.15: Debug Features and Application to Virtualization Module ... 80
Table 4.16: GUESt WaALCNPOINT SUPPOIceiiiaiiii ittt ettt e e e e e e e e e e e ab e bt e e e e aaaeaaasaaannbbssseeeaaaaeaaaaaanns 81
Table 4.17: WALCN CONIIOI ...eiiiiiiiiee ettt e bt e e e ettt e e e e kb et e e e st b e e e e s e bba e e e e s snbeeee e 81
Table 4.18: Virtualization Optimizations and their Intended PUrPOSEcooiiiiiiiiiiiiiiiiaae e 83
Table 4.19: MMU Configurations With RPU ...ttt e e e e e e r e e e e e e e e e e e aanns 89
Table 5.1: Virtualization Module Changes to Coprocessor 0 Registers in Numerical Order..........cccccceeeeeeiiiiinnns 93
Table 5.2: GuestCtl0 Register Field DESCHIPHIONSuu ittt e e e e e e e e e s ennb e e e eaaaaeaeaaaanns 95
Table 5.3: GUESICHO GEXCCOUER VAIUESueiiiiiiiiiii ettt et e e e e s 101
Table 5.4: GuestCtll Register Field DESCHPHIONSutiiiiiiiaaiiiiiiiie et e et e e e e e e e e e e e bbe e e e e aaaeaeaaeanns 104
Table 5.5: non-EIC mode GuestCtl2 Register Field DeSCIPLIONSeiiiiiiiaiiiiiiiiiiiieee e 106
Table 5.6: EIC mode GuestCtl2 Register Field DeSCIPUONSuuuiiiiiiiiaaaieiiiiiieiee e e e 108
Table 5.7: GuestCtl3 Register Field DESCHPHIONSuuiiiiiiiaaiiieiitite ettt e e e e e e e e e e s bbb e e e aaaaaeaaeanns 109
Table 5.8: GuestCtIOExt Register Field DeSCIIPLIONSciiiiiiiiiiiiiite ettt e e e e e e e s e e e e e e e e e e e e annes 111
Table 5.9: GTOffset Register Field DeSCIPLIONS.u ittt e e e ettt e e e e e e e e e aabbebeeeeeeaaaaaaesaeanns 113
Table 5.10: Cause Register Field Description, modified by Virtualization Module..............cccooooiiiiiiiiiinn, 114
Table 5.11: Cause RegiSter EXCCOUE VAIUESuuuiiiiiiiiiiaae ittt ettt e et e e e e e e e et e e e e e e e e e e e e anns 114
Table 5.12: Config3 Register Field DeSCIIPIIONSuu ittt e e e e e e e e e e e e bebbe e e e e e aaaaaeaaeanas 115
Table 5.13: WatchHi Register Field DeSCIPLIONS. ittt e e e e e e e e e e s areeeaaaeaeaaaanas 116
Table 5.14: New Performance Counter Control Register Field DeSCrPtiONSuuvieiiiiiiiaiiiiiiiiiiiiieee e 118
Table 6.1: New and Modified INSIIUCTIONSiiiiiiiiii ettt e e e s anneeees 121
MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 7

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

8 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 1

About This Book

The MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture
comes as part of amulti-volume set.

* VolumeI-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

* Volumell-A provides detailed descriptions of each instruction in the MIPS32® instruction set
* Volumell-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

* Volume Il describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* Volume IV-adescribesthe MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the M1 Architecture and
microM1PS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

* Volume IV-d describes the SmartM I PS®A pplication-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

* Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

* Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture
* Volume IV-i describesthe MIPS® Virtualization Module to the MIPS® Architecture

* Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture
1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 1

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

About This Book

1.1.1 Italic Text

e isusedfor emphasis
e isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by

software, and programmabl e fields and registers), and various floating point instruction formats, such as S, D,
and PS

» isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* representsaterm that is being defined

» isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

» isusedfor ranges of numbers; the rangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDICTABL E and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructionsin
aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable hit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDI CTABL E results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

2 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

e« UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

thereisno exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as afunction of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
[Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
0oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy. 2 Selection of hitsy through z of bit string x. Little-endian bit notation (rightmost bit is 0) isused. If yisless
than z, this expression is an empty (zero length) bit string.
+, — 2's complement or floating point arithmetic: addition, subtraction
MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 3

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwiselogical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is a short-hand notation for SGPR[SRSCltlcgs, X].
SGPR[sX] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR([s,X] refersto GPR set s, register x.
FPR{X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[1].
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register X
CP2CCR[X] Coprocessor unit 2, control register x
COC[7] Coprocessor unit z condition signal
Xlat[x] Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRge and User mode).

4 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked |oad occurs and istested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I, This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction
I+n:, time during which the pseudocode appears to “ execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the

instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled | +1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the sametime,” thereis no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC valueis only visible indirectly, such as when the processor stores the
restart addressinto a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register
on an exception. The PC value contains afull 32-bit address all of which are significant during amemory ref-

erence.

ISA Mode In processors that implement the M1PS16e Application Specific Extension or the microM|PS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, as fol-
lows:

Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor storesa
combined value of the upper bits of PC and the ISA Mode into a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bitsimplemented is represented by the symbol PABITS. Assuch, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 27ABITS = 236 pytes,
MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 5

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

FP32RegistersMode | Indicates whether the FPU has 32-hit or 64-hit floating point registers (FPRs). In MIPS32 Release 1, the FPU

has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
aly in MIPS32 Release? and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in

any FPR.

In MIPS32 Release 1 implementations, FP32Register sM ode is always a 0. M1PS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32Register M ode is computed from the FR bit in the Status register. If thisbit isa0, the pro-
cessor operates asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis
falseif abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay dlot of abranch or jump.

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL.: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

6 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

http://www.mips.com/
mailto:architecture@mips.com

Chapter 2

The Virtualization Module of the MIPS32® Architecture

2.1 Base Architecture Requirements

The Virtualization Application-Specific Extension (Module) requires the following base architecture support:

 TheMIPS32 Architecture: The Virtualization Module requires a compliant implementation of the MIPS32
Architecture, Release 5.00 or |ater.

* A TLB-based MMU isrequired.

» Coprocessor O registers KScratchl and KScratch2 are required
2.2 Software Detection of the Module

Software can determine if the Virtualization Module is implemented by checking the state of the VZ bit in the
Config3 CPO register.

2.3 Compliance and Subsetting

The Virtualization Module to the MIPS32 Architecture provides hardware support for software-controlled platform
virtualization. A subset of Virtualization Module instructions and registers must be implemented, but certain instruc-
tions and machine state are defined to be optional and may be omitted.

2.4 Overview of the Virtualization Module

The Virtualization Module extends the MIPS32® Architecture with a set of new instructions and machine state, and
makes backward-compatible modifications to existing MIPS32 features.The Virtualization Moduleis designed to
enable full virtualization of operating systems.

2.5 Instruction Bit Encoding

Table 2.2 through Table 2.5 describe the instruction encodings used for the Virtualization Module. Table 2.1
describes the meaning of the symbols used in the tables. These tables only list the instruction encodings for the Virtu-
alization Module instructions. See Volume | of this multi-volume set for afull encoding of all instructions.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 7

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Module of the MIPS32® Architecture

Table 2.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

) (Alsoitalic field name.) Operation or field codes marked with this symbol denctes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

B Operation or field codes marked with this symbol represent avalid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, MIPS Technologies will assist the partner in selecting
appropriate encodings if requested by the partner. The partner is not required to consult with MIPS
Technologies when one of these encodingsis used. If no instruction is encoded with this value,
executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings
or coprocessor instruction encodings for a coprocessor to which accessis allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which accessis
not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MIPS Modules. If the Moduleis
not implemented, executing such an instruction must cause a Reserved Instruction Exception.

[0} Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 | SA. Software should avoid using these operation or field codes.

Table 2.2 Virtualization Module Encoding of the Opcode Field

8

opcode

bits 28..26

0

bits 31..29

000

001

010

011

100

101

110

111

0 | 000

001

010

COPO0 3

011

100

101

110

N| o g M| W] N

111

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

2.5 Instruction Bit Encoding

Table 2.3 Virtualization Module COPO Encoding of rs field

’T bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0| oo MFCO B * V8 MTCO B * *
1 01 * * # * * # * *
2 10
3 11 C03d
Table 2.4 MIPS32 COPO Encoding of Function Field When rs=V
W bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BMFGCO B BMTGCO B * . # *

Table 2.5 Virtualization Module COPO Encoding of Function Field When rs=CO

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI TLBINV TLBINVF * TLBWR #
1| 001 TLBP TLBGR TLBGWI TLBGINV TLBGINVF * TLBGWR *
2 | 010 TLBGP * # # * ® *® *
3 011 ERET * ® # * ® # DERET
4 | 100 WAIT * * * * * * *
5 [101 HYPCALL # ® ® # ® ® #
6 | 110 * * * * * #* * *
7 | 111 * * * * * * * *

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

9

The Virtualization Module of the MIPS32® Architecture

10 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 3

Overview of Virtualization Support

3.1 Overview

The Virtuaization Module defines a set of extensions to the MIPS32 Architecture for efficient implementation of vir-
tualized systems.

Virtualization is enabled by software - the key element is a control program known as a Virtual Machine Monitor
(VMM) or hypervisor. The hypervisor isin full control of machine resources at all times.

When an operating system (OS) kernel is run within avirtual machine (VM), it becomesa‘guest’ of the hypervisor.
All operations performed by a guest must be explicitly permitted by the hypervisor. To ensure that it remainsin con-
trol, the hypervisor always runs at a higher level of privilege than a guest operating system kernel.

The hypervisor is responsible for managing access to sensitive resources, maintaining the expected behavior for each
VM, and sharing resources between multiple VMs.

In atraditional operating system, the kernel (or ‘supervisor’) typically runs at a higher level of privilege than user
applications. The kernel provides a protected virtual-memory environment for each user application, inter-process
communications, 10 device sharing and transparent context switching. The hypervisor performs the same basic func-
tionsin avirtualized system - except that the hypervisor’s clients are full operating systems rather than user applica
tions.

The virtual machine execution environment created and managed by the hypervisor consists of the full Instruction Set
Architecture, including all Privileged Resource Architecture facilities, plus any device-specific or board-specific
peripherals and associated registers. It appears to each guest operating system asif it is running on areal machine
with full and exclusive contral.

The Virtualization Module enables full virtualization, and is intended to allow VM scheduling to take place while
meeting real-time requirements, and to minimize costs of context switching between VMs.

Minimum Requirements for Virtualization

Thefirst implementations of platform virtualization used ‘ trap-and-emulate’ software techniques, which rely on cer-
tain properties of the underlying hardware. To be considered ‘ classically virtualizable' an architecture must have the
following characteristics:

* Atleast two operating modes - including privileged and unprivileged

» System resources can only be controlled through privileged instructions while executing in privileged mode

» Execution of aprivileged instruction in unprivileged mode will cause an exception (trap), returning control to
privileged mode software

» Addresstrandation is performed on the entire address space when in unprivileged mode

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 11

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Overview of Virtualization Support

12

Inthe‘classic’ approach, the guest operating system kernel is‘de-privileged’ and is executed in the unprivileged
mode. All privileged operations attempted by the guest will trap back to the hypervisor, which executesin the privi-
leged mode. The hypervisor emulates all guest privileged operations, keepstrack of the guest view of privileged state,
and ensures that the system behaves as expected by the guest. Full address trandlation allows an unmodified guest ker-
nel to execute from its original location in memory, and allows the hypervisor to manage address trandlation to match
the expectations of the guest kernel. This approach is aso known as ‘trap and emulate’ virtualization.

The base MIPS32 architecture satisfies all the requirementsfor classic virtualization, except that addresstranglation is
not provided for the entire address space in user mode. User mode programs can only run from kuseg, located in the
lower portion of the virtual address space. The kernel istypically compiled to run from ksegO, which islocated in the
upper portion of the virtual address space, and is accessible only in kernel mode. An operating system kernel com-
piled to work with instructions and data located in kseg0 cannot efficiently execute in user mode.

A Segmentation Control system is available for use by the Virtualization Module. Thisis a programmable memory
segmentation system defined to support remapping (and therefore virtualization) of the existing fixed segment mem-
ory model.

In addition to addressing the minimum requirements for virtualization, the Virtualization Module provides features
designed to reduce the number of hypervisor traps required, and to reduce the length of each hypervisor intervention.

For an outline of virtualization support and for a description of each included feature, see Chapter 4, “The
Virtualization Privileged Resource Architecture” on page 13.

For a description of how each feature isintended to be used by software, see Section 4.13 “Virtualization Module
features and Hypervisor Software”.

For a description of recommended features, see Table 4.7.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 4

The Virtualization Privileged Resource Architecture

4.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. Thisincludes definitions of the programming interface and operation of the sys-
tem coprocessor, CPO. The Virtualization Modul e defines extensions to the M1PS32 PRA that are desirable for the
execution of guest Operating Systemsin afully virtualized environment. This document describes these extensions. It
is not intended to be a stand-alone PRA specification, and must be read in the context of the MIPS32 Privileged
Resource Architecture specification.

4.2 Overview

The Virtualization Module defines extensions to MIPS32 which are related to virtualization:

* Guest Operating Mode

» Partial CPO register set (or context) for Guest Mode use

* Registersfor Guest Mode control

* Guest interrupt system

* Two-level addresstrandation

» Detection of Virtualization Features

The Virtualization Module provides a separate Coprocessor O register set (or context) for guest mode oper a-
tion, which is physically separate from, and a subset of the Root Coprocessor 0 context. This Coprocessor 0 con-

text isreferred to by the term ‘ context’ throughout this document.

The presence of the Virtualization Module is indicated by the Config3,,, field.See Section 5.9 “Configuration
Register 3 (CPO Register 16, Select 3)".

4.3 Compliance

Features described as Required in this document are required of all processors claiming compatibility with the Virtu-
alization Module. Any features described as Recommended should be implemented unless there is an overriding need
not to do so. Features described as Optional are features that may or may not be appropriate for a particular Virtual-
ization Module processor implementation. If such afeature isimplemented, it must be implemented as described in
this document if a processor isto claim compatibility with the Virtualization ModuleM odule.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 13

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

In some cases, there are features within features that have different levels of compliance. For example, if thereisan
Optional field within a Required register, this means that the register must be implemented, but the field may or may
not be, depending on the needs of the implementation. Similarly, if thereis a Required field within an Optional regis-
ter, thismeans that if the register isimplemented, it must have the specified field.

14 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4 Operating Modes

4.4 Operating Modes

Fundamental to the Virtualization Module is a limited-privilege guest operating mode. Guest mode consists of new
operating modes guest-kernel, guest-user and guest-supervisor - orthogonal to the existing kernel, user and supervisor
modes.

The pre-existing (non-guest) operating mode is known as root mode. The pre-existing kernel, user and supervisor
operating modes can be referred to as root-kernel, root-user and root-supervisor respectively, to distinguish them
from their guest-mode equivalents.

The guest mode allows the separation between kernel, user and supervisor modes to be retained for a guest operating
system running within a virtual machine - the guest-kernel mode can handle interrupts and exceptions, and manage
virtual memory for guest-user mode processes.

The separation between root mode and the limited-privilege guest mode allows root mode software to be in full con-
trol of the machine at all times even when aguest is running. Backward compatibility isretained for existing software
running in root mode.

The GuestCtl0 register, described in Section 5.2, contains the GM (Guest Mode) bit. This bit is used along with
root-mode exception and error status bits (Statusgy, , Statusgg,) and the Debug Mode bit (Debugpy,) to determine
whether the processor is operating in guest mode or root mode.

See also Section 4.4.3 “Definition of Guest Mode!
Figure 4.1 shows the state transitions betwee n operating modes.

Figure 4.1 State Transitions between Operating Modes
IRQ,
Exceptions

Hypercall
Root-handled exceptions

Reset
root-kernel eret guest-kernel
Root-handled IRQs A
exceptions .
hypcall, if Guest.Satuscg=1 |GRUS§ handled
exceptions

eret IRQs, eret

Exceptions

root-user guest-user

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 15

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.4.1 The Onion Model

The Virtualization Module applies an ‘onion model’ to address translation and exception handling for guests. Three
operating modes are required to execute a virtualized guest operating system: unprivileged guest-user, limited-privi-
lege guest-kernel and full-privilege root-kernel. The root-user mode is used to execute non-virtualized software. At
each layer within the onion, any operation must be permitted by all the outer layers.

Figure 4.3 shows the logical arrangement of operating modes.

Figure 4.2 Virtualization Module Onion Model

root-kernel
root Coprocessor 0

guest-kernel
guest Coprocessor 0

root-user

In aMIPS32 processor, Coprocessor 0 contains system control registers, and can be accessed only by privileged
instructions. A processor implementing the Virtualization Module physically replicates a subset of the Coprocessor 0
register set for use by the Guest Operating System. Root mode operation uses one set of Coprocessor 0O registers and
Guest mode operation the other. Theterm ‘ context’ refersto the software visible state held within each Coprocessor 0
register set. The software visible state is the contents of these registers and any state which is accessed via these reg-
isters, such as TLB entries and Segmentation Control configurations. For a Hypervisor to save, restore or switch con-
text from one guest to another, it is the entire software visible state which must be saved and restored, not solely the
replicated registers themselves, but also the physical resources which are shared between Root and Guest, such asthe
GPRs, FPRs and Hi/L o registers.

During guest mode execution, both the guest Coprocessor 0 and the root Coprocessor 0 are active. The presence of
two simultaneoudly active Coprocessor 0 contexts is fundamental to the operation of the Virtualization Module.

During guest mode execution, all guest operations are first tested against the guest CPO context, and then against the
root CPO context. An ‘operation’ is any process which can trigger an exception - thisincludes address trand ation,
instruction fetches, memory accesses for data, instruction validity checks, coprocessor accesses and breakpoints.

Exceptions are handled in the mode whose context triggered the exception. An exception triggered by the guest CPO
context will be handled in guest mode. An exception triggered by the root CPO context will be handled in root mode.

Guest mode software has no access to the root Coprocessor 0. Root mode software can access the guest Coprocessor
0, and if required can emulate guest-mode accesses to disabled or unimplemented features within guest Coprocessor
0. The guest Coprocessor 0 is partially populated - only a subset of the complete root Coprocessor 0 is implemented.

The presence of two Coprocessor 0 contexts allows for an immediate switch between guest and root modes - without
requiring a context switch to/from memory. Simultaneously active contexts for the guest and root Coprocessor 0
allows guest-kernel privileged code to execute with the minimum hypervisor intervention, and ensures that key
root-mode machine systems such timekeeping, address tranglation and external interrupt handling continue to operate
without major changes during guest execution.

16 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4 Operating Modes

Figure 4.3 shows the how the Virtualization Module ‘onion model’ is applied to operations starting in each of the
operating modes (supervisor modes are omitted for clarity).

Figure 4.3 Virtualization Module Onion Model and exceptions

guest-kernel root-kernel

Complete
operation

guest-kernel handler root-kernel handler

root-user
O

O operation start point

An operation executed in guest-user mode must travel from the inside of the onion to the outside.

Thefirst layer to be crossed is the guest CPO context (controlled by guest-kernel mode software). All exception and
trangation rules defined by the guest CPO context are applied, and resulting exceptions taken in guest mode.

If the operation does not trigger a guest-context exception, the next layer to be crossed is the root CPO context (con-
trolled by root-kernel mode software). All exception and trandlation rules defined by the root CPO context are applied,
and resulting exceptions taken in root mode.

For example, an access to Coprocessor 1 (the Floating Point Unit) must first be permitted by the guest context
Statuscy bit, and then by the root context Statuscy; bit.

External interrupts must travel from the outside of the onion to the inside - first being parsed by the root CPO context,
and if passed on by the hypervisor software, by the guest CPO context.

4.4.2 Terminology

When executing in guest mode, both the root and guest Coprocessor 0 contexts are in active use. See Section
4.4.1 “The Onion Model”. A prefix is used to distinguish between registers located in the guest and root contexts.

For example - Root.Status refers to the status register from the root context, and Guest.Compare refersto the timer
compare register in the guest context.

Pseudocode in this document uses object-oriented terminology to describe processes which can be applied to multiple
contexts. A prefix is used to indicate which context isto be operated on by the process. In object-oriented terminol-
ogy, the subroutines shown are akin to methods provided by a CPO class.

For example:

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 17

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

Perform TLB lookup using Root CP0O context
- exceptions taken in root context
Root.TLBLookup (.., .., ..)

Perform TLB lookup using Guest CP0O0 context
- exceptions taken in guest context
Guest.TLBLookup (.., .., ..)

Perform TLB lookup using context defined by ‘object’ variable
- exceptions taken in ‘object’ context
object.TLBLookup (.., .., ..)

Perform TLB lookup using context of the caller
TLBLookup (.., ..,

18 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4 Operating Modes

4.4.3 Definition of Guest Mode

4.4.3.1 Definition
The processor isin guest mode (guest-user, guest-supervisor or guest-kernel) when:
* Root.GuestCtlOgy = 1 and Root.Statusgy, =0 and Root. Statusgr, =0 and Root.Debugp,=0.

Guest mode operation is determined as follows. This subroutine will be used in pseudo-code to test whether processor
isin guest-mode.
subroutine IsGuestMode()
if (GuestCtlOgy=1) and (Root.Debugp,=0) and
(Root.Statusgg,=0) and (Root.Statusgyg;,=0) then
return (true)
else
return (false)
endif
endsub

In contrast, the following subroutine isto be used in pseudo-code to test whether processor isin root-mode.
subroutine IsRootMode ()
if (
(GuestCtlOgy=0) or
((GuestCtlOgy=1) and not ((Root.Debugpy=0) and
(Root.Statusgg;,=0) and (Root.Statusgy;,=0))
) then
return (true)
else
return (false)
endif
endsub

4.4.3.2 Entry to Guest mode

The recommended method of entering Guest mode is by executing an ERET instruction when Root.GuestCtlOgy=1,
Root.Statusgy =1, Root.Statusgr, =0 and Root.Debugpy,=0.

Instructions executed in root mode use the root context. When an ERET instruction is executed in root mode and
Root.Statusgg, =0, the target address is obtained from Root.EPC and the exception-level bit EXL iscleared in
Root.Status. After the ERET instruction execution is completed, the processor will be in guest mode if the
Root.GuestCtlOg), bit was set.

The behavior of ERET, and DERET and their usage of EPC, ErrorEPC and DEPC registers are unchanged from the
base architecture. The determination of Guest vs. Root mode is the result of setting the Root register fields
GUestCthGM, StatUSEXL, StatUSERL and DebugDM to the Guest mode definition state (ROOt.GUeStCthGM =land

Root.Statusgy; =0 and Root.Statusgg; =0 and Root.Debugp,=0).
4.4.3.3 Exit from Guest mode

When an interrupt or exception isto be taken in root mode, the bits Root.Statusgy, or Root.Statusgg, are set on entry,
before any machine state is saved. As aresult, execution of the handler will take place in root mode, and root mode
exception context registers are used, including Root.EPC, Root.Cause, Root.BadVAddr, Root.Context, Root.EntryHi.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 19

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

The HYPCALL instruction is provided for controlled guest-to-root transitions. This instruction triggers a Hypercall
Exception, taken in root mode. See Section 4.7.11 “Hypercall Exception”.

The ERET instruction cannot be used to enter root mode from guest mode. No root-mode state is accessible from
guest mode, thus the guest cannot change the Root.GuestCtl0, Root.Status or Root.Debug registers.

4.4.3.4 Guest mode execution

When running in guest mode, the distinction between guest-user, guest-supervisor and guest-kernel is made using
Guest.Statusgg , Guest.Statusgy, and Guest.Statusksum, following the rules described in the base architecture.

When an interrupt or exception isto be taken in guest mode, the bits Root.Statusgy, Or Root.Statusgg, remain unal-
tered on entry. As aresult, execution of the handler will take place in guest mode, and guest mode exception context
registers are used, including Guest.EPC, Guest.Cause, Guest.BadVAddr, Guest.Context, Guest.EntryHi.

4.4.3.5 Reset

At reset, Root.Statusgg =1, thus a MIPS32 processor will always start in root mode.

In addition, Root.GuestCtl0g),=0 on reset, ensuring that the operation of existing software is unchanged.

4.4.3.6 Debug Mode

For processors that implement EJTAG, the processor is operating in debug privileged execution mode (Debug Mode)
when Root.Debugpy,=1. If the processor is running in Debug Mode, it has full accessto all resources that are avail-
able to Root Kernel Mode operation.

Debug Mode, Root Mode and Guest Mode are mutually exclusive. At any given time, the processor can only bein
one of the three modes. Note that Debug mode operates in the Root context, while Guest mode operatesin its own
unigue context.

4.4.3.7 Fields affecting processor mode

Table 4.1 describes the fields affecting the processor mode.

Table 4.1 Guest, Root and Debug modes

Root Guest
GuestCtl0
DebugDM StatusERL StatusEXL StatusKSU GM StatusERL StatusEXL StatusKSU Mode
Don't care Debug

20

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 4.1 Guest, Root and Debug modes

4.4 Operating Modes

Root Guest
Debugpy | Statusgg, | Statusgy, | Statusksy Gue;\tACtIO Statusgg, | Statusgy, | Statusgsy Mode
0 Don't care Root-Kernel
0 Don't care
0 00 0 Don't care
01 Root-Supervisor
10 Root-User
Don't care 1 Don't care Guest-Kernel
0 Don't care
0 00
01 Guest-Supervisor
10 Guest-User
Don't care 11 UNPREDICTABLE
Don't care 11 Don't care UNDEFINED

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

21

The Virtualization Privileged Resource Architecture

4.4.4 The Guest Context

The Virtualization Module provides root-mode software with controls over the instructions that can be executed, the
registers which can be accessed, and the interrupts and exceptions which can be taken when in guest mode. These
controls are combined with new exceptions that return control to root mode when intervention is required. The overall
intent isto allow guest-mode software to perform the most common privileged operations without root-mode inter-
vention - including transitions between guest kernel and guest user mode, controlling the virtual memory system (the
TLB) and dealing with interrupt and exception conditions. Controls allows root-mode software to enforce security
policies, and alow for virtualized features to be provided using direct access or trap-and-emul ate approaches.

The features added by the Virtualization Module are primarily concerned with virtualizing the privileged state of the
machine and dealing with related exception conditions. Hence most features are related to guest-mode interaction
with Coprocessor 0. A partially-populated Coprocessor 0 context is added for guest-mode use. See Section

4.6 “Coprocessor 0”.

The Virtualization Module provides controls to trigger an exception on any access to Coprocessor 0 from the guest,
access to a particular register or registers, or to trigger an exception after a particular field has been changed. See
Section 5.2 “GuestCtl0 Register (CPO Register 12, Select 6)”.

The guest Coprocessor 0 context includes its own interrupt system. Root-mode software can directly control guest
interrupt sources, and can also pass through one or more external hardware interrupts to the Guest. Guest mode soft-
ware can enable or disable its own interrupts to enforce critical regions. The root-mode interrupt system remains
active, allowing timer and external interrupts to be dealt with by root-mode handlers at any time. See Section

4.8 “Interrupts’.

The guest context includesits own TLB. Thisisuseful for fully virtualized systems, where direct guest accessto the
TLB is necessary to maintain performance. A two-level address trandlation system is present, along with the related
exception system. This system is used to manage guest mode access to virtual and physical memory, and then to
relate those accesses to the real machine's physical memory. See Section 4.5 “Virtual Memory”.

All MIPS32 unprivileged instructions and registers can be used by guest mode software without restriction. This
includes the General Purpose Registers (GPRs) and multiplier result registers hi and lo. See Section 4.9 “Instructions
and Machine State, other than CPO".

MIPS defines optional architecture features and M odules which add machine state and instructions to the base
MIPS32 architecture. Some examples include the Floating Point Unit, the DSP Module, and the UserLocal register.
The presence of these optional features and Modules within the machine is indicated by read-only configuration bits
in the Root.Config,_7 registers.

The Virtualization Module alows implementations to choose which optional features are available to the guest con-
text. The optional features available to the guest are indicated by fieldsin the Guest.Config,_; registers. An imple-

mentation can further choose to allow run-time configuration of the features available to the guest by allowing
root-mode writes to fields in the Guest.Config,_; registers.

Root-mode software can control guest writes to the Guest.Config registers when GuestCtlO-g=0. This allows Root to

control changesto Guest configuration, or be informed of changes to Guest configuration. See Section 4.6.6 “Guest
Config Register Fields’.

The base MIPS32 architecture includes access controls which alow kernel-mode code to limit access to optional or
Module features. Examplesinclude the Statuscj; bit and the Statusyy bit. The ‘onion model’ requires that both

root-mode and guest-mode permissions are applied to guest-mode accesses. For example, access to the floating point
unit must be enabled by the root (Root.Statuscy;;) and the guest (Guest.Statuscy,;) before exception-free accesses can

22 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4 Operating Modes

be performed. See Section 4.9.4 “Floating Point Unit (Coprocessor 1)”. There are exceptions to the onion model, for
example the HWREna register only appliesin respective context for guest and root operations.

In afully virtualized system, the virtual machine presented to the guest is afaithful copy of areal machine - al pro-
cessor state, instructions, memory and peripherals operate as expected by the guest software.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 23

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

24

The Virtualization Privileged Resource Architecture

Figure 4.4 shows a simplified MIPS32 processor during root mode execution. Shadow register controls determine
which General Purpose Register set isused. Multiplier result registers are accessible in user and kernel modes.
Address translation is performed using a TL B-based MMU and Segment Configurations. Access to the FPU is con-
trolled by kernel-mode software using the Statusc;; bit. Interrupts can result from external sources or the system

timer. Exceptions can result from address translation, breakpoints, instruction execution, or serious errors such as
NMI, Machine Check or Cache Error.

The example assumes a non-EIC interrupt system, and for reasons of clarity, omits Supervisor modes and Configg -
registers.

Figure 4.4 Simplified processor operation in root mode

Root-Kernel Mode
User Mode Shadow Regs
SRSCH|
SRSMap
GPRs hi, lo - -
' Timekeeping
Count
5 Compare
Base Instrs. FPU Instrs. 'CRQ detect
ausepz
Status; IRQs
Statusyy7. »
IntICtljpT,
Address
Translation
Segmentation Exceptions
Control (optional)
EPC
EntryLo0,1 ErrorEPC
EntryHi Cause
PageMask Statuscy; BadVAddr
PageGrain
Index, Wired R
EJTAG Breakpoints
External Debug
NMI, Cache Error,
Machine Check
Memory FPU

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4 Operating Modes

Figure 4.5 shows the Virtualization Module ‘onion model’ applied to the simplified M1PS32 processor from Figure
4.4, for afully virtualized guest. Guest context shadow register controls determine which General Purpose Register
set isused. Multiplier result registers are accessible in user and kernel modes. Address tranglation is performed first
using the guest context (enabled by GuestCtl0r=1 or 3), then through the root context TLB. Note that root context
Segment Configurations are not used - the root context TLB trandates every address from the guest.

Exceptions detected by the guest context are handled in guest mode - from guest segmentation/trand ation, guest
coprocessor enables, guest timekeeping, and IRQs - both external sources passed through by the root context, and
IRQ sources directly asserted by root-mode software. Exceptions detected by the root context are handled in root

mode - root timekeeping, IRQs, coprocessor enables and second-level address trandation, plus new controls over
guest behavior.

Figure 4.5 Virtualization Module Onion Model applied to simplified processor (full virtualization)

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Root-Kernel Mode
Juest-Kernel Mode |
Guest-User Mode Shadow Sets Shadow Regs
SRSCtl SRSCHl
SRSMap SRSMap
GPR GTOffset
s hi, lo - - - :
Timekeeping Timekeeping
Count + Count
= Compare Compare
[SuestCtlo
Base Instrs. FPU Instrs. IRQ detect I P72 | IRQ detect
Cause|p7 Cause|p7
Statusg PIP Status|g IRQs
GuestCtlOar=1 or 3 Status;y7.» Status;y7 »
v IntiCtpy 'y IntiCtlpy
Address
Translation
Segmentation
Control (optional)
EntryLo0,1 Exceptions gggﬂc
EntryHi GHEC
PageMask EPC Hypercall
- ErrorEPC P
PageGrain Status rror GuestCtlo
Index, Wired cul Cause {CPO, AT, GT, CF
- BadVAddr AR
MC, RI, CG}
Address
Translation
Segmentation Exceptions
Control (optional)
EPC
EntryLo0,1 ErrorEPC
EntryHi Cause
PageMask Statuscy; BadVAddr
PageGrain
Index, Wired .
EJTAG Breakpoints
A
External Debug
NMI, Cache Error,
Machine Check
Memory FPU

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 25

The Virtualization Privileged Resource Architecture

4.5 Virtual Memory

The Virtualization Module includes an option for two levels of address trandlation to be applied during guest-mode
execution. The Virtualization Module reguires that a TLB-based MMU isimplemented in the root context.

The Virtualization Module provides a separate CPO context for guest-mode execution. This context can optionally
include segmentation controls and address translation (MMU). The guest MMU can be TLB-based, block address
trandation (BAT) or fixed mapping (FMT).

In guest mode when guest segmentation and translation are enabled (GuestCtlO =1 or 3), two levels of address trans-
lation are performed. The first level uses the guest segmentation controls and the guest MMU. This tranglates an
address from a Guest Virtual address (GVA) to a Guest Physical Address (GPA). The second level of trandlation uses
theroot TLB, using the GPA in place of the Virtual Address (VA) that would normally be used. This second tranda-
tion resultsin aPhysical Address (PA). The cache attribute used is that supplied by the guest context. In this second
level of trandation, exceptions in address translation are handled by Root.

When a TLB-based guest MMU is provided, it is recommended the number of entries be equal to the number of
entries in the root-context TLB used for Guest mappings. The page sizes used in the root-mode TLB must be care-
fully considered to allow sufficient control for root-mode software, while maximizing the number of guest-mode TLB
entries which are mapped through each root-mode TLB entry. Larger root TLB pages will likely result in better per-
formance.

Both the guest and root MMU’s can be active at the same time. We recommend that the Root TLB maintain an ade-
guate amount of reserved TLB entries for its own use to avoid cascading TLB evictions (thrashing).

Figure 4.6 shows the outline of address translation in the Virtualization Module.

26 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.5 Virtual Memory

Figure 4.6 Outline of Address Translation

Virtual Address (VA)

v

Root CPO

GuestID=0
Root ASID

v

segmentation GPTIONAL

Root Virtual Address

Root TLB

G

N

Physical Address (PA)

Implementation note: Processor designs incorporating the Virtualization Module and implementing a guest context
MMU are unlikely to perform translation twice on each memory access. A hardware mechanism will be used to
ensure that a Physical Address can be obtained from a Guest Virtual Address within the CPU pipelinein asingle

GuestID=N

Root ASID isignored
Guest Physical Address

Guest CPO

NY

segmentation JPTIONAL

GuestID=N

Guest
ASID

v

Guest TLB

Root exception

Guest exception

tranglation. The mechanism may use micro-TLBs - for example, on amicro-TLB refill, aguest TLB lookup would be
followed by aroot TLB lookup, to produce a one-step GVA-PA trandation. Other methods are possible. The system

must be arranged to alow for efficient execution and to appear to software that two independent translation steps are
taking place for each memory access.

Guest mode segmentation controls and the guest mode MM U have no effect on the root mode address space.

The optiona ‘ GuestID’ field (GuestCtl1,p or GuestCtllgp) represents a unique identifier for Root and all Guest Vir-
tual Address spaces. Each Guest’s address space is identified by a unique non-zero GuestID. The GuestlD value zero
isreserved for Root address space. The GuestCtl1 CPO register isunique in the Root register space and inaccessiblein
guest mode. GuestID is an optimization, designed to minimize TLB invalidation overhead on a virtual machine con-

text switch and simplify Root access to Guest TLB entries. The implementation of a GuestID is recommended.

Implementation complexity can be minimized by reducing the GuestID to 1 bit. This allows the Root TLB to distin-

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

27

The Virtualization Privileged Resource Architecture

guish between Root and Guest Entries, and flush either set of mappingsin entirety with the TLBINVF instruction.
Alternatively, GuestID can be eliminated by having Root virtual address space shared with Guest physical addresses.

The pseudocode bel ow describes the compl ete address translation process for the MIPS32 Virtualization Module.
Segmentation, TLB lookups, hardware TLB refill and second-level address trandlation are invoked below. The pro-
cessis described in top-down order - subsequent sections describe the subroutines called. See Section

4.5.1 “Virtualized MMU GuestID Use” for description of RAD and DRG terms.

/* Inputs

* vAddr - Virtual Address

* TorD - Access type - INSTRUCTION or DATA
* LorS - Access type - LOAD or STORE

*

pLevel - Privilege level - USER, SUPER, KERNEL

*

* Qutputs

* pAddr - physical address

* CCA - cache attribute (valid when mapped)
*

*

Exceptions: See called functions
* Called from guest or root context.
*/
subroutine AddressTranslation (vAddr, IorD, LorS, pLevel)

// Initialization.
// GuestID is only applicable if GuestCtlOgzp=0. Otherwise GuestID
// 1s ignored (not applicable) in process of address translation.
GuestID « ignored

if (IsGuestMode()) then
// This is a Guest Address translation
// step 1l: Guest Virtual -> Guest Physical Address translation
if (GuestCtl0gap=0)
GuestID ¢« GuestCtllip
endif
(mapped, addr, CCA) <« AddressDecode (vAddr, pLevel)
if (Configyy=1 or Configyr=4) then // TLB type MMU
if (mapped) then
asid ¢« Guest.EntryHiagrp
(addr, CCA) <« Guest.TLBLookup(asid, GuestID, addr, IorD, LorS)
endif
else
if (Configy=0) then
MMU=None case is undefined
UNDEFINED
else
Other MMU type, FMT or BAT. BAT will use LorS.
(addr, CCA) ¢« Guest.OtherMMULookup (addr, CCA, LorS, pLevel)
endif
endif
if (exception)
Guest Exception
// TLB exceptions may include Refill, Invalid, Execute-Inhibit for
// Instruction, Refill, Invalid, Modified, Read-Inhibit for Data.

28 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.5 Virtual Memory

// Guest segment map related exceptions may include Address Error
endif

// step 2: Guest Physical -> Root Physical Address translation
// if GuestCtlOzap=0, then guest entry ASID is global in Root TLB.
// H/W must set G=1 for guest entry for TLBWI and TLBWR.
asid ¢« Root.EntryHi,grp
pAddr ¢« Root.TLBLookup (asid, GuestID, addr, IorD, LorS)
if (exception)
Root Exception
// This is a Root exception initiated in guest context
// This includes all TLB exceptions.

// Segment map Address Error exception not included, as guest does not

// lookup root segment map.
endif

else
// This is a Root Address translation
// Root Virtual -> Root Physical Address translation
// Tf GuestCtlOpgpg=1l,GuestCtlOgrp is non-zero,Root.Statusgyy, gr=0.
// and Debugpy=0, then all root kernel data accesses are mapped and root
// SegCtl is ignored.H/W must set G=1 as if the access were for guest.
drg_valid <« (GuestCtlOpgg=1 and Root.Statusyggy=00 and Root.Statusgy;,=0 and
Root.Statusgg;,=0 and Debugp,=0 and GuestCtlOg;p!=0 and !Instruction)
if (drg_valid) then
mapped « 1
addr <« vAddr
else
(mapped, addr, CCA) <« AddressDecode (vAddr, pLevel)
endif
if (!mapped) then
pAddr ¢« addr
else if (GuestCtlOgap=0)
if (Instruction or (!drg_valid))
GuestID « 0
else
GuestID ¢« GuestCtllgzrp
endif
endif
asid <« Root.EntryHi,grp
(pAddr, CCA) <« Root.TLBLookup(asid, GuestID, addr, IorD, LorS)
endif
endif
if (exception)
Root Exception
// Includes all TLB and Segment related exceptions in Root context.
// If drg_valid, and access is not by root-kernel,then an Address Error
// exception is caused.
endif

return (pAddr,CCA)

subroutine AddressDecode (vAddr, pLevel)

Determine whether address is mapped
- 1f unmapped, obtain physical address and cache attribute
if (Config3gc) then

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

29

The Virtualization Privileged Resource Architecture

// optional Segmentation Control based address decode
(mapped, addr, CCA) <« SegmentLookup (vAddr, pLevel)

else
(mapped, addr, CCA) <« LegacyDecode (vAddr([31:29], pLevel)
endif
return (mapped, addr, CCA)
endsub

Seealso Section 4.7.1 “Exceptionsin Guest Mode” and Section 4.7.2 “Faulting Address for Exceptions from Guest
Mode’.

45.1 Virtualized MMU GuestID Use

The use of GuestID is optional as specified by the value of GuestCtlOg;. Software can detect presence of GuestCtl1
and thus GuestCtl1,p and GuestCtl1g,p by reading GuestCtlOg;.

For an implementation that supports GuestCtlOgap=0, GuestCtl0g; must be preset to 1, otherwise GuestCtl0g, must
be preset to 0. GuestCtlOrap is read-only - an implementation can support one or the other, but never both. On the
other hand, GuestCtlOprg is R/W. See Table 5.2 for description of R/W state of DRG and RAD.

GuestCtl1,p is used for guest-mode operation, while GuestCtl1g p is used for root-mode operation. Root address
translation assumes Guestl D=0 providing GuestCtlOpgs=0.

The Guest TLB may or may not be shared by multiple guests. The Root TLB will be shared by Root and at least one
unique Guest. Options to support dealiasing guest and root entries in Root TLB, and possibly multiple guestsin the
Guest TLB is described below.

A processor will support one of the two modes below. Software can determine the mode by reading GuestCtl1gap
described in Table 4.2

1. Dedliasing by GuestID

GuestID is used to dealias multiple guest contextsin both Guest and Root TLB. Specifically, GuestCtl1, is used
for guest-mode operation, whereas GuestCtl 1z, is used for root-mode operations. A guest or root-mode opera-
tion isan instruction or data trandation, or TLB instruction.

An implementation may choose to provide direct root-mode access to guest entries (GPA->RPA) in the Root
TLB. Direct root-mode access is described by GuestCtlOpgg in Table 4.2. In the absence of this feature, root

would have to probe the Root TLB with GPA, and subsequently read on match to obtain the RPA. If amiss
occurs, then root must walk the guest shadow page tablesin memory. Otherwise, with direct access, a miss will
result in a hardware pagewalk, assuming a hardware pagewalker is supported.

Root ASID for guest entries in the Root TLB are ignored because hardware will set the global bit on awrite for
such entries.

2. Dedliasing by Root ASID.

This option should be used if no GuestID isimplemented. Software can detect this mode by reading
GuestCitl 1RAD.

30 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.5 Virtual Memory

Between Guest context-switches, the Guest and Root TLBs must be flushed of current guest context by root soft-
ware. Root.EntryHiagp is used to dealias Root from Guest entriesin the Root TLB. Root software must maintain

aoneisto one correspondence between allocated ASID and the unique Guest it represents.

Root ASID for guest entries in the Root TLB are not ignored unless software explicitly sets G=1 for the guest
entry.

Table 4.2 GuestID Translation Related Usage Mode Control

Field Description

GuestCtlOgap | RAD, or “Root ASID Dealias’ mode determines the means that a Virtualized
MMU implementation uses to dealias different contexts.

Encoding Meaning
0 GuestI D used to dealias both Guest
and Root TLB entriesin Root TLB.
1 Root ASID isused to dealias Root

TLB entries, while Guest TLB con-
tains only one context at any given
time.

GuestCtlOprg | DRG, or “Direct Root to Guest” access determines whether an implementation
with GuestCtlOgap=0 provides root kernel the means to access guest entries
directly in the Root TLB for access to guest memory. If GuestCtlOprg=1 then
GuestCtlOgp must be used. If GuestID for root operation is non-zero, root is
in kernel mode, Root.Statusgy | gr =0 and Debugpy=0, then all root kernel

data accesses are mapped, root SegCtl isignored and Root TLB CCA is used.
Access in root mode by other than kernel will cause an address error. H/W
must set G=1 asif the access were for guest.

Encoding Meaning
0 Root software cannot access guest
entries directly.
1 Root software can access guest entries
directly.

The following pseudo-code indicates how to specify the ASID and GuestI D(if present) interface to the Root and
Guest TLBsfor Guest and Root address translations, as a function of GuestCtlOgap. A field within a TLB entry needs
to be compared with a“Key” asinput to the interface to determine whether amatch is has occurred.

Guest and Root TLB interfaces for GuestID dealiasing method (GuestCtlOgap=0):

Guest TLB Interface:
if (Instruction or Load or Store)
GuestTLB.Key[GuestID] = GuestCtllrp

endif

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 31

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

GuestTLB.Key[ASID] = Guest.EntryHi,grp

Root TLB Interface:
if (IsRootMode())
drg_valid <« (GuestCtlOpgrg=1 and Root.Statusggy=00 and Root.Statusgy;,=0 and
Root.Statusgg;,=0 and Debugp,=0 and GuestCtlOgzrp!=0 and !Instruction)
if (!drg_valid) then
// Instruction or Load or Store

RootTLB.Key[GuestID] = 0
else // special mode - root access guest entries
RootTLB.Key[GuestID] = GuestCtllgprp

endif

else // Guest mode
// Instruction or Load or Store
RootTLB.Key[GuestID] = GuestCtlly,

endif
ROOtTLB.Key[ASID] = Root.EntryHiagrp

With GuestCtlOgap=0, Guest entriesin the Root TLB must ignore the ASID. For thisreason, if GuestCtlgp!=0, that

isentry isa Guest entry, then Root mode execution of TLBWI and TLBWR setsthe entry’s G bit to 1 automatically.
Otherwise, for Root entries, TLBWI and TLBWR must set/clear the G bit in accordance with the baseline architec-
ture.

Guest and Root TLB interface for Root ASID dealiasing method (GuestCtlOgap=1) :

Guest TLB Interface:

GuestTLB.Key[ASID] = Guest.EntryHiagrp
Root TLB Interface:
ROOtTLB.Key[ASID] = Root.EntryHiagrp

GuestCtlOprg has no effect on the Guest and Root address trandlations if GuestCtlOgap=1. If GuestCtlOgap=1, then
GuestCtlOprg must be read-only as 0.

For more detail on Guest and Root address translation, please refer to pseudo-code in Section 4.5 “Virtual Memory”.

Table 4.3 specifies the association of GuestID with TLB instructions. For supporting information, refer to Section
4.6.2 “New CPO Instructions’.

Table 4.3 GuestID Use by TLB instructions.

GuestID
TLB Operation (GuestCtl|p/GuestCtllgp)

TLBGINV GuestCtl1gp
TLBGINVF GuestCtllgp
TLBGP GuestCtl1gp
TLBGR GuestCtl1gp
TLBGWI GuestCtl1gp
TLBGWR GuestCtl1gp

32 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.5 Virtual Memory

Table 4.3 GuestID Use by TLB instructions.

GuestID
TLB Operation (GuestCtl|p/GuestCtligp)

TLBINV if RootMode then GuestCtl1gp
else GuestCil 1,

TLBINVF if RootMode then GuestCtl1zp
else GuestCil 1,

TLBP if RootMode then GuestCtl1g,p
else GuestCtl 1|D

TLBR if RootMode then GuestCtl1g,p
else GuestCil 1|D

TLBWI if RootMode then GuestCtl1gp
else GuestCil 1,

TLBWR if RootMode then GuestCtl1gp
else GuestCil1,p

4.5.2 Root and Guest Shared TLB Operation

An implementation may choose to share a common physical TLB amongst root and guest. In a TLB structure that
incorporates aVTLB (Variable page size TLB) and FTLB (Fixed page size TLB), the VTLB must accommodate
wired entries for both root and guest in a shared structure. In other implementations, the VTLB may be standalone
without a supporting FTLB.

In anon-virtualized design, the number of wired entriesislimited by the CPO Wired register in either context. And the
number of entriesin the VTLB is determined by Configlymugze-1 @nd Configdy ggzeext OF Configdymusizeext: FOr

this purpose, it is required that any of these fields be writeable by root as givenin Table 4.10.

In arecommended shared TLB implementation, the root index increases from the bottom of the physical TLB while
the guest index increases from the top of the physical TLB. Thisisto avoid overlap of root and guest wired entries, if
programmed appropriately. On the other hand, the root and guest indices to the FTLB grow from the bottom of the
FTLB. Both guest and root TLB operations must interpret the TLB index accordingly.

It is expected that root will allocate the appropriate number of wired entriesto itself, and then write guest Configl and
Config4 related fields to set the available VTLB entries for guest. Root will read Guest.Configdymuexipes t0 deter-
mine which of the guest Configd MMU size extension fields need to be written. Since the entries allocated for guest
use a'so includes non wired entries shared by both root and guest, root software must be careful not to allocate all
remaining non root-wired entries to guest. This prevents guest from populating all remaining non root-wired entries
with its own guest-wired entries, leaving no entries for non root-wired entries.

Root software should not change guest MMU configuration while the guest isin operation, asis the case for any guest
configuration that is read-only to guest but writeable by root.

It is not required that hardware check for illegal values written to guest MMU size and extensions. A typical imple-
mentation will however check to ensure that any field write saturates at the maximum number of bits required to sup-
port the total number of entriesin the shared TLB.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 33

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.6 Coprocessor 0

34

Defined by the MIPS32 Privileged Resource Architecture (PRA), Coprocessor 0 (CPO) contains system control regis-
ters. Accessto these registersisrestricted and can only be performed using privileged instructions.

The Virtualization Module provides a partial set of CPO registers for use by the guest, thisis known as the guest con-
text. When in guest mode, the behavior of the machine is controlled by the combination of the guest CPO context and
the root CPO context. When in root mode, the behavior of the machine is controlled entirely by the root CPO context.

The guest CPO context consists of a base set plus optional features.

Access to features within the guest CPO context is controlled from root mode. The Guest.Configg.; registers deter-
mine which architecture features are active during guest mode execution. The GuestCtlO register controls whether a
guest access to a privileged feature will trigger an exception.

Guest CPO registers can be accessed from root mode by using the root-only MFGCO and MTGCO instructions. Guest
TLB contents can be accessed by using the root-only TLBGP, TLBGR, TLBGWI and TLBGWR instructions.

Root context software (hypervisor) is required to manage the initial state of writable Guest context registers. On
power-up, the initial state defaults to the hardware reset state as defined in the base architecture. On Guest context
save and restore, the hypervisor is required to preserve and re-initialize the Guest state. For virtual boot of a Guest,
the hypervisor isrequired to initialize the Guest state equivalent to the hardware reset state.

Root has the ability to define the presence of and control the contents of Guest CPO registers. Therefore, if so config-
ured, Guest access to guest CPO state may cause a Guest Privileged Sensitive Instruction exception. Refer to Table
4.7, Section 4.6.6 “Guest Config Register Fields” and Section 4.7.7 “Guest Privileged Sensitive Instruction
Exception” for further information.

Root may deconfigure guest CPO registers by writing to guest configuration registers as defined in Table 4.10. Guest
behavior in response to these modifications is defined in Table 4.8.

The Virtualization Module requires that scratch registers KScratchl and KScratch2 are present in the root context.
This ensures that hypervisor exception handlers have an adequate number of scratch registers to save and restore all
general purpose registersin use by the guest.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6 Coprocessor 0

4.6.1 New and Modified CPO Registers

Coprocessor O registers are added by the Virtualization Module to control the guest context - GuestCtl0, GuestCtl1

and GTOffset.

Table 4.4 describes CPO registers introduced by the Virtualization Module.

Table 4.4 CPO Registers Introduced by the Virtualization Module

Register Register Compliance
Number Sel Name Description Reference Level
12 6 |[GuestCtlo Controls guest mode behavior. Section 5.2 Required
10 4 [GuestCtll Guest ID Section 5.3 Optional
10 5 | GuestCtl2 Virtual Interrupts Section 5.4 Optional
10 6 |[GuestCtl3 Virtual Shadow Sets Section 5.5 Optional
11 4 | GuestCtlOExt |Extensionto GuestCtlO Section 5.6 Optional
12 7 | GTOffset Offset for guest timer value Section 5.7 Required
Table 4.5 describes CPO registers modified by the Virtualization Module.
Table 4.5 CPO Registers Modified by the Virtualization Module
Register Register Compliance
Number Sel Name Description Reference Level
13 0 |Cause Addition of hypervisor cause code. Section 5.8 Required
16 3 | Config3 Identifies Virtualization Module feature set. Section 5.9 Required
19 0 | WatchHi Added support for Guest Watch. Section 5.10 Optional
25 0 |PerfCnt Added support for Root/Guest performance count. Section 5.11 Optional
31 2 |KScratchl Required in root context. - Required
31 3 | KScratch2 Required in root context. - Required

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

35

The Virtualization Privileged Resource Architecture

4.6.2 New CPO Instructions

The Virtualization Module introduces new instructions for root mode access to the guest CPO context, and for aguest
to make acall into root mode - a‘hypervisor cal’.

Table 4.6 describes CPO instructions introduced by the Virtualization Module.

Table 4.6 CPO Instructions Introduced by the Virtualization Module

36

Compliance
Instruction Description Reference Level

HYPCALL Hypercall - call to root mode. “HYPCALL" on page 124 Required
MFGCO Move from Guest CPO “MFGCO” on page 125
MTGCO Move to Guest CPO “MTGCO" on page 127
TLBGINV Guest TLB Invalidate “TLBGINV” on page 128 Optional
TLBGINVF Guest TLB Invalidate Flush “TLBGINVF" on page 130 Optional
TLBGP Probe Guest TLB “TLBGP’ on page 133 Required
TLBGR Read Guest TLB “TLBGR" on page 136 'I\'All_hl?;er::) ?e“i;t
TLBGWI Write Guest TLB “TLBGWI” on page 138
TLBGWR Write Random to Guest TLB “TLBGWR” on page 140

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6 Coprocessor 0

4.6.3 Guest CPO registers

The Virtualization Module provides a partial set of CPO registers for use by the guest, thisis known as the guest con-
text. Many guest context registers are optional or can be disabled under software control.

Asin the base architecture, fieldsin Guest.Config Guest.Config1..7 registers define the architectural capabilities of
the guest context. When a CPO register does not exist in the guest context, or is disabled by aroot-writable
Guest.Config field, it can have no effect on guest behavior. See Section 4.6.6 “Guest Config Register Fields’ for
information on guest Config register fields which can be dynamically reconfigured by Root. Note that accesses to
Guest CPO registersin certain cases will trigger a Guest Privileged Sensitive Instruction (GPSI) exception as defined
in Table 4.7.

When a CPO register is defined in the guest context, it is used to control guest execution. Fields in the GuestCtlO reg-
ister can be used to cause Guest Privileged Sensitive Instruction exceptions when an access from guest modeis
attempted. This allows hypervisor software to control the value of aregister in the guest CPO context (thus controlling
guest-mode execution) while denying guest-kernel accessto the register. See Section 4.6.4 “Guest Privileged
Sensitive Features’.

Attempting modification of certain fields in guest context CPO registers triggers a Guest Software Field Change
exception. In asimilar manner, the Guest Hardware Field Change exception is triggered when a hardware initiated
change to Guest CPO registers occurs. These mechanisms are used to support Root recognition of Guest initiated
changes to guest context CPO registers. Thisis done to properly manage the operation of the guest virtual machine.
See Section 4.6.5 “Access Control for Guest CPO Register Fields’.

Table 4.7 lists the base architecture CPO registers noting which may be implemented in the guest context.
Definitions of termsused in Table 4.7:

* Required - Must be implemented in the Guest context.

* Recommended - Should be implemented in the Guest context.

* Optiona - Implementation dependent as to whether included in the Guest context.

* Not Available - Never implemented in the Guest context.

The guest CPO context must include all CPO registers from an optional feature or an Module if the associated
Guest.Config field indicates that the feature or Module is available in the guest context. For any of these registers,
guest access may be controlled by Root software. Thisis done by triggering a Guest Privileged Sensitive Instruction

Exception on a guest-mode access. Guest Software Field Change and Guest Hardware Field Change exceptions can
also be used.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 37

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

38

See also Section 4.10 “Combining the Virtualization Module and the MT Module”.

Table 4.7 CPO Registers in Guest CP0 context

Guest Privileged
Sensitive Instruction
Available to Exception when
Register Guest-Kernel software | Root.GuestCtlOcpp=0, |Compliance
Number | Sel | Register Name when or Level
0 0 |Index Guest.Configyr=1 or GuestCtlOExtyg=1 Required for
1 0 |Random Guest.Configy =4 Guest context
TLB
2 0 |EntryLoO
3 0 |EntryLol
4 0 | Context
4 1 | ContextConfig Guest.Config3gy=1 or Optional
GUest.COﬂfigaCTXTczl
4 2 |UserLocal Guest.Config3y g =1 GuestCtlOExtog=1 Recom-
mended
5 0 |PageMask Guest.Configy =1 or GuestCtlOExty =1 Required for
igy= Guest context
5 1 |PageGrain Guest.Configyr=4 GuestCtl0pr=1 TLB
5 2 | SegCtlo Guest.Config3gc=1 Optional
5 3 |SegCitll
5 4 | SegCtl2
5 5 |[PWBase Guest.Config3py,=1 Optional
5 6 |PWField
5 7 |PWSize
6 0 |Wired Guest.Configy =1 or Required for
Guest.Configy =4 Guest context
TLB
6 6 |PWCtl Guest.Config3py=1 Optional
7 0 |HWREna Guest.Configag>=1 GuestCtlOExtog=1 Required
8 0 |BadVAddr Always GuestCtlOExtgs=1
8 1 |Badinstr Guest.Config3g,=1 GuestCtlOExtgg=1 Optional
8 2 |BadInstrP Guest.Config3gp=1 GuestCtlOExtgg=1 Optional
9 0 |Count Always GuestCtlOgt=0 Required
10 0 | EntryHi Guest.Configyr=1 or GuestCtlOExtyg=1 Required for
Guest.Configyt=4 Guest context
TLB
11 0 |Compare Always GuestCtlOgt=0 Required
12 0 | Status Always -
12 IntCtl Guest.Configag>=1 -

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 4.7 CPO Registers in Guest CP0 context

4.6 Coprocessor 0

Guest Privileged
Sensitive Instruction
Available to Exception when
Register Guest-Kernel software | Root.GuestCtlOcpp=0, | Compliance
Number | Sel | Register Name when or Level
12 2 |[SRSCil Guest.Configag>=1 Always Optional
12 3 |SRSMap Guest.Configag>=1
13 0 |Cause Always - Required
13 5 |NestedExc Guest.Config5nrexists=1 - Optional
14 0 |EPC Always - Required
14 2 |NestedEPC Guest.Config5nrexists=1 - Optional
15 0 |PRid - Always Not Available
Emulated by
Hypervisor
15 1 |EBase Guest.Configag>=1 - Required
15 2 |CDMMBase Guest.Config3cpym=1 Always Not Available
; — Emulated by
15 CMGCRBase Guest.Config3cpmcer=1 Hypervisor
16 0 |Config Always On write access when Required
16 1 |Configl Guest.Configy=1 GuestCtloce=0.
16 2 |Config2 Guest.Configly=1
16 3 [Config3 Guest.Config2,,=1
16 4 | Configd Guest.Config3),=1
16 5 |Configh Guest.Config4y=1
16 6 |Configb Implementation dependent - Optional
16 7 | Config7
17 0 |[LLAddr GuestCtlOEXtog=1 Optional®
18 0 |WatchLo Guest.Configlyr=1 Conditional, refer to Section Optional
hhi . — 4.12 “Watchpoint Debug
19 0 | WatchHi Guest.Configlyr=1 Support”

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 39

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

Table 4.7 CPO Registers in Guest CP0 context

Guest Privileged
Sensitive Instruction
Available to Exception when
Register Guest-Kernel software | Root.GuestCtlOcpp=0, | Compliance
Number | Sel | Register Name when or Level
23 0 |Debug Guest.Configlgp=1 Always Not Available
24 0 |DEPC Guest.Configlgp=1
25 0-n | PerfCnt Guest.Configlpc=1 Conditional, refer to Section
4.8.4 “Performance
Counter Interrupts’
26 0 |ErrCitl - Always
27 0 |CacheErr
28 0 |TagLo
28 1 |DatalLo
28 2 |TagLo
28 3 [|DatalLo
29 0 |TagHi
29 1 |DataHi
29 2 |TagHi
29 3 |DataHi
30 0 |ErrorEPC Always? - Required
31 0 |DESAVE Guest.Configlgp=1 Always Not Available
31 2 |KScratchl Always GuestCtlOExtog=1 Optional
Defined by
31 3 [KScratch2 Guest.ConfigAysertsiet
31 4 | KScratch3
31 5 |[KScratch4
31 6 |[KScratch5
31 7 | KScratch6

1. LLAddr may optionaly be implemented providing the Guest context has access to Guest Physical
Addresses, else Not Available.
2. ErrorEPC isrequired in guest context because it used as scratch by some MIPS compatible OSes.

Table 4.7 indicates the conditions under which guest access of guest CPO registers can cause a Guest Privileged Sen-
sitive Instruction exception (GPSI) to Root. If a GPSI istaken for a guest CPO register which may or may not be
active in guest mode, the corresponding root CPO register must be implemented. Thisiis true because the guest CPO
context is always a subset of the root CPO context. Otherwise, access to the corresponding guest CPO register is
UNPREDICTABLE.

If the configuration of a Guest accessible CPO register can be modified by Root, then Guest access behavior is as
specified in Table 4.8.

Root should not modify Guest configuration while the Guest is running. It is assumed that the Guest software will
read its configuration registers during boot and not thereafter. Since Root can modify guest configuration, Root
should maintain a copy of guest configuration at hardware reset so that it knows which guest CPO registers are actu-

40 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6 Coprocessor 0

ally implemented. Once modified by Root, the guest configuration registers may not accurately reflect the physical
existence of guest CPO registers.

Table 4.8 Root Modification of Guest CPO Configuration

Guest Guest
Register Configuration Guest Configuration
Replicatedin register bit Configuration | Register bit
Guest Root writeable | Register bit value after
Context? as per Table |value on reset | write by Root,
4.10 if writeable Interpretation of Configuration
No No 0 N/A The register does not exist in Guest. Reads and writesto this
register are UNDEFINED.
Yes No 1 N/A Theregister isreplicated in the Guest. Guest can access its ver-
sion of the register without traps to Root excluding the cases
identified in Table 4.7
No Yes 0 0 The register existsin Root and is not replicated in the Guest
context. In Guest mode, reads and writes to this register are
UNDEFINED.
No Yes 0 1 The register existsin Root and is not replicated in the Guest
context. In Guest mode, reads and writesto this register throw a
GPSI exception which alows Root to selectively emulate the
register. Registers which conform to this definition are the
Weatch Registers (4.12) and Performance Registers (5.11).
Yes Yes 1 1 The register exists in the Root context and is replicated in the
Guest context. Guest can access its version of the register with-
out exception excluding cases identified in Table 4.7
Yes Yes 1 0 The register existsin the Root context and is replicated in the

Guest context. Guest access to the register is disabled. Reads
and writes to the register are UNDEFINED.

4.6.3.1 Guest Reserved Register Handling

This section defines the behaviour of guest access to reserved CPO registers of different types.

1. Reserved for Architecture. These are CPO registers reserved by the privileged architecture for future use.

2. Reserved for Implementation. These are CPO registers reserved for implementations which may or may not be
present in guest context.

Thelist of registersis CPO Register 9 (Selects 6 and 7), Register 11 (Selects 6 and 7), Register 16 (Selects 6 and
7), Register 22 (all Selects).

The behaviour of Reserved for Architecture registers follows.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

if (GuestCtl0ppp=0) {

<GPSI>

} elsif (GuestCtlOExtpg=1) {
<GPSI>

} elsif (is_MFCO) {

41

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

MFCO is UNPREDICTABLE
} else { // is_MTCO

MTCO is UNPREDICTABLE
}

The behaviour of Reserved for Implementation registers follows.

if (GuestCtlO.pp=0) |
<GPSI>
} elsif (is_MFCO) {
MFCO is UNPREDICTABLE
} else {
MTCO is UNPREDICTABLE
}

Reserved for Implementation registers are not qualified by GuestCtlOExtog=1 because the requirements for imple-
mentation dependent registers is unknown.

4.6.4 Guest Privileged Sensitive Features

The GuestCtl0 register controls which privileged features can be accessed from guest mode. See Section
5.2 “GuestCtl0 Register (CPO Register 12, Select 6)”.

A hypervisor can limit guest access to privileged (CPO) registers and privileged sensitive instructions. A hypervisor
exception is taken when a guest accesses a privileged feature which is ‘ sensitive’. See Section 4.7.7 “Guest
Privileged Sensitive Instruction Exception”.

4.6.5 Access Control for Guest CP0O Register Fields

The MIPS32 Privileged Resource Architecture includes register fields which are critical to machine behavior, where a
Guest Hardware Field Change (GHFC) or Guest Software Field Change (GSFC) requiresimmediate hypervisor inter-
vention. Guest Software Field Change and Guest Hardware Field Change detection mechanisms are provided in order
to reduce the need for hypervisor exceptions for all CPO writes, exceptions, interrupts and privileged instructions
which could cause changesto critical fields.

The GuestCtl0oy, field controls programmable change detection for certain guest CPO fields. Changes to these fields
will always result in a Guest Software Field Change or Guest Hardware Field Change exception.

See Section 4.7.8 “Guest Software Field Change Exception” and Section 4.7.9 “Guest Hardware Field Change
Exception”.

Table 4.9 lists fields which can trigger a GSFC or GHFC exception. The architecture also provides the capability to
disable GSFC and GHFC exceptions with GuestCtIOExtgcp . Table 4.9 assumes GuestCtIOEXtycp=0. See Section
4.14 “Lightweight Virtualization” and Table 5.8 for reference to GuestCtlOEXtEcp.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6 Coprocessor 0

Table 4.9 Guest CPO Fields Subject to Software or Hardware Field Change Exception

Exception
Register Field Purpose Type
Status Cu2.Cul Coprocessor access. GSFC
Statuscy; causes GSFC if GuestCtlOg=c1=0
SatUSCUZ causes GSFC if GUeﬂCthS:CZZO
Status RP Reduced power mode. Guest value isignored, Root.Statusgp controls GSFC
system power mode.

Status FR Floating point register mode. GSFC
Status MX Enable accessto MDM X and DSP resources. GSFC
Status BEV Bootstrap exception vector. Controlslocation of exception vectors, and is GSFC

used to determine EIC vs non-EIC interrupt mode.

Status TS TLB multiple match. Both
Status SR Reset exception vector due to Soft Reset. GSFC
Status NMI Reset exception vector due to Non-Maskabl e Interrupt. GSFC
Status Impl (17..16) Implementation dependent. GSFC
Status UM/KSU Operating mode. GSFC exception only when GuestCtlOy,c=1. GSFC
Status EXL Exception level. GHFC exception only when GuestCtlOy,c=1. GHFC
Status ERL Error level. GSFC
Cause DC Disable Count. Root software should disable guest timer access and emu- GSFC

late a non-counting timer when this hit is set by the guest.

Cause v Interrupt Vector. Controls EIC vs non-EIC interrupt mode. GSFC

IntCtl VS Vector spacing. Controls EIC vs non-EIC interrupt mode. GSFC
PerfCnt Event, Performance Counter Control Event field. GSFC

EventExt EventExt is Optional in implementations.

4.6.6 Guest Config Register Fields

The Guest.Config,._; registers control the behavior of architecture features during guest execution. All fields follow
base MIPS32 architecture definitions.

Virtualization Module implementations are permitted to choose whether to implement Optional MIPS32 featuresin
the guest context. All Required features specified by the architecture revision (Guest.Configar) must be implemented.

The operation of the guest context must always follow the setting of the Guest.Config register fields.

The guest context must be a subset of the root context - the guest context can only include features available in the
root context.

The MIPS32 architecture defines many read-only Config register fields. For each read-only Root.Configg.; register
field, the Virtualization Module implementation must choose a fixed value or allow dynamic reconfiguration in the
corresponding Guest.Configg_; field.

Dynamic configuration isimplemented by permitting root-mode writesto fieldsin Guest.Config registers. Only val-
ues supported by the implementation will be accepted on writes to read-only Guest.Config fields from root mode.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 43

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

44

When an unsupported value is written, the field will remain unchanged after the write. The Guest.Config fields con-
trolling dynamic reconfiguration are never writable from guest mode.

Root mode software can determine whether programmabl e features are avail able in the guest context by attempting to
write values to Guest.Config fields.

Table 4.10 lists Guest.Config register fields which can be written from root mode in the M1PS32 Virtualization Mod-
ule

The virtualization architecture does not require that hardware provide the capability to emulate different architectural
releases for guest software that is different from the base implementation, due to complexity. For this reason, root
cannot write Guest.Configag.

Table 4.10 Guest CPO Read-only Config Fields Writable from Root Mode

Register Field Purpose Root write
Config M Configl implemented Optional
Config MT MMU Type Optional

Configl M Config2 implemented Optional

Configl MMU Size- 1 Number of entriesin (guest) MMU Required for-

Shared TLB!

Configl Cc2 Coprocessor 2 implemented Optional

Configl MD MDMX implemented Optional

Configl PC Performance Counter registers implemented Optional

Configl WR Watch registers implemented Optional

Configl CA Code compression (M1PS16€e) implemented Optional

Configl FP FPU implemented Optional

Config2 M Config3 implemented Optional

Config3 M Config4 implemented Optional

Config3 BPG Big pages feature implemented Optional

Config3 ULRI UserLocal implemented Optional

Config3 DSP2P DSP Module Revision 2 implemented Optional

Config3 DSPP DSP Module implemented Optional

Config3 CTXTC ContextConfig etc. implemented Optional

Config3 ITL IFlowTrace mechanism implemented Optional

Config3 VEIC External Interrupt Controller implemented Optional

Config3 Vint Vectored interrupts implemented Optional

Config3 SP Small pages feature implemented Optional

Config3 CDMM Common Device Memory Map implemented Optional

Config3 MT MT (MultiThreading) Module implemented Optional

Config3 SM SmartMIPS Module implemented Optional

Config3 TL Trace Logic implemented Optional

Config4 M Config5 implemented Optional

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6 Coprocessor 0

Table 4.10 Guest CPO Read-only Config Fields Writable from Root Mode

Register Field Purpose Root write
Config4 VTLBSizeExt Extends Configlymugze1 if Required for
Configdymuexpe=3 Shared TLB?
Config4 MMUSizeExt Extends Configlymusze1 if Required for
Config4MMUExtDef= 1 Shared TL Bl

1. Root must be able to write guest MM U size related fieldsin Configl and Config4 if a TLB is shared between root and guest
as described in Section 4.5.2 .

4.6.7 Guest Context Dynamically Set Read-only Fields

The MIPS32 Privileged Resource Architecture includes register fields which are read only, and dynamically set by
hardware. Corresponding fields in the guest context can be written from root mode, but remain read-only to the guest.

Reserved (zero) bits and static configuration bits are not included. The Random register is not included.

Table 4.11 lists fields which are read-only to the guest and writable from root mode.

Table 4.11 Guest CPO Read-only Fields Writable from Root Mode

Register Field Purpose
Index P Root restore of P in guest context.

Context BadVPN2 Virtual Page Number from the address causing last exception.
BadVAddr BadVAddr Address causing last exception

SRSCH HSS Highest Shadow Set

SRSCtl EICSS Externa Interrupt Controller Shadow Set

SRSCtl CsSs Current Shadow Set

Cause BD Last exception occurred in adelay slot

Cause Tl Timer interrupt is pending

Cause CE Coprocessor number for coprocessor unusable exception

Cause FDCI Fast Debug Channel interrupt is pending

Cause 1P7..2 Non-EIC interrupt pending bits. Write to Cause[7:2] is Optional if

GuestCtl2 implemented.

Cause RIPL EIC interrupt pending level. Optional if GuestCt|2 implemented.

Cause ExcCode Exception code, from last exception

EBase CPUNum CPU number in multi-core system

Status SR Soft Reset. Root write is Optional .

Status NMI Non Maskable Interrupt. Root write is Optional.
BadInstr Badlnstr Faulting Instruction Word. Optional in base architecture.
BadlInstrP BadinstrP Prior Branch Instruction. Optional in base architecture.

1 Rootwritesof 1 to Guest.Statuse or Guest. Statusyy, will not directly cause an interrupt in the guest. Root software may set

EPC to the guest’s reset vector and ERET back to the guest such that to the guest it appears asif an NMI or SR had occurred.
Thisfeature is useful for resetting a guest that might be hung or otherwise unresponsive.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 45

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.6.8 Guest Timer

Timekeeping within the guest context is controlled by root mode. The guest time value is generated from the root
timer value Root.Count by adding the two’s complement offset in the Root. GTOffset register. The guest time value
can be read from the Guest.Count register, and is used to generate timer interrupts within the guest context.

When GuestCtl0g =1, guest mode can read and write the Compare register, and can read from the Count register. A
guest write to Count always results in a Guest Privileged Sensitive | nstruction exception.

When GuestCtl0g =0, al guest accesses to the Count and Compare registers result in a Guest Privileged Sensitive
Instruction exception, including read viathe RDHWR instruction.

The value of Guest.Causep has no direct effect on the calculation of the guest time value. A Guest Software Field
Change (GSFC) exception results when an attempt is made to change the value of Guest.Causepc from guest mode.
Note that the value of Root.Causep affects the value of Root.Count during debug mode operation - thisindirectly
affects the value of Guest.Count.

The guest timer interrupt affects only the guest context - it cannot interrupt the root context. Similarly, the root timer
interrupt cannot be directly assigned to the guest.

Usage note: Guest.Causer, is set when Guest.Count = Guest.Compare, even when the deviceis running in Root
mode. In order to preserve the value of Guest.Causer, while restoring Guest.Cause, the following approach may be
taken:

#
Root.Statusgg, ¢ 1

Calculate desired GTOffset value based on saved
Guest.Count and current Root.Count values as well as hypervisor policies.
GTOoffset has a few different purposes:

- To provide each guest a different value of Count.

- To restore a guest’s virtual time between context switches.
In the latter case, GTOffset allows Root to restore time to when a guest was
switched out, by offsetting Root.Count by elapsed time.Or it allows guest Count
to reflect elapsed time also.

Under the simplest scheme, the new GTOffset must adjust current Root.Count
for elapsed time between guest save an restore.

HH FH 3 H FH o H FH I H H*

new_gt_offset « calculate_gt_offset()

GTOffset ¢« new_gt_offset

Restore Guest.Cause since Guest.Cause.TI may be 1.Guest.Cause must be saved
after Guest.Count to provide most current Cause.TI.

Guest.Cause ¢« saved_cause

after the following statement, the hardware might now set Guest.Cause|[TI]

Guest.Compare ¢« saved_compare
current_guest_count ¢« Guest.Count

set Guest.Causep; if it would have been set while the guest was sleeping.

Since GTOffset for the guest and Guest.Compare restore is not atomic, this code
is required to ensure that Guest.Cause.TI is set appropriately, since current

Guest.Count could have raced ahead of saved_count before restoring Guest.Compare.
if (current_guest_count > saved_count) then

46 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6 Coprocessor 0

if (saved_compare > saved_count && saved_compare < current_guest_count) then
saved_cause[TI] « 1
Guest.Cause ¢« saved_cause
endif
else
The count has wrapped. Check to see if
Guest.Count has passed the saved_compare value.
if (saved_compare > saved_count || saved_compare < current_guest_count) then
saved_cause[TI] « 1
Guest.Cause ¢« saved_cause
endif
endif

#The trick is to not overwrite the Guest.Cause here
Root.GuestCtlgy « 1
restore_register_state()
eret
#
Root-mode writes to Guest.Count are ignored.
See also Section 4.8 “Interrupts’ and Section 5.7 “GTOffset Register (CPO Register 12, Select 7)”.

Figure 4.7 shows how the guest timer value is computed from the root timer.

Figure 4.7 Root and Guest Timers

Root.GTOffset .
+ "I Guest.Count
Guest
Timer
Root.Count Guest.Compare - IRQ
increment
Root
N » Timer
Root.Compare " = " IRQ

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 47

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.6.9 Guest Cache Operations

A limited set of cache operations can be performed from guest mode, when the CACHE instruction is enabled by
GuestCtlo-g=1. For this case, any guest-mode cache operation using Effective Address Operand type other than

‘Address’ will result in a Guest Privileged Sensitive Instruction exception.

When GuestCtl0-5=0, guest-mode execution of the CACHE instruction will result in a Guest Privileged Sensitive
Instruction exception.

The above description a so applies to the CACHEE instruction, which is optional in the baseline architecture.
See Section 4.7.7 “Guest Privileged Sensitive Instruction Exception”.

4.6.10 UNPREDICTABLE and UNDEFINED in Guest Mode

The terms UNPREDI CTABLE and UNDEFINED have specific meanings in MIPS architecture documents. See
Section 1.3 “Special Symbolsin Pseudocode Notation”.

A distinction is drawn between UNPREDICTABLE and UNDEFINED. Unprivileged instructions can only have
results which are UNPREDICTABLE.

Thisisto ensure that unprivileged code cannot:

» Compromise availability by preventing control being returned to the highest level of privilege on an interrupt or
exception - for example by causing a hang or other indefinite stall.

» Compromise confidentiality by allowing data (machine state or memory) to be read without permission or detec-
tion.

e Compromiseintegrity by allowing data (machine state or memory) to be altered without permission or detection.
Thisincludes:

» Altering data or instructions used by another process
- e.g. dter abank balance or bypass a license check

» Altering data, instructions or machine state used by the highest level of privilege
- e.g. to gain ahigher level of privilege, or install an aternative interrupt handler

» Compromised integrity also includes the case where one unprivileged process can communicate with
another process without permission - a*“ covert channel”. The channel can use datain memory, machine state
which is not context switched, or the ability to cause timing changes detectable in another process.

The definition of UNPREDICTABLE requiresthat any result returned is produced only from data sources which are
accessible in the unprivileged mode. This ensures that the UNPREDI CTABL E result cannot be reproduced by
another process - provided that the complete set of available data sources are context switched between unprivileged
processes.

Hence process A might be able to perform an operation which produces a deterministic value where an UNPRE-

DICTABLE result is defined by the architecture. Process A may even be able to control the value returned. However,
if afull context switch is made between process A and process B, then process B will not be able to read hidden mes-
sages sent by process A. The value returned by the UNPREDICTABL E operation is dependent entirely on the state

48 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6 Coprocessor 0

visible to process B, which has been fully context switched. No covert communication channel is allowed, and no
data can be accidentally revealed from another process or from a higher level of privilege.

The definition of UNDEFINED only requires that the processor can be returned to a functioning state by application
of the reset signal. This meansthat it isin theory possible to design a system which would allow information to be
stored in hidden state, and communicated from one point in privileged code execution to another, even when it
appears that al available machine state has been context switched.

The MIPS architecture requires that UNDEFINED operations can only result from operations performed in Kernel
Mode or Debug Maode, or when the CPO access bit is set (granting Kernel-level permissions). In other words, UNDE-
FINED operations can result only from operations at the highest level of privilege.

The Virtualization M odule adds Guest Kernel M ode as alimited-privilege mode. Software executing in a Guest Mode
(guest-kernel, guest-supervisor or guest-user) must never cause an UNDEFINED result.

Wherever a privileged operation is described by the MI1PS architecture as having an UNDEFINED result, this must
be interpreted asan UNPREDICTABL E result when executing in Guest Mode.

This mechanism ensures that guest operating systems cannot compromise the availability, confidentiality or integrity
of the hypervisor, other guests or the system as awhole.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 49

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.7 Exceptions

50

Normal execution of instructions can be interrupted when an exception occurs. Such events can be generated as a
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), by anillegal attempt to use a privileged instruction (e.g. MTCO from user mode), or by an event not
directly related to instruction execution (e.g., an external interrupt).

When an exception occurs, the processor stops processing instructions, saves sufficient state to resume theinterrupted
instruction stream, enters Exception or Error mode, and starts a software exception handler. The saved state and the
address of the software exception handler are afunction of both the type of exception, and the current state of the pro-
Cessor.

4.7.1 Exceptions in Guest Mode

The Virtualization Module retains the exception-processing methodology of the base M1PS32 architecture, and adds
additional rulesfor processing of exception conditions detected during guest-mode execution.

The *onion model’ requires that every guest-mode operation be checked first against the guest CPO context, and then
against the root CPO context. Exceptions resulting from the guest CPO context can be handled entirely within guest
mode without root-mode intervention. Exceptions resulting from the root-mode CPO context (including GuestCtl0
permissions) require aroot mode (hypervisor) handler.

During guest mode execution, the mode in which an exception is taken is determined by the following:
» Guest-mode operations must first be permitted by guest-mode CPO context and then by root mode CPO context

» Thisincludes all operations for which exceptions can be generated - memory accesses, coprocessor
accesses, breakpoints and so forth.

» Exceptions are always taken in the mode whose CPO state triggered the exception

* When architecture features in the guest context are present and enabled by the Guest.Config registers, excep-
tions triggered by those features are taken in guest mode.

» Exceptions resulting from control bits set in the Root.GuestCtI0 register, and exceptions resulting from
address trandlation of guest memory accesses through the root-mode TLB are taken in root mode.

Asynchronous exceptions such as Reset, NMI, Memory Error, Cache Error are taken in root mode. External inter-
rupts are received by the root CPO context, and if enabled are taken in root mode. If an interrupt is not enabled in root
mode and is bypassed to the guest CPO context, and is enabled in the guest CPO context, the interrupt istaken in guest
mode.

When an exception is detected during guest mode execution, any required mode switch is performed after the excep-
tion is detected and before any machine stateis saved. This allows machine state to be saved to either the root or guest
contexts, and allows the exception to be handled in the proper mode. See also Section 4.7.2 “Faulting Address for
Exceptions from Guest Mode”.

Booleans, indicating source of exception:

root_async - Asynchronous root context exception

root_sync - Synchronous exception triggered by root context

guest_async - Asynchronous exception triggered by guest context
guest_sync - Synchronous exception triggered by guest context

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.7 Exceptions

#
Exceptions directed to root context set Root.Status.ERL or Root.Status.EXL,
meaning that the processor executes the handler in root mode.

Ordering of exception conditions

if (root_async) then
ctx < Root

elsif (guest_async) then
ctx ¢« Guest

elsif (guest_sync) then
ctx < Guest

elsif (root_sync) then
ctx < Root

else
ctx < null

endif

if (ctx) then
Defined by MIPS32 Privileged Resource Architecture

ctx.GeneralExceptionProcessing ()
endif

4.7.2 Faulting Address for Exceptions from Guest Mode

The BadVAddr register is aread-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions.

e Addresserror

TLB Réfill

+ TLBInvaid

* TLB Modified

* TLB Execute Inhibit

* TLB Read Inhibit

4.7.3 Guest initiated Root TLB Exception

When an exception istriggered as aresult of aroot TLB access during guest-mode execution, the handler will be exe-
cuted in root mode, and exception state is stored into root CPO registers. The registers affected are GuestCtl0,
Root.EPC, Root.BadVAddr, Root.EntryHi, Root.Cause and Root.Contextg,qvpna-

The faulting address value stored into Root.BadVAddr and Root.Contextgqyvpn2 1S idedly the Guest Physical Address
(GPA) presented to theroot TLB by the guest context. A Guest Virtual Address (GVA) unmapped by the Guest MMU
is considered a GPA from the root’s perspective.

Whether the GPA can be provided isimplementation dependent. If a GVA is mapped by the Guest MMU, yet the
GPA isnot available for write to root context, then GuestCtlOge,ccode MUst indicate this. In aspecific e.qg., guest TLB

refill exception will always set GPA in GuestCtlOggyccode, While TLB modified/invalid/execute-inhibit/read-inhibit
exceptions may set GVA due to implementation limitations.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 51

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

The GPA presented to the root TLB isthe result of trandation through the guest context Segmentation Control if
implemented, and through the guest TLB if in amapped region of memory. The value stored in Root.BadVAddr and

Root.Contextg,qvpnz IS the Guest Physical Address being accessed by the guest.

This process ensures that after an exception, both Root.BadVAddr and Root.Contextg,qypn2 Fefer to avirtual address
which isimmediately usable by aroot-mode handler, irrespective of whether the exception was triggered by
root-mode or guest-mode execution.

4.7.4 Exception Priority

Table 4.12 lists al possible exceptions, and the relative priority of each, highest to lowest. The table also lists new
exception conditions introduced by the Virtualization Module, and defines whether a switch to root mode is required
before handling each exception.

Table 4.12 Priority of Exceptions

Taken in
Exception Description Type mode
Reset The Cold Reset signal was asserted to the processor Asynchronous Root
Reset
Soft Reset The Reset signal was asserted to the processor
Debug Single Step An EJTAG Single Step occurred. Prioritized above other excep- Synchronous Root
tions, including asynchronous exceptions, so that one can sin- Debug
gle-step into interrupt (or other asynchronous) handlers.
Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous Root
Debu
Imprecise Debug Data An imprecise EJTAG data break condition was asserted. 9
Break
Nonmaskable I nterrupt The NMI signal was asserted to the processor. Asynchronous Root
(NMT)
Machine Check Root, or Root TLB related. Asynchronous Root
This can only occur as part of aguest (second step) addresstrans- | or Synchronous
lation, root address translation, and root TLB operation (write,
probe) whether for guest or root TLB. It is recommended that the
Machine-Check be synchronous. A TLB instruction must cause a
synchronous Machine Check.
Aninternal inconsistency was detected by the processor. Root
Guest TLB related. Guest
This can only occur as part of a guest address trandation (first
step), and guest TLB operation (write, probe). It is recommended
that the Machine-Check be synchronous. A TLB instruction must
cause a synchronous Machine Check.
Interrupt A root enabled interrupt occurred. Asynchronous Root
Deferred Watch A Root watch exception, deferred because EXL was onewhenthe | Asynchronous Root
exception was detected, was asserted after EXL went to zero. A
deferred root watch exception may occur in guest mode in which
caseit is prioritized higher than a simultaneous occuring guest
interrupt.
Interrupt A guest enabled interrupt occurred. Asynchronous Guest

52 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 4.12 Priority of Exceptions

4.7 Exceptions

Taken in
Exception Description Type mode
Deferred Watch A Guest watch exception, deferred because Guest EXL was one Asynchronous Guest
when the exception was detected, was asserted after EXL went to
zero.
Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized Synchronous Root
above instruction fetch exceptions to allow break onillegal instruc- Debug
tion addresses.
Watch - Instruction fetch A root context watch address match was detected on an instruction Synchronous Root
fetch. Prioritized above instruction fetch exceptionsto allow watch
onillegal instruction addresses. Refer to ‘Watch Registers’ -
Section 4.12 “Watchpoint Debug Support”.
A guest-context watch address match was detected on an instruc- Guest
tion fetch. Prioritized above instruction fetch exceptionsto allow
watch onillegal instruction addresses.
Refer to ‘Watch Registers’ - Section 4.12 “Watchpoint Debug
Support”.
Address Error - Instruc- A non-word-aligned address was |oaded into PC. Synchronous Current
tion fetch
TLB Réfill - Instruction A Guest TLB miss occurred on an instruction fetch Synchronous Guest
fetch
A Root TLB miss occurred on an instruction fetch. Root
This can occur due to a Root or Guest tranglation.
TLB Invalid - Instruction Thevalid bit was zero in the guest context TLB entry mapping the Synchronous Guest
fetch address referenced by an instruction fetch.
The valid bit was zero in the Root TLB entry mapping the address Root
referenced by an instruction fetch.
This can occur due to a Root or Guest translation.
TLB Execute-inhibit An instruction fetch matched avalid Guest TLB entry which had Synchronous Guest
the X1 bit set.
An instruction fetch matched avalid Root TLB entry which had Root
the X1 bit set.
This can occur due to a Root or Guest tranglation.
Cache Error - Instruction A cache error occurred on an instruction fetch. Synchronous Root
fetch or
- - - Asynchronous
Bus Error - Instruction A bus error occurred on an instruction fetch.
fetch
SDBBP An EJTAG SDBBP instruction was executed. Synchronous Root
Debug

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

53

The Virtualization Privileged Resource Architecture

Table 4.12 Priority of Exceptions

Taken in
Exception Description Type mode

Instruction Validity An instruction could not be completed because it was not allowed Synchronous Current
Exceptions access to the required resources, or wasillegal: Coprocessor Unus-
able, Reserved Instruction, MSA disabled. If both exceptions
occur on the same instruction, the Coprocessor Unusable, MSA
disabled Exception takes priority over the Reserved Instruction
Exception.

Coprocessor unusable - guest. Access to a coprocessor was permit- Root
ted by the Guest.Statuscy;., bits, but denied by
Root.Statuscyq., bits.

MSA disabled - guest. Access to the MSA unit was permitted by
Guest.Configbysagn, but denied by Root.ConfigSysagn.

Guest Reserved Instruc- A guest-mode instruction will trigger a Reserved Instruction Synchronous Root
tion Redirect Exception. When GuestCtlOg =1, this root-mode exception is Hypervisor
raised before the guest-mode exception can be taken.

Machine Check Root TLB related. Synchronous Root
This can only occur as part of a Guest or Root address trandlation,
or aTLBP/TLBWI/TLBGP/TLBGW!I executed in root-mode.

Guest TLB related. Guest
This can only occur as part of a Guest address translation, or a
TLBP/TLBWI executed in guest-mode

An internal inconsistency was detected by the processor. Root

Guest Privileged Sensi- An instruction executing in guest-mode could not be completed Synchronous Root
tive Instruction Exception | because it was denied access to the required resources by the Hypervisor
Root.GuestCtlO register.

Hypercall A HYPCALL hypercall instruction was executed. Synchronous Root
Hypervisor

Guest Software Field- During guest execution, a software initiated change to certain CPO Synchronous Root
Change register fields occured. Refer to Section 4.7.8 “Guest Software Hypervisor
Field Change Exception”.

Guest Hardware Field- During guest execution, a hardware initiated set of Statusey /15 Synchronous Root
Change occurred See Section 4.7.9 “Guest Hardware Field Change Hypervisor
Exception” for further information.

Execution Exception An instruction-based exception occurred: Integer overflow, trap, Synchronous Current
system call, breakpoint, floating point, coprocessor 2 exception.

Precise Debug DataBreak | A precise EJTAG data break on load/store (address match only) or Synchronous Root
adatabreak on store (address+data match) condition was asserted. Debug
Prioritized above data fetch exceptions to allow break on illegal
data addresses.

54 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 4.12 Priority of Exceptions

4.7 Exceptions

data fetch must complete in order to do data match.

Taken in
Exception Description Type mode
Watch - Data access A root context watch address match was detected on the address Synchronous Root
referenced by aload or store. Prioritized above data fetch excep-
tionsto allow watch on illegal data addresses. Refer to ‘Watch
Registers’ - Section 4.12 “Watchpoint Debug Support”
A guest context watch address match was detected on the address Guest
referenced by aload or store. Prioritized above data fetch excep-
tionsto allow watch on illegal data addresses. Refer to ‘Watch
Registers’ - Section 4.12 “Watchpoint Debug Support”
Address error - Data An unaligned address, or an address that was inaccessible in the Synchronous Current
access current processor mode was referenced, by aload or storeinstruc-
tion
TLB Réfill - Data access A guest TLB miss occurred on a data access Synchronous Guest
A root TLB miss occurred on a data access. Root
This can occur due to a Root or Guest trandlation.
TLB Invalid - Dataaccess | On adata access, a matching guest TLB entry was found, but the Synchronous Guest
valid (V) bit was zero.
On a data access, a matching root TLB entry was found, but the Root
valid (V) bit was zero.
This can occur due to a Root or Guest trandlation.
TLB Read-Inhibit On adataread access, amatching guest TLB entry was found, and Synchronous Guest
the RI bit was set.
On adataread access, amatching root TLB entry was found, and Root
the RI bit was set.
This can occur due to a Root or Guest trandlation.
TLB Modified - Data The dirty bit was zero in the guest TLB entry mapping the address Synchronous Guest
access referenced by a store instruction
The dirty bit was zero in the root TLB entry mapping the address Root
referenced by a store instruction.
This can occur due to a Root or Guest translation.
Cache Error - Dataaccess | A cache error occurred on aload or store data reference Synchronous Root
or
Bus Error - Data access A bus error occurred on aload or store datareference Asynchronous
Precise Debug Data Break | A precise EJTAG data break on load (address+data match only) Synchronous Root
condition was asserted. Prioritized last because all aspects of the Debug

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

55

The Virtualization Privileged Resource Architecture

The " Type” column of Table 4.12 describes the type of exception. Table 4.13 explains the characteristics of each

exception type.
Table 4.13 Exception Type Characteristics
Exception Type Characteristics
Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution.

These exceptions always have the highest priority to guarantee that the processor can
always be placed in arunnable state. These exceptions always require a switch to root
mode.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execu-
tion. These exceptions have very high priority with respect to other exceptions because
of the desire to enter Debug Mode, even in the presence of other exceptions, both asyn-
chronous and synchronous. These exceptions aways require a switch to root mode.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execu-
tion. These exceptions are shown with higher priority than synchronous exceptions
mainly for notational convenience. If one thinks of asynchronous exceptions as occur-
ring between instructions, they are either the lowest priority relative to the previous
instruction, or the highest priority relative to the next instruction. The ordering of the
table above considers them in the second way. These exceptions always require a
switch to root mode.

Synchronous Debug Denotes an EJTAG debug exception that occurs as aresult of instruction execution, and
is reported precisely with respect to the instruction that caused the exception. These
exceptions are prioritized above other synchronous exceptions to alow entry to Debug
Mode, even in the presence of other exceptions. These exceptions always require a
switch to root mode.

Synchronous Hypervi- Denotes an exception that occurs as aresult of guest-mode instruction execution which
sor requires hypervisor intervention. It is reported precisely with respect to the instruction
that caused the exception. These exceptions aways require a switch to root mode.

Synchronous Denotes any other exception that occurs as aresult of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These
exceptions tend to be prioritized below other types of exceptions, but thereisarelative
priority of synchronous exceptions with each other. In some cases, these exceptions
can be handled without switching modes.

4.7.5 Exception Vector Locations

Exception vector locations are as defined in the base architecture.

The vector location is determined from the values of EBase, Statusgy, , Statusggy, IntCtly,g and Config3ygc obtained
from the context in which the exception will be handled.

The General Exception entry point is used for new hypervisor exceptions Guest Privileged Sensitive Instruction,
Guest Reserved Instruction Redirect, Guest Software Field Change, Guest Hardware Field Change and Hypercall.

4.7.6 Synchronous and Synchronous Hypervisor Exceptions

During guest mode execution, control can be returned to root mode at any time. When an exception condition is
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any
exception state is saved. As aresult, exception state in the guest CPO context is not affected.

56 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The switch to root mode is achieved by setting Root. Statusgy, =1 or Root.Statusgg =1 (as appropriate) before any

4.7 Exceptions

other stateis saved. This ensuresthat all exception state is stored into root CPO context, regardless of whether the pro-
Cessor was executing in root or guest mode at the point where the exception was detected.

Table 4.14 summarizes hypervisor conditions.

Table 4.14 Hypervisor Exception Conditions

Root-mode
Type Vector Causes Reference
Synchronous Hypervisor Genera Guest Privileged Sensitive Instruction | Section 4.7.7
Synchronous Hypervisor Genera Guest Software Field Change Section 4.7.8
Synchronous Hypervisor Genera Guest Hardware Field Change Section 4.7.9
Synchronous Hypervisor Genera Guest Reserved Instruction Redirect | Section 4.7.10
Synchronous Hypervisor Genera Hypercall Section 4.7.11

4.7.7 Guest Privileged Sensitive Instruction Exception

A Guest Privileged Sensitive Instruction exception occurs when an attempt is made to use a Guest Privileged Sensi-
tive Instruction from guest mode, where the instruction is either not permitted in guest mode or is not enabled in guest

mode. The term ‘sensitive’ refers to an instruction which may trigger a hypervisor exception when executed in

guest-kernel mode.

Thelist of sensitive instructions follows:

« WAIT

» CACHE, CACHEE

- when GuestCtl0cg=0
- with anything other than ‘Address’ as Effective Address Operand Type, if GuestCtlO-g=1. Specifically
CACHE(E) instructions with code 0b000, 0b001, 0b010, 0b011 will cause a GPSI.

GuestCtlOExtcg, is an optional qualifier of GuestCtlOqg as described in Table 5.8. If GuestCtIOEXtg =1
and GuestCtl0cg=1 then CACHE(E) instructions of type Index Invalidate (code 0b000) are excluded from
the CACHE(E) instructions that cause a GPSI.

TLBWR, TLBWI, TLBR, TLBP, TLBINV, TLBINVF when GuestCtlO = 3.
- TLBINV, TLBINVF are optional in the baseline architecture.

Access to PageGrain, Wired, SegCtl0, SegCtl1, SegCtl2, PWBase, PWField, PWSize, PWCtl when
GuestCtl0r =3 (Guest TLB resources disabled)

Write access to any Configg_; register when GuestCtlOog=0

Access to Count or Compare registers when GuestCtlogt=0
- including indirect read from CC using RDHWR providing CC is present and enabled by guest HWREna.

Accessto CPO registers using RDHWR when GuestCtl0po=0 providing Guest CPO registers are enabled for
user access by guest HWREna.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 57

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

* Writeto Count register

* Accessto SRSCtl or SRSMap CPO registers when SRSCtlygg > 0.

* Guest-kernel use of RDPGPR or WRPGPR instructions when SRSCtlygg > 0.
* Any Privileged Instruction when GuestCtlOcpn=0

The baseline architecture defines privileged instructions as the following : CACHE, DI, EI, MTCO0, MFCO,
ERET, DERET, RDPGPR, WRPGPR, WAIT, all Enhanced Virtual Addressing (EVA) related instructions
(e.g., LBE, LBUE) (optional), and al TLB related instructions.

Privileged instructions are defined in Volume || of the architecture. Instructions that are supported depend on
the architecture rel ease that an implementation is compliant with, and in some casesinstructions are optional
within arelease.

» Accessto any Guest CPO registersthat are active in guest context and always take Guest Privileged Sensitive
Instruction Exception asgivenin Table 4.7.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value
GPSI (0, 0x00)

Additional State saved
Badlnstr
BadlnstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.8 Guest Software Field Change Exception

A Guest Software Field Change exception occurs when the value of certain CPO register bitfields changes during
guest-mode execution.

Change is caused by MTCO execution, the instruction is copied to the root context Badinstr register (if the implemen-
tation is so equipped) and the exception is taken. The exception is used to alow the hypervisor to track changesto
certain guest-context fields (e.g. Statusgp Or Causeyy). This can be used to ensure the proper operation of the emu-
lated guest virtual machine.

This exception can only be raised by aMTCO instruction executed in guest mode. It is the responsibility of Root to
increment EPC in order to return to the instruction following the MTCO. Note that the guest MTCO is never executed,
unless causing GSFC exception is disabled by GuestCtlOEXxtcp , or selectively by GuestCtlOg=1,. It isthe respon-

sibility of Root to modify the field on the behalf of Guest, providing guest access causes a GSFC.

58 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.7 Exceptions

If afield indicated below is meant to enable access to a resource, but the implementation does not support the
resource, then a GSFC exception is not taken. As an example, if Guest.Configly,p=0, i.e.,, MDMX Moduleis not

supported, then a guest write to Guest. Satusyx will not cause a GSFC exception.

Changes to the following CPO register bitfields aways trigger the exception.

» Guest.Satus bits: CU[2:1], RP, FR, MX, BEV, SR, NMI, UM/KSU, ERL, Impl (17..16), TS (always on clear,
optionally on set),
A change to UM/KSU can only cause a GSFC if GuestCtlOyc=1. Whether guest access to Status;yy, causes a
GSFC isimplementation-dependent.

* Config5 : MSAEN. (Enable for MIPS SIMD Architecture module. Applicable if present)

* Guest.Cause bits: DC, IV

e Guest.IntCtl bits: VS

* Root.PerfCnt w/ PerfCntgc=2/3: Event, EventExt(Optional)

PerfCnt does not exist in guest context. When PerfCntgc=2/3, however root context registers are accessible to
Guest. GPSI on guest accessis only taken only in this configuration.

Guest software may modify CU[2:1] often. To prevent frequent GSFC on these events, a set of enables,
GuestCtl0g=c» and GuestCtlOg=1, have been provided. GuestCtlOg=, and GuestCtl0g=¢; have been defined in

Section 5.2 “GuestCtl0 Register (CPO Register 12, Select 6)”.

Guest write of 0 to SR or NMI will raise this exception. Guest write of 1 to Guest Statusgg 0Or Statusy,,, IS UNPRE-
DICTABLE behavior as specified in the base architecture. It is optional for an implementation to cause this excep-
tion on a guest write of 1 to either the SR or NMI or TS bits within the Status register. Guest Statusgg Or Statusyy,
are never set by hardware, nor will Root software write of 1 to either Guest Statusgg Or Statusy cause an interrupt
in Guest context. Root will handle hardware asserted SR/NMI as per Table 4.12.

Guest software modification of EXL will not cause a GSFC. Thisis because guest kernel will often write EXL=1
prior to setting KSU to user mode(b10), allowing processor to stay in kernel mode. ERET will clear EXL, affecting
change to user mode. To avoid frequent GSFC on such events, guest kernel modification of EXL is not trapped on.

A D/MTCO that attemptsto clear TS will cause a GSFC, while setting of TS, caused by hardware, should resultin a
GHFC. Optionally, the setting of TS may cause a GSFC also instead of GHFC, for ease of implementation. However,
it is recommended that setting of TS result in GHFC.

Clearing of TSwill result in GSFC before the D/MTCO completes. This should be contrasted with setting of TS as
described in Section 4.7.9 “Guest Hardware Field Change Exception”, which must set the value in Guest.Satus
before GHFC is taken.

If Root PerfCnt.EC=2 or 3, then Guest can access shared Root PerfCnt without GPS| exception. However, any
change to the Event or EventExt fields must be reported as a GSFC exception to Root.

Cause Register ExcCode value
GE (27, 0x1B)

GuestCtl0 Register GExcCode value

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 59

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

GSFC(1, 0x01)

Additional State saved
Badlnstr
BadlnstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.9 Guest Hardware Field Change Exception

A Guest Hardware Field Change Exception is caused by exception/interrupt processing or a hardware initiated field
change. The exception is taken after Guest state has been updated and before the following instruction is executed.

A Guest Hardware Field Change exception is considered synchronous with respect to the Guest action that caused it.
In terms of priority, it isonly lower than any asynchronous Root exception. It is not prioritized with respect to Guest
exceptions: Guest exceptions are first prioritized amongst themselves, and then the Guest exception may then subse-
guently cause a Hardware Field Change exception.

When GuestCtlOExtgcp=1 (refer to Section 5.6), then no Guest Hardware Field Change exception is triggered.
Hardware events that cause the described events must be allowed to modify state as in the baseline architecture.

When GuestCtl0y,c=1, changes to the following bitfields trigger this exception.
* Guest Status bits: EXL.

Set of the following bitfield triggers this exception.

e Guest Status hits: TS (set)

A changein valuein any of thesefields causes a Guest Hardware Field Change exception, regardless of whether there
is an effective change in mode.

Since events (Reset, NMI, Cache Error) that set ERL are always processed by Root, hardware initiated field changes
involving ERL will not result in this exception.

Guest Statusgy, will be modified by hardware on a Guest exception. The Guest Hardware Field Change exception is
taken prior to the actual Guest exception handler (when EXL is set) and after the Guest exception handler is com-
pleted (when ERET clears EXL) but prior to the first Guest instruction after the handler. The Guest Hardware Field
Change exception handler must compare state between successive invocations to determine which of TS or EXL have
changed.

For thetransition of EXL from 0to 1, it isrecommended that guest context be |oaded with exception related data asif
the guest exception handler were to be executed. Prior to execution of first instruction of guest handler, hardware
must cause a GHFC trap to root. The only root state modified is Root Statusgy (=1), Causegyccode(=" Guest Exit”)

and GuestCtlOggyccode(="GHFC"). Hardware handling of transition of EXL from 1 to 0 should be similar. In this
manner, the hardware overhead of setting appropriate context for guest and root is kept to a minimum.

The GHFC exception must be viewed atomically with respect to the guest exception that caused it. In arecommended
implementation, the guest exception will cause guest context to be updated simultaneously along with root context

60 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.7 Exceptions

for the GHFC exception. Guest entry on completion of GHFC exception will cause related guest exception to be
taken.

Guest Statustg IS set by hardware, this exception istaken after TSis set and prior to start of the first instruction of the

Guest machine-check exception handler. Therefore, the Guest Hardware Field Change exception handler will return
to the first instruction of the Guest machine check exception handler.

See comment in Section 4.7.8 “Guest Software Field Change Exception”. Setting of TS in guest context may option-
ally cause GSFC in lieu of GHFC. GHFC is however recommended response.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value
GHFC(9, 0x09)

Entry Vector Used
General Exception Vector (offset 0x180).

4.7.10 Guest Reserved Instruction Redirect

A Guest Reserved Instruction Redirect Exception occurs when GuestCtlOg,=1 and a guest mode instruction would

trigger a Reserved Instruction Exception. This exception is raised before the guest mode exception can be taken. The
instruction is not executed, the exception is taken in Root mode and the Guest context is unchanged.

The Reserved Instruction Redirect (GRR) must be prioritized in the context of other guest-mode exceptions. For e.g.,

a Coprocessor Unusable exception due to guest context is ranked higher in priority than a Reserved Instruction excep-
tion. Thus a Reserved Instruction Redirect exception is not taken in this case. Another e.g., relates to the case where

Root. Statuscy1=0, while Guest. Status.CU1=1. If the processor is in guest-mode and executes a reserved COP1

instruction, then the Coprocessor Unusable exception is aresult of Root qualification. It would be ranked higher pri-
ority than a Reserved Instruction exception for the same guest-mode instruction.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value
GRR (3, 0x03)

Additional State saved
Badinstr
BadlnstrP

Entry Vector Used

General Exception Vector (offset 0x180).

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 61

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.7.11 Hypercall Exception

A Hypercall Exception occurs when aHYPCALL instruction is executed. Thisis a Privileged Instruction and thus
can only be executed in kernel mode (root-kernel or guest-kernel mode) or debug mode. It is specifically meant to
cause a guest-exit. For specifics of Hypercall root-kernel and debug mode handling, refer to hypercall definition in
Chapter 6, “Instruction Descriptions’ .

Cause Register ExcCode value
GE (27, 0x1B)

GuestCtl0 Register GExcCode value

Hyp (2, 0x02)

Additional State saved
Badlnstr
BadlnstrP

Entry Vector Used
General Exception Vector (offset 0x180).

4.7.12 Guest Exception Code in Root Context

In the case of a guest exception which causes a guest exit to root, hardware must supply the appropriate value for
Root.Causerycode 8Nd GuestCtl Oggyccode 8S described in the pseudo-code below.

if guest exception is (GPSI or GSFC or GHFC or HC or GRR or IMP) then
Root.Causegyccoge < “GE”
Root.GuestCtl0ggxccoge < "GPSI” or “GSFC” or “GHFC” or “HC” or “GRR” or “IMP”
elseif guest exception is (Root TLB-Refill or TLB-Invalid)
Root.Causegyecoge < “TLBS” or “TLBL”
loading of GPA for both TLB-Refill and TLB-Invalid is recommended.
Root.GuestCtl10sgxccode < “GPA”

elseif guest exception is (Root TLB-Execute_Inhibit or TLB-Read_Inhibit)
if (Root.PageGrainrgz~ = 0) then
Root.Causegyccoge < “TLBL”
Root.GuestCt1l0gpxccoge < “GPA” or GVA”
elseif (TLB Execute-Inhibit)
Root.Causepyccoge < “TLBXI”
Root.GuestCtl0ggxccoge < “GVA” or “GPA”
else
Root.Causégyccoqe < “TLBRIL”
Root.GuestCtl0ggxccoge < “GVA” or “GPA”
endif
elseif guest exception is (TLB Modified)
Root.Causeégyccoqe < “MOD”
Root.GuestCt10gpyecoqe < “GVA” or “GPA”
else
Root.Causegyccode < baseline “ExcCode”

62 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.7 Exceptions

Root.GuestCt1l0gpxccode < “UNDEFINED”
endif

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 63

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.8 Interrupts

The Virtualization Module provides a virtualized interrupt system for the guest.

Theroot context interrupt system is always active, even during guest mode execution. An interrupt source enabled in
the root context will always result in aroot-mode interrupt. Guests cannot disable root mode interrupts.

Standard M1PS32 interrupt rules are used by both root and guest contexts to determine when an interrupt should be
taken. An interrupt enabled in the root context is taken in root mode. An interrupt masked by root and enabled in the
guest context istaken in guest mode. Root interrupts take priority over guest interrupts.

Figure 4.8 shows the how the Virtualization Module ‘onion model’ is applied to interrupt sources.

Figure 4.8 Interrupts in the Virtualization Module onion model

Root can assert IRQ by
write to pending field

N Y
@ Pass? Pending — N
g Y
v + " Noaction

Root handler ~ No action Timer, Guest handler

External
Sources

The Guest.Causegpp field is the source of guest interrupts. The behavior of thisfield is controlled from the root
context. Two methods can be used to trigger guest interrupts - aroot-mode write to the Guest.Cause register, or direct
assignment of real interrupt signal to the guest interrupt system. Interrupt sources are combined such that both meth-
ods can be used.

Timers and related interrupts are available in both guest and root contexts.

The set of pending interrupts seen by the guest context is the combination (logical OR) of:
» External interrupts passed through from the root context, enabled by GuestCtlOpp if implemented.
» Interrupts generated within the guest context (e.g., Timer interrupts, Software interrupts)

* Root asserted interrupts, set by software write to GuestCtl2,,p field in non-EIC mode, or hardware capture of a
guest interrupt in GuestCtl2gg,p. in EIC mode.

Software should enable direct interrupt assignment only when root and guest agree on the interpretation of interrupt
pending/enable fields in the Status and Cause registers. Direct assignment is appropriate if both Root and Guest use
EIC mode, or if both use non-EIC mode. Root can track changes to the guest interrupt system status using the
field-change exceptions which result from guest initiated changes to fields Statusggy, Causey or IntCtlys.

64 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.8 Interrupts

Root must assign interrupts to Guest with caution. For example, in non-EIC mode, if an interrupt pin (HW[5:0]) is
shared by multiple interrupt sources, then enabling direct guest visibility (in Guest Causepy,,) via GuestCtlOppy=1)

will cause all the interrupt sources on that pin to be visible to the Guest, possibly removing Root intervention capabil-
ity. If Root Software needs to guarantee Root intervention capability on an interrupt then that interrupt should not be
directly visible to Guest.

In non-EIC mode, the guest timer interrupt is always applied to the interrupt source indicated by the Guest.IntCtljpT,
field and is not affected by the GuestCtlOp,p field. Similarly, Guest software interrupts are not affected by the
GuestCtlOpp field, and are always applied to the interrupt source indicated by Guest.intCtljppc,

A virtualization-based external interrupt delivery system, whether EIC or non-EIC provides the following capabili-
ties:
1. Root assignment of External Interrupt.
Hardware delivers interrupt to root context, with root-mode servicing of external interrupt.
2. Guest assignment of External Interrupt with Root Intervention.

Hardware deliversinterrupt to root context, with root-mode hand-off to guest by writing to GuestCt| 2,,p, fol-
lowed by guest servicing of external interrupt.

If root requires visibility into guest interrupts, then root should use this method to deliver interrupts to guest.
3. Guest assignment of External Interrupt without Root Intervention.

Hardware delivers interrupt to guest context without root intervention, followed by guest servicing of external

interrupt. The interrupt is not visible to root as root has made the choice to assign to guest.

A MIPS enabled virtualized external interrupt delivery system also provides support for Virtual Interrupts. Root can
simulate a guest interrupt by writing 1 to GuestCtl2,p It can subsequently clear the interrupt by writing O to

GuestCt2,;p

Virtual Interrupt capability can be used to support guest virtual drivers. Root will inject an interrupt into guest con-
text. Guest will field the interrupt, and in so doing cause atrap to Root, either by device activity or protected memory
access. Root may then clear the interrupt by writing to guest Cause|p Set earlier.

4.8.1 External Interrupts

4.8.1.1 Non-EIC Interrupt Handling

This section provides a detailed description of non-EIC handling in arecommended implementation. Theterm HW is
used to represent an external interrupt source. HW is alternatively referred to as IRQ in other sections of the Module.
HW isaset of interrupt pins common to both root and guest context.

Whether an external interrupt is visible to guest context or root context is dependent on GuestCtlOp,p (Pending Inter-
rupt Passthrough). If GuestCtlOppj =1, then HW[n] is visible to guest context through Guest.Cause,pjp+ 2], Other-
wiseit isvisible to root context through Root.Causepyn+ ;-

If GuestCtlOp,pj;=0, but Root needs to transfer the external interrupt to Guest, then it must write to asoftware visible
register, GuestCt|2,;ppy) (Interrupt Pending, Virtual). This method is also used by Root to inject avirtual interrupt

into guest context. It isalso aconvenient way for Root to save and restore interrupt state of a Guest, if an interrupt had
been injected by Root, but needs to be preserved across context switches. In the absence of GuestCtl2,,p, Root would

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 65

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

need to derive the equivalent of vIP by reading Guest.Cause;p which may be problematic since other interrupts could
also be present.

GuestCtl2,;p Guest.Causgp and Root.Cause,p handling is described below in relation to GuestCtl2,,p and
GuestCtlOpp The application of GuestCtl2y¢ is discussed below.

GuestCtl2,,p Handling:
if (MTCO[GuestCtl2,rprn;1=1)
GuestCtlZ,rpin; <1
else if ((Deassertion of HW[n] and GuestCtl2yqin)) or (MTCO[GuestCtl2,rpry;1=0))
GuestCtlZ,rpiy; < 0

endif

Guest.Cause p Handling:
Guest.Causerprp,2; = ((HW[n] and GuestCtlOprprn;) Or GuestCtlZ,rprp;)
Root.Cause;p Handling:

Root.Causerprpi2;

= (HW[n] and ! (GuestCtlOprpry; Or (GuestCtl2rpry; and GuestCtllpcin;)))

GuestCtl 2 is provided to control how GuestCtl2,,p isreset. If abit of GuestCtl2,cis1, then the deassertion of
related external interrupt will always cause associated GuestCtl 2, to be cleared. If abit of GuestCtl2; - is0 then the
deassertion of HW[n] will not cause GuestCtl2,, to be cleared. In this case, it is the responsibility of root software to
clear by writing O to GuestCtl2,;p [. See Section 5.4 “GuestCtl2 Register (CPO Register 10, Select 5)"for further
definition.

In summary, interrupt injection in guest context serves two purposes - root assignment of external interrupts and
injection of virtual interrupts to Guest. GuestCtl2 provides the means to root software to distinguish between the

two. Root software can use this facility to transfer an external interrupt HW[n] for guest servicing. In this scenario,
GuestCtl 2y =1 and the assertion of GuestCtl2,,p [Will cause corresponding Root.Causepyn+ 2] to be cleared,

thus transparently affecting the transfer. Otherwise, Root would have to disable interrupts for that specific source by
clearing Root.Status; iy On the other hand, Root can use this capability to inject interrupts into Guest context for

guest virtual device drivers, asan e.g.. Inthis case, GuestCtl 2y =0, the assumption is that there is no external inter-
rupt tied to the injected interrupt, and thus assertion of GuestCtI2,;p [should not cause Root.Cause;p+ 7 to be
cleared. Guest.Cause pyn+ 2] is asserted in both cases described.

Virtual interrupt handling is an option that can be detected by the presence of GuestCtl2. Hardware clear capability is
also an option, even if virtual interrupts are supported. This capability exists if the field iswriteable or preset to 1.

Figure 4.9 shows virtualized management of the Guest and Root Cause register IPfield . In the absence of support for
GuestCtl2,,p , a hardware-only version of GuestCtl2,,p should be considered to exist. Root may write a 1 to the hard-

ware copy with MTGCO[Causel P]. Root may also write a 0 to the hardware copy to clear the interrupt, whille deas-
sertion of HW[n] will also clear corresponding bit in this hardware register. In presence of GuestCtl2,;p, root writesto

Guest.Cause,pj7:) is considered optional. The mode of a hardware shadow copy should not beimplemented if virtual
interrupt capability is supported.

66 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.8 Interrupts

Figure 4.9 Guest and Root Causep (non-EIC) Virtualization

set by MTCO[GuestCtl2,,p[n]]=1

HWI[n] cleared by MTCO[GuestCtl2,,p[n]]=0, or
GuesiCiOpplN | Deassertion of HW[n] if GuestCt2,c[n]=1

|
Dsuestce12ypln] |

Guest PCIl/Timer Interrupts
T pi

Guest.Causep[n]

HWI[n] GuestCtl0p|p[n]

N A T s T 1
tctlzyp[n
, xues vpln] |

g GuestCti2y,[n]

Root PCI/Timer Interrupts

; Root.Causep[n]

In EIC mode, the external interrupt controller (EIC) is responsible for combining internal and external sourcesinto a
single interrupt-priority level, which appearsin the Causegp, field.

4.8.1.2 EIC Interrupt Handling

When an implementation makes EIC mode available (as indicated by Guest.Config3yg,c=1), two interrupt prior-
ity-level signals must be generated within the EIC - one for the root context (affecting Root.Causeg,p,), and one for
the guest context (affecting Guest.Causeg,p.). The root and guest timer interrupt signals are combined in an imple-
mentation-dependent way with external inputs to produce the root and guest interrupt priority levels.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 67

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

In addition to RIPL, the interrupt Vector (offset or number), and EICSS will also be sent on each of the root and guest
interrupt buses. The Vector from the EIC is either utilized by hardware asis, or derived from the EIC input. A Gues-
tID accompanies only the root bus, providing GuestID is supported in the implementation. Thisis because the EIC
can also send an interrupt for guest on the root interrupt bus. Thus the GuestID for the root interrupt bus may be
non-zero. The GuestID for a guest interrupt taken in root mode must be registered in GuestCtl1g,p as described in

Table 5.4. The guest associated with the guest busis by default equal to GuestCtl 1, .

The EIC should assign interrupts to root and guest interrupt buses as per the following rules:

» Root interrupts must always be taken in root context and thus be presented on root interrupt bus by the EIC.

» If aguestinterrupt requires root intervention, then it must be presented on the root interrupt bus by the EIC.
And interrupt for anon-resident guest must always be sent on the root interrupt bus. An interrupt for the res-
ident guest may also be sent on the root interrupt bus.

A guest interrupt while the processor isin root mode can cause an interrupt immediately unless masked by
Root.Satus,p, . Hardware should not stall the interrupt until the processor enters guest mode.

* Only aninterrupt for aresident guest can be sent on the guest interrupt bus. If software programsthe EIC to
send an interrupt for a non-resident guest on the guest interrupt bus, then an implementation of the coreis
not required to respond to thisinterrupt. .

To allow the EIC to distinguish between resident and non-resident guests, the core must send GuestCtl 1, to the EIC.
An implementation must account for the delay between when the GuestCtl 1,5 changes and when it is visible to the
EIC to avoid a spurious interrupt for a non-resident guest from being sent on the guest interrupt bus.

The processor and EIC are required to implement a protocol to avoid the above mentioned race. On a guest context

switch, root software must first write 0 to GuestCtl1,p. Thisis equivalent to a STOP command for the EIC. EIC will
recognize thisasastall and will not send interrupts to guest context by setting the requested interrupt priority level to
0 on the guest interrupt bus to the core. Root software can then save and restore guest context, followed by awrite of
new GuestID to GuestCtl1, . Once the write is compl ete, root software can enable guest mode operation. If an EIC

implementation and root software follow this recommendation, then this prevents loss of an interrupt posted to the
guest interrupt bus while root is switching guest context. Aninterrupt for the formerly active guest will now be posted
on the root interrupt bus.

An EIC mode interrupt is generated in either guest or root context whenever hardware detects a change in RIPL on
the respective interrupt buses from the EIC. It is possible for an EIC implementation to have active interrupts on both
bus. In this case the root interrupt is aways higher priority then the guest interrupt.

For the case of an interrupt in root context, two different interrupt vectors are used, one for root, the other for guest.
Hardware is abl e to distinguish between the two by checking the GuestID on theroot interrupt bus. If GuestID is zero,
then it uses 0x200+Vector asinterrupt vector, otherwise it uses 0x200 as interrupt vector.

If the interrupt is for guest, then the handler must compare GuestCtl 1g,p to GuestCtl1,p. If they are not equal, then

interrupt is for non-resident guest, and interrupt servicing may either continue in root or guest context. If interrupt
servicing isto continue in guest context, then the handler must first save the resident guest architected state (CPO,
GPRs etc) following by arestore of the new guest’s context. The root ERET instruction causes a transfer to guest
mode (when GuestCtlOg)y,=1), followed by a guest interrupt providing GuestCtl2gg p, is non-zero.

If GuestCtl1g p and GuestCtl 1, are equal, then save and restore is not needed. I nterrupt servicing may either
continue in root or guest context. If the interrupt isto be serviced in guest context, then the root ERET instruction

68 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.8 Interrupts

causes a change to guest mode (when GuestCtlOgy,=1), following by a guest interrupt providing GuestCtl2grp, is
non-zero.

As described above, for any change in GuestCtl1,p, root software must first insert a STOP command on interface to
EIC by writing 0 to GuestCtl1, 5. Once quiescent, root software may execute whatever software sequence it needs to.
Thisisfollowed by awrite of new GuestID to GuestCtl1,p, then the root ERET instruction. There may be some

arbitrary delay between write of Guest|D and ERET instruction where EIC can respond with an interrupt on guest
bus, but hardware will not trigger an interrupt because processor isin root mode.

A root interrupt must use Root.SRSCtl g -ss. Otherwise, hardware forces use of Root. SRSCtl«if the interrupt on the
root interrupt busisfor any guest.

The guest interrupt in the scenario where the interrupt is transferred from root context after having been received on
the root interrupt bus is caused when the processor enters guest mode and hardware detects that GuestCtl2gg p IS

non-zero.

Once in guest mode, the guest interrupt handler completes with an ERET instruction. The guest will continue
execution from its EPC, and not transfer back to root mode even if there was a change in guest context. If areturn to
root mode is required, then the HY PERCALL instruction must be used.

Theroot CPO register, GuestCtl2, where the root interrupt bus Vector, EICSS and RIPL is described in Section

5.4 Storagein root CPO state is required because in atypical EIC-based implementation, an acknowlegement is
returned to the EIC when the interrupt istriggered. If an interrupt for the guest isinitially triggered in root context,
then the use of these fields will not occur until the root ERET instruction is executed to effect a change to guest mode.
In the meanwhile, another root interrupt can occur which can overwrite the fields on the bus. Saving the fields as root
CPO register allows for nesting of these fields, and thus supports nesting of interrupts.

Hardware optimizes the transfer of GuestCtl2gg p. and GuestCtl2g -sg into guest CPO context on guest entry.
Hardware will write GuestCtl2gg p, to Guest.Causerp , and GuestCtl 2g; csg to Guest. SRSCtl gy cgg providing
GuestCtl2gg p is non-zero. Root software thus has the option of preventing hardware transfer by clearing
GuestCtl2gg p before guest entry.

In the case where root injects an interrupt into guest context after the interrupt was received on the root interrupt bus,
hardware must ensure that two acknowledgements are not returned to the EIC asthis may cause aloss of an interrupt.
In the case where an interrupt is received on the root interrupt bus, hardware must always send an acknowledgement
on theroot interrupt bus. But in the case where the interrupt was injected into guest context by root, hardware should
not send an acknowledgement on the guest interrupt bus as the interrupt was not received on this bus. Hardware can
determine this because GuestCtl 2gr;p. Would be a non-zero value for the case of root injection.

The overhead of saving and restoring guest CPO context can be minimized. Table 4.7 indicates which guest CPO
registers will cause a Guest Physical Senstive Instruction (GPSI) on guest access, and under what root configuration.
Root software can opportunistically save/restore those guest CPO registers which cause, or can be configured to cause
aGPsl.

Guest GPR Shadow Sets are protected by virtual mapping to physical Shadow Sets. Section 4.9.1 “Genera Purpose
Registers and Shadow Register Sets’ describes how root enables virtual mapping for a guest. For the virtual map for
Guest GPR Shadow Sets to be enabled, GuestCtl 35 gsmust be written by root with appropriate value for the guest. It

is assumed that Guest.SRSCtl is saved and restored.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 69

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

70

The Virtualization Privileged Resource Architecture

Access to COP1 FPR and COP2 may be protected setting Root.Statuscy 2. 1) appropriately. If accessis disabled in

root context, then it is also disabled in guest and will cause the appropriate exception (Coprocessor Unusable in root
context). Hi/Lo registers are not protected by any means, and must be saved/restored if necessary.

4.8.2 Derivation of Guest.Cause|p/ripL

Theinterrupt pending value seen by the guest is calculated as shown below. The result value can be read by the guest
(and the root) from the Guest.Causeg,p ; p field and is the value used to determine whether a guest interrupt will be
taken. Note that the value returned from Guest.Causeg,p, ; p ON aread is generated from the value originally written

by the root and from the status of directly assigned external interrupts. Hence the value written by the root may not be
equal to the value read back.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.8 Interrupts

Returns:
Non-EIC IP7..0.
EIC - (RIPL << 2) + IP1..0

subroutine GuestInterruptPending ()

if ((Guest.Config3ygic = 1) and

(Guest.IntCtlyg != 0) and

(Guest.Causery = 1) and

(Guest.Statusggy = 0)) then

Guest in EIC mode

- GuestCtlOpyp does not apply in EIC mode.

- EIC must include guest interrupt sources in the EICGuestLevel signal

- This includes Guest’s TI, IP1, IPO0 and PCI if implemented.
- FDCI is only visible in root context.

- GuestCtl2 required in EIC mode.

if (EICGuestLevel > GuestCtl2ggypr)
irg < EICGuestLevel

else
irg < GuestCtl2ggipr,
h/w must clear if GuestCtl2ggyp;, is source of interrupt.
GuestCtl2ggrpr, <0

endif

Guest.Causerp[y.9; 1s incorporated in EIC.

State of Guest.Causerp[y.9; 1s however preserved.

r <« (irg << 2) OR Guest.Causerp[1.0]

else
Guest in non-EIC mode
- External interrupts factored in if guest passthrough enabled.
- Internal interrupts applied here, if implemented

- Includes support for guest interrupt injection by root.
irg[7:2] < HWI[5:0]
if (GuestCtlOp=0)
All interrupts processed first by root.
if (GuestCtlOgy=1)
root software injects interrupts.
r ¢ GuestCtl2y1p[s.q]
else
1if GuestCtl2,;p is not supported, then root writes Guest.Cause.IP
to inject interrupt in guest context. H/W captures the write in a
shadow register called Root_HW VIP.
r ¢ Root_HW_VIP[5:0]
endif
else
Guest interrupt passthrough supported.
if (GuestCtlOgy=1)
r < Root.GuestCtl2yip[5.9; OR (irg[7:2] AND Root.GuestCtlOprp(s.07)

else
r ¢ Root_HW _VIP[5:0] OR (irqg[7:2] AND Root.GuestCtlOprp(s.07)
endif
endif
r — r << 2
r < r OR (GuestTimerInterrupt << Guest.IntCtlippy)
r < r OR (PCIEvent << Guest.IntCtlippct)
r < r OR Guest.Causerp1.0]
endif

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 71

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

return(r)
endsub

The value returned by GuestInterruptPending() will subsequently be qualified by Guest Status)y, in non-EIC mode or
Guest Status;p; in EIC mode, as per the base architecture.

Fieldsin Guest Config registers indicate which interrupt options are available to the guest.
4.8.3 Timer Interrupts

Root may inject atimer interrupt in guest context by setting Guest Causer, and indirectly Guest Cause pppry)- This
may happen under the scenario where a guest has been switched out, but its virtual timer, maintained by root, istrig-
gered. Root would set Guest Causeq, before entering guest mode for the guest. Guest would take atimer interrupt,
clear Guest Compare, which would then clear Guest Causer;. As per baseline MIPS architecture, awrite to Compare

will clear Causey;.

Root maintaining a virtual timer for a guest is recommended if there are multiple guests in operation. Otherwise, if
thereisonly one guest, but the processor isin root mode, then a match on Guest Count and Guest Compare is allowed
in an implementation to set Guest Causer, and Guest Cause pjpry;. Once Root transitions to guest mode, then guest
timer interrupt can be signaled in guest mode.

Root Injection of Guest TI:

if (MTGCO[Guest.Causepr]=1)
Root.Guest.Causeqr <1

else if ((MTCO[Guest.Compare]))

Root.Guest.Causeqr <0

endif

where Root.Guest.Causer, is a hardware shadow copy of Guest.Causer, that is set when Guest.Causer, is written by
Root.

GUESt.CaUSe”:Upﬂ]:Root.Guest.CauseTI or “Other External and Internal interrupts”.
where “Other External and Internal interrupts’ is defined in Section 4.8.2 “Derivation of Guest.Causel P/RIPL”.
4.8.4 Performance Counter Interrupts

Root can configure the definition of performance counters in the Guest context via Guest Configlpc asfollows:

* Guest Configlps=0, then performance counters are unimplemented in the guest context, access is UNPRE-
DICTABLE.

+ Guest Configlpc=1, the performance counters are virtually shared by root and guest contexts.

The PerfCnt register(s) are never implemented in the Guest context. A Guest may have direct accessto virtual perfor-
mance counter registers under root software management when Configlpc=1. If virtually shared, the encodings of

PerfCntgc as0 or 1 cause a GPSI Exception to be raised on Guest access to a performance counter register. Root
software may choose to configure performance counters for legal Guest access by encoding PerfCntgc as2 or 3.

72 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.9 Instructions and Machine State, other than CPO

Software may choose to assign al performance counters to Guest or Root, but not both. Thisisthe recommended pol-
icy for sharing between Root and Guest. Root will typically configure Guest access when it initializes guest context.
If assigned to Guest then Guest access will not cause a GPSI Exception.

Alternatively, an implementation may optionally choose to assign a subset of the total PerfCnt registersin Root CPO
context to Guest. Read of guest PerfCnt(N)y, should return root PerfCnt(N+1)gcyy; to indicate PerfCnt(N+1) is

owned by guest. If al PerfCnt pairs are allocated to guest, then guest read of the last M hit must return 0. Guest Per-
fCnt pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is
further assumed that the allotment of performance counters to a guest is not dynamic - once established after initial
guest access (which caused GPSl), then the allotment must remain as such for duration of guest.

Once assigned to Guest or Root (default) context, that context independently manages the performance counters,
including interrupts. E.g., if the performance counters are enabled for Root, then Root Causepc and Root

Cause pppcy are set by hardware on counter overflow. Otherwise, counter overflow sets Guest.Causepc, and
Guest.cause|p[|ppc|].

If Root software needs to inject a performance counter interrupt into Guest context, it must do so by setting the
most-significant bit of the PerfCnt counter. Similarly Root may clear a guest performance counter interrupt by clear-
ing the most-significant bit of the counter. Thus, Root does not require the ability to read/write Guest.Causepc.

The PerfCntg field is Root only virtualization control and is not visible to the Guest.

PerfCnt use of Status register K, S, U, and EXL fieldsis taken from the current Root or Guest context.

PerfCnt interrupt behavior is solely governed by PerfCnt, g, enabled context Status register interrupt masks and
enable.

4.9 Instructions and Machine State, other than CPO

The Virtualization Module adds guest-mode context to duplicate privileged state, which islocated in Coprocessor O.

Typicaly, all machine state located outside Coprocessor 0 is shared by guest and root contexts and thus would require
save or restore by Root between context switches. Alternatively, in limited cases, state may be virtually shared among
different contexts asin the case of GPR Shadow Sets.

4.9.1 General Purpose Registers and Shadow Register Sets

Guest SRSCtl and SRSMap are optional in guest CPO context. The following cases apply to use and implementation
of these CPO registers.

1. No shadow sets are implemented. In this case, guest accessto SRSCtl and SRSMap, or guest use of RDPGPR or
WRPGPR always cause a GPSI. Root would return emulated Guest SRSCtl;gs=0 in guest context to indicate to

guest that no shadow sets are present.

2. Shadow setsareimplemented in root context only. In this case, guest accessto SRSCtl and SRSViap, or guest use
of RDPGPR or WRPGPR aways causes a GPSI. Root software would return emulated SRSCtlss=0 on guest

read of SRSCtl to indicate that no shadow sets are present in guest context. Hardware would return SRSCtlg5=0
on root read of guest SRSCtl, while root writes to guest SRSCtl are ignored.

Guest is provided Root. SRCtl cgasits set of GPRs.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 73

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

74

3. Shadow sets are implemented in root context, and virtually shared between root and guest. In this case, guest
SRSCtl and SRSMiap must be present in guest CPO context. Guest accessto SRSCtl and SRSMap will cause GPSI
to prevent guest from defining writeable SRSCtl fields specifically SRSCtl pggpsg Guest use of RDPGPR or

WRPGPR will not cause a GPS| as these instructions refer to guest SRSCtlpggWhich is writeable only by root -
guest writes to SRSCtlpggalways cause a GPSI.

The case where Shadow Sets are implemented in guest context is not discussed in this section - it is not recommended
due to the overhead of guest context save and restore of Shadow Sets. A mechanism of virtual sharing of a unique set
of Shadow Sets amongst guests is thus not provided.

In the case of virtual sharing, the read-only field guest SRSCtl g must be writeable by root. This allows root software
to set the total number of Shadow Set available to guest, which is equal to guest SRSCtl 5. The Lowest Shadow Set
is specified by GuestCtl3g| o Guest use will always assume GuestCtl 35 sgto GuestCitl 35| g5plus Guest SRCtl s
physical Shadow Sets as available to the guest. Root can write Guest SRSCtl eggpssWith (D)MTGCO instructions.

A non-zero GuestCtl 3 sgis useful if alarge number of Shadow Sets are implemented and can be physically
partitioned among guests and root. Prior to guest entry, root would write GuestCtl 35 sgand guest SRSCtlygto define

the continuous range of Shadow Sets available to the guest. This range should be non-overlapping with any other
guests and root’s range to avoid the overhead of save and restore. Root would also write Guest SRSCtl gsgpss ROOt

may also choose to write guest SRSCtl g css, taking the example of an EIC (External Interrupt Controller) interrupt.
In this case, root would read GuestCtl 1¢, then write this value to SRSCtl g csg unless hardware implements the
transfer itself, as described in Section 4.8.1.2 .

Hardware must offset SRSCtl zggpsg by GuestCtl 3 g before access of corresponding Shadow Set for guest.

Similarly, the EIC, if supported, would drive avirtual EICSS. The virtual EICSS is registered and offset similarly
before use.

A zero (default) GuestCtl 3 sgis useful isthere are few Shadow Sets. Root may allocate one set for all guests, and
one set for root. Any switch between guests would require a save and restore of the related Shadow Set.

Guest SRSCtlgcssis set by EIC. EIC must be root managed since it is a shared resource and thus access must be
virtualized amongst guests. Guest SRSCtl g cggmust always fall in guest range of Shadow Sets.

4.9.1.1 Pseudo-code for Shadow Set Handling

The pseudo-code below uses the logical term GSRSEN specifically to indicate whether Shadow Sets are availablein
guest context.

GSRSEn <« (Guest.SRSCtl.HSS > 0) ? 1 : 0;

Guest Shadow Sets are thus available if Shadow Sets are implemented in guest context (not recommended), or virtu-
ally-shared between root and guest (case 3).

Determination of Current and Previous Shadow Sets:

/I Mode-specific CSS
Current_Shadow_Set (SRSCtligg) <
guest_mode and GSRSEn ? Guest.SRSCtl.gg + Guest(Ctl3ggs : Root.SRSCtlpgs 7

In the case where the processor is in guest mode and GRSEN=0 (e.g., case 2), guest will share
Root. SRSCtl -5 Shadow Set with root .

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.9 Instructions and Machine State, other than CPO

/I Mode-specific PSS, effective for RDPGPR/WRPGPR.

Previous_Shadow_Set (SRSCtlpgg) ¢
guest_mode and GSRSEn ? Guest.SRSCtlpgs + GuestCtl3ggs :
guest_mode and not GSRSEn ? <GPSI> : Root.SRSCtlpgg ;

In the case where the processor is in guest mode and GRSEN=0 (e.g., case 2), guest use of RDPGPR/WRPGPR will
cause a GPSI.

Events that update Root or Guest PSS and CSS:
Exception taken in root mode

RoOt.SRSCtlpgg < Root.SRSCtlogs:
Root.SRSCtlcgg ¢ Root.SRSCtlggs/prcss OF Root.SRSMapgssyy

This behavior is also applicable to exceptions taken in guest mode that cause a guest-exit to root mode.
Exception taken in guest mode, with GSRSEn =1

Guest.SRSCtlpgg ¢~ Guest.SRSCtlygg
Guest.SRSCtlqgg ¢ Guest.SRSCtlgss/prcss O Guest.SRSMapggysy

In this case that the exception originates and is taken in guest mode.
Exception taken in guest mode, with GSRSEn =0
Not Applicable.
ERET executed in root mode
RoOt.SRSCtlpgs ¢ ROOt.SRSCt1pss
Thisis applicable to an exception taken in root mode, or an exception that causes a guest-exit to root mode.
ERET executed in guest mode, with GSRSEn=1:
Guest.SRSCtl,gg ¢« Guest.SRSCtlpgg
ERET executed in guest mode, with GSRSEN=0:
Not Applicable.

4.9.2 Multiplier Result Registers

The guest and root contexts share the multiplier result registers LO and Hl.
4.9.3 DSP Module

The guest and root contexts share the DSP Module, if it isimplemented. The DSP Moduleis available to the guest
context when Guest.Config3pgpp=1.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 75

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

76

During guest mode execution, access to the DSP Module is controlled by the Statusyy bits from both the root and
guest contexts. The DSPMDMX enable bit Guest.Statusy,y is checked first. If accessis not granted, a DSP Module
state unusable exception is taken in guest mode.

The Root.Statusyx bit is checked next. If accessis not granted by the Root.Statusyx bit, a DSP Module state unus-
able exception is taken in root mode.

Root has the ability to deconfigure DSP resourcesin guest context by writing Config3pgpp and Config3pgpop 8S
given in Table 4.10. The writeable state of Guest.Statusyy, as visible in guest context, is dependent on
Guest.Config3pgp only. An implementation may choose to limit root writeability to Guest.Config3pgpp as selective

enabling of DSP and DSP Revision 2 is hot recommended in implementations. As a consequence of deconfiguration
either all DSP resources are available to guest or none.

4.9.4 Floating Point Unit (Coprocessor 1)

The guest and root contexts share the Floating Point Unit, if it isimplemented. The floating point unit is available to
the guest context when Guest.Configlgp=1.

During guest mode execution, access to the floating point unit is controlled by the Statuscy; bits from both the root
and guest contexts. The coprocessor enable bit Guest.Statuscy; is checked first. If accessis not granted, a coproces-
sor unusable exception is taken in guest mode.

The Root.Statuscy; bit is checked next. If accessis not granted by the Root.Statusc 4 bit, a coprocessor unusable
exception istaken in root mode.

4.9.5 Coprocessor 2

The guest and root contexts share coprocessor 2, if it isimplemented. Coprocessor 2 is available to the guest context
when Guest.Configlc,=1.

During guest mode execution, access to the coprocessor 2 is controlled by the Statuscy, bits from both the root and
guest contexts. The coprocessor enable bit Guest.Statusc, is checked first. If accessis not granted, a coprocessor
unusable exception is taken in guest mode.

The Root.Statuscy, bit is checked next. If accessis not granted by the Root.Statuscy» bit, a coprocessor unusable
exception is taken in root mode.

4.9.6 MSA (MIPS SIMD Architecture)

The guest and root contexts share the MSA module, if it isimplemented. The MSA module is available to the guest
context when Guest.Config5ysagn=1.

During guest mode execution, access to the MSA module is controlled by the Config5ysagn, bits from both the root
and guest contexts. Guest.Config5ysagn IS checked first. If accessis not granted, a M SA disabled exception is taken
in guest mode.

The Root.Config5ysaen bit is checked next. If accessis not granted by Root.Config5ysagn, @ M SA disabled exception
istaken in root mode.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.10 Combining the Virtualization Module and the MT Module

4.10 Combining the Virtualization Module and the MT Module

The MIPSMT Module defines a set of instructions and machine state which are used to implement multithreading.
The presence of the MT Module isindicated by the Config3, field.

Likethe Virtualization Module, the MT Module provides duplicate Coprocessor 0 state. A single MIPS CPU can con-
tain multiple Virtual Processing Elements (V PES). Each of these VPES uses a separate set of general purpose registers
(GPRs), and a separate CPO context. Mechanisms for controlling one V PE from another are provided, to allow for
system initialization and control.

Each VPE runs a separate and independent program - a ‘thread’ . Switching between VPEs happens very rapidly - for
example switching to a different VPEs on each cycle.

When used in a Symmetric Multi-Processing (SMP) configuration, the MT Module allows a single CPU core to
appear to software as multiple CPU cores which are simultaneously executing, using the same physical address space
accessed through a common set of L1 caches.

Figure 4.10 A MT Module processor equipped with three VPEs

CPU

/ VPEO \ / VPE1 \ / VPE2 \

< CPO context > < CPO context > < CPO context >
< GPRs > < GPRs > < GPRs >

k<Program Counter >/ k<Program Counter >/ k<Program Counter >/

The Virtualization Module enables virtualization for a single thread of execution. Multiple CPO contexts are present
(guest and root), but general purpose registers (GPRs) and coprocessor registers are shared. A single thread of execu-
tion covers the hypervisor software, guest kernel software, and guest-user software.

The Virtualization Module and MT Module can co-exist in the same processor. Each VPE istreated like a separate
processor - the pre-existing machine state of each VPE is accessible to root mode, and the new guest mode and guest
CPO context are added. In such a machine, Root.Config3),7=1 and Root.Config3,,,=1.

Figure 4.10 showsaMT Module processor equipped with three VPEs and the Virtualization Module.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 77

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

Figure 4.11 A MT Module processor equipped with three VPEs and the Virtualization Module

CPU

/ VPEO \ / VPE1 \ / VPE2 \

<Root CPO context > <Root CPO context > <Root CPO context >
<Gust CPO context > <Gust CPO context > <Gust CPO context >
< GPRs > < GPRs > < GPRs >

k<Program Counter >/ k<Pr0gram Counter >/ k<Pr0gram Counter >/

The *onion model’ would in theory alow a processor to be built which would incorporate MT Module state and
instructions within the guest context (Guest.Config3y,7=1), but thisis not recommended. The guest context of areal-
istic machine will not contain the MT Module - hence Guest.Config3,,7=0. When Guest.Config3,,7=0, then
(D)MTCO and (D)MFCO of MT Module CPO registers are UNPREDICTABLE and attempts to execute MT Module
instructions result in a Reserved Instruction exception in Guest context.

Hypervisor software running on each VVPE manages the thread of execution for that VPE - asin a multi-core system.
The hypervisor software controls the physical address space and privileges of each guest - for example whether the
VPESs share a common physical address space (e.g. a SMP machine), or are configured to be entirely separate.

A trap-and-emulate approach is required for full virtualization of a guest which usesthe MT Module (though thisis
not recommended). MT Module registers are never present in Guest CPO context, even if the intent isto emulate.

Root would write Guest.Config3,,r=1 to simulate presence of MT Module in guest context. Any guest-kernel access
to MT Module registers, guest use of MT instructions will trigger a Guest Privileged Sensitive Instruction exception.

When multiple guest virtual machines are running on a single-threaded machine, switches between guests occur tens,
hundreds or thousands of times per second. When a context switch takes place the outgoing guest’s machine state is

read out and saved, and the incoming guest’s machine state isloaded and restored. The processor is controlled by one
hypervisor instance, which isin control of the root context.

When multiple guest virtual machines are running on a multi-core machine, switches between guests on each core
may still occur tens or hundreds of times per second, using the context switch method. However, multiple guests can
be run simultaneously - one on each processor core. A distinct hypervisor instance on each processor isin control of
that processor’s root context - these hypervisor instances communicate to achieve shared goals, asin atraditional
SMP system.

A similar arrangement is used when multiple guest virtual machines are running on a single-core multi-threaded
machine. Switches between guests are achieved on a cycle-by-cycle basis - as the processor switches between VPEs.
Multiple guests can run simultaneously - one on each VPE. A distinct hypervisor instance on each VPE isin control
of that VPE's root context.

78 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.10 Combining the Virtualization Module and the MT Module

This concept can be further extended to a multi-threaded, multi-core machine. Each processor core features multiple
V PEs, each of which hasits own guest context. A distinct hypervisor instance is present on each VPE and in control
of the root context.

The MT Module and Virtualization Module provide complementary feature sets, which allow hypervisor software the
flexibility to schedule guest virtual machines on separate cores, on separate VPES, and to schedule using traditional
time-sharing methods.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 79

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.11 Guest Mode and Debug features

The Virtualization Module provides full accessto Debug facilities implemented through the EJTAG interface.

When the processor is running in Debug privileged execution mode, it has full accessto al resources that are avail-
ablein the Root context.

Asper Table 4.1, The Debug privileged execution mode exists in the root context. A processor supporting virtualiza-
tion operatesin two contexts, Root and Guest. Within Guest, there are three privileged execution modes; kernel,
supervisor and user, and in Root context, there are four; kernel, supervisor, user and debug.

Table 4.15 lists debug features and their application to the Virtualization Module.

Table 4.15 Debug Features and Application to Virtualization Module

Feature Description Reference
Debug mode Guest mode is mutually exclusive with Debug mode. When in Section
Debug mode (Debugpy=1), the processor is not in guest mode. 4.4.3 “Definition
of Guest Mode’

When the processor is running in Debug mode, it has full accessto MIPS EJTAG
all resources that are available to Root-Kernel mode operation. Specification.
Section 7.2.3 -
Debug Mode
Handling of Pro-
cessor Resources

Debug Segment (dseg) | When the processor is running in Debug mode, the memory map is MIPS EJTAG
determined by the root context. Memory mappings are unchanged Specification.
from the MIPS32 and EJTAG specifications. Section 7.2.2 -
Debug Mode
Address Space

Access to guest CPO context | Debug tools access general purpose registers (GPRs) and coproces- Section 4.6.2
sor registers by executing instructions in the processor pipeline.

Accessto the guest CPO context must use the Virtualization Module
instructions provided to transfer data between the root and guest
contexts - MTGCO and MFGCO.

Accesses to the guest TLB must use the instructions provided to ini-
tiate guest TLB operations from the root context - TLBGP, TLBGR,
TLBGWI, TLBGWR. These operations are used to transfer data
between the guest TLB and the guest CPO context. When accessing
the guest TLB in debug mode, a two-step process isrequired - to
transfer data to/from the guest CPO context and guest TLB, and to
transfer data to/from the root CPO context and guest CPO context.

Hardware Breakpoints | When implemented, hardware breakpoints are part of the root con- Section 4.7.4
text. The root context remains active during guest mode execution,
allowing hardware breakpoints to be used to debug guest software.

Exceptions resulting from hardware breakpoints are of type Syn-
chronous Debug or Asynchronous Debug. In both cases, the excep-
tions are handled in Debug mode.

80 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.12 Watchpoint Debug Support

Table 4.15 Debug Features and Application to Virtualization Module

Feature Description Reference
Watch registers Support for use of watchpoint from the Guest is optionally provided. | Refer to Section
4.12 “Watchpoin
t Debug Support”

4.12 Watchpoint Debug Support

Root and Guest Watchpoint debug support is provided by Coprocessor 0 WatchHi and WatchLo register pair(s). These registers are present
in Root if Root Configl,yg=1 and in Guest if Guest Configlyr=1.

An implementation may choose to provide no Watch register support, Root-only Watch register support, or Root and Guest Watch register
support.

In Table 4.16, the state of Guest Configlyyr. conveys what support is available to Guest.

Table 4.16 Guest Watchpoint Support

Guest
Configlyg Value| R/W State Function
0 R No Guest Watch
registers.
1 R Guest Watch reg-
isters present.
0/1 R (Guest) Virtual Guest
R/W (Root) Watch support
provided.

Root-only Watch registers (Root Configlyyg=1 and Guest Configl,yr=0) allows for Root Watch of Root Virtual Addresses (RVA), and
optionally Guest Physical Addresses (GPA). Root Watch of GPA in this configuration is enabled through Root WatchHiywq-

If both Root and Guest Watch registers are present (Guest Configlyyg=1), then Root and Guest Watch will operate independently. Watch
exceptions detected on match will be taken in respective modes.

The Virtualization Debug definition also allows for virtual Guest Watch via Root Watch registers (Guest Configlyyg=0/1). Thisfeatureis
optional. Root Software can test R/W state of Guest Configlyy to determine whether virtual Guest Watch registers are supported.

Table 4.17 Watch Control

Guest Guest Guest
Configlyg Value Root Exception on | Exception on Root
(in R/W State) | WatchHiywy1:0) Function Access Match Exception
0 X0 Root Watch RVA UNPREDICTABLE None Watch
0 X1 Root Watch GPA (optional) | UNPREDICTABLE None Watch
1 00 Root Watch RVA GPSI None Watch
1 01 Root Watch GPA (optional) GPSI None Watch
1 10 Guest Watch GVA None Watch None
1 11 Reserved - - -

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 81

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

Thereisno support for Root emulation of Guest watch registers. Root emulation of Guest watch registerswould require that every guest read
and write trap to Root. In sharing mode, once awatch register pair is assigned to Guest, Guest can setup registers without Root intervention.

Referring to Table 4.17, if Guest Configl,yr=0, then no watch register pairs are enabled for Guest watch. A Guest access will be treated as

as UNPREDICTABLE. Recommended implementations may either no-op both MTCO and MFCO, trap to Root software with a GPSI, or
no-op an MTCO and return 0s on MFCO. If Guest Configl,yr=1, then a Guest access s treated normally except a MTCO cannot modify

WatchHiyy, and an MFCO will return Os for WatchHiyy.

If Guest Configl,yr=1, then selected Root Watch register pairs are enabled for Root or Guest watch. Referring to Table 4.17, thisis deter-
mined by Root WatchHiy[1]. Root WatchHiy[0] determines whether Root is watching RVA or GPA. Root Watch of GPA isoptional. If
not supported, then awrite of 1 to Root WatchHiy,[1:0], will write O, defaulting to RVA watch.

If under Guest control, Guest can only watch GVA. A write of 3 to Root WatchHiy[1:0], will write 2 in this configuration, defaulting to
GVA watch. Root can take away privilege from Guest at any time by writing to Root Watch registers. Root access will thus not take an
exception on access of a shared pair of registers under Guest control. If under Root control with Root WatchHiyy[1]=0 then a Guest access
will result in aGPS|. Root may choose to assign this register pair to Guest at this point, or return to the guest instruction following the move.

Guest watch is enabled strictly in guest mode as defined by the equation:
(Root.GuestCtl0g)y = 1 and Root.Statusgy; = 0 and Root.Statusgg, = 0 and Root.Debugpy, = 0)

Thereisno facility for Guest to watch addresses related to Root intervention events. That is, events occuring when the following equation is
true:
(Root.GuestCtl0gy = 1 and (Root.Statusgy, = 1 or Root.Statusgg; = 1 or Root.Debugpy = 1))

In an implementation that supports virtual sharing between Root and Guest, Root software may choose to assign all WatchHi and WatchLo to
Guest or Root, but not both. Thisisthe recommended policy for sharing between Root and Guest. If assigned to Guest then Guest accesswill
not cause a GPSI exception.

Alternatively, an implementation may optionally choose to assign a subset of the total Watch register pairsin Root CPO context to Guest for
simultaneous use by Guest and Root. Read of guest WatchHi(N)y,; should return root WatchHi(N+ 1)1 to indicate to guest software that
root WatchLo/Hi(N+1) is owned by guest. If al pairs are allocated to guest, then read by guest of the M bit in the last register pair should
return 0. Initial access by guest to the Watch registers will result in a GPS| exception, allowing Root to configure Watch registers for guest
use. Watch register pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is further
assumed that the allotment of Watch registersto a guest is not dynamic - once established after initial guest access (which caused GPSI) or
on guest configuration by root software, then the allotment must remain as such for duration of guest operation.

82 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.13 Virtualization Module features and Hypervisor Software

4.13 Virtualization Module features and Hypervisor Software

The Virtualization Module provides many features which are intended as optimizations to reduce the number of
hypervisor traps required, and to reduce the length of each hypervisor intervention.

Table 4.18 describes an outline of the design intent of each feature, and how it is expected to be used in a virtualized
system. It isintended to be treated as a guideline, and does not aim to specify how software should be implemented.

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

Guest mode The Guest Mode allows for a“limited privilege” kernel mode, in addition to
the existing modes within the MIPS32 Privileged Resource Architecture.

The separation of privileges between user and kernel modesis duplicated in
guest mode, through the use of the guest-user and guest-kernel modes. Thisis
intended to minimize virtualization overhead on mode transitions within a
guest.

A separation isintroduced between the existing full-privilege kernel mode and
the limited-privilege guest-kernel mode. This enables a hypervisor to selec-
tively grant access to system resources through emulation, address translation
or by granting direct access.

Separate Guest CPO context A partial CPO context is provided for use when in guest mode.

The guest CPO context includes registers for processor status, exception state
and timer access. Depending on the options chosen by the implementation, the
guest CPO context can also include registers to control segmentation and hard-
ware page table walking within the guest context.

The separate CPO context for the guest reduces the context switch overhead
when transitioning between root and guest modes. An interrupt or exception
causing an exit from guest mode can be immediately handled using the origi-
nal (root) CPO context without additional context switching.

The guest CPO context is partially populated. Guest accessesto registerswhich
are not included can be emulated by hypervisor handling of guest exceptions.

The registers chosen to be included in the guest CPO context are either neces-
sary to control guest mode operation, or are so frequently accessed by guest
kernels that trap-and-emulate isimpractical.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 83

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

Simultaneously active guest and root | During guest mode execution the guest CPO context is used, but the original
CPO contexts (root) CPO context remains active. This permits an ‘onion model’ whereby
guest activities are first checked against the guest CPO context, and then
against the root CPO context. Exceptions are taken in the mode whose context
triggered the exception.

Systems controlled by the root CPO context continue operating during guest
mode execution. This includes CPO-controlled systems such as performance
counters and breakpoints. It also includes logic which detects external inter-
rupts and serious exceptions such as NM|I, Bus Error or Cache Error. The
onion model allows the pre-existing programming interface for these systems
to be retained, and for their continued operation during guest mode execution.

The addition of the guest-mode CPO context allows an inner layer of systems
to be used by the guest without hypervisor intervention. For example, the guest
interrupt, timekeeping and address translation systems can be programmed
and maintained by the guest kernel. Since these systems are active only during
guest mode execution, and the pre-existing root-context systemsremain active,
little hypervisor intervention is required, as the guest cannot inflict damage to
theroot.

When an exception returns control to root mode during guest mode execution,
the guest context isimmediately disabled. No context switch isrequired. The
presence of two separate contexts allows for an immediate entry to the
root-mode exception handler, using the root-mode exception state. On exit, an
immediate return to the guest is possible. No time-consuming memory
accesses for context switch are required.

Following the rules of the *onion model’, access to coprocessors must be
enabled by both the guest and original CPO contexts. This alowsfor lazy con-
text switch of coprocessors (for example, the floating point unit) when switch-
ing between guests.

84 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.13 Virtualization Module features and Hypervisor Software

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description
Dual-level address translation and In afully virtualized system, the ‘onion model’ is applied to address transa
guest TLB tion.

Memory accesses from the guest are translated using the guest context Seg-
ment Configurations and the guest context TLB. Exceptions or TLB refills

resulting from this trandlation step are handled by the guest. Theresult isa
‘guest physical’ address (GPA).

Theroot TLB (the original TLB) is used to perform a second level of tranda-
tion - from the ‘ guest physical’ address to a machine physical address. Excep-
tions or TLB refills resulting from this trand ation step are handled by the
hypervisor, using the pre-existing TLB exceptions, or the new hardware page
table walking system.

This arrangement allows the guest kernel to maintain its own page tables
which map guest-virtual to guest-physical addresses. The guest kernel can
handle TLB refills and other exceptions without hypervisor intervention.

The hypervisor maintains a separate page table which maps guest-physical
addresses to machine physical addresses. The hypervisor is not required to
parse or otherwise interpret the guest page tables, or to maintain a page table
on behalf of the guest. No hypervisor knowledge of guest-virtual addressesis
required.

The two trand ation systems operate independently, greatly simplying the soft-
ware architecture. Despite the two levels of trandation, hardware implementa-
tions ensure that each memory accessis translated only once within processor
pipeline stages. Thisis done by dynamically creating single-level translations
which combine the trangl ations held within both guest and root TLBs.

If theroot TLB and guest TLB use the same page size, aguest TLB refill is
likely to require aroot TLB refill. When the root TLB uses page sizes larger
than those used by the guest operating system, the number of root TLB refills
can be reduced.

Guest context Configg.7 registers The guest context includes its own set of Configg_ registers. These are used
for two purposes within avirtualized system.

Thefirst purpose is to indicate to hypervisor software how the guest context is
configured in the particular hardware implementation. For example the hyper-
visor can determine the size of the guest TLB, and which optional features are
included.

The second purpose is for the hypervisor software to indicate to the hardware
implementation how the guest context should behave. Hardware implementa-
tions can choose to allow writes to fields within guest context Configg_; regis-
ters.

This alows the hypervisor to enable or disable certain architectural features,
or to change the virtual machine behavior seen by the guest.

The guest Configg_7 register are primarily intended for use by hypervisor soft-

ware, but access by guest kernels can be enabled. Given the infrequent access
to Configg.7 registers, it islikely that a hypervisor would choose to trap and

emulate guest accesses.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 85

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

Interrupt delivery to guests Global and individual interrupt enables areincluded in the guest context, along
with interrupt-pending signals. Interrupt handlers are located at the standard
entry points within the guest address space, or controlled by the guest context
exception base register.

Hypervisor software can deliver interrupts to a guest by writing the interrupt
pending bits within the guest context. The hypervisor can enable immediate
delivery of an external interrupt to a guest through direct assignment (pending
interrupt passthrough).

Guest kernels can implement critical regions using the normal interrupt
enabl e/disable mechanisms, thus holding off delivery of interrupts to the guest
context.

External interrupts controlled by the root context cause an immediate exit from
guest mode, returning control to a hypervisor interrupt handler. The guest can-
not hold off these interrupts, as they are controlled by the root context.

Guest Timer system Hypervisor software needsto control the passage of time as viewed by aguest.
Guests need an efficient method to set up timer interrupts without incurring
drift.

The hypervisor can set a control bit to which allows a guest to read from the
timer’'s Count register, and allows the guest to set up timer interrupts with the
Compare register.

The timer value seen by the guest is created by adding an offset to the real
timer value, stored in Root.GTOffset. The guest does not have direct write
accessto itstimer value - writes must be trapped and emulated by the hypervi-
sor.

It may be necessary for a hypervisor to disallow guest timer access when emu-
lation isrequired. This may be the case if aguest kernel is booted on a system
with one timer clock frequency, and is subsequently required to be re-sched-
uled on a core with a different timer clock frequency.

Secure, unique TLB entriesbased on | An optional GuestID feature provides a Root programmable unique identifier
GuestID. for usein TLB entries eliminating the requirement for invalidation of TLB
entries on virtual machine context switch. Refer to documentation on
GuestCtll|p and GuestCtllg p fieldsin Section 5.3 “GuestCtl1 Register

(CPO Register 10, Select 4)”.
Root control of Guest TLB mapping | The GuestCtlO 4y field provides control for whether the guest may use the

and Guest TLB resources. privileged registers and instructions related to the MMU.

1) mapping using Guest TLB This allows the situation where the guest TLB and Segmentation Control is
2) Guest TLB instructionsiregisters - | part of the address translation, but any guest access to the control registers
GuestCtiOar resultsin an exception (GuestCtl0r=1). This can be used both for hypervisor

control and to debug guest behavior.

86 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.13 Virtualization Module features and Hypervisor Software

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization

Description

Guest Software Field Change excep-
tions

The Guest Software Field Change exception system alows for hypervisor
intervention before certain guest-context register fields are changed. The
exception istaken prior to execution of the instruction which would have mod-
ified the field.

Some guest register fields are implemented which correspond to fields in the
root CPO context, but are not actually connected to hardware. An exampleis
the “reduced power” control bit Statusgp. When the guest kernel changes the
value of such afield, it is expecting some change of behavior in the virtual
machine. The field-change exception allows the hypervisor to respond appro-
priately.

In other cases (e.g., Cause)y) the field change would affect guest execution,
but hypervisor intervention may be required in order to set up some other
aspect of the virtual machine - for the example given, changes may be required
to how external interrupts are passed to the guest.

Guest Hardware Field Change excep-
tion

The Guest Hardware Field Change exception is related to the Guest Software
Field Change exception. It is used to trigger hypervisor intervention on a hard-
ware initiated field change within a guest. This mechanism can be used for
debug, security or emulation purposes by the hypervisor.

Guest Privileged Sensitive Instruction
exceptions

The guest kernel modeis alimited privilege mode. The Guest Privileged Sen-
sitive Instruction exception is the primary mechanism by which the hypervisor
traps privileged instructions executed in guest mode.

It can be used for emulation of non-existent CPO registers, and emulation of
accesses to registers which have been disabled by the hypervisor.

The hypervisor is provided with a catch-all mechanism to trap on all guest
privileged operations (GuestCtlOcpg), and a number of more targeted
enables. These targeted enables include fields to control access to guest
address trandlation (GuestCtlO7), the guest timer (GuestCtlOgT), limited
cache operations (GuestCtlOcg), and the Configg_; registers present in the
guest context (GuestCtlOcp).

The ability to control access to these features allows the hypervisor to restrict
guest permissions, or to emulate the hardware behavior expected by a guest -
for example different Configg._; registers than are present in the machine.

Guest Reserved Instruction Redirect
exception

A control bit is provided (GuestCtlOg,) which allows guest Rl exceptions to

be redirected to hypervisor software. This enables emulation of instructions
which are not available in the guest context.

New privileged instruction HY P-
CALL

A new instruction is provided, specifically to allow guest kernels to make API
callsto the hypervisor software. This can be used from both guest-kernel and
root-kernel modes.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

87

The Virtualization Privileged Resource Architecture

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description
New privileged instructions New instructions are provided to allow access to the guest CPO context for
MFGCO, MTGCO hypervisor software running in root mode. These instructions aso provide
TLBGINV, TLBGINVF, access to the guest CPO context for instructions executed in Debug mode, pro-
TLBGR, TLBGWI, vided by the EJTAG debug system.

TLBGP, TLBGWR
The instructions MFGCO and MTGCO allow data to be transferred between

general purpose registers (GPRs) and guest CPO context registers.

Theinstructions TLBGINV, TLBGINVF, TLBGP, TLBGR, TLBGW!I and
TLBGWR are used from root mode to access the guest context TLB using the
TLB registers located in the guest context.

88 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.14 Lightweight Virtualization

4.14 Lightweight Virtualization

4.14.1 Introduction

The Virtualization architecture provides support for a lightweight implementation. The focus of such an implementa-
tion is to reduce implementation cost and feature complexity. The added benefit of reduced feature complexity isthat
root software is simplified to the point where it need not be a complete hypervisor. For example, it may handle guest
interrupts, guest exceptions and related context switching, but it wouldn't provide support for an added level of guest
trandlation.

The lightweight virtualization specification may also support a different class of embedded applications. For exam-
ple, where a Root Protection Unit (RPU) is used, the guests are not different OSes, but applications within an OS,
where the applications are from different vendors who do not trust each other. Virtualization in this case has been
extended to secure embedded applications.

4.14.2 Support for Lightweight Virtualization

4.14.2.1 Root Protection Unit (RPU)

The RPU isadefeatured Root TLB that does not translate a guest physical addressto aroot physical address, and thus
does not require storage for root physical address. Instead it assumes that the guest physical addressis identity
mapped to physical memory. However, the RPU checks the guest physical address on a page basis, where the pageis
programmed by root software. If the page matches, then the guest has access to related physical memory. Otherwise
the access will trap to root software, using standard exceptions.

The RPU and its software interface support all instructions and COPO registers of the baseline architecture and exten-
sions provided in the Virtualization Module. Root EntryLoO and EntryLol PFN fields are assumed read-only as 0
since the RPU does not trandate guest physical addresses. Similarly, the CCA (Cache Coherency Attribute) field is
not supported. Thisfield in EntryLo0O and EntryLol is read-only as 0 in hardware.

The RPU supports X I(Execute-Inhibit), RI(Read-Inhibit) along with D(Dirty) page attributes which are mandatory in
an RPU implementation.

An RPU will support multiple page-sizes, though it is implementation dependent in the baseline architecture as to
which page sizes are supported.

The RPU isonly supported in a configuration with aroot FMT (Fixed Mapping Table). Any addresses in root mode
must use the Root FMT. Any guest addresses go through the guest FMT or TLB, and RPU.

An RPU is present in an implementation that supports virtualization (Root.Config3,,,=1) and hasaroot FMT
(Root.Configyy1=3). It isthus possible for the guest MMU to support aguest TLB with an RPU.

Refer to Table 4.19 for possible MMU configurations with an RPU.

Table 4.19 MMU Configurations with RPU

Guest Logical Address
Translation .
Root Logical Address
1st Pass 2nd Pass Translation
FMT RPU FMT

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 89

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

Table 4.19 MMU Configurations with RPU

Guest Logical Address
Translation .
Root Logical Address
1st Pass 2nd Pass Translation
TLB RPU FMT

4.14.2.2 Architectural Control
Additional software visible control has been added for lightweight virtualization.

1. GuestCitl OEXtFCD

Thisfield disables hardware generation of Guest Hardware Field Change Exception, and Guest Software Field
Change Exceptions. Consequently, root software does not need to support related exception handlers.

See Section 5.6 for reference.

2. GuestCtl 3GL$

Thisfield allows virtualization Shadow Set allocation among guests. This root managed field provides the lowest
shadow set allocated to a guest, with the upper bounds provided by root-writeable Guest. SRSCtl 5. The context

switch penalty is minimized as root need only write GuestCtl3g sgWhen entering a new guest.

See Section 5.5 and Section 4.9.1 for reference.

3. GuestCtlOEXt\G 0G,8G

These fields have been introduced to enable GPSI on guest access to specified guest CPO registers. Thisis useful
for fast guest context switching. In this case, root will save and restore limited guest CPO registers, but in case the
unsaved registers are accessed by guest, then an exception to root will alow root software to save and restore the
effected registers opportunistically.

See Section 5.6 for reference.

4. GuestCtl2RipL,GEICSSGVEC
See Section 5.4 and Figure 5.4, for reference for reference.

In EIC(External Interrupt Controller) mode for interrupt handling, GuestCtl2 provides the capability of fast
guest-to-guest interrupt switching capability. A guest interrupt on the root interrupt bus from the EIC will cause
capture of interrupt related state (GRIPL ,GEICSS,GVEC) in GuestCtl2. Guest entry will subsequently cause
hardware to load GRIPL and GEICSS into guest context automatically, and GVEC would be used by the guest
interrupt handler directly. The root interrupt handler thus does not have to copy state from GuestCtl2 to guest
context.

See Section 4.8.1.2 for adescription of EIC handling.

90 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.14 Lightweight Virtualization

4.14.2.3 Optional Features of Virtualization Architecture

Certain features are optional in the virtualization architecture. An implementation may choose to support such fea-
tures based on the class of applications that the product will support. An example being that an implementation need
not support root write of al Configuration fieldslisted in Table 4.11.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 91

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

92 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 5

Coprocessor 0 (CPO) Registers

The Coprocessor 0 (CPO) registers provide the interface between the Instruction Set Architecture (ISA) and the Privi-
leged Resource Architecture (PRA). The CPO registers that are added or extended by the Virtualization Module are
discussed below, with the registers presented in numerical order, first by register number, then by select field number.

5.1 CPO Register Summary

Table 5.1 lists the CPO registers affected by the Virtualization Module specification, in numerical order. The individ-
ual registers are described later in this document. Registers which are not described here follow the definitions from

the MIPS32 Privileged Resource Architecture. The Sel column indicates the value to be used in the field of the same
name in the MFCO and MTCO instructions.

Section 4.6.3 “Guest CPO registers’ describes CPO register availability in guest mode.

Table 5.1 Virtualization Module Changes to Coprocessor 0 Registers in Numerical Order

Register Register Compliance

Number Sel Name Modification Reference Level
12 6 |[GuestCtlo New Register. Controls guest mode behavior. Section 5.2 Required
10 4 | GuestCtl1 New Register. Guest ID Section 5.3 Optional
10 5 | GuestCtl2 New Register. Interrupt related Section 5.4 Optional
10 6 |[GuestCtl3 New Register. GPR Shadow Set related. Section 5.5 Optional
11 4 | GuestCtlOExt |Extension to GuestCtlO Section 5.6 Optional
12 7 | GTOffset New Register. Guest timer offset. Section 5.7 Required
13 0 |Cause Addition of hypervisor cause code. Section 5.8 Required
16 3 |Config3 Identifies Virtualization Module feature set. Section 5.9 Required
19 0 | WatchHi Watch Debug. Section 5.10 Optional
25 0 |PerfCnt Performance Counter, adds virtualization support. Section 5.10 Optional
31 2 |[KScratchl Required in root context. - Required
31 3 | KScratch2 Required in root context. - Required

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

93

Coprocessor 0 (CP0) Registers

5.2 GuestCtl0 Register (CPO Register 12, Select 6)

Compliance L evel: Required by the Virtualization Module.

The GuestCtl0 register contains control bits that indicate whether the base mode of the processor is guest mode or
root mode, plus additional bits controlling guest mode access to privileged resources. The GuestCtlO register is acces-
sible only in root mode.

The GuestCtl0 register isinstantiated per-VPE inaMT Module processor. Thisregister is added by the Virtualization
Module.

Note on behaviour of GuestCtlOprg/rap: These R/W fields define additional functions for the Guest and Root TLBs.

Both must be interpreted together. An implementation does not have to support all valid combinations. Root software
can test supported combinations by writing then reading legal values. Legal values for (RAD,DRG)={00,01,11}.

Figure 5.1 shows the format of the Virtualization Module GuestCtIO register; Table 5.2 describes the GuestCtIO regis-
ter fields.

Figure 5.1 GuestCtlO Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
o)] mnlwm
GM|RI|MC|CPO| AT |GT|CG|CF|Gl| Impl | & | PT |ASE PIP g 3D GExcCode m |
m oo™ qQlQ

94 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Table 5.2 GuestCtl0 Register Field Descriptions

provide Root software control over certain mode-changing events
within guest context that may be frequent in guest context by causing

Field Change exceptions.
Encoding Meaning
0 During guest mode execution a hardware

initiated change to Guest.Statusgy, will
not trigger a Guest Hardware Field
Change Exception.

During guest mode execution, a software
initiated change to Guest.Statusyyksu
will not trigger a Guest Software Field
Change Exception.

During guest mode execution a hardware
initiated change to Guest.Statusgy, will
trigger a Guest Hardware Field Change
Exception.

During guest mode execution, a software
initiated change to Guest.Statusyyksu
will trigger a Guest Software Field
Change Exception.

Fields
Read / Reset
Name Bits Description Write State Compliance
GM 31 Guest Mode R/W 0 Required
The processor isin guest mode when GM=1, Root.Statusgy =0 and
Root.Statusgg, =0 and Root.Debugp,=0.
RI 30 Guest Reserved Instruction Redirect. R/W 0 Required
Encoding Meaning
0 Reserved Instruction exceptions dur-
ing guest-mode execution aretaken in
guest mode.
1 Reserved Instruction exceptions dur-
ing guest-mode execution result in a
Guest Reserved Instruction Redirect
exception, taken in root mode.
MC 29 Guest Mode-Change exception enable. The purpose of thisenableisto R/W 0 Required

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 95

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
CPO 28 Guest access to coprocessor 0. R/W 0 Required
Encoding Meaning
0 Guest-kernel use of any Guest Privi-

leged Sensitive Instruction will trigger
a Guest Privileged Sensitive Instruc-
tion exception.

E.g., Guest use of TLBW!I always
causes GPS| if CPO=0.

1 Guest-kernel use of selective Guest
Privileged Sensitive Instructionsis
permitted, subject to all other excep-
tion conditions.

Eg., Guest use of TLBWI only causes
GPSl if GuestCtlOpt =3 while CP0=1

Thelist of Guest Privileged Sensitive instructions which trigger a
Guest Privileged Sensitive Instruction exception is given in Section
477

The CPO hit has no other effect on the operation of coprocessor 0in
guest mode.

96 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Table 5.2 GuestCtl0 Register Field Descriptions

Guest and Root MMU both implemented and
activein hardware.
Thismodeis optional.

Reserved
3 Guest MMU under Guest control.

Guest and Root MMU both implemented and
activein hardware.
Thismodeis required.

Guest TLB resources are;

e TLB related Instructions- TLBWR, TLBWI, TLBR, TLBP, TLB-
INV, TLBINVF.

 Supporting Registers - Index, Random, EntryLoO, EntryLo1,
EntryHi, Context, XContext, ContextConfig, PageMask,
PageGrain, SegCtl0, SegCtll, SegCtl2, PWBase, PWField,
PWSize, PWCIHI.

If the Guest TLB resources (excluding Index, Random, EntryL o0,

EntryLol, Context, X Context, ContextConfig, PageMask and

EntryHi) are under Root control (GuestCtl0,r=1), Guest use of these

instructions or access to any of these registers (see Table 4.7), will

trigger a Guest Privileged Sensitive Instruction exception, alowing

Root to control Guest address translation directly. For additional infor-

mation refer to Table 4.18, Entry: “Root control of Guest TLB map-

ping and Guest TLB resources”

In default mode (GuestCtl07=3), the Guest TLB resources are active

under Guest control. Refer to Section 4.5 “Virtual Memory” for addi-
tional information on guest virtual address translation.

Fields
Read / Reset
Name Bits Description Write State Compliance
AT 27:26 | Guest Address Translation control. RorR/W | Imple- Required
if more | mentation
Encoding Meaning than defined
0 Resorved default
mode
imple-
1 Guest MMU under Root control. mented.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

97

Coprocessor 0 (CP0) Registers

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
GT 25 Timer register access. R/W 0 Required
Encoding Meaning
0 Guest-kernel accessto Count or
Compare registers, or aread from
CC with RDHWR will trigger a Guest
Privileged Sensitive Instruction
exception.
1 Guest kernel read access from Count
and guest-kernel read or write access
to Compare is permitted. Guest reads
from CC using RDHWR are permitted
in any mode.
The GT bit has no other effect on the operation of timers in guest
mode.
CG 24 Cache Instruction Guest-mode enable. RO, 0 Optional
If RO, then GPSI exception will always occur. CG as an enablein thuis R/W
thus optional .
CACHEE is optional in the baseline architecture.
Encoding Meaning
0 A Guest Privileged Sensitive Instruc-
tion exception will result from use the
CACHE, CACHEE instruction.
1 The CACHE, CACHEE instruction
can be used with an Effective Address
Operand type of ‘Address’. A Guest
Privileged Sensitive Instruction
exception will result from use of any
other Effective Address Operand type.
CF 23 Config register access. R/W 0 Required
Encoding Meaning
0 Guest-kernel write access to
Config0-7 will trigger a Guest Privi-
leged Sensitive Instruction exception.
1 Guest-kernel accessto Config0-7 is
permitted.
The CF bit has no other effect on the operation of Config register
fieldsin guest mode.

98 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

Gl 22 GuestCtl1 register implemented. Set by hardware. R preset Required

Encoding Meaning

0 Unimplemented

1 Implemented.

Impl 21.20 | Implementation defined. R/W 0 Required
These bits are implementation dependent and not

defined by the architecture. If not implemented,

they must be ignored on write and read as zero.

If implemented and if modifying the behavior of

the processor, it must be defined in such away that

correct behavior is preserved if software, with no knowledge
of these bits, reads the GuestCtlO register, modifies

another field, and writes the updated value back to the
GuestCtlO register.

GOE 19 GuestCtIOEXxt register implemented. Set by hardware. R preset Required

Encoding Meaning

0 Unimplemented

1 Implemented.

PT 18 Defines the existence of the Pending Interrupt Passthrough feature. R preset Required

Encoding Meaning

0 GuestCtlOp,p not supported.
GuestCtlOpp isareserved field.

All externa interrupts are processed
via Root intervention.

1 GuestCtlOp,p supported. Interrupts
may be assigned to Root or Guest.

Implementation of the Pending Interrupt Passthrough feature is
strongly recommended.

ASE 17.16 |Reserved for MCU Module Pending Interrupt Passthrough. 0 0 Required for
MCU Module;
Otherwise
Reserved

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 99

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

PIP 15..10 | Pending Interrupt Passthrough. R/W 0 Required
In non-EIC mode, controls how external interrupts are passed through RO if

to the guest CPO context. Interpreted as abit mask and applies1:1to | unimple-
Guest.Causep[7:2] . GuestCtl1pp may be extended by GuestCtllpge. | mented
Existence of the PIP feature is defined by the GuestCtlOp+ field.

See Section 4.8.

Encoding Meaning

0 Corresponding interrupt request is not
visible in guest context.

1 Corresponding interrupt request is
visible in guest context.

RAD 9 RAD, or “Root ASID Dedlias” mode determines the means that a Vir- R 0 Required
tualized MMU implementation uses Root ASID to dealias different
contexts.

Encoding Meaning

0 GuestID used to deadlias both Guest
and Root TLB entries.

1 Root ASID is used to dealias Root
TLB entries, while Guest TLB con-
tains only one context at any given
time.

DRG 8 DRG, or “Direct Root to Guest” access determines whether an imple- RO, 0 Required
mentation provides root kernel the means to access guest entries R/W
directly in the Root TLB for access to guest memory.

If GuestCitl ODRG:1 then GUeStCthR|D must be used. If GuestID for
root operation is non-zero, root isin kernel mode, Root. Statu-

SexL er. =0 and Debugp =0, then all root kernel data accesses are
mapped, root SegCtl isignored and Root TLB CCA isused. Accessin
root mode by other than kernel will cause an address error. H/W must
set G=1 asif the access were for guest.

DRG is RO if only DRG=0 supported, otherwise it must be R/W.

Encoding Meaning

0 Root software cannot access guest
entries directly.

1 Root software can access guest entries
directly.

100 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
G2 7 GuestCtl2 register implemented. Set by hardware. R preset Required
Encoding Meaning
0 Unimplemented
1 Implemented.
GExc- 6.2 Hypervisor exception cause code. Described in Table 5.3. R Undefined Required
Code Thisfield is UNDEFINED on aroot exception.
SFC2 1 Guest Software Field Change exception enable for Guest.Satuscy ;- R/W if 0 Optional
The purpose of this enableisto provide Root software control over imple-
guest COP2 enable related Field Change exception. Guest software menteq, 0
may utilize Statuscy, for COP2 specific context switching. otherwise
Encoding Meaning
0 GSFC exception taken if CU[2] is
modified by guest.
1 GSFC exception not taken if CU[2]
modified by guest.
SFC1 0 Guest Software Field Change exception enable for Guest. Satuscyy ;- R/W if 0 Optional
The purpose of this enable isto provide Root software control over imple-
guest COP1 enable related Field Change exception. Guest software menteo_l, 0
may utilize Statuscyy; for COPL specific context switching. otherwise.
Encoding Meaning
0 GSFC exception taken if CU[1] is
modified by guest.
1 GSFC exception not taken if CU[1]
modified by guest.

Table 5.3 describes the cause codes use for GExcCode.

Table 5.3 GuestCtl0 GExcCode values

Exception code value

Decimal Hexadecimal | Mnemonic Description

0 0x00 GPSI Guest Privileged Sensitive instruction. Taken when execution of a Guest Privi-
leged Sensitive Instruction was attempted from guest-kernel mode, but the
instruction was not enabled for guest-kernel mode.

1 0x01 GSFC Guest Software Field Change event
2 0x02 HC Hypercall

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 101

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

Table 5.3 GuestCtl0 GExcCode values

Exception code value

Decimal Hexadecimal | Mnemonic Description

3 0x03 GRR Guest Reserved Instruction Redirect. A Reserved Instruction exception would
be taken in guest mode. When GuestCtlOg =1, this root-mode exception is

raised before the guest-mode exception can be taken.

4-7 0x4 - Ox7 IMP Available for implementation specific use

8 0x08 GVA Guest mode initiated Root TLB exception has Guest Virtual Address available.
Set when a Guest modeinitiated TLB translation resultsin aRoot TLB related
exception occurring in Root mode and the Guest Physical Addressis not avail-

able.

9 0x09 GHFC Guest Hardware Field Change event

10 Ox0A GPA Guest mode initiated Root TLB exception has Guest Physical Address avail-
able.

Set when a Guest mode initiated TLB tranglation resultsin aRoot TLB related
exception occurring in Root mode and the Guest Physical Addressis available.

11-31 0xB - Ox1f - Reserved

102 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.3 GuestCtl1l Register (CPO Register 10, Select 4)

5.3 GuestCtll Register (CPO Register 10, Select 4)

Compliance L evel: Optional in the Virtualization Module.

The GuestCtl1 register defines GuestID control fields for Root (GuestCtllg,p) and Guest (GuestCtl1,p) which may be
used in the context of TLB instructions, instruction and data address translation. The GuestCtl1g,p field additionally
iswritten by the processor on a TLBR or TLBGR instruction in Root mode, then containing the GuestID read from
the TLB entry. A TLBR executed in Guest mode does not cause awrite to either GuestCtll,; and GuestCtllgp

GuestCtl1 isoptional and thus the use of GuestID isoptional in the context of TLB instructions, instruction and data
address trandation. The GuestCtl1 register only existsin Root Context. GuestID value of 0 isreserved for Root.

Section 4.5.1 “Virtualized MMU GuestID Use” provides additional detail on GuestlD usage asit appliesto instruc-
tion and data address trand ation. Section 4.6.2 “New CPO Instructions’ describesthe TLB instructions and their use
of GuestID.

The primary purpose of the GuestID isto provide a unique component of the Guest/Root TLB entry eliminating TLB
invalidation overhead on virtual machine level context switch.

A system implementing a GuestID is required to support a guest identifier field (GID) in each Guest and Root TLB
entry. This GuestID field within the TLB is not accessible to the Guest. While operating in guest context, the behavior
of guest TLB operationsis constrained by the GuestCtl1, field so that only guest TLB entries with a matching GID

field are considered.

The actual number of bits usable in the GuestCtl1,p and GuestCtllgp fields isimplementation dependent. Software
may determine the usable size of these fields by writing all ones and reading the value back. The size of GuestCtl1,p
and GuestCtl1g,p must be equal.

The GuestCtl1 register is instantiated per-VPE inaMT Module processor.

Figure 5.2 shows the format of the Virtualization Module GuestCtl1 register; Table 5.4 describes the GuestCtll regis-
ter fields.

Figure 5.2 GuestCtl1 Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

EID RID 0 ID

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 103

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

Table 5.4 GuestCtl1 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
EID 31..24 | External Interrupt Controller Guest ID. ROorR 0 Optional

Required if an External Interrupt Controller (EIC) is supported.

A guest interrupt which is posted by the EIC to the root interrupt bus,
must cause the Guest |D of the root interrupt busto be registered in EID
once the interrupt is taken.

If implemented, the field is read-only and set by hardware.

If not implemented then must be written as zero; returns zero on read.

RID 23..16 | Root control GuestID. Used by root TLB operations, and when R/W 0 Required
GuestCtlOprg=1 in root mode.

0 15..8 Must be written as zero; returns zero on read. RO 0 Reserved

ID 7.0 Guest control GuestID. Identifies resident guest. Appliesto guest R/W 0 Required
address trand ation.

104 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.4 GuestCtl2 Register (CPO Register 10, Select 5)

5.4 GuestCtl2 Register (CPO Register 10, Select 5)

Compliance L evel: Optional in the Virtualization Module.

The GuestCtl2 register is optional in an implementation. It isonly required if support for Virtual Interruptsin
non-EIC modeisincluded in an implementation. Alternatively, if EIC modeis supported, then GuestCtl2 isrequired.
Refer to Section 4.8.1 “External Interrupts’ for a description of interrupt handling in EIC and non-EIC modes.

An implementation that supports the virtual interrupt functionality of GuestCtl2 is not required to support root writes
of Guest.Causep[7:2] or Guest.Causegp, as described in Table 4.11.

GuestCtl2 is present in an implementation if GuestCtl2,=1.

The GuestCtl2 register isinstantiated per-VPE inaMT Module processor.

Figure 5.3 shows the format of the Virtualization Module GuestCtl2 register in non-EIC mode. Table 5.5 describes
the non-EIC mode GuestCtI2 register fields.

Figure 5.4 shows the format of the Virtualization Module GuestCtl2 register in EIC mode. Table 5.6 describes the
EIC mode GuestCtl2 register fields.

Figure 5.3 GuestCtl2 Register Format for non-EIC mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ASE HC 0 ASE VIP 0 Impl

Figure 5.4 GuestCtl2 Register Format for EIC mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ASE GRIPL 0 GEICSS 0 GVEC

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 105

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

Table 5.5 non-EIC mode GuestCtl2 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

ASE 31:30 | MCU Module extension for HC. Must be written as zero; returns zero RO 0 Reserved
on read.

HC 29..24 | Hardware Clear for GuestCtl2,,p R, Oorl Optional
This set of bits maps one to one to GuestCtl2,;,p RIW

HC may be hit-wise Read-only or R/W. If abit is Read-only, then it may
be preset to 0 or 1. Similarly, if abit is R/W, then it may bereset to O or
1. Theinterpretation of 0 or 1 state follows.

Encoding Meaning

0 The deassertion of related external
interrupt (IRQ[n]) has no effect on
GuestCtl2,,p[n]. Root software must
write zero to GuestCtl2,,p[n] to clear
the virtual interrupt.

1 The deassertion of related external
interrupt (IRQ[N]) causes
GuestCtl2,,p[N] to be cleared by h/w.

In the case of HC=0, Guest.Status,p[n+2] could continue to be asserted
due to an external interrupt when GuestCtl2,,p[N] is cleared by soft-
ware. Source of external interrupt must be serviced appropriately.

The choice of Read-only vs. R/W isimplementation dependent. Root
software can write then read field to determine supported configuration.

0 25..18 | Must be written as zero; returns zero on read. RO 0 Reserved

ASE 17:16 | MCU Module extension for VIP. Must be written as zero; returns zero RO 0 Reserved
on read.

106 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.4 GuestCtl2 Register (CPO Register 10, Select 5)

Table 5.5 non-EIC mode GuestCtl2 Register Field Descriptions

Fields

Name

Bits

Description

Read / Reset
Write State Compliance

VIP

15..10

Virtua Interrupt Pending.

The VIPfield is used by root to inject virtual interrupts into Guest con-
text. VIP[5..0] maps to Guest.Status;p[7..2]. VIP effects Guest. Satus;p

in the the following manner:

R/W 0 Required

Encoding Meaning

0 Guest.Status,p[n+2] cannot be

IRQ[n].n=5..0

asserted due to VIP[n], though it may
be asserted by an external interrupt

interrupt. n=5..0

1 Guest. Status;p[n+2] must at least be

asserted due to VIP[n]. It may also be
asserted by a concurrent external

9.5

Must be written as zero; returns zero on read.

RO 0 Reserved

Impl

4.0

Implementation.

These bits are implementation dependent and not
defined by the architecture. If not implemented,
they must be written as 0, and read as zero.

If implemented and if modifying the behavior of
the processor, it must be defined in such away that

correct behavior is preserved if software, with no knowledge

of these bits, reads the GuestCtl2 register, modifies
another field, and writes the updated value back to the
GuestCtl2 register.

R/W 0 Required

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 107

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

Table 5.6 EIC mode GuestCtl2 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
ASE 31:30 | MCU Module extension for GRIPL. Must be written as zero; returns RO 0 Reserved
zero on read.
GRIPL 29..24 | Guest RIPL R/W 0 Required

Thisfield iswritten only when an interrupt received on the root interrupt
bus for aguest is taken. The RIPL (Requested Interrupt Priority Level)
sent by EIC on the root interrupt bus is written to thisfield.

Root software can write the field if it needs to modify the EIC value
before assigning to guest. It may aso clear thisfield to prevent atransi-
tion to guest mode from causing an interrupt if thisfield was set with a
non-zero value earlier.

GRIPL is 10 bits only for an implementation that complies with the
MCU Module, otherwiseit is 8 bits as in baseline architecture.

GEICSS 21:18 | Guest EICSS R/W Undefined Required
Thisfield iswritten only when an interrupt received on the root interrupt
bus for aguest istaken. The EICSS (Externa Interrupt Controller

Shadow Set) sent by EIC on the root interrupt bus is written to thisfield

Root software can write the field if it needs to modify the EIC value
before assigning to guest.

0 17:16 | Must be written as zero; returns zero on read. RO 0 Reserved

GVEC 15:0 Guest Vector R/W Undefined Required
Thisfield iswritten only when an interrupt is received on the root inter-
rupt bus for a guest. The Vector Offset (or Number) sent by EIC on the
root interrupt bus is written to thisfield.

GVEC isnot loaded into any guest CPO field, but is used to generate an
interrupt vector in guest mode using the root interrupt bus vector and not
the guest interrupt bus vector. Thiswill only occur if the interrupt was
first taken in root mode.

Root software can write the field if it needs to modify the EIC value
before assigning to guest.

108 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.5 GuestCtl3 Register (CPO Register 10, Select 6)

5.5 GuestCtl3 Register (CPO Register 10, Select 6)

Compliance L evel: Optional in the Virtualization Module.

The GuestCtl3 register is optional. It isrequired only if Shadow GPR Sets are supported, and the Shadow Sets used
by aguest are virtual and require mapping to physical Shadow Sets. With this mechanism, a pool of Shadow Sets can
be physically shared by partitioning the sets among multiple guests and root, under root control.

Virtual mapping of Guest GPR set(s) is supported if Guest SRSCtl g5 is writeable by root. Presence of GuestCtl3 can
be detected by root software by writing any non-zero value less than or equal to root SRSCtlysgto Guest SRSCil s
If aread returns the value written, then GuestCtl3 is present.

The GuestCtl3 register isinstantiated per-VPE inaMT Module processor.

Figure 5.3 shows the format of the Virtualization Module GuestCtI3 register; Table 5.7 describes the GuestCtI3 regis-

ter fields.
Figure 5.5 GuestCtl3 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 15 14 13 12 11 10 9 8 7 6 5 4 2 1 0
0 0 0 0 0 0 0 GLSS
Table 5.7 GuestCtl3 Register Field Descriptions
Fields
Read / Reset

Name Bits Description Write State Compliance

0 31:4 This bit must be written as zero, returns zero on read. RO 0 Reserved
GLSS 3.0 Guest Lowest Shadow Set number. RO, 0 Required

This determines the lowest physical Shadow Set number assigned by R/W

root to guest. Guest is thus assigned physical Shadow Sets GLSS to
GLSS plus Guest SRl g

If thisfield is reserved, then all writes must be zero, and reads should
return O.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

109

Coprocessor 0 (CP0) Registers

5.6 GuestCtlOExt Register (CPO Register 11, Select 4)

Compliance L evel: Optional in the Virtualization Module.
GuestCtIOEXt is an optional extension to GuestCtl0. If not supported, the register must read as 0.

GuestCtlOgge should be read by software to determine if GuestCtlOExt is implemented.

The GuestCtIOExt register isinstantiated per-VPE inaMT Module processor.

Figure 5.6 shows the format of the Virtualization Module GuestCtlOExt register; Table 5.8describes the GuestCtlOExt

register fields.
Figure 5.6 GuestCtIOExt Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
Q80w (=
0 @I8Iala e

110 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.6 GuestCtIOExt Register (CPO Register 11, Select 4)

Table 5.8 GuestCtIOExt Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
0 31:2 This bit must be written as zero, returns zero on read. RO 0 Reserved
Cal 4 Related to GuestCtlOqg. Allows execution of CACHE, CACHEE Index RO, 0 Optional
Invalidate operations in guest mode. RW
Encoding Meaning
0 Definition of GuestCtlOcg does not
change.
1 If GUeStCthCG =1 and
GUeStCthEXtCGd =1, thenall CACHE,
CACHEE Index Invalidate (code
0xb000) operations may execute in
guest mode without causing a GPS.
Thisfield is RO if feature is not implemented.
The CACHEE instruction is optional in the baseline architecture.
FCD 3 Disables Guest Software/Hardware Field Change Exceptions RO, 0 Optional
(GSFC/GHFC). R/W

Thismode is useful for an implementation with root software that is not
afull-featured hypervisor. For e.g., the software may just support mem-
ory protection, but may not require protection of CPO state.

If FCD=1, then hardware must treat guest write, in case of GSFC, and
hardware events, in case of GHFC, as in the baseline architecture.

Encoding Meaning
0 GSFC or GHFC event will cause
exception.
1 GSFC or GHFC event will not cause
exception.

Thisfield is RO if feature is not implemented.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 111

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

Table 5.8 GuestCtIOExt Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

0oG 2 Other GPSI Enable. Appliesto UserLocal, WRENa, LLAddr, Reserved RO, 0 Optional
(for Architecture), User TraceDatal, User TraceData2, KScratchl R/W
through KScratch6, when implemented. If function is not supported, this
field reads as 0.

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtlOcpg=0.

1 GPSI enabled for these registers.

For a description of Reserved for Architecture registers, see Section
4631 .

UserTraceDatal, User TraceData2 are optional CPO registers defined in
MIPS iFlowTrace specification.

Thisfield is RO if feature is not implemented.

BG 1 Bad register GPSI| Enable. Applies to BadVAddr, Badlnstr, BadinstrP RO, 0 Optional
when implemented. If function is not supported, thisfield reads as 0. R/W

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtlOcpg=0.

1 GPSI enabled for these registers.

| Thisfield is RO if feature is not implemented.

MG 0 MMU GPSI Enable. Appliesto Index, Random, EntryLoO, Entrylo1, RO, 0 Optional
Context, ContextConfig, PageMask, EntryHi. If function is not sup- R/W
ported, thisfield reads as 0.

Encoding Meaning

0 GPSI not enabled for these registers
unless GUeﬁCthCpozo

1 GPSI enabled for these registers.

Thisfield is RO if feature is not implemented.

112 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.7 GTOffset Register (CPO Register 12, Select 7)

5.7 GTOffset Register (CPO Register 12, Select 7)

Compliance L evel: Required by the Virtualization Module.

Timekeeping within the guest context is controlled by root mode. The guest time value is generated by adding the
two’s complement offset in the Root. GTOffset register to the root timer in value Root.Count.

The guest time value is used to generate timer interrupts within the guest context, by comparison with the
Guest.Compare register. The guest time value can be read from the Guest.Count register. Guest writes to the

Guest.Count register always result in a Guest Privileged Sensitive | nstruction exception.

The number of bits supported in GTOffset isimplementation dependent but must be non-zero. It is recommended that
aminimum of 16 bits be implemented. Root software can check the number of implemented bits by writing al ones
and then reading. Unimplemented bits will return zero.

The GTOffset register isinstantiated per-VPE inaMT Module processor. This register is added by the Virtualization

Module.

See Section 4.6.8 “Guest Timer”.

Figure 5.7 shows the Virtualization Module format of the GTOffset register; Table 5.9 describes the GTOffset register

fields.
Figure 5.7 GTOffset Register Format
31 0
GTOffset
Table 5.9 GTOffset Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
GTOffset 310 Two's complement offset from Root.Count R/W 0 Required

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

113

Co

processor 0 (CP0) Registers

5.8 Cause Register (CPO Register 13, Select 0)

Compliance L evel: Required by the Virtualization Module.

Asin MIPS32, the Cause register describes the cause of the most recent exception, and provides control of software
interrupt requests and interrupt vector selection.

The behavior of the Cause register is changed by the Virtualization Module only by the addition of one new cause
code.

The Cause register isinstantiated per-VPE inaMT Module processor.
Figure 5.8 shows the format of the Cause register; Table 5.10 describes fields modified by the Virtualization Module.

Figure 5.8 Virtualization Module Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 2 1 0
Mod-
BD|TI| CE |DC|PCI 0 IV |WP 0 e IP7..IP2/ RIPL IP1.1IPO| O ExcCode 0

Table 5.10 Cause Register Field Description, modified by Virtualization Module

Fields
Read / Reset
Name Bits Description Write State Compliance
ExcCode 6..2 Exception Code - See Table 5.11. R Undefined Required
Addition of Hypervisor (GE) code.

Table 5.11 describes the new cause code value defined for ExcCode.

Table 5.11 Cause Register ExcCode values

Exception code value

Decimal Hexadecimal Mnemonic Description

27 Ox1b GE Hypervisor Exception (Guest Exit). Hypervisor-intervention exception
occurred during guest code execution. GuestCtlOggyccode CONtains additional
cause information.

114

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.9 Configuration Register 3 (CPO Register 16, Select 3)

5.9 Configuration Register 3 (CPO Register 16, Select 3)

Compliance L evel: Required by the Virtualization Module.
The Config3 register encodes additional capabilities. All fieldsin the Config3 register are read-only.
This register operates as described by the base architecture, except that the VZ field is added.

If Virtualization is supported (Config3,,,=1), and GuestID is supported, then explicit invalid TLB entry support
(EHINV) isrequired in order for a Guest to be able to detect invalid entries in the Guest TLB.

In Guest context, the VZ field is reserved and read as 0.
Figure 5-9 shows the format of the Config3 register; Table 5.12 describes the fields added to the Config3 register by
the Virtualization Module.

Figure 5-9 Config3 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

C D C
BIMIM ol ol sl ply M1 1SA LLJngT|L\éY CD|
MPGSPlCWZIPLWMMAR“on'SARXPPXTPInSPMTSMTL
G|C|A C|Exc L2 o TILIA Gl M
R ° P C
n
Table 5.12 Config3 Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
VZ 23 MIPS® Virtualization Module implemented. This bit R Preset Required
indicates whether the Virtualization Module is present. (Always 0
Encodi Meani in Guest
ncoding eaning context)
0 Virtualization Module not imple-
mented
1 Virtualization Module isimplemented

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 115

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

5.10 WatchHi Register (CPO Register 19)

Compliance Level: Optional.

The WatchHi register is as defined in the base architecture, except that it has been extended to optionally support
watch management in virtualized guest and root contexts.

Figure 5-10 shows the format of the WatchHi register; Table 5.13 describes the added WatchHi register fields.

The WatchHi register has a 10b wide ASID field only if Configdae=1. Otherwise, the ASID field is 8b wide.

Figure 5-10 WatchHi Register Format
31 30 2928272625 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

3 2 1 0
M| G| WM 0 ASID 0 Mask Il | R|W
Table 5.13 WatchHi Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
WM 29.28 | Thisfieldisused for Root management of Watch func- R/W or 0 Required
tionality in an implementation supporting the Virtualiza- R (Release 3)

tion Module.

Thisfield is reserved and read as 0, for Guest WatchHi,
or if such functionality is unimplemented. Software can
determine existence of this feature by writing then read-
ing thisfield.

Refer to Section 4.12 “Watchpoint Debug Support”

116 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.11 Performance Counter Register (CPO Register 25)

5.11 Performance Counter Register (CPO Register 25)

Compliance Level: Optional.

The PerfCnt register(s) are as defined in the base architecture, except that the EC field has been added to optionally
support performance measurement in virtualized guest and root contexts.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 5-11 shows the format of the Performance Counter Control Register; Table 5.14 describes the new Perfor-
mance Counter Control Register fields.

Figure 5-11 Performance Counter Control Register Format
31 30 29 25 24 23 22 16 15 14 11 10 5 4 3 2 1 0

M| W Impl EC 0 PCTD | EventExt Event IE| U |S|K|EXL

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 117

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

Table 5.14 New Performance Counter Control Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
EC 24:23 Event Class. Root only. Reserved, read-only O in all R/W in 0 Optional
other contexts. An implementation may detect the exist- Root
ence of thisfeature by writing anon-zero value to the mode.
field and reading. If value read is O, then EC is not sup- ROinall
ported. others.
Encoding Meaning
0 Root events counted. [default]
Activein Root context.
1 Root intervention events counted,
Active in Root context.
2 Guest events counted.
Activein Guest context.
3 Guest events plus Root intervention
events counted.

Active in Guest context.

Root will only assign encoding if it
wants to give Guest visibility into
Root intervention events.

Root events are those that occur when GuestCtlOg),=0.
Root intervention events are those that occur when
GuestCtlOg=1 and ! (Root. Statusgy =0 and Root.Sta-
tusgr =0 and Root.Debugp),=0)

Guest events are those that occur when GuestCtlOgy,=1
and Root.Statusgy =0 and Root.Statusgg =0 and
Root.Debugpy, =0

For the case of root intervention mode, PerfCtl ;g /exL
areignored as Root.Statusgy =1 and root must bein
kernel mode.

An implementation must qualify existing performance
counter events with the value of EC. For example, if an
event is “Instructions Graduated” and EC=0, then only
instructions graduated in root mode are counted.

118 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.12 Note on future CPO features

5.12 Note on future CPO features

Implementation note: Addition of anew feature to the root context does not mean that it must be included in the guest
context. However, when it becomes necessary to include a new architectural feature in the guest CPO context, the fol-
lowing rules must be followed.

A new architectural feature must have a corresponding Guest.Config field, which matches the Root.Config defini-
tion.

The guest context must always be a subset of the root. No feature can be specified with a Guest.Config field
which does not also exist in the root.

It isrecommended that the Guest.Config field be writable from root mode, to allow the feature to be disabled and
become invisible to the guest.

When the corresponding Guest.Config field indicates that afeature is present, it will operate as specified for root
mode, and will only use state held in the guest context. The functional behavior of the feature will not be atered
by fields in the root context. Timing may be affected.

Root mode state can only be used to apply translations to the inputs or outputs of the feature, to check for excep-
tion conditions within the feature, or to check guest interaction with the feature. The GuestCtl0 register should be
used for single-bit exception-enable bits.

Hypervisor exceptions can be triggered without the need for a GuestCtl0 bit, if the exception always results from
specified guest-mode interactions with the feature, or specified events within the feature itself. These exceptions
will be taken in root mode.

All memory accesses performed by the feature must be translated under root control. Thiswill be through the
root TLB unless another mechanism is provided (e.g. an IOMMU).

Synchronous exceptions detected by the guest context have a higher priority than the equivalent exception
detected by the root context. Synchronous exceptions originate from the ‘inside of the onion’ - the first boundary
to be crossed is the guest context, then the root context.

Asynchronous exceptions detected by the root context have higher priority than the equivalent exception detected
by the guest context. Asynchronous exceptions (e.g. interrupts, memory error) originate from ‘outside of the
onion’ - thefirst boundary to be crossed is the root context, and then the guest context.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 119

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

120 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 6

Instruction Descriptions

6.1 Overview

The Virtualization Module adds new and modifies existing instructions to allow root-mode access to the guest Copro-
cessor 0 context and the guest TLB. A new ‘hypercall’ instruction is added, to allow hypervisor callsto be made from
guest mode.

Table 6.1 listsin alphabetical order the instructions newly defined or modified by the Virtualization Module.

Table 6.1 New and Modified Instructions

Mnemonic Instruction Description Reference
HYPCALL |Hypercal Trigger Hypercall exception. “HYPCALL” on
page 124
MFGCO | Move from Guest Coprocessor O Read guest coprocessor 0 into GPR. “MFGCO” on
page 125
MTGCO | Move from Guest Coprocessor 0 Write guest coprocessor 0 from GPR. “MTGCO0” on
page 127
TLBGINV | Guest TLB Invalidate Trigger guest TLB invalidate from root mode. | “TLBGINV” on
page 128
TLBGINVF | Guest TLB Invalidate Flush Trigger guest TLB invalidate from root mode. | “TLBGINVF" on
page 130
TLBGP | Probe Guest TLB Trigger guest TLB probe from root mode. “TLBGP’ on
page 133
TLBGR |Read Guest TLB Trigger guest TLB read from root mode. “TLBGR” on
page 136
TLBGWI | Write Guest TLB Trigger guest TLB write from root mode. “TLBGWI” on
page 138
TLBGWR | Write Guest TLB Trigger guest TLB write from root mode. “TLBGWR” on
page 140
TLBINV |TLB Invalidate Modified TLB Invalidate behavior. “TLBINV” on
page 144
TLBINVF | TLB Invalidate Flush Modified TLB Invalidate Flush behavior. “TLBINVF" on
page 142
TLBP TLB Probe Modified TLB probe behavior. “TLBP’ on
page 145
TLBR Read TLB Modified TLB read behavior. “TLBR” on
page 147
TLBWI Write TLB, Indexed Modified indexed TLB write behavior. “TLBWI” on
page 150

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

121

Instruction Descriptions

Table 6.1 New and Modified Instructions

Mnemonic Instruction Description Reference
TLBWR | Write TLB, Random Modified random TLB write behavior. “TLBWR” on
page 170

122 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

6.1 Overview

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 123

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Hypervisor Call HYPCALL

124

31 26 25 24.21 20 11 10 6 5 0
COPO cO HYPCALL
010000 1 0000 code 00000 101000
6 1 4 10 5 6
Format: HYPCALL MIPS32

Purpose: Hypervisor Call
To cause a Hypercall exception

Description:

A hypervisor cal (hypercall) exception occurs, immediately and unconditionally transferring control to the exception
handler.

The code field is available for use as a software parameter. It can be retrieved by the exception handler from the
BadInstr register, or by loading the contents of the memory word containing the instruction.

Restrictions:

Thisinstruction is available to debug, root kernel and guest kernel modes.

Execution of Hypercall in debug mode is defined, but will not cause a mode transition to root. The processor will stay
in debug mode (Debugpyy=1), and root COPO state is unmodified.

Refer to MD00047, “EJTAG Specification”, for rules regarding Hypercall exception processing in debug mode.
Hypercall exception falls into the category of “Other execution-based exceptions’ in EJTAG Section 2.4.1. Debug-
DExcCode is set to GE=27 (see Table 5.3), no COPO state is modified, and other modifications to COPO Debug state
are made according to the rulesin EJTAG Section 2.4.3.

Further, if root executes a hypercall in root mode, Root.Causegycoge JELS Set to GE=27 (even though its not a guest-
exit) and GuestCtl0Ggycoge IS Set to HC=2. Root can distinguish aroot hypercall from a guest hypercall by looking
at GuestCtlOgy,. If it is set, then the hypercall must have come from a guest, if it is reset, then hypercall must have
come from root since Root.Statusgy; must have been 0, otherwise hypercall in root mode would not cause an excep-
tion.

Execution of hypercall in either root-kernel or debug mode is not recommended.

Operation:

if IsCoprocessorEnabled(0) then
SignalException (HyperCall, 0)
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
HyperCall Exception
Coprocessor Unusable Exception

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Move from Guest Coprocessor 0 MFGCO

31 26 25 21 20 16 15 11 10 8 7 3 2 0
COPO \
010000 00011 rt rd 000 00000 sel
6 5 5 5 3 5 3
Format: MFGCO rt, rd MIPS32
MFGCO rt, rd, sel MIPS32

Purpose: Move from Guest Coprocessor 0
To move the contents of a guest coprocessor O register to ageneral register.

Description: GPR[rt] ¢« Guest.CPR[0, rd, sell

The contents of the guest context coprocessor O register specified by the combination of rd and sel are loaded into
genera register rt. Note that not all guest context coprocessor O registers support the sel field. In those instances, the
sel field must be zero.

Restrictions:

Theresults are UNDEFINED if the guest context coprocessor O does not contain the register specified by rd and sel.

The guest context does not implement the Virtualization Module. Use of thisinstruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy = 0) then
SignalException (ReservedInstruction, 0)
break
endif
reg = rd
data ¢« Guest.CPRI[0,reg,sel]
GPR[rt] ¢« data
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 125

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

126 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Move to Guest Coprocessor O MTGCO

31 26 25 21 20 16 15 11 10 8 7 3 2 0
COPO \
010000 00011 rt rd 010 00000 sel
6 5 5 5 3 5 3
Format: mMTGCO rt, rd MIPS32
MTGCO rt, rd, sel MIPS32

Purpose: Move to Guest Coprocessor 0
To move the contents of a general register to a guest coprocessor O register.

Description: Guest.CPR[0, rd, sel] « GPR[rt]

The contents of general register rt are loaded into the guest context coprocessor O register specified by the combina
tion of rd and sel. Not all guest context coprocessor 0 registers support the sel field. In those instances, the sl field
must be set to zero.

Restrictions:

Theresultsare UNDEFINED if guest context coprocessor 0 does not contain the register as specified by rd and sel or
the destination register is the Guest.Count register, which is read-only

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

In a 64-bit processor, the MTGCO instruction writes all 64 bits of register rt into the guest context coprocessor regis-
ter specified by rd and sel if that register is a 64-bit register.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy; = 0) then
SignalException (ReservedInstruction, 0)
break
endif
data < GPR[rt]
reg < rd
Guest.CPR[0,reg,sel] « data
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 127

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Guest TLB Invalidate TLBGINV

31 26 25 24 6 5 0
COPO CcO 0 TLBGINV
010000 1 000 0000 0000 0000 0000 001011
6 1 19 6
Format: TLBGINV MIPS32

Purpose: Guest TLB Invalidate

TLBGINV invalidates a set of guest TLB entries based on ASID and guest Index match. The virtual address is
ignored in the match.

Implementation of the TLBGINV instruction is optional. The implementation of thisinstruction isindicated by the IE
field in Config4.

Implementation of EntryHIgyny field isrequired for implementation of TLBGINV instruction.
Support for TLBGINV is recommended for implementations supporting VTLB/FTLB type TLB's.
Description:

On execution of the TLBGINV instruction, the set of guest TLB entries with matching ASID are marked invalid,
excluding those guest TLB entries which have their G bit set to 1.

The EntryHIag p field has to be set to the appropriate ASID value before executing the TLBGINV instruction.

Behavior of the TLBGINV instruction applies to all applicable guest TLB entries and is unaffected by the setting of
the Guest.Wired register.

For JTLB-based MMU(Configyt=1):
All matching entries in the guest JTLB are invalidated. Index is unused.

For VTLB/FTLB -based MMU(Configy1=4):

A TLBGINV with Index set in guest VTLB range causes al matching entriesin the guest VTLB to be invali-
dated. A TLBGINV with Index set in guest FTLB range causes al matching entriesin the single addressed guest
FTLB set to be invalidated.

If TLB invalidate walk isimplemented in software (Config4,z=2), then software must do these steps:

1. oneTLBGINYV instruction is executed with an index in guest VTLB range (invalidates all matching guest
VTLB entries)

2. aTLBGINV instruction is executed for each guest FTLB set (invalidates all matching entriesin guest FTLB
Set)

If TLB invalidate walk isimplemented in hardware (Config4,=3), then software must do these steps:

1. oneTLBGINYV instruction is executed (invalidates all matching entriesin both guest FTLB & guest VTLB).
In this case, Index is unused.

In an implementation supporting GuestID (GuestCtl0g;=1), matching of guest TLB entries includes comparison of
the TLB entry GuestID with the Root GuestI D control field, GuestCtllgp .

Note that the TLBGINYV instruction only invalidates guest virtual address trandations in the guest TLB, invalidation
of guest physical address translations requires execution of the equivalent TLBINV instruction sequence in the root
TLB.

Restrictions:

128 MIPS32® Architecture for Programmers VVolume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Guest TLB Invalidate TLBGINV

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (for the case of Configy1=4).

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include a TLB, the operation of thisinstruction is UNDEFINED. The preferred implemen-
tation isto signal a Reserved Instruction Exception.

Operation:

if (Guest.Configyp=1 or
(Guest.Configyp=4 & Guest.Configd;z=2 & Index < Guest.Configlyyy grze-1))
startnum < 0
endnum « Guest.Configlyyy srzr-1

endif B

// treating VTLB and FTLB as one array

if (Guest.Configyr=4 & Guest.Configdp=2 & Index > Guest.Configlyyy stze-1)
startnum < start of selected Guest FTLB set // implementgtion specific
endnum ¢« end of selected Guest FTLB set - 1 //implementation specifc

endif

if (Guest.Configyr=4 & Guest.Configd;g=3))
startnum < 0
endnum <« Guest.ConfiglMM[LSIZE_l +
((Guest.Configdprpyays * 2) * Guest.Configdprrpsets)
endif

if IsCoprocessorEnabled(0) then
for (i = startnum to endnum)
if ((Guest.TLB[ilpgrp = EntryHi,grp) & (Guest.TLB[ilg = 0))
if (GuestCtlOg; = 1)
if (Guest.TLB[ilguyesttp = GuestCtllgip)
Guest.TLB[1i] hardware_invalid « 1

endif
else
Guest.TLB[1] hardware_invalid <1
endif
endif
endfor
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 129

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Guest TLB Invalidate Flush TLBGINVF

31 26 25 24 6 5 0
COPO CcO 0 TLBGINVF
010000 1 000 0000 0000 0000 0000 001100
6 1 19 6
Format: TLBGINVF MIPS32

Purpose: Guest TLB Invalidate Flush

TLBGINVF invalidates a set of Guest TLB entries based on Index match. The virtual address and ASID are ignored
in the match.

Implementation of the TLBGINVF instruction is optional. The implementation of thisinstruction is indicated by the
IE field in Config4.

Implementation of the EntryHIg Ny field is required for implementation of TLBGINV and TLBGINVF instruc-
tions.

Support for TLBGINVF is recommend for implementations supporting VTLB/FTLB type TLB's.
Description:
On execution of the TLBGINVF instruction, all entries within range of guest Index are invalidated.

Behavior of the TLBGINVF instruction applies to all applicable guest TLB entries and is unaffected by the setting of
the Wired register.

For JTLB-based MM U(Configyt=1):
TLBGINVF causes all entriesin the guest JTLB to beinvalidated. Index is unused.

For VTLB/FTLB-based MMU(Configy,1=4):

TLBINVF with Index in guest VTLB range causes all entriesin the guest VTLB to be invalidated.

TLBINVF with Index in guest FTLB range causes al entriesin the single corresponding set in the guest FTLB
to be invalidated.

If TLB invalidate walk isimplemented in software (Config4,=2), then software must do these steps:

1. one TLBGINV instruction is executed with an index in guest VTLB range (invalidates all matching guest
VTLB entries)

2. aTLBGINV instructionis executed for each guest FTLB set (invalidates all matching entriesin guest FTLB
Set)

If TLB invalidate walk isimplemented in hardware (Config4,z=3), then software must do these steps:

1. oneTLBGINV instruction isexecuted (invalidates all matching entriesin both guest FTLB & guest VTLB).
In this case, Index is unused.

In an implementation supporting GuestID (GuestCtlOg,=1), matching of guest TLB entries includes comparison of
the TLB entry GuestID with the Root GuestI D control field, GuestCtllgp .

Note that the TLBGINVF instruction only invalidates guest virtual address trandationsin the guest TLB, invalidation
of guest physical address translations requires execution of the equivalent TLBINVF instruction sequence in the root
TLB.

130 MIPS32® Architecture for Programmers VVolume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Guest TLB Invalidate Flush TLBGINVF

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equa to the number of TLB
entries visible as defined by the Config4 register.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if (Guest.Configyr=1 or
(Guest.Configyr=4 & Guest.Configdp=2 & Index < Guest.Configlypmy srz-1))
startnum < 0 -
endnum < Guest.Configlyyy stzr-1

endif -

// treating VTLB and FTLB as one array

if (Guest.Configyr=4 & Guest.Configdz=2 & Index > Guest.Configlyyy stzr-1)
startnum <« start of selected Guest FTLB set // implementation specific
endnum < end of selected Guest FTLB set - 1 //implementation specifc

endif

if (Guest.Configyr=4 & Guest.configd;z=3))
startnum < 0
endnum < Guest.Configlyyy stzr-1 +
((Guest.Configdpppyays +2) * Guest.Configdprpsets)
endif

if IsCoprocessorEnabled(0) then
for (i = startnum to endnum)
if (GuestCtlOg = 1)
if (Guest.TLB[ilguyesttp = GuestCtllgip)
Guest.TLB[1] hardware_invalid <1

endif
else
Guest.TLB[1i] hardware_invalid « 1
endif
endfor
else
SignalException (CoprocessorUnusable, 0)
endif
Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 131

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

132 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Probe Guest TLB for Matching Entry TLBGP

31 26 25 24 6 5 0
COPO CcO 0 TLBGP
010000 1 000 0000 0000 0000 0000 010000
6 1 19 6
Format: TLBGP MIPS32

Purpose: Probe Guest TLB for Matching Entry
To find amatching entry in the Guest TLB, initiated from root mode.

Description:

The Guest.Index register isloaded with the address of the Guest TLB entry whose contents match the contents of the
Guest.EntryHi register. If no Guest TLB entry matches, the high-order bit of the Guest.Index register is set.

In an implementation supporting GuestID (GuestCtl0g;=1), if the GuestID read does not match GuestCtllg,p, then
the match fails.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If an implementation detects multiple matches, and does not detect all multiple matches on TLB write, then a TLBGP
instruction can take a Machine Check Exception if multiple matches occur.

For processors that do not include a TLB in the guest context, the operation of thisinstruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy; = 0) then
SignalException (ReservedInstruction, 0)
break
endif
Guest.Index ¢« 1 || UNPREDICTABLE>!

// If a set-associative TLB is used, then a single set may be probed.

for i in 0...Guest.TLBEntries-1
if (((Guest.TLB[ilypyy and ~(Guest.TLBI[ilyaek))
(Guest .EntryHiypy, and ~(Guest.TLB[i]y,sk))) and
(Config4;y and not TLB[ilnardgware invalia) and
(Guest.TLB[i]g or (Guest.TLB[i];éID = Guest.EntryHi,gqrp))) then
if (GuestCtlOg = 1)
if (Guest.TLB[ilguyesttp = GuestCtllgip)
Guest.Index « i
endif
else
Guest.Index « i
endif
endif
endfor
else
SignalException (CoprocessorUnusable, 0)
endif

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 133

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable

Machine Check (implementation dependent)
Reserved Instruction

134 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 135

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Read Indexed Guest TLB Entry TLBGR

136

31 26 25 24 6 5 0
COPO CcO 0 TLBGR
010000 1 000 0000 0000 0000 0000 001001
6 1 19 6
Format: TLBGR MIPS32

Purpose: Read Indexed Guest TLB Entry
To read an entry from the Guest TLB into the guest context, initiated from root mode.

Description:

The Guest.EntryHi, Guest.EntryLoO, Guest.EntryLol, and Guest.PageMask registers are loaded with the con-
tents of the Guest TLB entry pointed to by the Guest.Index register. Note that the value written to the
Guest.EntryHi, Guest.EntryLo0, and Guest.EntryLo1 registers may be different from that originally written to the
TLB viathese registersin that:

e Thevauereturnedin the VPN2 field of the EntryHi register may have those bits set to zero corresponding to the
one hitsin the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed after aTLB
entry iswritten and then read.

» Thevaluereturned in the PFN field of the EntryLoO and EntryLo1l registers may have those bits set to zero cor-
responding to the one bitsin the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
after aTLB entry iswritten and then read.

» Thevaluereturned in the G bit in both the EntryLoO and EntryLol registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bitsin EntryLo0O and EntryLol when
the TLB was written.

In an implementation supporting GuestiD, if the TLB entry is not marked invalid, the GuestCtllgp field is written
with the GuestID of the TLB entry read.

Restrictions:

The operation is UNDEFINED if the contents of the Guest.Index register are greater than or equal to the number of
TLB entriesin the guest context.

If root-mode access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of thisinstruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy; = 0) then
SignalException (ReservedInstruction, 0)
break
endif
1 ¢ Guest.Index
if 1 > (Guest.TLBEntries - 1) then

MIPS32® Architecture for Programmers VVolume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Read Indexed Guest TLB Entry TLBGR

UNDEFINED
endif
if (Configéd;g = 1 && Guest.TLB[i]lgygryy = 1) then
GuestCtllgip < O
Guest.Pagemasky,g, < 0
Guest.EntryHi « 0
Guest.EntryLol « 0
Guest.EntryLo0 « 0
Guest.EntryHigyryy ¢ 1
break
endif
if (GuestCtlOg; = 1)
GuestCtllgyp ¢ Guest.TLB[i]guestiD
endif
Guest.PageMasky,q ¢ Guest.TLB[1i]yagk
Guest.EntryHi «

(Guest.TLB[ilypy, and not Guest.TLB[ily,sx) || # Masking impl dependent
0° || Guest.TLB[ilagrp
Guest.EntryLol « 0% ||
(Guest.TLB[i]ppy; and not Guest.TLB[ilu.ex) || # Masking impl dependent
Guest.TLB[i]o; || Guest.TLB[ilp; || Guest.TLB[ily; || Guest.TLB[ilg
Guest.EntryLo0 « 0% ||
(Guest.TLB[i]ppyo and not Guest.TLB[ily,sx) || # Masking impl dependent
Guest.TLB[1i]gy || Guest.TLB[ilpg || Guest.TLB[ilyy || Guest.TLB[ilg
else
SignalException (CoprocessorUnusable, 0)
endif
Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 137

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Write Indexed Guest TLB Entry TLBGWI

31 26 25 24 6 5 0
COPO CcO 0 TLBGWI
010000 1 000 0000 0000 0000 0000 001010
6 1 19 6
Format: TLBGWI MIPS32

Purpose: Write Indexed Guest TLB Entry
To write a Guest TLB entry indexed by the Index register, initiated from root mode.

Description:

The Guest TLB entry pointed to by the Guest.Index register is written from the contents of the Guest.EntryHi,
Guest.EntryLoO, Guest.EntryLol, and Guest.PageMask registers. The information written to the Guest TLB
entry may be different from that in the Guest.EntryHi, Guest.EntryLo0O, and Guest.EntryLol registers, in that:

* Thevaluewritten to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

» Thevauewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

» Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLo0 and EntryLol regis-
ters.

* Inanimplementation supporting GuestID, GuestCtllg,p iswritten inthe TLB entry.

If EHINV isimplemented, the TLBGWI instruction also acts as an explicit TLB entry invalidate operation. The Guest
TLB entry pointed to by the Guest.Index register is marked invalid when guest EntryH| gy =1

When EntryHIgny=1, no machine check generating error conditions exist.

Implementation of the TLBGWI invalidate feature isrequired if the TLBGINV and TLBGINVF instructions are
implemented, optional otherwise.
Restrictions:

The operation is UNDEFINED if the contents of the Guest.Index register are greater than or equal to the number of
TLB entriesin the guest context.

If access to the root Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an FTLB enabled system, if Guest.Index isin FTLB range and the page size specified does not match FTLB
page size, recommended behavior isthat the write not complete and a Machine Check Exception be signaled.

On an FTLB enabled system, for awritein FTLB range, if the VPN isinconsistent with Index, it is recommended that
aMachine Check Exception be signaled.

It is implementation dependent whether multiple TLB matches are detected on a TLBGWI, though it is recom-
mended. If a TLB write detects multiple matches, but not necessarily all multiple matches, then it is recommended
that aTLB lookup or TLB probe operation signal a Machine Check Exception on detection of multiple matches.

138 MIPS32® Architecture for Programmers VVolume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Write Indexed Guest TLB Entry TLBGWI

If multiple match detection is implemented, then on detection, it is recommended that the multiple match be invali-
dated and the write completed. It is recommended that no Machine Check Exception be signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction Exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of thisinstruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy, = 0) then
SignalException (ReservedInstruction, 0)
break
endif
i < Guest.Index
if (Config4;p = 1) then
Guest.TLB[1i] hardware_invalid « 0
if (EntryHIgymn~=1) then
Guest.TLB[i] hardware_invalid <~ 1
endif
endif
Guest.TLB[i]y,gx ¢ Guest.PageMasky,cx
Guest.TLB[i]g . Guest.EntryHig
Guest.TLB[i]lypyy ¢ Guest.EntryHiypy, and not Guest.PageMasky,s, # Impl dependent
Guest .TLB[1i]aqrp ¢ Guest.EntryHiagrp
Guest.TLB[i]g ¢ Guest.EntryLolg and Guest.EntryLoOg
Guest.TLB[i]lppy; ¢ Guest.EntryLolppy and not Guest.PageMasky,q # Impl dependent
Guest.TLB[i]o; ¢ Guest.EntryLol,
Guest.TLB[i]p; ¢ Guest.EntryLolp
Guest.TLB[i]y; ¢ Guest.EntryLoly
Guest.TLB[i]lppyg ¢ Guest.EntryLoOppy and not Guest.PageMasky,qr # Impl dependent
Guest.TLB[i]og ¢ Guest.EntryLoOq
Guest.TLB[ilpy ¢« Guest.EntryLoOp
Guest.TLB[ilyy ¢ Guest.EntryLoOy
if (GuestCtlOg;) then
Guest.TLB[1i]gyesttp ¢ GuestCtllgrp
endif
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (disabled if guest EntryHIgny=1.)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 139

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Write Random Guest TLB Entry TLBGWR

31 26 25 24 6 5 0
COPO CcO 0 TLBWR
010000 1 000 0000 0000 0000 0000 001110
6 1 19 6
Format: TLBGWR MIPS32

Purpose: Write Random Guest TLB Entry
To write a Guest TLB entry indexed by the Random register, initiated from root mode.

Description:

The Guest TLB entry pointed to by the Guest.Random register is written from the contents of the Guest.EntryHi,
Guest.EntryLoO, Guest.EntryLol, and Guest.PageMask registers.

The information written to the Guest TLB entry may be different from that in the Guest.EntryHi, Guest.EntryLoO,
and Guest.EntryLol registers, in that:

» Thevauewritten to the VPN2 field of the Guest TLB entry may have those bits set to zero corresponding to the
one bitsin the Mask field of the Guest.PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
during a Guest TLB write.

» Thevauewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of Guest.PageMask register (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
during a Guest TLB write.

* Thesingle G hit in the Guest TLB entry is set from the logical AND of the G bitsin the Guest.EntryLoO and
Guest.EntryLol registers.

* Inanimplementation supporting GuestID, GuestCtllg,p iswritten inthe TLB entry.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an VTLB/FTLB enabled implementation, if the Pagemask register contains a page size differing from the FTLB
page size defined in Config4, then the write goes into arandom entry in the VTLB.

It is implementation dependent whether multiple TLB matches are detected on a TLBGWR, though it is recom-
mended. If aTLB write detects multiple matches, but not necessarily all multiple matches, then a TLB lookup or TLB
probe operation should signal a Machine Check Exception on detection of multiple matches.

If multiple match detection isimplemented, then on detection, the multiple match should be invalidated and the write
completed. No Machine Check Exception should be signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of thisinstruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy = 0) then

140 MIPS32® Architecture for Programmers VVolume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Write Random Guest TLB Entry TLBGWR

SignalException (ReservedInstruction, 0)
break

endif

i ¢« Guest.Random

if (Config4;p = 1) then
Guest.TLB[1i] hardware_invalid <« 0
if (EntryHIgyyw=1) then

Guest.TLB[1] hardware_invalid « 1

endif

endif
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest

.TLB
.TLB[i]p; ¢ Guest.EntryLolp
.TLB[i]y; ¢ Guest.EntryLoly
.TLB[i]lppyg ¢ Guest.EntryLoOpry and not PageMasky,qx # Impl. dependent
.TLB[i]gg ¢ Guest.EntryLoOlq
.TLB[i]lpg ¢ Guest.EntryLolp
.TLB[i]yg ¢ Guest.EntryLoOy

.TLB[i]yasx ¢ Guest.PageMasky,qx
.TLB[i]lg . Guest.EntryHig
.TLB[ilypyy ¢ Guest.EntryHiypy, and not Guest.PageMasky,qx # Impl. dependent
.TLB[i]agrp ¢ Guest.EntryHigp
.TLB[i]g ¢ Guest.EntryLol; and Guest.EntryLo0g
.TLB[i]ppy1 ¢ Guest.EntryLolppy and not PageMasky, . # Impl. dependent
[
[
[
[
[
[

ilcy ¢ Guest.EntryLolg

if (GuestCtlOg;) then
Guest.TLB[1]lgyesttp ¢ GuestCtllgrp

endif
else

SignalException (CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (implementation dependent)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 141

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

TLB Invalidate Flush TLBINVF
31 26 25 24 0
COPO CcO 0 TLBINVF
010000 1 000 0000 0000 0000 0000 000100
6 1 19 6
Format: TLBINVF MIPS32

142

Purpose: TLB Invalidate Flush

Description:

The TLBINVF instruction is unmodified from the base architectural definition, except in an implementation support-

ing GuestID:

* When executing in Guest mode, if the GuestID read does not match GuestCtl1,p, then the TLB entry is not

modified.

* When executing in Root mode, if the GuestID read does not match GuestCtllg,p, then the TLB entry is not
modified. Note that this only applies to the root TLB, invalidation of guest virtual address translations requires

execution of the equivalent TLBGINVF instruction sequence to modify the guest TLB.

Restrictions:

Unchanged from the base architecture.

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS32® Architecture for Programmers VVolume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 143

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

TLB Invalidate TLBINV

144

31 26 25 24 6 5 0
COPO CcO 0 TLBINV
010000 1 000 0000 0000 0000 0000 000011
6 1 19 6
Format: TLBINV MIPS32

Purpose: TLB Invaidate

Description:

The TLBINYV instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

* When executing in Guest mode, if the GuestID read does not match GuestCtl1,p, then the TLB entry is not
modified.

* When executing in Root mode, if the GuestID read does not match GuestCtllg,p, then the TLB entry is not

modified. Note that this only applies to the root TLB, invalidation of guest virtual address translations requires
execution of the equivalent TLBGINV instruction sequence to modify the guest TLB.

Restrictions:

Unchanged from the base architecture.

Exceptions:

Unchanged from the base architecture.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Probe TLB for Matching Entry TLBP

31 26 25 24 6 5 0
COPO co 0 TLBP
010000 1 000 0000 0000 0000 0000 001000
6 1 19 6

Format: TLBP

Purpose: Probe TLB for Matching Entry
To find amatching entry in the TLB.

Description:

MIPS32

The TLBP instruction is unmodified from the base architectural definition, except in an implementation supporting

GuestiD:

* When executing in Guest mode, if the GuestID read does not match GuestCtl1,p, then the match fails.

* When executing in Root mode, if the GuestID read does not match GuestCitllg,p, then the match fails.

Restrictions:

Unchanged from the base architecture.

Operation:

if IsCoprocessorEnabled(0) then
Index ¢« 1 || UNPREDICTABLE>!
for i in 0...TLBEntries-1
if ((TLB[1ilypyz & ~(TLB[ilyack)) = (EntryHiypys & ~(TLB[1lyask))) and
(Configd g=1 && TLB[i]hanhmrefhnmlid = 1) and
((IsRootMode () and (TLB[ilgyestrp = GuestCtllgip)) or
(IsGuestMode () and (TLB[ilgyesttp = GuestCtll;p))) and
((TLB[ilg = 1) or (TLB[ilagrp = EntryHingrp)) then
Index « i
endif
endfor
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (implementation defined)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

145

146 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry TLBR
31 26 25 24 6 5 0
COPO CcO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format: TLBR MI1PS32

Purpose: Read Indexed TLB Entry
To read an entry from the TLB.

Description:

The TLBR instruction is unmodified from the base architectural definition, except in an implementation supporting

GuestiD:

* When executing in Guest mode, if the GuestID read does not match GuestCtl1,p, then the TLB related CPO reg-
isters are zeroed and EHINV isset to 1.

* When executing in Root mode and the TLB entry is not marked asinvalid, GuestCtllgp is set to the GuestI D of
the TLB entry read.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entriesin the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then

i

if i >

< Index

endif
if (COnf ig4IE:l && TLB [i] hardware_invalid =1) then

GuestCtllgp < O
Pagemasky,cx < 0
EntryHi < O
EntryLol < 0
EntryLoO « 0
EntryHiggmyy ¢ 1

break

endif
PageMaskyaskx ¢ TLB[1]lyask
EntryHi «

(TLBEntries - 1) then
UNDEFINED

(TLB[ilypyy and not TLB[ily.ex) || # Masking implementation dependent
0% || TLB[ilasmp

EntryLol « 0% ||
(TLB[ilppy; and not TLB[ilu.sx) || # Masking mplementation dependent
TLB[iley || TLB[ilp; || TLBIilys || TLBIilg

EntryLoQ <« 02 ||
(TLB[ilppye and not TLB[ily.ex) || # Masking mplementation dependent
TLB[ilgo || TLB[ilpy || TLBI[ilyy || TLBIilg

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 147

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

if in guest mode, if the TLB entry guest id != guest id
zero the result
if (GuestCtlOg, = 1)
if (GuestCtlOgy=1) and (Root.Debugpy=0) and
(Root.Statusgg,=0) and (Root.Statusgy;,=0) then
if (TLB[il{p != GuestCtll;p) then
Pagemasky,gx < 0
EntryHi « O
EntryLol < 0
EntryLo0 « 0
EntryHigyrgy ¢ 1
endif
else #in root mode, save read GuestID
GuestCtllgyp ¢ TLB[ilguesttD
endif
endif
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

148 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03
Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 149

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry TLBWI

31 26 25 24 6 5 0
COPO CcO 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6
Format: TLBWI MIPS32

Purpose: Write Indexed TLB Entry
To writea TLB entry indexed by the Index register.

Description:
The TLBWI instruction is unmodified from the base architecture, except in an implementation supporting GuestID:

* When executing in Guest mode, GuestCtl1,p iswritten in the guest TLB entry.

* When executing in Root mode GuestCtllg p iswritten in theroot TLB entry.

It is expected that a Guest entry in the Root TLB must have its Global (G) bit set to 1 on a TLB write. Thisis because
the ASID field is not applicable for a Guest entry in the Root TLB.

If EHINV isimplemented, the TLBWI instruction also acts as an explicit TLB entry invalidate operation. The TLB
entry pointed to by the Index register is marked invalid when EntryHIgyny=1.

When EntryHIgny=1, no machine check generating error conditions exist.

Restrictions:

Unmodified from the base architecture.

Operation:

if IsCoprocessorEnabled(0) then
i ¢« Index
if (Config4:z=1) then
TLB[i]hardwareiinvalid « 0
if (EntryHIgynw=1) then
TLB[1] hardware_invalid « 1
endif
endif
TLB[i]yask ¢ PageMasky,qx
TLB[ilypyy ¢ EntryHiypy, and not PageMasky,qx # Implementation dependent
TLB[i]agrp ¢ EntryHingrp
(

if (GuestCtlOg;) then
if ((GuestCtlOgap=0) and IsRootMode() and (GuestCtllgrp != 0))
TLB[i]g ¢« 1
else
TLB[i]lg ¢ EntryLolg and EntryLoOg
endif
else
TLB[i]g ¢ EntryLolg and EntryLoOg
endif
if (IsRootMode()) then
TLB[i]gyesttp ¢ GuestCtllgip
else

TLB[i]guesttp ¢ GuestCtllip

150 MIPS32® Architecture for Programmers VVolume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

endif
TLB[i]ppy1 ¢ EntryLolppy and not PageMasky,qx # Implementation dependent
TLB[i]lc; ¢ EntryLolg
TLB[i]p; ¢ EntryLolp
TLB[ily, ¢ EntryLoly
TLB[ilppyo ¢ EntryLoOppy and not PageMasky,qx # Implementation dependent
TLB[i]lcp ¢ EntryLoOq
TLB[i]lpy ¢ EntryLoOp
TLB[i]yy ¢ EntryLoOy
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Unmodified from the base architecture.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 151

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

152 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 7

Notes

This Virtualization Module specification is awork in progress. Feedback and comments are welcomed on the func-
tional behavior, and the explanations of that behavior.

7.1 Potential areas of improvement

The following items have been identified as potential areas of improvement in the specification.

Extensions to EJTAG specification to allow additional control over hardware breakpoints used during guest exe-
cution.

Consider options to allow for trandation of 36-bit physical addresses
Consider options to reduce the cost of guestO-guest1-guestO context switching.

Security: JTAG, DEBUG, Boot, OMMU

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 153

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Notes

154 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

	MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	The Virtualization Module of the MIPS32® Architecture
	2.1 Base Architecture Requirements
	2.2 Software Detection of the Module
	2.3 Compliance and Subsetting
	2.4 Overview of the Virtualization Module
	2.5 Instruction Bit Encoding

	Overview of Virtualization Support
	3.1 Overview

	The Virtualization Privileged Resource Architecture
	4.1 Introduction
	4.2 Overview
	4.3 Compliance
	4.4 Operating Modes
	4.4.1 The Onion Model
	4.4.2 Terminology
	4.4.3 Definition of Guest Mode
	4.4.3.1 Definition
	4.4.3.2 Entry to Guest mode
	4.4.3.3 Exit from Guest mode
	4.4.3.4 Guest mode execution
	4.4.3.5 Reset
	4.4.3.6 Debug Mode
	4.4.3.7 Fields affecting processor mode

	4.4.4 The Guest Context

	4.5 Virtual Memory
	4.5.1 Virtualized MMU GuestID Use
	4.5.2 Root and Guest Shared TLB Operation

	4.6 Coprocessor 0
	4.6.1 New and Modified CP0 Registers
	4.6.2 New CP0 Instructions
	4.6.3 Guest CP0 registers
	4.6.3.1 Guest Reserved Register Handling

	4.6.4 Guest Privileged Sensitive Features
	4.6.5 Access Control for Guest CP0 Register Fields
	4.6.6 Guest Config Register Fields
	4.6.7 Guest Context Dynamically Set Read-only Fields
	4.6.8 Guest Timer
	4.6.9 Guest Cache Operations
	4.6.10 UNPREDICTABLE and UNDEFINED in Guest Mode

	4.7 Exceptions
	4.7.1 Exceptions in Guest Mode
	4.7.2 Faulting Address for Exceptions from Guest Mode
	4.7.3 Guest initiated Root TLB Exception
	4.7.4 Exception Priority
	4.7.5 Exception Vector Locations
	4.7.6 Synchronous and Synchronous Hypervisor Exceptions
	4.7.7 Guest Privileged Sensitive Instruction Exception
	4.7.8 Guest Software Field Change Exception
	4.7.9 Guest Hardware Field Change Exception
	4.7.10 Guest Reserved Instruction Redirect
	4.7.11 Hypercall Exception
	4.7.12 Guest Exception Code in Root Context

	4.8 Interrupts
	4.8.1 External Interrupts
	4.8.1.1 Non-EIC Interrupt Handling
	4.8.1.2 EIC Interrupt Handling

	4.8.2 Derivation of Guest.CauseIP/RIPL
	4.8.3 Timer Interrupts
	4.8.4 Performance Counter Interrupts

	4.9 Instructions and Machine State, other than CP0
	4.9.1 General Purpose Registers and Shadow Register Sets
	4.9.1.1 Pseudo-code for Shadow Set Handling

	4.9.2 Multiplier Result Registers
	4.9.3 DSP Module
	4.9.4 Floating Point Unit (Coprocessor 1)
	4.9.5 Coprocessor 2
	4.9.6 MSA (MIPS SIMD Architecture)

	4.10 Combining the Virtualization Module and the MT Module
	4.11 Guest Mode and Debug features
	4.12 Watchpoint Debug Support
	4.13 Virtualization Module features and Hypervisor Software
	4.14 Lightweight Virtualization
	4.14.1 Introduction
	4.14.2 Support for Lightweight Virtualization
	4.14.2.1 Root Protection Unit (RPU)
	4.14.2.2 Architectural Control
	4.14.2.3 Optional Features of Virtualization Architecture

	Coprocessor 0 (CP0) Registers
	5.1 CP0 Register Summary
	5.2 GuestCtl0 Register (CP0 Register 12, Select 6)
	5.3 GuestCtl1 Register (CP0 Register 10, Select 4)
	5.4 GuestCtl2 Register (CP0 Register 10, Select 5)
	5.5 GuestCtl3 Register (CP0 Register 10, Select 6)
	5.6 GuestCtl0Ext Register (CP0 Register 11, Select 4)
	5.7 GTOffset Register (CP0 Register 12, Select 7)
	5.8 Cause Register (CP0 Register 13, Select 0)
	5.9 Configuration Register 3 (CP0 Register 16, Select 3)
	5.10 WatchHi Register (CP0 Register 19)
	5.11 Performance Counter Register (CP0 Register 25)
	5.12 Note on future CP0 features

	Instruction Descriptions
	6.1 Overview
	HYPCALL
	MFGC0
	MTGC0
	TLBGINV
	TLBGINVF
	TLBGP
	TLBGR
	TLBGWI
	TLBGWR
	TLBINVF
	TLBINV
	TLBP
	TLBR
	TLBWI

	Notes
	7.1 Potential areas of improvement

