
MIPS
Verified

™

Document Number: MD00846
Revision 1.03
April 29, 2013

MIPS Technologies, Inc.
955 East Arques Avenue

Sunnyvale, CA 94085-4521

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

MIPS32® Architecture for Programmers
Volume IV-i: Virtualization Module of the

MIPS32® Architecture

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Template: nB1.02, Built with tags: 2B ARCH IMPL MIPS32 MIPS32andIMPL

Copyright © 2010-2012 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16, MIPS16e, MIPS-Based,
MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS Technologies logo, MIPS-VERIFIED logo,
proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K,
34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc, 1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user
experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2
NAVIGATOR, HyperDebug, HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS,
Navigator, OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered trademarks of MIPS
Technologies, Inc. in the United States and other countries. All other trademarks referred to herein are the property of their respective owners.

All other trademarks referred to herein are the property of their respective owners.

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 3

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: About This Book .. 1
1.1: Typographical Conventions ... 1

1.1.1: Italic Text.. 2
1.1.2: Bold Text .. 2
1.1.3: Courier Text ... 2

1.2: UNPREDICTABLE and UNDEFINED ... 2
1.2.1: UNPREDICTABLE... 2
1.2.2: UNDEFINED .. 3
1.2.3: UNSTABLE .. 3

1.3: Special Symbols in Pseudocode Notation... 3
1.4: For More Information ... 6

Chapter 2: The Virtualization Module of the MIPS32® Architecture .. 7
2.1: Base Architecture Requirements... 7
2.2: Software Detection of the Module ... 7
2.3: Compliance and Subsetting... 7
2.4: Overview of the Virtualization Module ... 7
2.5: Instruction Bit Encoding... 7

Chapter 3: Overview of Virtualization Support .. 11
3.1: Overview.. 11

Chapter 4: The Virtualization Privileged Resource Architecture ... 13
4.1: Introduction.. 13
4.2: Overview.. 13
4.3: Compliance.. 13
4.4: Operating Modes ... 15

4.4.1: The Onion Model.. 16
4.4.2: Terminology ... 17
4.4.3: Definition of Guest Mode.. 19
4.4.4: The Guest Context ... 22

4.5: Virtual Memory .. 26
4.5.1: Virtualized MMU GuestID Use ... 30
4.5.2: Root and Guest Shared TLB Operation ... 33

4.6: Coprocessor 0 ... 34
4.6.1: New and Modified CP0 Registers .. 35
4.6.2: New CP0 Instructions... 36
4.6.3: Guest CP0 registers... 37
4.6.4: Guest Privileged Sensitive Features .. 42
4.6.5: Access Control for Guest CP0 Register Fields .. 42
4.6.6: Guest Config Register Fields ... 43
4.6.7: Guest Context Dynamically Set Read-only Fields ... 45
4.6.8: Guest Timer ... 46
4.6.9: Guest Cache Operations.. 48
4.6.10: UNPREDICTABLE and UNDEFINED in Guest Mode.. 48

4.7: Exceptions ... 50

4 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.7.1: Exceptions in Guest Mode ... 50
4.7.2: Faulting Address for Exceptions from Guest Mode.. 51
4.7.3: Guest initiated Root TLB Exception ... 51
4.7.4: Exception Priority ... 52
4.7.5: Exception Vector Locations.. 56
4.7.6: Synchronous and Synchronous Hypervisor Exceptions .. 56
4.7.7: Guest Privileged Sensitive Instruction Exception... 57
4.7.8: Guest Software Field Change Exception ... 58
4.7.9: Guest Hardware Field Change Exception.. 60
4.7.10: Guest Reserved Instruction Redirect ... 61
4.7.11: Hypercall Exception ... 62
4.7.12: Guest Exception Code in Root Context ... 62

4.8: Interrupts ... 64
4.8.1: External Interrupts.. 65
4.8.2: Derivation of Guest.CauseIP/RIPL... 70
4.8.3: Timer Interrupts.. 72
4.8.4: Performance Counter Interrupts... 72

4.9: Instructions and Machine State, other than CP0 ... 73
4.9.1: General Purpose Registers and Shadow Register Sets .. 73
4.9.2: Multiplier Result Registers ... 75
4.9.3: DSP Module ... 75
4.9.4: Floating Point Unit (Coprocessor 1) ... 76
4.9.5: Coprocessor 2.. 76
4.9.6: MSA (MIPS SIMD Architecture) ... 76

4.10: Combining the Virtualization Module and the MT Module ... 77
4.11: Guest Mode and Debug features .. 80
4.12: Watchpoint Debug Support ... 81
4.13: Virtualization Module features and Hypervisor Software... 83
4.14: Lightweight Virtualization... 89

4.14.1: Introduction .. 89
4.14.2: Support for Lightweight Virtualization... 89

Chapter 5: Coprocessor 0 (CP0) Registers .. 93
5.1: CP0 Register Summary... 93
5.2: GuestCtl0 Register (CP0 Register 12, Select 6) ... 94
5.3: GuestCtl1 Register (CP0 Register 10, Select 4) ... 103
5.4: GuestCtl2 Register (CP0 Register 10, Select 5) ... 105
5.5: GuestCtl3 Register (CP0 Register 10, Select 6) ... 109
5.6: GuestCtl0Ext Register (CP0 Register 11, Select 4) .. 110
5.7: GTOffset Register (CP0 Register 12, Select 7)... 113
5.8: Cause Register (CP0 Register 13, Select 0) ... 114
5.9: Configuration Register 3 (CP0 Register 16, Select 3) ... 115
5.10: WatchHi Register (CP0 Register 19)... 116
5.11: Performance Counter Register (CP0 Register 25) .. 117
5.12: Note on future CP0 features.. 119

Chapter 6: Instruction Descriptions.. 121
6.1: Overview.. 121

HYPCALL .. 124
MFGC0.. 125
MTGC0.. 127
TLBGINV... 128
TLBGINVF... 130

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 5

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

TLBGP... 133
TLBGR .. 136
TLBGWI... 138
TLBGWR... 140
TLBINVF.. 142
TLBINV.. 144
TLBP ... 145
TLBR ... 147
TLBWI ... 150

Chapter 7: Notes ... 153
7.1: Potential areas of improvement... 153

6 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 4.1: State Transitions between Operating Modes.. 15
Figure 4.2: Virtualization Module Onion Model ... 16
Figure 4.3: Virtualization Module Onion Model and exceptions.. 17
Figure 4.4: Simplified processor operation in root mode... 24
Figure 4.5: Virtualization Module Onion Model applied to simplified processor (full virtualization)......................... 25
Figure 4.6: Outline of Address Translation.. 27
Figure 4.7: Root and Guest Timers... 47
Figure 4.8: Interrupts in the Virtualization Module onion model .. 64
Figure 4.9: Guest and Root CauseIP (non-EIC) Virtualization.. 67
Figure 4.10: A MT Module processor equipped with three VPEs ... 77
Figure 4.11: A MT Module processor equipped with three VPEs and the Virtualization Module 78
Figure 5.1: GuestCtl0 Register Format ... 94
Figure 5.2: GuestCtl1 Register Format ... 103
Figure 5.3: GuestCtl2 Register Format for non-EIC mode.. 105
Figure 5.4: GuestCtl2 Register Format for EIC mode... 105
Figure 5.5: GuestCtl3 Register Format ... 109
Figure 5.6: GuestCtl0Ext Register Format .. 110
Figure 5.7: GTOffset Register Format... 113
Figure 5.8: Virtualization Module Cause Register Format .. 114
Figure 5-9: Config3 Register Format... 115
Figure 5-10: WatchHi Register Format ... 116
Figure 5-11: Performance Counter Control Register Format .. 117

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 7

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 3
Table 2.1: Symbols Used in the Instruction Encoding Tables... 8
Table 2.2: Virtualization Module Encoding of the Opcode Field ... 8
Table 2.3: Virtualization Module COP0 Encoding of rs field ... 9
Table 2.4: MIPS32 COP0 Encoding of Function Field When rs=V ... 9
Table 2.5: Virtualization Module COP0 Encoding of Function Field When rs=CO ... 9
Table 4.1: Guest, Root and Debug modes ... 20
Table 4.2: GuestID Translation Related Usage Mode Control.. 31
Table 4.3: GuestID Use by TLB instructions. .. 32
Table 4.4: CP0 Registers Introduced by the Virtualization Module... 35
Table 4.5: CP0 Registers Modified by the Virtualization Module .. 35
Table 4.6: CP0 Instructions Introduced by the Virtualization Module.. 36
Table 4.7: CP0 Registers in Guest CP0 context ... 38
Table 4.8: Root Modification of Guest CP0 Configuration .. 41
Table 4.9: Guest CP0 Fields Subject to Software or Hardware Field Change Exception....................................... 43
Table 4.10: Guest CP0 Read-only Config Fields Writable from Root Mode ... 44
Table 4.11: Guest CP0 Read-only Fields Writable from Root Mode... 45
Table 4.12: Priority of Exceptions ... 52
Table 4.13: Exception Type Characteristics.. 56
Table 4.14: Hypervisor Exception Conditions ... 57
Table 4.15: Debug Features and Application to Virtualization Module ... 80
Table 4.16: Guest Watchpoint Support ... 81
Table 4.17: Watch Control .. 81
Table 4.18: Virtualization Optimizations and their Intended Purpose ... 83
Table 4.19: MMU Configurations with RPU .. 89
Table 5.1: Virtualization Module Changes to Coprocessor 0 Registers in Numerical Order................................... 93
Table 5.2: GuestCtl0 Register Field Descriptions ... 95
Table 5.3: GuestCtl0 GExcCode values ... 101
Table 5.4: GuestCtl1 Register Field Descriptions ... 104
Table 5.5: non-EIC mode GuestCtl2 Register Field Descriptions .. 106
Table 5.6: EIC mode GuestCtl2 Register Field Descriptions ... 108
Table 5.7: GuestCtl3 Register Field Descriptions ... 109
Table 5.8: GuestCtl0Ext Register Field Descriptions .. 111
Table 5.9: GTOffset Register Field Descriptions... 113
Table 5.10: Cause Register Field Description, modified by Virtualization Module.. 114
Table 5.11: Cause Register ExcCode values ... 114
Table 5.12: Config3 Register Field Descriptions... 115
Table 5.13: WatchHi Register Field Descriptions.. 116
Table 5.14: New Performance Counter Control Register Field Descriptions .. 118
Table 6.1: New and Modified Instructions... 121

8 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 1

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 1

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

About This Book

The MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture
comes as part of a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

• Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

 About This Book

2 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

1.3 Special Symbols in Pseudocode Notation

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 3

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction

 About This Book

4 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

*, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.3 Special Symbols in Pseudocode Notation

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 5

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register
on an exception. The PC value contains a full 32-bit address all of which are significant during a memory ref-
erence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

 About This Book

6 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU
has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
ally in MIPS32 Release2 and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in
any FPR.

In MIPS32 Release 1 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the pro-
cessor operates as if it had 32 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

http://www.mips.com/
mailto:architecture@mips.com

Chapter 2

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 7

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Module of the MIPS32® Architecture

2.1 Base Architecture Requirements

The Virtualization Application-Specific Extension (Module) requires the following base architecture support:

• The MIPS32 Architecture: The Virtualization Module requires a compliant implementation of the MIPS32
Architecture, Release 5.00 or later.

• A TLB-based MMU is required.

• Coprocessor 0 registers KScratch1 and KScratch2 are required

2.2 Software Detection of the Module

Software can determine if the Virtualization Module is implemented by checking the state of the VZ bit in the
Config3 CP0 register.

2.3 Compliance and Subsetting

The Virtualization Module to the MIPS32 Architecture provides hardware support for software-controlled platform
virtualization. A subset of Virtualization Module instructions and registers must be implemented, but certain instruc-
tions and machine state are defined to be optional and may be omitted.

2.4 Overview of the Virtualization Module

The Virtualization Module extends the MIPS32® Architecture with a set of new instructions and machine state, and
makes backward-compatible modifications to existing MIPS32 features.The Virtualization Module is designed to
enable full virtualization of operating systems.

2.5 Instruction Bit Encoding

Table 2.2 through Table 2.5 describe the instruction encodings used for the Virtualization Module. Table 2.1
describes the meaning of the symbols used in the tables. These tables only list the instruction encodings for the Virtu-
alization Module instructions. See Volume I of this multi-volume set for a full encoding of all instructions.

 The Virtualization Module of the MIPS32® Architecture

8 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 2.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

∗ Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

δ (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

β Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

θ Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, MIPS Technologies will assist the partner in selecting
appropriate encodings if requested by the partner. The partner is not required to consult with MIPS
Technologies when one of these encodings is used. If no instruction is encoded with this value,
executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings
or coprocessor instruction encodings for a coprocessor to which access is allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which access is
not allowed).

σ Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding is imple-
mented, it must match the instruction encoding as shown in the table.

ε Operation or field codes marked with this symbol are reserved for MIPS Modules. If the Module is
not implemented, executing such an instruction must cause a Reserved Instruction Exception.

φ Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

Table 2.2 Virtualization Module Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000

1 001

2 010 COP0 δ
3 011

4 100

5 101

6 110

7 111

2.5 Instruction Bit Encoding

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 9

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 2.3 Virtualization Module COP0 Encoding of rs field

rs bits 23..21

0 1 2 3 4 5 6 7

bits 25..24 000 001 010 011 100 101 110 111

0 00 MFC0 β ∗ Vδ MTC0 β ∗ ∗

1 01 * * ∗ ∗ * ∗ ∗ ∗

2 10

C0 δ3 11

Table 2.4 MIPS32 COP0 Encoding of Function Field When rs=V

V bits 10..8

0 1 2 3 4 5 6 7

000 001 010 011 100 101 110 111

βMFGC0 β βMTGC0 β ∗ ∗ ∗ ∗

Table 2.5 Virtualization Module COP0 Encoding of Function Field When rs=CO

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000 ∗ TLBR TLBWI TLBINV TLBINVF ∗ TLBWR ∗

1 001 TLBP TLBGR TLBGWI TLBGINV TLBGINVF ∗ TLBGWR ∗

2 010 TLBGP ∗ ∗ ∗ ∗ ∗ ∗ ∗

3 011 ERET ∗ ∗ ∗ ∗ ∗ ∗ DERET

4 100 WAIT ∗ ∗ ∗ ∗ ∗ ∗ ∗

5 101 HYPCALL ∗ ∗ ∗ ∗ ∗ ∗ ∗

6 110 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

7 111 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 The Virtualization Module of the MIPS32® Architecture

10 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 11

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Overview of Virtualization Support

3.1 Overview

The Virtualization Module defines a set of extensions to the MIPS32 Architecture for efficient implementation of vir-
tualized systems.

Virtualization is enabled by software - the key element is a control program known as a Virtual Machine Monitor
(VMM) or hypervisor. The hypervisor is in full control of machine resources at all times.

When an operating system (OS) kernel is run within a virtual machine (VM), it becomes a ‘guest’ of the hypervisor.
All operations performed by a guest must be explicitly permitted by the hypervisor. To ensure that it remains in con-
trol, the hypervisor always runs at a higher level of privilege than a guest operating system kernel.

The hypervisor is responsible for managing access to sensitive resources, maintaining the expected behavior for each
VM, and sharing resources between multiple VMs.

In a traditional operating system, the kernel (or ‘supervisor’) typically runs at a higher level of privilege than user
applications. The kernel provides a protected virtual-memory environment for each user application, inter-process
communications, IO device sharing and transparent context switching. The hypervisor performs the same basic func-
tions in a virtualized system - except that the hypervisor’s clients are full operating systems rather than user applica-
tions.

The virtual machine execution environment created and managed by the hypervisor consists of the full Instruction Set
Architecture, including all Privileged Resource Architecture facilities, plus any device-specific or board-specific
peripherals and associated registers. It appears to each guest operating system as if it is running on a real machine
with full and exclusive control.

The Virtualization Module enables full virtualization, and is intended to allow VM scheduling to take place while
meeting real-time requirements, and to minimize costs of context switching between VMs.

Minimum Requirements for Virtualization

The first implementations of platform virtualization used ‘trap-and-emulate’ software techniques, which rely on cer-
tain properties of the underlying hardware. To be considered ‘classically virtualizable’ an architecture must have the
following characteristics:

• At least two operating modes - including privileged and unprivileged

• System resources can only be controlled through privileged instructions while executing in privileged mode

• Execution of a privileged instruction in unprivileged mode will cause an exception (trap), returning control to
privileged mode software

• Address translation is performed on the entire address space when in unprivileged mode

 Overview of Virtualization Support

12 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

In the ‘classic’ approach, the guest operating system kernel is ‘de-privileged’ and is executed in the unprivileged
mode. All privileged operations attempted by the guest will trap back to the hypervisor, which executes in the privi-
leged mode. The hypervisor emulates all guest privileged operations, keeps track of the guest view of privileged state,
and ensures that the system behaves as expected by the guest. Full address translation allows an unmodified guest ker-
nel to execute from its original location in memory, and allows the hypervisor to manage address translation to match
the expectations of the guest kernel. This approach is also known as ‘trap and emulate’ virtualization.

The base MIPS32 architecture satisfies all the requirements for classic virtualization, except that address translation is
not provided for the entire address space in user mode. User mode programs can only run from kuseg, located in the
lower portion of the virtual address space. The kernel is typically compiled to run from kseg0, which is located in the
upper portion of the virtual address space, and is accessible only in kernel mode. An operating system kernel com-
piled to work with instructions and data located in kseg0 cannot efficiently execute in user mode.

A Segmentation Control system is available for use by the Virtualization Module. This is a programmable memory
segmentation system defined to support remapping (and therefore virtualization) of the existing fixed segment mem-
ory model.

In addition to addressing the minimum requirements for virtualization, the Virtualization Module provides features
designed to reduce the number of hypervisor traps required, and to reduce the length of each hypervisor intervention.

For an outline of virtualization support and for a description of each included feature, see Chapter 4, “The
Virtualization Privileged Resource Architecture” on page 13.

For a description of how each feature is intended to be used by software, see Section 4.13 “Virtualization Module
features and Hypervisor Software”.

For a description of recommended features, see Table 4.7.

Chapter 4

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 13

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The Virtualization Privileged Resource Architecture

4.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. This includes definitions of the programming interface and operation of the sys-
tem coprocessor, CP0. The Virtualization Module defines extensions to the MIPS32 PRA that are desirable for the
execution of guest Operating Systems in a fully virtualized environment. This document describes these extensions. It
is not intended to be a stand-alone PRA specification, and must be read in the context of the MIPS32 Privileged
Resource Architecture specification.

4.2 Overview

The Virtualization Module defines extensions to MIPS32 which are related to virtualization:

• Guest Operating Mode

• Partial CP0 register set (or context) for Guest Mode use

• Registers for Guest Mode control

• Guest interrupt system

• Two-level address translation

• Detection of Virtualization Features

The Virtualization Module provides a separate Coprocessor 0 register set (or context) for guest mode opera-
tion, which is physically separate from, and a subset of the Root Coprocessor 0 context. This Coprocessor 0 con-
text is referred to by the term ‘context’ throughout this document.

The presence of the Virtualization Module is indicated by the Config3VZ field.See Section 5.9 “Configuration
Register 3 (CP0 Register 16, Select 3)”.

4.3 Compliance

Features described as Required in this document are required of all processors claiming compatibility with the Virtu-
alization Module. Any features described as Recommended should be implemented unless there is an overriding need
not to do so. Features described as Optional are features that may or may not be appropriate for a particular Virtual-
ization Module processor implementation. If such a feature is implemented, it must be implemented as described in
this document if a processor is to claim compatibility with the Virtualization ModuleModule.

 The Virtualization Privileged Resource Architecture

14 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

In some cases, there are features within features that have different levels of compliance. For example, if there is an
Optional field within a Required register, this means that the register must be implemented, but the field may or may
not be, depending on the needs of the implementation. Similarly, if there is a Required field within an Optional regis-
ter, this means that if the register is implemented, it must have the specified field.

4.4 Operating Modes

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 15

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4 Operating Modes

Fundamental to the Virtualization Module is a limited-privilege guest operating mode. Guest mode consists of new
operating modes guest-kernel, guest-user and guest-supervisor - orthogonal to the existing kernel, user and supervisor
modes.

The pre-existing (non-guest) operating mode is known as root mode. The pre-existing kernel, user and supervisor
operating modes can be referred to as root-kernel, root-user and root-supervisor respectively, to distinguish them
from their guest-mode equivalents.

The guest mode allows the separation between kernel, user and supervisor modes to be retained for a guest operating
system running within a virtual machine - the guest-kernel mode can handle interrupts and exceptions, and manage
virtual memory for guest-user mode processes.

The separation between root mode and the limited-privilege guest mode allows root mode software to be in full con-
trol of the machine at all times even when a guest is running. Backward compatibility is retained for existing software
running in root mode.

The GuestCtl0 register, described in Section 5.2, contains the GM (Guest Mode) bit. This bit is used along with
root-mode exception and error status bits (StatusEXL, StatusERL) and the Debug Mode bit (DebugDM) to determine
whether the processor is operating in guest mode or root mode.

See also Section 4.4.3 “Definition of Guest Mode”.

Figure 4.1 shows the state transitions betwee n operating modes.

Figure 4.1 State Transitions between Operating Modes

root-kernel

root-user

guest-kernel

guest-user

Guest-handled
IRQs,

IRQ,
Exceptions

Reset

Hypercall
Root-handled exceptions

eret

eret

eret

Root-handled IRQs

eret IRQs,
Exceptions

exceptions

exceptions,
hypcall, if Guest.StatusCU0=1

 The Virtualization Privileged Resource Architecture

16 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4.1 The Onion Model

The Virtualization Module applies an ‘onion model’ to address translation and exception handling for guests. Three
operating modes are required to execute a virtualized guest operating system: unprivileged guest-user, limited-privi-
lege guest-kernel and full-privilege root-kernel. The root-user mode is used to execute non-virtualized software. At
each layer within the onion, any operation must be permitted by all the outer layers.

Figure 4.3 shows the logical arrangement of operating modes.

Figure 4.2 Virtualization Module Onion Model

In a MIPS32 processor, Coprocessor 0 contains system control registers, and can be accessed only by privileged
instructions. A processor implementing the Virtualization Module physically replicates a subset of the Coprocessor 0
register set for use by the Guest Operating System. Root mode operation uses one set of Coprocessor 0 registers and
Guest mode operation the other. The term ‘context’ refers to the software visible state held within each Coprocessor 0
register set. The software visible state is the contents of these registers and any state which is accessed via these reg-
isters, such as TLB entries and Segmentation Control configurations. For a Hypervisor to save, restore or switch con-
text from one guest to another, it is the entire software visible state which must be saved and restored, not solely the
replicated registers themselves, but also the physical resources which are shared between Root and Guest, such as the
GPRs, FPRs and Hi/Lo registers.

During guest mode execution, both the guest Coprocessor 0 and the root Coprocessor 0 are active. The presence of
two simultaneously active Coprocessor 0 contexts is fundamental to the operation of the Virtualization Module.

During guest mode execution, all guest operations are first tested against the guest CP0 context, and then against the
root CP0 context. An ‘operation’ is any process which can trigger an exception - this includes address translation,
instruction fetches, memory accesses for data, instruction validity checks, coprocessor accesses and breakpoints.

Exceptions are handled in the mode whose context triggered the exception. An exception triggered by the guest CP0
context will be handled in guest mode. An exception triggered by the root CP0 context will be handled in root mode.

Guest mode software has no access to the root Coprocessor 0. Root mode software can access the guest Coprocessor
0, and if required can emulate guest-mode accesses to disabled or unimplemented features within guest Coprocessor
0. The guest Coprocessor 0 is partially populated - only a subset of the complete root Coprocessor 0 is implemented.

The presence of two Coprocessor 0 contexts allows for an immediate switch between guest and root modes - without
requiring a context switch to/from memory. Simultaneously active contexts for the guest and root Coprocessor 0
allows guest-kernel privileged code to execute with the minimum hypervisor intervention, and ensures that key
root-mode machine systems such timekeeping, address translation and external interrupt handling continue to operate
without major changes during guest execution.

root-user

root-kernel

guest-user

guest-kernel

root Coprocessor 0

guest Coprocessor 0

4.4 Operating Modes

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 17

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.3 shows the how the Virtualization Module ‘onion model’ is applied to operations starting in each of the
operating modes (supervisor modes are omitted for clarity).

Figure 4.3 Virtualization Module Onion Model and exceptions

An operation executed in guest-user mode must travel from the inside of the onion to the outside.

The first layer to be crossed is the guest CP0 context (controlled by guest-kernel mode software). All exception and
translation rules defined by the guest CP0 context are applied, and resulting exceptions taken in guest mode.

If the operation does not trigger a guest-context exception, the next layer to be crossed is the root CP0 context (con-
trolled by root-kernel mode software). All exception and translation rules defined by the root CP0 context are applied,
and resulting exceptions taken in root mode.

For example, an access to Coprocessor 1 (the Floating Point Unit) must first be permitted by the guest context
StatusCU1 bit, and then by the root context StatusCU1 bit.

External interrupts must travel from the outside of the onion to the inside - first being parsed by the root CP0 context,
and if passed on by the hypervisor software, by the guest CP0 context.

4.4.2 Terminology

When executing in guest mode, both the root and guest Coprocessor 0 contexts are in active use. See Section
4.4.1 “The Onion Model”. A prefix is used to distinguish between registers located in the guest and root contexts.

For example - Root.Status refers to the status register from the root context, and Guest.Compare refers to the timer
compare register in the guest context.

Pseudocode in this document uses object-oriented terminology to describe processes which can be applied to multiple
contexts. A prefix is used to indicate which context is to be operated on by the process. In object-oriented terminol-
ogy, the subroutines shown are akin to methods provided by a CP0 class.

For example:

guest-user

guest-kernel root-kernel

Guest CP0

guest-kernel handler root-kernel handler

Complete

root-user

operation
exception?

Root CP0
exception?

N N

Y Y

operation start point

 The Virtualization Privileged Resource Architecture

18 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Perform TLB lookup using Root CP0 context
- exceptions taken in root context
Root.TLBLookup(.., .., ..)

Perform TLB lookup using Guest CP0 context
- exceptions taken in guest context
Guest.TLBLookup(.., .., ..)

Perform TLB lookup using context defined by ‘object’ variable
- exceptions taken in ‘object’ context
object.TLBLookup(.., .., ..)

Perform TLB lookup using context of the caller
TLBLookup(.., .., ..

4.4 Operating Modes

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 19

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4.3 Definition of Guest Mode

4.4.3.1 Definition

The processor is in guest mode (guest-user, guest-supervisor or guest-kernel) when:

• Root.GuestCtl0GM = 1 and Root.StatusEXL=0 and Root.StatusERL=0 and Root.DebugDM=0.

Guest mode operation is determined as follows. This subroutine will be used in pseudo-code to test whether processor
is in guest-mode.

subroutine IsGuestMode() :
if (GuestCtl0GM=1) and (Root.DebugDM=0) and

(Root.StatusERL=0) and (Root.StatusEXL=0) then
return(true)

else
return(false)

endif
endsub

In contrast, the following subroutine is to be used in pseudo-code to test whether processor is in root-mode.
subroutine IsRootMode() :

if (
(GuestCtl0GM=0) or
((GuestCtl0GM=1) and not ((Root.DebugDM=0) and
(Root.StatusERL=0) and (Root.StatusEXL=0))
) then
return(true)

else
return(false)

endif
endsub

4.4.3.2 Entry to Guest mode

The recommended method of entering Guest mode is by executing an ERET instruction when Root.GuestCtl0GM=1,
Root.StatusEXL=1, Root.StatusERL=0 and Root.DebugDM=0.

Instructions executed in root mode use the root context. When an ERET instruction is executed in root mode and
Root.StatusERL=0, the target address is obtained from Root.EPC and the exception-level bit EXL is cleared in
Root.Status. After the ERET instruction execution is completed, the processor will be in guest mode if the
Root.GuestCtl0GM bit was set.

The behavior of ERET, and DERET and their usage of EPC, ErrorEPC and DEPC registers are unchanged from the
base architecture. The determination of Guest vs. Root mode is the result of setting the Root register fields
GuestCtl0GM, StatusEXL, StatusERL and DebugDM to the Guest mode definition state (Root.GuestCtl0GM = 1 and
Root.StatusEXL=0 and Root.StatusERL=0 and Root.DebugDM=0).

4.4.3.3 Exit from Guest mode

When an interrupt or exception is to be taken in root mode, the bits Root.StatusEXL or Root.StatusERL are set on entry,
before any machine state is saved. As a result, execution of the handler will take place in root mode, and root mode
exception context registers are used, including Root.EPC, Root.Cause, Root.BadVAddr, Root.Context, Root.EntryHi.

 The Virtualization Privileged Resource Architecture

20 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The HYPCALL instruction is provided for controlled guest-to-root transitions. This instruction triggers a Hypercall
Exception, taken in root mode. See Section 4.7.11 “Hypercall Exception”.

The ERET instruction cannot be used to enter root mode from guest mode. No root-mode state is accessible from
guest mode, thus the guest cannot change the Root.GuestCtl0, Root.Status or Root.Debug registers.

4.4.3.4 Guest mode execution

When running in guest mode, the distinction between guest-user, guest-supervisor and guest-kernel is made using
Guest.StatusERL, Guest.StatusEXL and Guest.StatusKSU/UM, following the rules described in the base architecture.

When an interrupt or exception is to be taken in guest mode, the bits Root.StatusEXL or Root.StatusERL remain unal-
tered on entry. As a result, execution of the handler will take place in guest mode, and guest mode exception context
registers are used, including Guest.EPC, Guest.Cause, Guest.BadVAddr, Guest.Context, Guest.EntryHi.

4.4.3.5 Reset

At reset, Root.StatusERL=1, thus a MIPS32 processor will always start in root mode.

In addition, Root.GuestCtl0GM=0 on reset, ensuring that the operation of existing software is unchanged.

4.4.3.6 Debug Mode

For processors that implement EJTAG, the processor is operating in debug privileged execution mode (Debug Mode)
when Root.DebugDM=1. If the processor is running in Debug Mode, it has full access to all resources that are avail-
able to Root Kernel Mode operation.

Debug Mode, Root Mode and Guest Mode are mutually exclusive. At any given time, the processor can only be in
one of the three modes. Note that Debug mode operates in the Root context, while Guest mode operates in its own
unique context.

4.4.3.7 Fields affecting processor mode

Table 4.1 describes the fields affecting the processor mode.

Table 4.1 Guest, Root and Debug modes

Root Guest

ModeDebugDM StatusERL StatusEXL StatusKSU
GuestCtl0

GM StatusERL StatusEXL StatusKSU

1 Don’t care Debug

4.4 Operating Modes

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 21

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

0 1 Don’t care Root-Kernel

0 1 Don’t care

0 00 0 Don’t care

01 Root-Supervisor

10 Root-User

Don’t care 1 1 Don’t care Guest-Kernel

0 1 Don’t care

0 00

01 Guest-Supervisor

10 Guest-User

Don’t care 11 UNPREDICTABLE

Don’t care 11 Don’t care UNDEFINED

Table 4.1 Guest, Root and Debug modes

Root Guest

ModeDebugDM StatusERL StatusEXL StatusKSU
GuestCtl0

GM StatusERL StatusEXL StatusKSU

 The Virtualization Privileged Resource Architecture

22 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.4.4 The Guest Context

The Virtualization Module provides root-mode software with controls over the instructions that can be executed, the
registers which can be accessed, and the interrupts and exceptions which can be taken when in guest mode. These
controls are combined with new exceptions that return control to root mode when intervention is required. The overall
intent is to allow guest-mode software to perform the most common privileged operations without root-mode inter-
vention - including transitions between guest kernel and guest user mode, controlling the virtual memory system (the
TLB) and dealing with interrupt and exception conditions. Controls allows root-mode software to enforce security
policies, and allow for virtualized features to be provided using direct access or trap-and-emulate approaches.

The features added by the Virtualization Module are primarily concerned with virtualizing the privileged state of the
machine and dealing with related exception conditions. Hence most features are related to guest-mode interaction
with Coprocessor 0. A partially-populated Coprocessor 0 context is added for guest-mode use. See Section
4.6 “Coprocessor 0”.

The Virtualization Module provides controls to trigger an exception on any access to Coprocessor 0 from the guest,
access to a particular register or registers, or to trigger an exception after a particular field has been changed. See
Section 5.2 “GuestCtl0 Register (CP0 Register 12, Select 6)”.

The guest Coprocessor 0 context includes its own interrupt system. Root-mode software can directly control guest
interrupt sources, and can also pass through one or more external hardware interrupts to the Guest. Guest mode soft-
ware can enable or disable its own interrupts to enforce critical regions. The root-mode interrupt system remains
active, allowing timer and external interrupts to be dealt with by root-mode handlers at any time. See Section
4.8 “Interrupts”.

The guest context includes its own TLB. This is useful for fully virtualized systems, where direct guest access to the
TLB is necessary to maintain performance. A two-level address translation system is present, along with the related
exception system. This system is used to manage guest mode access to virtual and physical memory, and then to
relate those accesses to the real machine’s physical memory. See Section 4.5 “Virtual Memory”.

All MIPS32 unprivileged instructions and registers can be used by guest mode software without restriction. This
includes the General Purpose Registers (GPRs) and multiplier result registers hi and lo. See Section 4.9 “Instructions
and Machine State, other than CP0”.

MIPS defines optional architecture features and Modules which add machine state and instructions to the base
MIPS32 architecture. Some examples include the Floating Point Unit, the DSP Module, and the UserLocal register.
The presence of these optional features and Modules within the machine is indicated by read-only configuration bits
in the Root.Config0..7 registers.

The Virtualization Module allows implementations to choose which optional features are available to the guest con-
text. The optional features available to the guest are indicated by fields in the Guest.Config0..7 registers. An imple-
mentation can further choose to allow run-time configuration of the features available to the guest by allowing
root-mode writes to fields in the Guest.Config0..7 registers.

Root-mode software can control guest writes to the Guest.Config registers when GuestCtl0CF=0. This allows Root to
control changes to Guest configuration, or be informed of changes to Guest configuration. See Section 4.6.6 “Guest
Config Register Fields”.

The base MIPS32 architecture includes access controls which allow kernel-mode code to limit access to optional or
Module features. Examples include the StatusCU1 bit and the StatusMX bit. The ‘onion model’ requires that both
root-mode and guest-mode permissions are applied to guest-mode accesses. For example, access to the floating point
unit must be enabled by the root (Root.StatusCU1) and the guest (Guest.StatusCU1) before exception-free accesses can

4.4 Operating Modes

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 23

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

be performed. See Section 4.9.4 “Floating Point Unit (Coprocessor 1)”. There are exceptions to the onion model, for
example the HWREna register only applies in respective context for guest and root operations.

In a fully virtualized system, the virtual machine presented to the guest is a faithful copy of a real machine - all pro-
cessor state, instructions, memory and peripherals operate as expected by the guest software.

 The Virtualization Privileged Resource Architecture

24 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.4 shows a simplified MIPS32 processor during root mode execution. Shadow register controls determine
which General Purpose Register set is used. Multiplier result registers are accessible in user and kernel modes.
Address translation is performed using a TLB-based MMU and Segment Configurations. Access to the FPU is con-
trolled by kernel-mode software using the StatusCU1 bit. Interrupts can result from external sources or the system
timer. Exceptions can result from address translation, breakpoints, instruction execution, or serious errors such as
NMI, Machine Check or Cache Error.

The example assumes a non-EIC interrupt system, and for reasons of clarity, omits Supervisor modes and Config0..7

registers.

Figure 4.4 Simplified processor operation in root mode

User Mode

Root-Kernel Mode

GPRs hi, lo

Base Instrs. FPU Instrs. IRQ detect
CauseIP7..2
StatusIE
StatusIM7..2
IntlCtlIPTI

Timekeeping
Count
Compare

Shadow Regs
SRSCtl
SRSMap

IRQs

StatusCU1

Exceptions

EPC
ErrorEPC
Cause
BadVAddr

BreakpointsEJTAG

Memory FPU

NMI, Cache Error,
Machine Check

External Debug

Address

Segmentation
Control (optional)

EntryLo0,1
EntryHi
PageMask
PageGrain
Index, Wired

Translation

4.4 Operating Modes

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 25

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.5 shows the Virtualization Module ‘onion model’ applied to the simplified MIPS32 processor from Figure
4.4, for a fully virtualized guest. Guest context shadow register controls determine which General Purpose Register
set is used. Multiplier result registers are accessible in user and kernel modes. Address translation is performed first
using the guest context (enabled by GuestCtl0AT=1 or 3), then through the root context TLB. Note that root context
Segment Configurations are not used - the root context TLB translates every address from the guest.

Exceptions detected by the guest context are handled in guest mode - from guest segmentation/translation, guest
coprocessor enables, guest timekeeping, and IRQs - both external sources passed through by the root context, and
IRQ sources directly asserted by root-mode software. Exceptions detected by the root context are handled in root
mode - root timekeeping, IRQs, coprocessor enables and second-level address translation, plus new controls over
guest behavior.

Figure 4.5 Virtualization Module Onion Model applied to simplified processor (full virtualization)

Guest-User Mode

Guest-Kernel Mode

Root-Kernel Mode

GPRs hi, lo

Base Instrs. FPU Instrs.

Exceptions

StatusCU1

EPC
ErrorEPC
Cause
BadVAddr

IRQ detect
CauseIP7..2
StatusIE
StatusIM7..2
IntlCtlIPTI

Timekeeping
Count
Compare

Shadow Sets
SRSCtl
SRSMap

IRQ detect
CauseIP7..2
StatusIE
StatusIM7..2
IntlCtlIPTI

Timekeeping
Count
Compare

Shadow Regs
SRSCtl
SRSMap

+

GTOffset

IRQs

GuestCtl0PIP7..2

StatusCU1

Exceptions

EPC
ErrorEPC
Cause
BadVAddr

PIP

BreakpointsEJTAG

Memory FPU

NMI, Cache Error,
Machine Check

GuestCtl0
{CP0, AT, GT, CF
MC, RI, CG}

GPSI
GSFC

Hypercall

External Debug

Address

Segmentation
Control (optional)

EntryLo0,1
EntryHi
PageMask
PageGrain
Index, Wired

Translation

GuestCtl0AT=1 or 3

Address

Segmentation
Control (optional)

EntryLo0,1
EntryHi
PageMask
PageGrain
Index, Wired

Translation

GHFC

 The Virtualization Privileged Resource Architecture

26 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.5 Virtual Memory

The Virtualization Module includes an option for two levels of address translation to be applied during guest-mode
execution. The Virtualization Module requires that a TLB-based MMU is implemented in the root context.

The Virtualization Module provides a separate CP0 context for guest-mode execution. This context can optionally
include segmentation controls and address translation (MMU). The guest MMU can be TLB-based, block address
translation (BAT) or fixed mapping (FMT).

In guest mode when guest segmentation and translation are enabled (GuestCtl0AT=1 or 3), two levels of address trans-
lation are performed. The first level uses the guest segmentation controls and the guest MMU. This translates an
address from a Guest Virtual address (GVA) to a Guest Physical Address (GPA). The second level of translation uses
the root TLB, using the GPA in place of the Virtual Address (VA) that would normally be used. This second transla-
tion results in a Physical Address (PA). The cache attribute used is that supplied by the guest context. In this second
level of translation, exceptions in address translation are handled by Root.

When a TLB-based guest MMU is provided, it is recommended the number of entries be equal to the number of
entries in the root-context TLB used for Guest mappings. The page sizes used in the root-mode TLB must be care-
fully considered to allow sufficient control for root-mode software, while maximizing the number of guest-mode TLB
entries which are mapped through each root-mode TLB entry. Larger root TLB pages will likely result in better per-
formance.

Both the guest and root MMU’s can be active at the same time. We recommend that the Root TLB maintain an ade-
quate amount of reserved TLB entries for its own use to avoid cascading TLB evictions (thrashing).

Figure 4.6 shows the outline of address translation in the Virtualization Module.

4.5 Virtual Memory

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 27

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.6 Outline of Address Translation

Implementation note: Processor designs incorporating the Virtualization Module and implementing a guest context
MMU are unlikely to perform translation twice on each memory access. A hardware mechanism will be used to
ensure that a Physical Address can be obtained from a Guest Virtual Address within the CPU pipeline in a single
translation. The mechanism may use micro-TLBs - for example, on a micro-TLB refill, a guest TLB lookup would be
followed by a root TLB lookup, to produce a one-step GVA-PA translation. Other methods are possible. The system
must be arranged to allow for efficient execution and to appear to software that two independent translation steps are
taking place for each memory access.

Guest mode segmentation controls and the guest mode MMU have no effect on the root mode address space.

The optional ‘GuestID’ field (GuestCtl1ID or GuestCtl1RID) represents a unique identifier for Root and all Guest Vir-
tual Address spaces. Each Guest’s address space is identified by a unique non-zero GuestID. The GuestID value zero
is reserved for Root address space. The GuestCtl1 CP0 register is unique in the Root register space and inaccessible in
guest mode. GuestID is an optimization, designed to minimize TLB invalidation overhead on a virtual machine con-
text switch and simplify Root access to Guest TLB entries. The implementation of a GuestID is recommended.
Implementation complexity can be minimized by reducing the GuestID to 1 bit. This allows the Root TLB to distin-

Virtual Address (VA)

Root CP0
segmentation OPTIONAL

Guest CP0
segmentation OPTIONAL

Root TLB

Mapped?

Guest TLB

Exception?

Mapped?

Exception?

Root Virtual Address
Root ASID

YN

YN

N

Root exception

Guest exception

Y

Physical Address (PA)

N

Y

Guest?

MMU

N

Y

enabled?

GuestID=0

N

ASID
Guest

GuestID=N

Y

Guest Physical Address
Root ASID is ignored
GuestID=N

 The Virtualization Privileged Resource Architecture

28 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

guish between Root and Guest Entries, and flush either set of mappings in entirety with the TLBINVF instruction.
Alternatively, GuestID can be eliminated by having Root virtual address space shared with Guest physical addresses.

The pseudocode below describes the complete address translation process for the MIPS32 Virtualization Module.
Segmentation, TLB lookups, hardware TLB refill and second-level address translation are invoked below. The pro-
cess is described in top-down order - subsequent sections describe the subroutines called. See Section
4.5.1 “Virtualized MMU GuestID Use” for description of RAD and DRG terms.

/* Inputs
* vAddr - Virtual Address
* IorD - Access type - INSTRUCTION or DATA
* LorS - Access type - LOAD or STORE
* pLevel - Privilege level - USER, SUPER, KERNEL
*
* Outputs
* pAddr - physical address
* CCA - cache attribute (valid when mapped)
*
* Exceptions: See called functions
* Called from guest or root context.
*/

subroutine AddressTranslation(vAddr, IorD, LorS, pLevel)

// Initialization.
// GuestID is only applicable if GuestCtl0RAD=0. Otherwise GuestID
// is ignored (not applicable) in process of address translation.
GuestID ← ignored

if (IsGuestMode()) then
// This is a Guest Address translation
// step 1: Guest Virtual -> Guest Physical Address translation
if (GuestCtl0RAD=0)

GuestID ← GuestCtl1ID
endif
(mapped, addr, CCA) ← AddressDecode(vAddr, pLevel)
if (ConfigMT=1 or ConfigMT=4) then // TLB type MMU

if (mapped) then
asid ← Guest.EntryHiASID
(addr, CCA) ← Guest.TLBLookup(asid, GuestID, addr, IorD, LorS)

endif
else

if (ConfigMT=0) then
MMU=None case is undefined
UNDEFINED

else
Other MMU type, FMT or BAT. BAT will use LorS.
(addr, CCA) ← Guest.OtherMMULookup(addr, CCA, LorS, pLevel)

endif
endif
if (exception)

Guest Exception
// TLB exceptions may include Refill, Invalid, Execute-Inhibit for
// Instruction, Refill, Invalid, Modified, Read-Inhibit for Data.

4.5 Virtual Memory

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 29

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

// Guest segment map related exceptions may include Address Error
endif

// step 2: Guest Physical -> Root Physical Address translation
// if GuestCtl0RAD=0, then guest entry ASID is global in Root TLB.
// H/W must set G=1 for guest entry for TLBWI and TLBWR.
asid ← Root.EntryHiASID
pAddr ← Root.TLBLookup(asid, GuestID, addr, IorD, LorS)
if (exception)

Root Exception
// This is a Root exception initiated in guest context
// This includes all TLB exceptions.
// Segment map Address Error exception not included, as guest does not
// lookup root segment map.

endif

else
// This is a Root Address translation
// Root Virtual -> Root Physical Address translation
// If GuestCtl0DRG=1,GuestCtl0RID is non-zero,Root.StatusEXL,ERL=0,
// and DebugDM=0, then all root kernel data accesses are mapped and root
// SegCtl is ignored.H/W must set G=1 as if the access were for guest.
drg_valid ← (GuestCtl0DRG=1 and Root.StatusKSU=00 and Root.StatusEXL=0 and
Root.StatusERL=0 and DebugDM=0 and GuestCtl0RID!=0 and !Instruction)
if (drg_valid) then

mapped ← 1
addr ← vAddr

else
(mapped, addr, CCA) ← AddressDecode(vAddr, pLevel)

endif
if (!mapped) then

pAddr ← addr
else if (GuestCtl0RAD=0)

if (Instruction or (!drg_valid))
GuestID ← 0

else
GuestID ← GuestCtl1RID

endif
endif

asid ← Root.EntryHiASID
(pAddr, CCA) ← Root.TLBLookup(asid, GuestID, addr, IorD, LorS)

endif
endif
if (exception)

Root Exception
// Includes all TLB and Segment related exceptions in Root context.
// If drg_valid, and access is not by root-kernel,then an Address Error
// exception is caused.

endif

return (pAddr,CCA)
end

subroutine AddressDecode(vAddr, pLevel) :
Determine whether address is mapped
- if unmapped, obtain physical address and cache attribute
if (Config3SC) then

 The Virtualization Privileged Resource Architecture

30 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

// optional Segmentation Control based address decode
(mapped, addr, CCA) ← SegmentLookup(vAddr, pLevel)

else
(mapped, addr, CCA) ← LegacyDecode(vAddr[31:29], pLevel)

endif
return (mapped, addr, CCA)

endsub

See also Section 4.7.1 “Exceptions in Guest Mode” and Section 4.7.2 “Faulting Address for Exceptions from Guest
Mode”.

4.5.1 Virtualized MMU GuestID Use

The use of GuestID is optional as specified by the value of GuestCtl0G1. Software can detect presence of GuestCtl1

and thus GuestCtl1ID and GuestCtl1RID by reading GuestCtl0G1.

For an implementation that supports GuestCtl0RAD=0, GuestCtl0G1 must be preset to 1, otherwise GuestCtl0G1 must
be preset to 0. GuestCtl0RAD is read-only - an implementation can support one or the other, but never both. On the
other hand, GuestCtl0DRG is R/W. See Table 5.2 for description of R/W state of DRG and RAD.

GuestCtl1ID is used for guest-mode operation, while GuestCtl1RID is used for root-mode operation. Root address
translation assumes GuestID=0 providing GuestCtl0DRG=0.

The Guest TLB may or may not be shared by multiple guests. The Root TLB will be shared by Root and at least one
unique Guest. Options to support dealiasing guest and root entries in Root TLB, and possibly multiple guests in the
Guest TLB is described below.

A processor will support one of the two modes below. Software can determine the mode by reading GuestCtl1RAD

described in Table 4.2

1. Dealiasing by GuestID

GuestID is used to dealias multiple guest contexts in both Guest and Root TLB. Specifically, GuestCtl1ID is used
for guest-mode operation, whereas GuestCtl1RID is used for root-mode operations. A guest or root-mode opera-
tion is an instruction or data translation, or TLB instruction.

An implementation may choose to provide direct root-mode access to guest entries (GPA->RPA) in the Root
TLB. Direct root-mode access is described by GuestCtl0DRG in Table 4.2. In the absence of this feature, root
would have to probe the Root TLB with GPA, and subsequently read on match to obtain the RPA. If a miss
occurs, then root must walk the guest shadow page tables in memory. Otherwise, with direct access, a miss will
result in a hardware pagewalk, assuming a hardware pagewalker is supported.

Root ASID for guest entries in the Root TLB are ignored because hardware will set the global bit on a write for
such entries.

2. Dealiasing by Root ASID.

This option should be used if no GuestID is implemented. Software can detect this mode by reading
GuestCtl1RAD.

4.5 Virtual Memory

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 31

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Between Guest context-switches, the Guest and Root TLBs must be flushed of current guest context by root soft-
ware. Root.EntryHiASID is used to dealias Root from Guest entries in the Root TLB. Root software must maintain
a one is to one correspondence between allocated ASID and the unique Guest it represents.

Root ASID for guest entries in the Root TLB are not ignored unless software explicitly sets G=1 for the guest
entry.

.

The following pseudo-code indicates how to specify the ASID and GuestID(if present) interface to the Root and
Guest TLBs for Guest and Root address translations, as a function of GuestCtl0RAD. A field within a TLB entry needs
to be compared with a “Key” as input to the interface to determine whether a match is has occurred.

Guest and Root TLB interfaces for GuestID dealiasing method (GuestCtl0RAD=0):

Guest TLB Interface:
if (Instruction or Load or Store)

GuestTLB.Key[GuestID] = GuestCtl1ID
endif

Table 4.2 GuestID Translation Related Usage Mode Control

Field Description

GuestCtl0RAD RAD, or “Root ASID Dealias” mode determines the means that a Virtualized
MMU implementation uses to dealias different contexts.

GuestCtl0DRG DRG, or “Direct Root to Guest” access determines whether an implementation
with GuestCtl0RAD=0 provides root kernel the means to access guest entries

directly in the Root TLB for access to guest memory. If GuestCtl0DRG=1 then

GuestCtl0RID must be used. If GuestID for root operation is non-zero, root is

in kernel mode, Root.StatusEXL,ERL=0 and DebugDM=0, then all root kernel

data accesses are mapped, root SegCtl is ignored and Root TLB CCA is used.
Access in root mode by other than kernel will cause an address error. H/W
must set G=1 as if the access were for guest.

Encoding Meaning

0 GuestID used to dealias both Guest
and Root TLB entries in Root TLB.

1 Root ASID is used to dealias Root
TLB entries, while Guest TLB con-
tains only one context at any given
time.

Encoding Meaning

0 Root software cannot access guest
entries directly.

1 Root software can access guest entries
directly.

 The Virtualization Privileged Resource Architecture

32 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

GuestTLB.Key[ASID] = Guest.EntryHiASID

Root TLB Interface:
if (IsRootMode())

drg_valid ← (GuestCtl0DRG=1 and Root.StatusKSU=00 and Root.StatusEXL=0 and
Root.StatusERL=0 and DebugDM=0 and GuestCtl0RID!=0 and !Instruction)

if (!drg_valid) then
// Instruction or Load or Store
RootTLB.Key[GuestID] = 0

else // special mode - root access guest entries
RootTLB.Key[GuestID] = GuestCtl1RID

endif
else // Guest mode

// Instruction or Load or Store
RootTLB.Key[GuestID] = GuestCtl1ID

endif
RootTLB.Key[ASID] = Root.EntryHiASID

With GuestCtl0RAD=0, Guest entries in the Root TLB must ignore the ASID. For this reason, if GuestCtlRID!=0, that
is entry is a Guest entry, then Root mode execution of TLBWI and TLBWR sets the entry’s G bit to 1 automatically.
Otherwise, for Root entries, TLBWI and TLBWR must set/clear the G bit in accordance with the baseline architec-
ture.

Guest and Root TLB interface for Root ASID dealiasing method (GuestCtl0RAD=1) :

Guest TLB Interface:
GuestTLB.Key[ASID] = Guest.EntryHiASID

Root TLB Interface:
RootTLB.Key[ASID] = Root.EntryHiASID

GuestCtl0DRG has no effect on the Guest and Root address translations if GuestCtl0RAD=1. If GuestCtl0RAD=1, then
GuestCtl0DRG must be read-only as 0.

For more detail on Guest and Root address translation, please refer to pseudo-code in Section 4.5 “Virtual Memory”.

Table 4.3 specifies the association of GuestID with TLB instructions. For supporting information, refer to Section
4.6.2 “New CP0 Instructions”.

Table 4.3 GuestID Use by TLB instructions.

TLB Operation
GuestID

(GuestCtlID/GuestCtl1RID)

TLBGINV GuestCtl1RID

TLBGINVF GuestCtl1RID

TLBGP GuestCtl1RID

TLBGR GuestCtl1RID

TLBGWI GuestCtl1RID

TLBGWR GuestCtl1RID

4.5 Virtual Memory

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 33

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.5.2 Root and Guest Shared TLB Operation

An implementation may choose to share a common physical TLB amongst root and guest. In a TLB structure that
incorporates a VTLB (Variable page size TLB) and FTLB (Fixed page size TLB), the VTLB must accommodate
wired entries for both root and guest in a shared structure. In other implementations, the VTLB may be standalone
without a supporting FTLB.

In a non-virtualized design, the number of wired entries is limited by the CP0 Wired register in either context. And the
number of entries in the VTLB is determined by Config1MMUSize-1 and Config4VTLBSizeExt or Config4MMUSizeExt. For
this purpose, it is required that any of these fields be writeable by root as given in Table 4.10.

In a recommended shared TLB implementation, the root index increases from the bottom of the physical TLB while
the guest index increases from the top of the physical TLB. This is to avoid overlap of root and guest wired entries, if
programmed appropriately. On the other hand, the root and guest indices to the FTLB grow from the bottom of the
FTLB. Both guest and root TLB operations must interpret the TLB index accordingly.

It is expected that root will allocate the appropriate number of wired entries to itself, and then write guest Config1 and
Config4 related fields to set the available VTLB entries for guest. Root will read Guest.Config4MMUExtDef to deter-
mine which of the guest Config4 MMU size extension fields need to be written. Since the entries allocated for guest
use also includes non wired entries shared by both root and guest, root software must be careful not to allocate all
remaining non root-wired entries to guest. This prevents guest from populating all remaining non root-wired entries
with its own guest-wired entries, leaving no entries for non root-wired entries.

Root software should not change guest MMU configuration while the guest is in operation, as is the case for any guest
configuration that is read-only to guest but writeable by root.

It is not required that hardware check for illegal values written to guest MMU size and extensions. A typical imple-
mentation will however check to ensure that any field write saturates at the maximum number of bits required to sup-
port the total number of entries in the shared TLB.

TLBINV if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBINVF if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBP if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBR if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBWI if RootMode then GuestCtl1RID

else GuestCtl1ID

TLBWR if RootMode then GuestCtl1RID

else GuestCtl1ID

Table 4.3 GuestID Use by TLB instructions.

TLB Operation
GuestID

(GuestCtlID/GuestCtl1RID)

 The Virtualization Privileged Resource Architecture

34 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6 Coprocessor 0

Defined by the MIPS32 Privileged Resource Architecture (PRA), Coprocessor 0 (CP0) contains system control regis-
ters. Access to these registers is restricted and can only be performed using privileged instructions.

The Virtualization Module provides a partial set of CP0 registers for use by the guest, this is known as the guest con-
text. When in guest mode, the behavior of the machine is controlled by the combination of the guest CP0 context and
the root CP0 context. When in root mode, the behavior of the machine is controlled entirely by the root CP0 context.

The guest CP0 context consists of a base set plus optional features.

Access to features within the guest CP0 context is controlled from root mode. The Guest.Config0-7 registers deter-
mine which architecture features are active during guest mode execution. The GuestCtl0 register controls whether a
guest access to a privileged feature will trigger an exception.

Guest CP0 registers can be accessed from root mode by using the root-only MFGC0 and MTGC0 instructions. Guest
TLB contents can be accessed by using the root-only TLBGP, TLBGR, TLBGWI and TLBGWR instructions.

Root context software (hypervisor) is required to manage the initial state of writable Guest context registers. On
power-up, the initial state defaults to the hardware reset state as defined in the base architecture. On Guest context
save and restore, the hypervisor is required to preserve and re-initialize the Guest state. For virtual boot of a Guest,
the hypervisor is required to initialize the Guest state equivalent to the hardware reset state.

Root has the ability to define the presence of and control the contents of Guest CP0 registers. Therefore, if so config-
ured, Guest access to guest CP0 state may cause a Guest Privileged Sensitive Instruction exception. Refer to Table
4.7, Section 4.6.6 “Guest Config Register Fields” and Section 4.7.7 “Guest Privileged Sensitive Instruction
Exception” for further information.

Root may deconfigure guest CP0 registers by writing to guest configuration registers as defined in Table 4.10. Guest
behavior in response to these modifications is defined in Table 4.8.

The Virtualization Module requires that scratch registers KScratch1 and KScratch2 are present in the root context.
This ensures that hypervisor exception handlers have an adequate number of scratch registers to save and restore all
general purpose registers in use by the guest.

4.6 Coprocessor 0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 35

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6.1 New and Modified CP0 Registers

Coprocessor 0 registers are added by the Virtualization Module to control the guest context - GuestCtl0, GuestCtl1
and GTOffset.

Table 4.4 describes CP0 registers introduced by the Virtualization Module.

Table 4.5 describes CP0 registers modified by the Virtualization Module.

Table 4.4 CP0 Registers Introduced by the Virtualization Module

Register
Number Sel

Register
Name Description Reference

Compliance
Level

12 6 GuestCtl0 Controls guest mode behavior. Section 5.2 Required

10 4 GuestCtl1 Guest ID Section 5.3 Optional

10 5 GuestCtl2 Virtual Interrupts Section 5.4 Optional

10 6 GuestCtl3 Virtual Shadow Sets Section 5.5 Optional

11 4 GuestCtl0Ext Extension to GuestCtl0 Section 5.6 Optional

12 7 GTOffset Offset for guest timer value Section 5.7 Required

Table 4.5 CP0 Registers Modified by the Virtualization Module

Register
Number Sel

Register
Name Description Reference

Compliance
Level

13 0 Cause Addition of hypervisor cause code. Section 5.8 Required

16 3 Config3 Identifies Virtualization Module feature set. Section 5.9 Required

19 0 WatchHi Added support for Guest Watch. Section 5.10 Optional

25 0 PerfCnt Added support for Root/Guest performance count. Section 5.11 Optional

31 2 KScratch1 Required in root context. - Required

31 3 KScratch2 Required in root context. - Required

 The Virtualization Privileged Resource Architecture

36 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6.2 New CP0 Instructions

The Virtualization Module introduces new instructions for root mode access to the guest CP0 context, and for a guest
to make a call into root mode - a ‘hypervisor call’.

Table 4.6 describes CP0 instructions introduced by the Virtualization Module.

Table 4.6 CP0 Instructions Introduced by the Virtualization Module

Instruction Description Reference
Compliance

Level

HYPCALL Hypercall - call to root mode. “HYPCALL” on page 124 Required

MFGC0 Move from Guest CP0 “MFGC0” on page 125

MTGC0 Move to Guest CP0 “MTGC0” on page 127

TLBGINV Guest TLB Invalidate “TLBGINV” on page 128 Optional

TLBGINVF Guest TLB Invalidate Flush “TLBGINVF” on page 130 Optional

TLBGP Probe Guest TLB “TLBGP” on page 133 Required
when guest
TLB present

TLBGR Read Guest TLB “TLBGR” on page 136

TLBGWI Write Guest TLB “TLBGWI” on page 138

TLBGWR Write Random to Guest TLB “TLBGWR” on page 140

4.6 Coprocessor 0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 37

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6.3 Guest CP0 registers

The Virtualization Module provides a partial set of CP0 registers for use by the guest, this is known as the guest con-
text. Many guest context registers are optional or can be disabled under software control.

As in the base architecture, fields in Guest.Config, Guest.Config1..7 registers define the architectural capabilities of
the guest context. When a CP0 register does not exist in the guest context, or is disabled by a root-writable
Guest.Config field, it can have no effect on guest behavior. See Section 4.6.6 “Guest Config Register Fields” for
information on guest Config register fields which can be dynamically reconfigured by Root. Note that accesses to
Guest CP0 registers in certain cases will trigger a Guest Privileged Sensitive Instruction (GPSI) exception as defined
in Table 4.7.

When a CP0 register is defined in the guest context, it is used to control guest execution. Fields in the GuestCtl0 reg-
ister can be used to cause Guest Privileged Sensitive Instruction exceptions when an access from guest mode is
attempted. This allows hypervisor software to control the value of a register in the guest CP0 context (thus controlling
guest-mode execution) while denying guest-kernel access to the register. See Section 4.6.4 “Guest Privileged
Sensitive Features”.

Attempting modification of certain fields in guest context CP0 registers triggers a Guest Software Field Change
exception. In a similar manner, the Guest Hardware Field Change exception is triggered when a hardware initiated
change to Guest CP0 registers occurs. These mechanisms are used to support Root recognition of Guest initiated
changes to guest context CP0 registers. This is done to properly manage the operation of the guest virtual machine.
See Section 4.6.5 “Access Control for Guest CP0 Register Fields”.

Table 4.7 lists the base architecture CP0 registers noting which may be implemented in the guest context.

Definitions of terms used in Table 4.7:

• Required - Must be implemented in the Guest context.

• Recommended - Should be implemented in the Guest context.

• Optional - Implementation dependent as to whether included in the Guest context.

• Not Available - Never implemented in the Guest context.

The guest CP0 context must include all CP0 registers from an optional feature or an Module if the associated
Guest.Config field indicates that the feature or Module is available in the guest context. For any of these registers,
guest access may be controlled by Root software. This is done by triggering a Guest Privileged Sensitive Instruction
Exception on a guest-mode access. Guest Software Field Change and Guest Hardware Field Change exceptions can
also be used.

 The Virtualization Privileged Resource Architecture

38 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

See also Section 4.10 “Combining the Virtualization Module and the MT Module”.

Table 4.7 CP0 Registers in Guest CP0 context

Register
Number Sel Register Name

Available to
Guest-Kernel software

when

Guest Privileged
Sensitive Instruction

Exception when
Root.GuestCtl0CP0=0,

or
Compliance

Level

0 0 Index Guest.ConfigMT=1 or

Guest.ConfigMT=4

GuestCtl0ExtMG=1 Required for
Guest context

TLB
1 0 Random

2 0 EntryLo0

3 0 EntryLo1

4 0 Context

4 1 ContextConfig Guest.Config3SM=1 or

Guest.Config3CTXTC=1

Optional

4 2 UserLocal Guest.Config3ULRI=1 GuestCtl0ExtOG=1 Recom-
mended

5 0 PageMask Guest.ConfigMT=1 or

Guest.ConfigMT=4

GuestCtl0ExtMG=1 Required for
Guest context

TLB5 1 PageGrain GuestCtl0AT=1

5 2 SegCtl0 Guest.Config3SC=1 Optional

5 3 SegCtl1

5 4 SegCtl2

5 5 PWBase Guest.Config3PW=1 Optional

5 6 PWField

5 7 PWSize

6 0 Wired Guest.ConfigMT=1 or

Guest.ConfigMT=4

Required for
Guest context

TLB

6 6 PWCtl Guest.Config3PW=1 Optional

7 0 HWREna Guest.ConfigAR>=1 GuestCtl0ExtOG=1 Required

8 0 BadVAddr Always GuestCtl0ExtBG=1

8 1 BadInstr Guest.Config3BI=1 GuestCtl0ExtBG=1 Optional

8 2 BadInstrP Guest.Config3BP=1 GuestCtl0ExtBG=1 Optional

9 0 Count Always GuestCtl0GT=0 Required

10 0 EntryHi Guest.ConfigMT=1 or

Guest.ConfigMT=4

GuestCtl0ExtMG=1 Required for
Guest context

TLB

11 0 Compare Always GuestCtl0GT=0 Required

12 0 Status Always -

12 1 IntCtl Guest.ConfigAR>=1 -

4.6 Coprocessor 0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 39

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

12 2 SRSCtl Guest.ConfigAR>=1 Always Optional

12 3 SRSMap Guest.ConfigAR>=1

13 0 Cause Always - Required

13 5 NestedExc Guest.Config5NFExists=1 - Optional

14 0 EPC Always - Required

14 2 NestedEPC Guest.Config5NFExists=1 - Optional

15 0 PRid - Always Not Available
Emulated by
Hypervisor

15 1 EBase Guest.ConfigAR>=1 - Required

15 2 CDMMBase Guest.Config3CDMM=1 Always Not Available
Emulated by
Hypervisor15 3 CMGCRBase Guest.Config3CMGCR=1

16 0 Config Always On write access when
GuestCtl0CF=0.

Required

16 1 Config1 Guest.ConfigM=1

16 2 Config2 Guest.Config1M=1

16 3 Config3 Guest.Config2M=1

16 4 Config4 Guest.Config3M=1

16 5 Config5 Guest.Config4M=1

16 6 Config6 Implementation dependent - Optional

16 7 Config7

17 0 LLAddr GuestCtl0ExtOG=1 Optional1

18 0 WatchLo Guest.Config1WR=1 Conditional, refer to Section
4.12 “Watchpoint Debug

Support”

Optional

19 0 WatchHi Guest.Config1WR=1

Table 4.7 CP0 Registers in Guest CP0 context

Register
Number Sel Register Name

Available to
Guest-Kernel software

when

Guest Privileged
Sensitive Instruction

Exception when
Root.GuestCtl0CP0=0,

or
Compliance

Level

 The Virtualization Privileged Resource Architecture

40 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 4.7 indicates the conditions under which guest access of guest CP0 registers can cause a Guest Privileged Sen-
sitive Instruction exception (GPSI) to Root. If a GPSI is taken for a guest CP0 register which may or may not be
active in guest mode, the corresponding root CP0 register must be implemented. This is true because the guest CP0
context is always a subset of the root CP0 context. Otherwise, access to the corresponding guest CP0 register is
UNPREDICTABLE.

If the configuration of a Guest accessible CP0 register can be modified by Root, then Guest access behavior is as
specified in Table 4.8.

Root should not modify Guest configuration while the Guest is running. It is assumed that the Guest software will
read its configuration registers during boot and not thereafter. Since Root can modify guest configuration, Root
should maintain a copy of guest configuration at hardware reset so that it knows which guest CP0 registers are actu-

23 0 Debug Guest.Config1EP=1 Always Not Available

24 0 DEPC Guest.Config1EP=1

25 0-n PerfCnt Guest.Config1PC=1 Conditional, refer to Section
4.8.4 “Performance
Counter Interrupts”

26 0 ErrCtl - Always

27 0 CacheErr

28 0 TagLo

28 1 DataLo

28 2 TagLo

28 3 DataLo

29 0 TagHi

29 1 DataHi

29 2 TagHi

29 3 DataHi

30 0 ErrorEPC Always2 - Required

31 0 DESAVE Guest.Config1EP=1 Always Not Available

31 2 KScratch1 Always
Defined by

Guest.Config4KScrExist

GuestCtl0ExtOG=1 Optional

31 3 KScratch2

31 4 KScratch3

31 5 KScratch4

31 6 KScratch5

31 7 KScratch6

1. LLAddr may optionally be implemented providing the Guest context has access to Guest Physical
Addresses, else Not Available.

2. ErrorEPC is required in guest context because it used as scratch by some MIPS compatible OSes.

Table 4.7 CP0 Registers in Guest CP0 context

Register
Number Sel Register Name

Available to
Guest-Kernel software

when

Guest Privileged
Sensitive Instruction

Exception when
Root.GuestCtl0CP0=0,

or
Compliance

Level

4.6 Coprocessor 0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 41

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

ally implemented. Once modified by Root, the guest configuration registers may not accurately reflect the physical
existence of guest CP0 registers.

4.6.3.1 Guest Reserved Register Handling

This section defines the behaviour of guest access to reserved CP0 registers of different types.

1. Reserved for Architecture. These are CP0 registers reserved by the privileged architecture for future use.

2. Reserved for Implementation. These are CP0 registers reserved for implementations which may or may not be
present in guest context.

The list of registers is CP0 Register 9 (Selects 6 and 7), Register 11 (Selects 6 and 7), Register 16 (Selects 6 and
7), Register 22 (all Selects).

The behaviour of Reserved for Architecture registers follows.

if (GuestCtl0CP0=0) {

<GPSI>
} elsif (GuestCtl0ExtOG=1) {

<GPSI>
} elsif (is_MFC0) {

Table 4.8 Root Modification of Guest CP0 Configuration

 Register
Replicated in

Guest
Context?

Guest
Configuration

register bit
Root writeable
as per Table

4.10

Guest
Configuration
Register bit

value on reset

Guest
Configuration
Register bit
value after

write by Root,
if writeable Interpretation of Configuration

No No 0 N/A The register does not exist in Guest. Reads and writes to this
register are UNDEFINED.

Yes No 1 N/A The register is replicated in the Guest. Guest can access its ver-
sion of the register without traps to Root excluding the cases

identified in Table 4.7

No Yes 0 0 The register exists in Root and is not replicated in the Guest
context. In Guest mode, reads and writes to this register are

UNDEFINED.

No Yes 0 1 The register exists in Root and is not replicated in the Guest
context. In Guest mode, reads and writes to this register throw a

GPSI exception which allows Root to selectively emulate the
register. Registers which conform to this definition are the
Watch Registers (4.12) and Performance Registers (5.11).

Yes Yes 1 1 The register exists in the Root context and is replicated in the
Guest context. Guest can access its version of the register with-

out exception excluding cases identified in Table 4.7

Yes Yes 1 0 The register exists in the Root context and is replicated in the
Guest context. Guest access to the register is disabled. Reads
and writes to the register are UNDEFINED.

 The Virtualization Privileged Resource Architecture

42 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

MFC0 is UNPREDICTABLE
} else { // is_MTC0

MTC0 is UNPREDICTABLE
}

The behaviour of Reserved for Implementation registers follows.

if (GuestCtl0CP0=0) {

<GPSI>
} elsif (is_MFC0) {

MFC0 is UNPREDICTABLE
} else {

MTC0 is UNPREDICTABLE
}

Reserved for Implementation registers are not qualified by GuestCtl0ExtOG=1 because the requirements for imple-
mentation dependent registers is unknown.

4.6.4 Guest Privileged Sensitive Features

The GuestCtl0 register controls which privileged features can be accessed from guest mode. See Section
5.2 “GuestCtl0 Register (CP0 Register 12, Select 6)”.

A hypervisor can limit guest access to privileged (CP0) registers and privileged sensitive instructions. A hypervisor
exception is taken when a guest accesses a privileged feature which is ‘sensitive’. See Section 4.7.7 “Guest
Privileged Sensitive Instruction Exception”.

4.6.5 Access Control for Guest CP0 Register Fields

The MIPS32 Privileged Resource Architecture includes register fields which are critical to machine behavior, where a
Guest Hardware Field Change (GHFC) or Guest Software Field Change (GSFC) requires immediate hypervisor inter-
vention. Guest Software Field Change and Guest Hardware Field Change detection mechanisms are provided in order
to reduce the need for hypervisor exceptions for all CP0 writes, exceptions, interrupts and privileged instructions
which could cause changes to critical fields.

The GuestCtl0MC field controls programmable change detection for certain guest CP0 fields. Changes to these fields
will always result in a Guest Software Field Change or Guest Hardware Field Change exception.

See Section 4.7.8 “Guest Software Field Change Exception” and Section 4.7.9 “Guest Hardware Field Change
Exception”.

Table 4.9 lists fields which can trigger a GSFC or GHFC exception. The architecture also provides the capability to
disable GSFC and GHFC exceptions with GuestCtl0ExtFCD . Table 4.9 assumes GuestCtl0ExtFCD=0. See Section

4.14 “Lightweight Virtualization” and Table 5.8 for reference to GuestCtl0ExtFCD.

4.6 Coprocessor 0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 43

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6.6 Guest Config Register Fields

The Guest.Config0-7 registers control the behavior of architecture features during guest execution. All fields follow
base MIPS32 architecture definitions.

Virtualization Module implementations are permitted to choose whether to implement Optional MIPS32 features in
the guest context. All Required features specified by the architecture revision (Guest.ConfigAR) must be implemented.
The operation of the guest context must always follow the setting of the Guest.Config register fields.

The guest context must be a subset of the root context - the guest context can only include features available in the
root context.

The MIPS32 architecture defines many read-only Config register fields. For each read-only Root.Config0-7 register
field, the Virtualization Module implementation must choose a fixed value or allow dynamic reconfiguration in the
corresponding Guest.Config0-7 field.

Dynamic configuration is implemented by permitting root-mode writes to fields in Guest.Config registers. Only val-
ues supported by the implementation will be accepted on writes to read-only Guest.Config fields from root mode.

Table 4.9 Guest CP0 Fields Subject to Software or Hardware Field Change Exception

Register Field Purpose
Exception

Type

Status CU2..CU1 Coprocessor access.
StatusCU1 causes GSFC if GuestCtl0SFC1=0

StatusCU2 causes GSFC if GuestCtl0SFC2=0

GSFC

Status RP Reduced power mode. Guest value is ignored, Root.StatusRP controls

system power mode.

GSFC

Status FR Floating point register mode. GSFC

Status MX Enable access to MDMX and DSP resources. GSFC

Status BEV Bootstrap exception vector. Controls location of exception vectors, and is
used to determine EIC vs non-EIC interrupt mode.

GSFC

Status TS TLB multiple match. Both

Status SR Reset exception vector due to Soft Reset. GSFC

Status NMI Reset exception vector due to Non-Maskable Interrupt. GSFC

Status Impl (17..16) Implementation dependent. GSFC

Status UM/KSU Operating mode. GSFC exception only when GuestCtl0MC=1. GSFC

Status EXL Exception level. GHFC exception only when GuestCtl0MC=1. GHFC

Status ERL Error level. GSFC

Cause DC Disable Count. Root software should disable guest timer access and emu-
late a non-counting timer when this bit is set by the guest.

GSFC

Cause IV Interrupt Vector. Controls EIC vs non-EIC interrupt mode. GSFC

IntCtl VS Vector spacing. Controls EIC vs non-EIC interrupt mode. GSFC

PerfCnt Event,
EventExt

Performance Counter Control Event field.
EventExt is Optional in implementations.

GSFC

 The Virtualization Privileged Resource Architecture

44 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

When an unsupported value is written, the field will remain unchanged after the write. The Guest.Config fields con-
trolling dynamic reconfiguration are never writable from guest mode.

Root mode software can determine whether programmable features are available in the guest context by attempting to
write values to Guest.Config fields.

Table 4.10 lists Guest.Config register fields which can be written from root mode in the MIPS32 Virtualization Mod-
ule

The virtualization architecture does not require that hardware provide the capability to emulate different architectural
releases for guest software that is different from the base implementation, due to complexity. For this reason, root
cannot write Guest.ConfigAR.

Table 4.10 Guest CP0 Read-only Config Fields Writable from Root Mode

Register Field Purpose Root write

Config M Config1 implemented Optional

Config MT MMU Type Optional

Config1 M Config2 implemented Optional

Config1 MMU Size - 1 Number of entries in (guest) MMU Required for-

Shared TLB1

Config1 C2 Coprocessor 2 implemented Optional

Config1 MD MDMX implemented Optional

Config1 PC Performance Counter registers implemented Optional

Config1 WR Watch registers implemented Optional

Config1 CA Code compression (MIPS16e) implemented Optional

Config1 FP FPU implemented Optional

Config2 M Config3 implemented Optional

Config3 M Config4 implemented Optional

Config3 BPG Big pages feature implemented Optional

Config3 ULRI UserLocal implemented Optional

Config3 DSP2P DSP Module Revision 2 implemented Optional

Config3 DSPP DSP Module implemented Optional

Config3 CTXTC ContextConfig etc. implemented Optional

Config3 ITL IFlowTrace mechanism implemented Optional

Config3 VEIC External Interrupt Controller implemented Optional

Config3 VInt Vectored interrupts implemented Optional

Config3 SP Small pages feature implemented Optional

Config3 CDMM Common Device Memory Map implemented Optional

Config3 MT MT (MultiThreading) Module implemented Optional

Config3 SM SmartMIPS Module implemented Optional

Config3 TL Trace Logic implemented Optional

Config4 M Config5 implemented Optional

4.6 Coprocessor 0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 45

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

1. Root must be able to write guest MMU size related fields in Config1 and Config4 if a TLB is shared between root and guest
as described in Section 4.5.2 .

4.6.7 Guest Context Dynamically Set Read-only Fields

The MIPS32 Privileged Resource Architecture includes register fields which are read only, and dynamically set by
hardware. Corresponding fields in the guest context can be written from root mode, but remain read-only to the guest.

Reserved (zero) bits and static configuration bits are not included. The Random register is not included.

Table 4.11 lists fields which are read-only to the guest and writable from root mode.

1 Root writes of 1 to Guest.StatusSR or Guest.StatusNMI will not directly cause an interrupt in the guest. Root software may set

EPC to the guest’s reset vector and ERET back to the guest such that to the guest it appears as if an NMI or SR had occurred.
This feature is useful for resetting a guest that might be hung or otherwise unresponsive.

Config4 VTLBSizeExt Extends Config1MMUSize-1 if

Config4MMUExtDef=3

Required for

Shared TLB1

Config4 MMUSizeExt Extends Config1MMUSize-1 if

Config4MMUExtDef=1

Required for

Shared TLB1

Table 4.11 Guest CP0 Read-only Fields Writable from Root Mode

Register Field Purpose

Index P Root restore of P in guest context.

Context BadVPN2 Virtual Page Number from the address causing last exception.

BadVAddr BadVAddr Address causing last exception

SRSCtl HSS Highest Shadow Set

SRSCtl EICSS External Interrupt Controller Shadow Set

SRSCtl CSS Current Shadow Set

Cause BD Last exception occurred in a delay slot

Cause TI Timer interrupt is pending

Cause CE Coprocessor number for coprocessor unusable exception

Cause FDCI Fast Debug Channel interrupt is pending

Cause IP7..2 Non-EIC interrupt pending bits. Write to Cause[7:2] is Optional if
GuestCtl2 implemented.

Cause RIPL EIC interrupt pending level. Optional if GuestCtl2 implemented.

Cause ExcCode Exception code, from last exception

EBase CPUNum CPU number in multi-core system

Status SR Soft Reset. Root write is Optional.1

Status NMI Non Maskable Interrupt. Root write is Optional. 1

BadInstr BadInstr Faulting Instruction Word. Optional in base architecture.

BadInstrP BadInstrP Prior Branch Instruction. Optional in base architecture.

Table 4.10 Guest CP0 Read-only Config Fields Writable from Root Mode

Register Field Purpose Root write

 The Virtualization Privileged Resource Architecture

46 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6.8 Guest Timer

Timekeeping within the guest context is controlled by root mode. The guest time value is generated from the root
timer value Root.Count by adding the two’s complement offset in the Root.GTOffset register. The guest time value
can be read from the Guest.Count register, and is used to generate timer interrupts within the guest context.

When GuestCtl0GT=1, guest mode can read and write the Compare register, and can read from the Count register. A
guest write to Count always results in a Guest Privileged Sensitive Instruction exception.

When GuestCtl0GT=0, all guest accesses to the Count and Compare registers result in a Guest Privileged Sensitive
Instruction exception, including read via the RDHWR instruction.

The value of Guest.CauseDC has no direct effect on the calculation of the guest time value. A Guest Software Field
Change (GSFC) exception results when an attempt is made to change the value of Guest.CauseDC from guest mode.
Note that the value of Root.CauseDC affects the value of Root.Count during debug mode operation - this indirectly
affects the value of Guest.Count.

The guest timer interrupt affects only the guest context - it cannot interrupt the root context. Similarly, the root timer
interrupt cannot be directly assigned to the guest.

Usage note: Guest.CauseTI is set when Guest.Count = Guest.Compare, even when the device is running in Root
mode. In order to preserve the value of Guest.CauseTI while restoring Guest.Cause, the following approach may be
taken:

#
Root.StatusEXL ← 1

Calculate desired GTOffset value based on saved
Guest.Count and current Root.Count values as well as hypervisor policies.
GTOoffset has a few different purposes:
- To provide each guest a different value of Count.
- To restore a guest’s virtual time between context switches.
In the latter case, GTOffset allows Root to restore time to when a guest was
switched out, by offsetting Root.Count by elapsed time.Or it allows guest Count
to reflect elapsed time also.
#
Under the simplest scheme, the new GTOffset must adjust current Root.Count
for elapsed time between guest save an restore.

new_gt_offset ← calculate_gt_offset()
GTOffset ← new_gt_offset
Restore Guest.Cause since Guest.Cause.TI may be 1.Guest.Cause must be saved
after Guest.Count to provide most current Cause.TI.
Guest.Cause ← saved_cause

after the following statement, the hardware might now set Guest.Cause[TI]

Guest.Compare ← saved_compare
current_guest_count ← Guest.Count

set Guest.CauseTI if it would have been set while the guest was sleeping.
Since GTOffset for the guest and Guest.Compare restore is not atomic, this code
is required to ensure that Guest.Cause.TI is set appropriately, since current
Guest.Count could have raced ahead of saved_count before restoring Guest.Compare.
if (current_guest_count > saved_count) then

4.6 Coprocessor 0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 47

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

if (saved_compare > saved_count && saved_compare < current_guest_count) then
saved_cause[TI] ← 1
Guest.Cause ← saved_cause

endif
else

The count has wrapped. Check to see if
Guest.Count has passed the saved_compare value.
if (saved_compare > saved_count || saved_compare < current_guest_count) then

saved_cause[TI] ← 1
Guest.Cause ← saved_cause

endif
endif

#The trick is to not overwrite the Guest.Cause here
Root.GuestCtlGM ← 1
restore_register_state()
eret
#

Root-mode writes to Guest.Count are ignored.

See also Section 4.8 “Interrupts” and Section 5.7 “GTOffset Register (CP0 Register 12, Select 7)”.

Figure 4.7 shows how the guest timer value is computed from the root timer.

Figure 4.7 Root and Guest Timers

Root.Count

increment

Root.Compare =

Guest.Count

Guest.Compare =

Root.GTOffset
+

Guest
Timer
IRQ

Root
Timer
IRQ

 The Virtualization Privileged Resource Architecture

48 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.6.9 Guest Cache Operations

A limited set of cache operations can be performed from guest mode, when the CACHE instruction is enabled by
GuestCtl0CG=1. For this case, any guest-mode cache operation using Effective Address Operand type other than
‘Address’ will result in a Guest Privileged Sensitive Instruction exception.

When GuestCtl0CG=0, guest-mode execution of the CACHE instruction will result in a Guest Privileged Sensitive
Instruction exception.

The above description also applies to the CACHEE instruction, which is optional in the baseline architecture.

See Section 4.7.7 “Guest Privileged Sensitive Instruction Exception”.

4.6.10 UNPREDICTABLE and UNDEFINED in Guest Mode

The terms UNPREDICTABLE and UNDEFINED have specific meanings in MIPS architecture documents. See
Section 1.3 “Special Symbols in Pseudocode Notation”.

A distinction is drawn between UNPREDICTABLE and UNDEFINED. Unprivileged instructions can only have
results which are UNPREDICTABLE.

This is to ensure that unprivileged code cannot:

• Compromise availability by preventing control being returned to the highest level of privilege on an interrupt or
exception - for example by causing a hang or other indefinite stall.

• Compromise confidentiality by allowing data (machine state or memory) to be read without permission or detec-
tion.

• Compromise integrity by allowing data (machine state or memory) to be altered without permission or detection.
This includes:

• Altering data or instructions used by another process
- e.g. alter a bank balance or bypass a license check

• Altering data, instructions or machine state used by the highest level of privilege
- e.g. to gain a higher level of privilege, or install an alternative interrupt handler

• Compromised integrity also includes the case where one unprivileged process can communicate with
another process without permission - a “covert channel”. The channel can use data in memory, machine state
which is not context switched, or the ability to cause timing changes detectable in another process.

The definition of UNPREDICTABLE requires that any result returned is produced only from data sources which are
accessible in the unprivileged mode. This ensures that the UNPREDICTABLE result cannot be reproduced by
another process - provided that the complete set of available data sources are context switched between unprivileged
processes.

Hence process A might be able to perform an operation which produces a deterministic value where an UNPRE-
DICTABLE result is defined by the architecture. Process A may even be able to control the value returned. However,
if a full context switch is made between process A and process B, then process B will not be able to read hidden mes-
sages sent by process A. The value returned by the UNPREDICTABLE operation is dependent entirely on the state

4.6 Coprocessor 0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 49

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

visible to process B, which has been fully context switched. No covert communication channel is allowed, and no
data can be accidentally revealed from another process or from a higher level of privilege.

The definition of UNDEFINED only requires that the processor can be returned to a functioning state by application
of the reset signal. This means that it is in theory possible to design a system which would allow information to be
stored in hidden state, and communicated from one point in privileged code execution to another, even when it
appears that all available machine state has been context switched.

The MIPS architecture requires that UNDEFINED operations can only result from operations performed in Kernel
Mode or Debug Mode, or when the CP0 access bit is set (granting Kernel-level permissions). In other words, UNDE-
FINED operations can result only from operations at the highest level of privilege.

The Virtualization Module adds Guest Kernel Mode as a limited-privilege mode. Software executing in a Guest Mode
(guest-kernel, guest-supervisor or guest-user) must never cause an UNDEFINED result.

Wherever a privileged operation is described by the MIPS architecture as having an UNDEFINED result, this must
be interpreted as an UNPREDICTABLE result when executing in Guest Mode.

This mechanism ensures that guest operating systems cannot compromise the availability, confidentiality or integrity
of the hypervisor, other guests or the system as a whole.

 The Virtualization Privileged Resource Architecture

50 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.7 Exceptions

Normal execution of instructions can be interrupted when an exception occurs. Such events can be generated as a
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), by an illegal attempt to use a privileged instruction (e.g. MTC0 from user mode), or by an event not
directly related to instruction execution (e.g., an external interrupt).

When an exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted
instruction stream, enters Exception or Error mode, and starts a software exception handler. The saved state and the
address of the software exception handler are a function of both the type of exception, and the current state of the pro-
cessor.

4.7.1 Exceptions in Guest Mode

The Virtualization Module retains the exception-processing methodology of the base MIPS32 architecture, and adds
additional rules for processing of exception conditions detected during guest-mode execution.

The ‘onion model’ requires that every guest-mode operation be checked first against the guest CP0 context, and then
against the root CP0 context. Exceptions resulting from the guest CP0 context can be handled entirely within guest
mode without root-mode intervention. Exceptions resulting from the root-mode CP0 context (including GuestCtl0
permissions) require a root mode (hypervisor) handler.

During guest mode execution, the mode in which an exception is taken is determined by the following:

• Guest-mode operations must first be permitted by guest-mode CP0 context and then by root mode CP0 context

• This includes all operations for which exceptions can be generated - memory accesses, coprocessor
accesses, breakpoints and so forth.

• Exceptions are always taken in the mode whose CP0 state triggered the exception

• When architecture features in the guest context are present and enabled by the Guest.Config registers, excep-
tions triggered by those features are taken in guest mode.

• Exceptions resulting from control bits set in the Root.GuestCtl0 register, and exceptions resulting from
address translation of guest memory accesses through the root-mode TLB are taken in root mode.

Asynchronous exceptions such as Reset, NMI, Memory Error, Cache Error are taken in root mode. External inter-
rupts are received by the root CP0 context, and if enabled are taken in root mode. If an interrupt is not enabled in root
mode and is bypassed to the guest CP0 context, and is enabled in the guest CP0 context, the interrupt is taken in guest
mode.

When an exception is detected during guest mode execution, any required mode switch is performed after the excep-
tion is detected and before any machine state is saved. This allows machine state to be saved to either the root or guest
contexts, and allows the exception to be handled in the proper mode. See also Section 4.7.2 “Faulting Address for
Exceptions from Guest Mode”.

Booleans, indicating source of exception:
root_async - Asynchronous root context exception
root_sync - Synchronous exception triggered by root context
guest_async - Asynchronous exception triggered by guest context
guest_sync - Synchronous exception triggered by guest context

4.7 Exceptions

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 51

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

#
Exceptions directed to root context set Root.Status.ERL or Root.Status.EXL,
meaning that the processor executes the handler in root mode.

Ordering of exception conditions
if (root_async) then

ctx ← Root
elsif (guest_async) then

ctx ← Guest
elsif (guest_sync) then

ctx ← Guest
elsif (root_sync) then

ctx ← Root
else

ctx ← null
endif

if (ctx) then
Defined by MIPS32 Privileged Resource Architecture
ctx.GeneralExceptionProcessing()

endif

4.7.2 Faulting Address for Exceptions from Guest Mode

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions.

• Address error

• TLB Refill

• TLB Invalid

• TLB Modified

• TLB Execute Inhibit

• TLB Read Inhibit

4.7.3 Guest initiated Root TLB Exception

When an exception is triggered as a result of a root TLB access during guest-mode execution, the handler will be exe-
cuted in root mode, and exception state is stored into root CP0 registers. The registers affected are GuestCtl0,
Root.EPC, Root.BadVAddr, Root.EntryHi, Root.Cause and Root.ContextBadVPN2.

The faulting address value stored into Root.BadVAddr and Root.ContextBadVPN2 is ideally the Guest Physical Address
(GPA) presented to the root TLB by the guest context. A Guest Virtual Address (GVA) unmapped by the Guest MMU
is considered a GPA from the root’s perspective.

Whether the GPA can be provided is implementation dependent. If a GVA is mapped by the Guest MMU, yet the
GPA is not available for write to root context, then GuestCtl0GExcCode must indicate this. In a specific e.g., guest TLB
refill exception will always set GPA in GuestCtl0GExcCode, while TLB modified/invalid/execute-inhibit/read-inhibit
exceptions may set GVA due to implementation limitations.

 The Virtualization Privileged Resource Architecture

52 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The GPA presented to the root TLB is the result of translation through the guest context Segmentation Control if
implemented, and through the guest TLB if in a mapped region of memory. The value stored in Root.BadVAddr and
Root.ContextBadVPN2 is the Guest Physical Address being accessed by the guest.

This process ensures that after an exception, both Root.BadVAddr and Root.ContextBadVPN2 refer to a virtual address
which is immediately usable by a root-mode handler, irrespective of whether the exception was triggered by
root-mode or guest-mode execution.

4.7.4 Exception Priority

Table 4.12 lists all possible exceptions, and the relative priority of each, highest to lowest. The table also lists new
exception conditions introduced by the Virtualization Module, and defines whether a switch to root mode is required
before handling each exception.

Table 4.12 Priority of Exceptions

Exception Description Type
Taken in

mode

Reset The Cold Reset signal was asserted to the processor Asynchronous
Reset

Root

Soft Reset The Reset signal was asserted to the processor

Debug Single Step An EJTAG Single Step occurred. Prioritized above other excep-
tions, including asynchronous exceptions, so that one can sin-
gle-step into interrupt (or other asynchronous) handlers.

Synchronous
Debug

Root

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
Debug

Root

Imprecise Debug Data
Break

An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt
(NMI)

The NMI signal was asserted to the processor. Asynchronous Root

Machine Check Root, or Root TLB related.
This can only occur as part of a guest (second step) address trans-
lation, root address translation, and root TLB operation (write,
probe) whether for guest or root TLB. It is recommended that the
Machine-Check be synchronous. A TLB instruction must cause a
synchronous Machine Check.

Asynchronous
or Synchronous

Root

An internal inconsistency was detected by the processor. Root

Guest TLB related.
This can only occur as part of a guest address translation (first
step), and guest TLB operation (write, probe). It is recommended
that the Machine-Check be synchronous. A TLB instruction must
cause a synchronous Machine Check.

Guest

Interrupt A root enabled interrupt occurred. Asynchronous Root

Deferred Watch A Root watch exception, deferred because EXL was one when the
exception was detected, was asserted after EXL went to zero. A
deferred root watch exception may occur in guest mode in which
case it is prioritized higher than a simultaneous occuring guest
interrupt.

Asynchronous Root

Interrupt A guest enabled interrupt occurred. Asynchronous Guest

4.7 Exceptions

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 53

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Deferred Watch A Guest watch exception, deferred because Guest EXL was one
when the exception was detected, was asserted after EXL went to
zero.

Asynchronous Guest

Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized
above instruction fetch exceptions to allow break on illegal instruc-
tion addresses.

Synchronous
Debug

Root

Watch - Instruction fetch A root context watch address match was detected on an instruction
fetch. Prioritized above instruction fetch exceptions to allow watch
on illegal instruction addresses. Refer to ‘Watch Registers’ -
Section 4.12 “Watchpoint Debug Support”.

Synchronous Root

A guest-context watch address match was detected on an instruc-
tion fetch. Prioritized above instruction fetch exceptions to allow
watch on illegal instruction addresses.
Refer to ‘Watch Registers’ - Section 4.12 “Watchpoint Debug
Support”.

Guest

Address Error - Instruc-
tion fetch

A non-word-aligned address was loaded into PC. Synchronous Current

TLB Refill - Instruction
fetch

A Guest TLB miss occurred on an instruction fetch Synchronous Guest

A Root TLB miss occurred on an instruction fetch.
This can occur due to a Root or Guest translation.

Root

TLB Invalid - Instruction
fetch

The valid bit was zero in the guest context TLB entry mapping the
address referenced by an instruction fetch.

Synchronous Guest

The valid bit was zero in the Root TLB entry mapping the address
referenced by an instruction fetch.
This can occur due to a Root or Guest translation.

Root

TLB Execute-inhibit An instruction fetch matched a valid Guest TLB entry which had
the XI bit set.

Synchronous Guest

An instruction fetch matched a valid Root TLB entry which had
the XI bit set.
This can occur due to a Root or Guest translation.

Root

Cache Error - Instruction
fetch

A cache error occurred on an instruction fetch. Synchronous
or

Asynchronous

Root

Bus Error - Instruction
fetch

A bus error occurred on an instruction fetch.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous
Debug

Root

Table 4.12 Priority of Exceptions

Exception Description Type
Taken in

mode

 The Virtualization Privileged Resource Architecture

54 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Instruction Validity
Exceptions

An instruction could not be completed because it was not allowed
access to the required resources, or was illegal: Coprocessor Unus-
able, Reserved Instruction, MSA disabled. If both exceptions
occur on the same instruction, the Coprocessor Unusable, MSA
disabled Exception takes priority over the Reserved Instruction
Exception.

Synchronous Current

Coprocessor unusable - guest. Access to a coprocessor was permit-
ted by the Guest.StatusCU1-2 bits, but denied by

Root.StatusCU1-2 bits.

MSA disabled - guest. Access to the MSA unit was permitted by
Guest.Config5MSAEn, but denied by Root.Config5MSAEn.

Root

Guest Reserved Instruc-
tion Redirect

A guest-mode instruction will trigger a Reserved Instruction
Exception. When GuestCtl0RI=1, this root-mode exception is

raised before the guest-mode exception can be taken.

Synchronous
Hypervisor

Root

Machine Check Root TLB related.
This can only occur as part of a Guest or Root address translation,
or a TLBP/TLBWI/TLBGP/TLBGWI executed in root-mode.

Synchronous Root

Guest TLB related.
This can only occur as part of a Guest address translation, or a
TLBP/TLBWI executed in guest-mode

Guest

An internal inconsistency was detected by the processor. Root

Guest Privileged Sensi-
tive Instruction Exception

An instruction executing in guest-mode could not be completed
because it was denied access to the required resources by the
Root.GuestCtl0 register.

Synchronous
Hypervisor

Root

Hypercall A HYPCALL hypercall instruction was executed. Synchronous
Hypervisor

Root

Guest Software Field-
Change

During guest execution, a software initiated change to certain CP0
register fields occured. Refer to Section 4.7.8 “Guest Software
Field Change Exception”.

Synchronous
Hypervisor

Root

Guest Hardware Field-
Change

During guest execution, a hardware initiated set of StatusEXL/TS

occurred. See Section 4.7.9 “Guest Hardware Field Change

Exception” for further information.

Synchronous
Hypervisor

Root

Execution Exception An instruction-based exception occurred: Integer overflow, trap,
system call, breakpoint, floating point, coprocessor 2 exception.

Synchronous Current

Precise Debug Data Break A precise EJTAG data break on load/store (address match only) or
a data break on store (address+data match) condition was asserted.
Prioritized above data fetch exceptions to allow break on illegal
data addresses.

Synchronous
Debug

Root

Table 4.12 Priority of Exceptions

Exception Description Type
Taken in

mode

4.7 Exceptions

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 55

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Watch - Data access A root context watch address match was detected on the address
referenced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses. Refer to ‘Watch
Registers’ - Section 4.12 “Watchpoint Debug Support”

Synchronous Root

A guest context watch address match was detected on the address
referenced by a load or store. Prioritized above data fetch excep-
tions to allow watch on illegal data addresses. Refer to ‘Watch
Registers’ - Section 4.12 “Watchpoint Debug Support”

Guest

Address error - Data
access

An unaligned address, or an address that was inaccessible in the
current processor mode was referenced, by a load or store instruc-
tion

Synchronous Current

TLB Refill - Data access A guest TLB miss occurred on a data access Synchronous Guest

A root TLB miss occurred on a data access.
This can occur due to a Root or Guest translation.

Root

TLB Invalid - Data access On a data access, a matching guest TLB entry was found, but the
valid (V) bit was zero.

Synchronous Guest

On a data access, a matching root TLB entry was found, but the
valid (V) bit was zero.
This can occur due to a Root or Guest translation.

Root

TLB Read-Inhibit On a data read access, a matching guest TLB entry was found, and
the RI bit was set.

Synchronous Guest

On a data read access, a matching root TLB entry was found, and
the RI bit was set.
This can occur due to a Root or Guest translation.

Root

TLB Modified - Data
access

The dirty bit was zero in the guest TLB entry mapping the address
referenced by a store instruction

Synchronous Guest

The dirty bit was zero in the root TLB entry mapping the address
referenced by a store instruction.
This can occur due to a Root or Guest translation.

Root

Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
or

Asynchronous

Root

Bus Error - Data access A bus error occurred on a load or store data reference

Precise Debug Data Break A precise EJTAG data break on load (address+data match only)
condition was asserted. Prioritized last because all aspects of the
data fetch must complete in order to do data match.

Synchronous
Debug

Root

Table 4.12 Priority of Exceptions

Exception Description Type
Taken in

mode

 The Virtualization Privileged Resource Architecture

56 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The “Type” column of Table 4.12 describes the type of exception. Table 4.13 explains the characteristics of each
exception type.

4.7.5 Exception Vector Locations

Exception vector locations are as defined in the base architecture.

The vector location is determined from the values of EBase, StatusEXL, StatusBEV, IntCtlVS and Config3VEIC obtained
from the context in which the exception will be handled.

The General Exception entry point is used for new hypervisor exceptions Guest Privileged Sensitive Instruction,
Guest Reserved Instruction Redirect, Guest Software Field Change, Guest Hardware Field Change and Hypercall.

4.7.6 Synchronous and Synchronous Hypervisor Exceptions

During guest mode execution, control can be returned to root mode at any time. When an exception condition is
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any
exception state is saved. As a result, exception state in the guest CP0 context is not affected.

Table 4.13 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution.
These exceptions always have the highest priority to guarantee that the processor can
always be placed in a runnable state. These exceptions always require a switch to root
mode.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execu-
tion. These exceptions have very high priority with respect to other exceptions because
of the desire to enter Debug Mode, even in the presence of other exceptions, both asyn-
chronous and synchronous. These exceptions always require a switch to root mode.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execu-
tion. These exceptions are shown with higher priority than synchronous exceptions
mainly for notational convenience. If one thinks of asynchronous exceptions as occur-
ring between instructions, they are either the lowest priority relative to the previous
instruction, or the highest priority relative to the next instruction. The ordering of the
table above considers them in the second way. These exceptions always require a
switch to root mode.

Synchronous Debug Denotes an EJTAG debug exception that occurs as a result of instruction execution, and
is reported precisely with respect to the instruction that caused the exception. These
exceptions are prioritized above other synchronous exceptions to allow entry to Debug
Mode, even in the presence of other exceptions. These exceptions always require a
switch to root mode.

Synchronous Hypervi-
sor

Denotes an exception that occurs as a result of guest-mode instruction execution which
requires hypervisor intervention. It is reported precisely with respect to the instruction
that caused the exception. These exceptions always require a switch to root mode.

Synchronous Denotes any other exception that occurs as a result of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These
exceptions tend to be prioritized below other types of exceptions, but there is a relative
priority of synchronous exceptions with each other. In some cases, these exceptions
can be handled without switching modes.

4.7 Exceptions

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 57

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The switch to root mode is achieved by setting Root.StatusEXL=1 or Root.StatusERL=1 (as appropriate) before any
other state is saved. This ensures that all exception state is stored into root CP0 context, regardless of whether the pro-
cessor was executing in root or guest mode at the point where the exception was detected.

Table 4.14 summarizes hypervisor conditions.

4.7.7 Guest Privileged Sensitive Instruction Exception

A Guest Privileged Sensitive Instruction exception occurs when an attempt is made to use a Guest Privileged Sensi-
tive Instruction from guest mode, where the instruction is either not permitted in guest mode or is not enabled in guest
mode. The term ‘sensitive’ refers to an instruction which may trigger a hypervisor exception when executed in
guest-kernel mode.

The list of sensitive instructions follows:

• WAIT

• CACHE, CACHEE
- when GuestCtl0CG=0
- with anything other than ‘Address’ as Effective Address Operand Type, if GuestCtl0CG=1. Specifically
CACHE(E) instructions with code 0b000, 0b001, 0b010, 0b011 will cause a GPSI.

GuestCtl0ExtCGI is an optional qualifier of GuestCtl0CG as described in Table 5.8. If GuestCtl0ExtCGI =1
and GuestCtl0CG=1 then CACHE(E) instructions of type Index Invalidate (code 0b000) are excluded from
the CACHE(E) instructions that cause a GPSI.

• TLBWR, TLBWI, TLBR, TLBP, TLBINV, TLBINVF when GuestCtl0AT != 3.
- TLBINV, TLBINVF are optional in the baseline architecture.

• Access to PageGrain, Wired, SegCtl0, SegCtl1, SegCtl2, PWBase, PWField, PWSize, PWCtl when
GuestCtl0AT != 3 (Guest TLB resources disabled)

• Write access to any Config0-7 register when GuestCtl0CF=0

• Access to Count or Compare registers when GuestCtl0GT=0
- including indirect read from CC using RDHWR providing CC is present and enabled by guest HWREna.

• Access to CP0 registers using RDHWR when GuestCtl0CP0=0 providing Guest CP0 registers are enabled for
user access by guest HWREna.

Table 4.14 Hypervisor Exception Conditions

Type
Root-mode

Vector Causes Reference

Synchronous Hypervisor General Guest Privileged Sensitive Instruction Section 4.7.7

Synchronous Hypervisor General Guest Software Field Change Section 4.7.8

Synchronous Hypervisor General Guest Hardware Field Change Section 4.7.9

Synchronous Hypervisor General Guest Reserved Instruction Redirect Section 4.7.10

Synchronous Hypervisor General Hypercall Section 4.7.11

 The Virtualization Privileged Resource Architecture

58 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

• Write to Count register

• Access to SRSCtl or SRSMap CP0 registers when SRSCtlHSS > 0.

• Guest-kernel use of RDPGPR or WRPGPR instructions when SRSCtlHSS > 0.

• Any Privileged Instruction when GuestCtl0CP0=0

The baseline architecture defines privileged instructions as the following : CACHE, DI, EI, MTC0, MFC0,
ERET, DERET, RDPGPR, WRPGPR, WAIT, all Enhanced Virtual Addressing (EVA) related instructions
(e.g., LBE, LBUE) (optional), and all TLB related instructions.

Privileged instructions are defined in Volume II of the architecture. Instructions that are supported depend on
the architecture release that an implementation is compliant with, and in some cases instructions are optional
within a release.

• Access to any Guest CP0 registers that are active in guest context and always take Guest Privileged Sensitive
Instruction Exception as given in Table 4.7.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GPSI (0, 0x00)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.8 Guest Software Field Change Exception

A Guest Software Field Change exception occurs when the value of certain CP0 register bitfields changes during
guest-mode execution.

Change is caused by MTC0 execution, the instruction is copied to the root context BadInstr register (if the implemen-
tation is so equipped) and the exception is taken. The exception is used to allow the hypervisor to track changes to
certain guest-context fields (e.g. StatusRP or CauseIV). This can be used to ensure the proper operation of the emu-
lated guest virtual machine.

This exception can only be raised by a MTC0 instruction executed in guest mode. It is the responsibility of Root to
increment EPC in order to return to the instruction following the MTC0. Note that the guest MTC0 is never executed,
unless causing GSFC exception is disabled by GuestCtl0ExtFCD , or selectively by GuestCtl0SFC1/2. It is the respon-
sibility of Root to modify the field on the behalf of Guest, providing guest access causes a GSFC.

4.7 Exceptions

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 59

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

If a field indicated below is meant to enable access to a resource, but the implementation does not support the
resource, then a GSFC exception is not taken. As an example, if Guest.Config1MD=0, i.e.,, MDMX Module is not
supported, then a guest write to Guest.StatusMX will not cause a GSFC exception.

Changes to the following CP0 register bitfields always trigger the exception.

• Guest.Status bits: CU[2:1], RP, FR, MX, BEV, SR, NMI, UM/KSU, ERL, Impl (17..16), TS (always on clear,
optionally on set),

A change to UM/KSU can only cause a GSFC if GuestCtl0MC=1. Whether guest access to StatusImpl causes a
GSFC is implementation-dependent.

• Config5 : MSAEn. (Enable for MIPS SIMD Architecture module. Applicable if present)

• Guest.Cause bits: DC, IV

• Guest.IntCtl bits: VS

• Root.PerfCnt w/ PerfCntEC=2/3: Event, EventExt(Optional)

PerfCnt does not exist in guest context. When PerfCntEC=2/3, however root context registers are accessible to
Guest. GPSI on guest access is only taken only in this configuration.

Guest software may modify CU[2:1] often. To prevent frequent GSFC on these events, a set of enables,
GuestCtl0SFC2 and GuestCtl0SFC1, have been provided. GuestCtl0SFC2 and GuestCtl0SFC1 have been defined in
Section 5.2 “GuestCtl0 Register (CP0 Register 12, Select 6)”.

Guest write of 0 to SR or NMI will raise this exception. Guest write of 1 to Guest StatusSR or StatusNMI is UNPRE-
DICTABLE behavior as specified in the base architecture. It is optional for an implementation to cause this excep-
tion on a guest write of 1 to either the SR or NMI or TS bits within the Status register. Guest StatusSR or StatusNMI

are never set by hardware, nor will Root software write of 1 to either Guest StatusSR or StatusNMI cause an interrupt

in Guest context. Root will handle hardware asserted SR/NMI as per Table 4.12.

Guest software modification of EXL will not cause a GSFC. This is because guest kernel will often write EXL=1
prior to setting KSU to user mode(b10), allowing processor to stay in kernel mode. ERET will clear EXL, affecting
change to user mode. To avoid frequent GSFC on such events, guest kernel modification of EXL is not trapped on.

A D/MTC0 that attempts to clear TS will cause a GSFC, while setting of TS, caused by hardware, should result in a
GHFC. Optionally, the setting of TS may cause a GSFC also instead of GHFC, for ease of implementation. However,
it is recommended that setting of TS result in GHFC.

Clearing of TS will result in GSFC before the D/MTC0 completes. This should be contrasted with setting of TS as
described in Section 4.7.9 “Guest Hardware Field Change Exception”, which must set the value in Guest.Status
before GHFC is taken.

If Root PerfCnt.EC=2 or 3, then Guest can access shared Root PerfCnt without GPSI exception. However, any
change to the Event or EventExt fields must be reported as a GSFC exception to Root.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

 The Virtualization Privileged Resource Architecture

60 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

GSFC(1, 0x01)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.9 Guest Hardware Field Change Exception

A Guest Hardware Field Change Exception is caused by exception/interrupt processing or a hardware initiated field
change. The exception is taken after Guest state has been updated and before the following instruction is executed.

A Guest Hardware Field Change exception is considered synchronous with respect to the Guest action that caused it.
In terms of priority, it is only lower than any asynchronous Root exception. It is not prioritized with respect to Guest
exceptions: Guest exceptions are first prioritized amongst themselves, and then the Guest exception may then subse-
quently cause a Hardware Field Change exception.

When GuestCtl0ExtFCD=1 (refer to Section 5.6), then no Guest Hardware Field Change exception is triggered.
Hardware events that cause the described events must be allowed to modify state as in the baseline architecture.

When GuestCtl0MC=1, changes to the following bitfields trigger this exception.

• Guest Status bits: EXL.

Set of the following bitfield triggers this exception.

• Guest Status bits: TS (set)

A change in value in any of these fields causes a Guest Hardware Field Change exception, regardless of whether there
is an effective change in mode.

Since events (Reset, NMI, Cache Error) that set ERL are always processed by Root, hardware initiated field changes
involving ERL will not result in this exception.

Guest StatusEXL will be modified by hardware on a Guest exception. The Guest Hardware Field Change exception is
taken prior to the actual Guest exception handler (when EXL is set) and after the Guest exception handler is com-
pleted (when ERET clears EXL) but prior to the first Guest instruction after the handler. The Guest Hardware Field
Change exception handler must compare state between successive invocations to determine which of TS or EXL have
changed.

For the transition of EXL from 0 to 1, it is recommended that guest context be loaded with exception related data as if
the guest exception handler were to be executed. Prior to execution of first instruction of guest handler, hardware
must cause a GHFC trap to root. The only root state modified is Root StatusEXL(=1), CauseExcCode(=”Guest Exit”)
and GuestCtl0GExcCode(=”GHFC”). Hardware handling of transition of EXL from 1 to 0 should be similar. In this
manner, the hardware overhead of setting appropriate context for guest and root is kept to a minimum.

The GHFC exception must be viewed atomically with respect to the guest exception that caused it. In a recommended
implementation, the guest exception will cause guest context to be updated simultaneously along with root context

4.7 Exceptions

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 61

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

for the GHFC exception. Guest entry on completion of GHFC exception will cause related guest exception to be
taken.

Guest StatusTS is set by hardware, this exception is taken after TS is set and prior to start of the first instruction of the
Guest machine-check exception handler. Therefore, the Guest Hardware Field Change exception handler will return
to the first instruction of the Guest machine check exception handler.

See comment in Section 4.7.8 “Guest Software Field Change Exception”. Setting of TS in guest context may option-
ally cause GSFC in lieu of GHFC. GHFC is however recommended response.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GHFC(9, 0x09)

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.10 Guest Reserved Instruction Redirect

A Guest Reserved Instruction Redirect Exception occurs when GuestCtl0RI=1 and a guest mode instruction would
trigger a Reserved Instruction Exception. This exception is raised before the guest mode exception can be taken. The
instruction is not executed, the exception is taken in Root mode and the Guest context is unchanged.

The Reserved Instruction Redirect (GRR) must be prioritized in the context of other guest-mode exceptions. For e.g.,
a Coprocessor Unusable exception due to guest context is ranked higher in priority than a Reserved Instruction excep-
tion. Thus a Reserved Instruction Redirect exception is not taken in this case. Another e.g., relates to the case where
Root.StatusCU1=0, while Guest.Status.CU1=1. If the processor is in guest-mode and executes a reserved COP1
instruction, then the Coprocessor Unusable exception is a result of Root qualification. It would be ranked higher pri-
ority than a Reserved Instruction exception for the same guest-mode instruction.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GRR (3, 0x03)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

 The Virtualization Privileged Resource Architecture

62 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.7.11 Hypercall Exception

A Hypercall Exception occurs when a HYPCALL instruction is executed. This is a Privileged Instruction and thus
can only be executed in kernel mode (root-kernel or guest-kernel mode) or debug mode. It is specifically meant to
cause a guest-exit. For specifics of Hypercall root-kernel and debug mode handling, refer to hypercall definition in
Chapter 6, “Instruction Descriptions” .

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

Hyp (2, 0x02)

Additional State saved

BadInstr

BadInstrP

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.12 Guest Exception Code in Root Context

In the case of a guest exception which causes a guest exit to root, hardware must supply the appropriate value for
Root.CauseExcCode and GuestCtl0GExcCode, as described in the pseudo-code below.

if guest exception is (GPSI or GSFC or GHFC or HC or GRR or IMP) then
Root.CauseExcCode ← “GE”

Root.GuestCtl0GExcCode ← “GPSI” or “GSFC” or “GHFC” or “HC” or “GRR” or “IMP”

elseif guest exception is (Root TLB-Refill or TLB-Invalid)
Root.CauseExcCode ← “TLBS” or “TLBL”

loading of GPA for both TLB-Refill and TLB-Invalid is recommended.
Root.GuestCtl0GExcCode ← “GPA”

elseif guest exception is (Root TLB-Execute_Inhibit or TLB-Read_Inhibit)
if (Root.PageGrainIEC = 0) then

Root.CauseExcCode ← “TLBL”

Root.GuestCtl0GExcCode ← “GPA” or GVA”

elseif (TLB Execute-Inhibit)
Root.CauseExcCode ← “TLBXI”

Root.GuestCtl0GExcCode ← “GVA” or “GPA”

else
Root.CauseExcCode ← “TLBRI”

Root.GuestCtl0GExcCode ← “GVA” or “GPA”

endif
elseif guest exception is (TLB Modified)

Root.CauseExcCode ← “MOD”

Root.GuestCtl0GExcCode ← “GVA” or “GPA”

else
Root.CauseExcCode ← baseline “ExcCode”

4.7 Exceptions

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 63

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Root.GuestCtl0GExcCode ← “UNDEFINED”

endif

 The Virtualization Privileged Resource Architecture

64 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.8 Interrupts

The Virtualization Module provides a virtualized interrupt system for the guest.

The root context interrupt system is always active, even during guest mode execution. An interrupt source enabled in
the root context will always result in a root-mode interrupt. Guests cannot disable root mode interrupts.

Standard MIPS32 interrupt rules are used by both root and guest contexts to determine when an interrupt should be
taken. An interrupt enabled in the root context is taken in root mode. An interrupt masked by root and enabled in the
guest context is taken in guest mode. Root interrupts take priority over guest interrupts.

Figure 4.8 shows the how the Virtualization Module ‘onion model’ is applied to interrupt sources.

Figure 4.8 Interrupts in the Virtualization Module onion model

The Guest.CauseRIPL/IP field is the source of guest interrupts. The behavior of this field is controlled from the root
context. Two methods can be used to trigger guest interrupts - a root-mode write to the Guest.Cause register, or direct
assignment of real interrupt signal to the guest interrupt system. Interrupt sources are combined such that both meth-
ods can be used.

Timers and related interrupts are available in both guest and root contexts.

The set of pending interrupts seen by the guest context is the combination (logical OR) of:

• External interrupts passed through from the root context, enabled by GuestCtl0PIP if implemented.

• Interrupts generated within the guest context (e.g., Timer interrupts, Software interrupts)

• Root asserted interrupts, set by software write to GuestCtl2VIP field in non-EIC mode, or hardware capture of a
guest interrupt in GuestCtl2GRIPL in EIC mode.

Software should enable direct interrupt assignment only when root and guest agree on the interpretation of interrupt
pending/enable fields in the Status and Cause registers. Direct assignment is appropriate if both Root and Guest use
EIC mode, or if both use non-EIC mode. Root can track changes to the guest interrupt system status using the
field-change exceptions which result from guest initiated changes to fields StatusBEV, CauseIV or IntCtlVS.

IRQ?

Guest handler

Y
No action

NPendingIRQ?

Root handler

Y

No action

N
Pending Pass?

N

Y

Root can assert IRQ by
write to pending field

Root

Guest

Timer, Timer,
etc. etc.

External
Sources

4.8 Interrupts

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 65

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Root must assign interrupts to Guest with caution. For example, in non-EIC mode, if an interrupt pin (HW[5:0]) is
shared by multiple interrupt sources, then enabling direct guest visibility (in Guest CauseIP[n] via GuestCtl0PIP[n]=1)
will cause all the interrupt sources on that pin to be visible to the Guest, possibly removing Root intervention capabil-
ity. If Root Software needs to guarantee Root intervention capability on an interrupt then that interrupt should not be
directly visible to Guest.

In non-EIC mode, the guest timer interrupt is always applied to the interrupt source indicated by the Guest.IntCtlIPTI

field and is not affected by the GuestCtl0PIP field. Similarly, Guest software interrupts are not affected by the
GuestCtl0PIP field, and are always applied to the interrupt source indicated by Guest.IntCtlIPPCI

A virtualization-based external interrupt delivery system, whether EIC or non-EIC provides the following capabili-
ties:

1. Root assignment of External Interrupt.

Hardware delivers interrupt to root context, with root-mode servicing of external interrupt.

2. Guest assignment of External Interrupt with Root Intervention.

Hardware delivers interrupt to root context, with root-mode hand-off to guest by writing to GuestCtl2vIP, fol-
lowed by guest servicing of external interrupt.

If root requires visibility into guest interrupts, then root should use this method to deliver interrupts to guest.

3. Guest assignment of External Interrupt without Root Intervention.

Hardware delivers interrupt to guest context without root intervention, followed by guest servicing of external
interrupt. The interrupt is not visible to root as root has made the choice to assign to guest.

A MIPS enabled virtualized external interrupt delivery system also provides support for Virtual Interrupts. Root can
simulate a guest interrupt by writing 1 to GuestCtl2vIP. It can subsequently clear the interrupt by writing 0 to
GuestCtl2vIP.

Virtual Interrupt capability can be used to support guest virtual drivers. Root will inject an interrupt into guest con-
text. Guest will field the interrupt, and in so doing cause a trap to Root, either by device activity or protected memory
access. Root may then clear the interrupt by writing to guest CauseIP set earlier.

4.8.1 External Interrupts

4.8.1.1 Non-EIC Interrupt Handling

This section provides a detailed description of non-EIC handling in a recommended implementation. The term HW is
used to represent an external interrupt source. HW is alternatively referred to as IRQ in other sections of the Module.
HW is a set of interrupt pins common to both root and guest context.

Whether an external interrupt is visible to guest context or root context is dependent on GuestCtl0PIP (Pending Inter-
rupt Passthrough). If GuestCtl0PIP[n] =1, then HW[n] is visible to guest context through Guest.CauseIP[n+2], other-
wise it is visible to root context through Root.CauseIP[n+2].

If GuestCtl0PIP[n]=0, but Root needs to transfer the external interrupt to Guest, then it must write to a software visible
register, GuestCtl2vIP[n] (Interrupt Pending, Virtual). This method is also used by Root to inject a virtual interrupt
into guest context. It is also a convenient way for Root to save and restore interrupt state of a Guest, if an interrupt had
been injected by Root, but needs to be preserved across context switches. In the absence of GuestCtl2vIP, Root would

 The Virtualization Privileged Resource Architecture

66 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

need to derive the equivalent of vIP by reading Guest.CauseIP which may be problematic since other interrupts could
also be present.

GuestCtl2vIP, Guest.CauseIP and Root.CauseIP handling is described below in relation to GuestCtl2vIP and
GuestCtl0PIP. The application of GuestCtl2HC is discussed below.

GuestCtl2vIP Handling:

if (MTC0[GuestCtl2vIP[n]]=1)

GuestCtl2vIP[n] ← 1

else if ((Deassertion of HW[n] and GuestCtl2HC[n]) or (MTC0[GuestCtl2vIP[n]]=0))

GuestCtl2vIP[n] ← 0

endif

Guest.CauseIP Handling:

Guest.CauseIP[n+2] = ((HW[n] and GuestCtl0PIP[n]) or GuestCtl2vIP[n])

Root.CauseIP Handling:

Root.CauseIP[n+2]

= (HW[n] and !(GuestCtl0PIP[n] or (GuestCtl2vIP[n] and GuestCtl2HC[n])))

GuestCtl2HC is provided to control how GuestCtl2vIP is reset. If a bit of GuestCtl2HC is 1, then the deassertion of
related external interrupt will always cause associated GuestCtl2vIP to be cleared. If a bit of GuestCtl2HC is 0 then the
deassertion of HW[n] will not cause GuestCtl2vIP to be cleared. In this case, it is the responsibility of root software to
clear by writing 0 to GuestCtl2vIP [n] . See Section 5.4 “GuestCtl2 Register (CP0 Register 10, Select 5)”for further
definition.

In summary, interrupt injection in guest context serves two purposes - root assignment of external interrupts and
injection of virtual interrupts to Guest. GuestCtl2HC provides the means to root software to distinguish between the
two. Root software can use this facility to transfer an external interrupt HW[n] for guest servicing. In this scenario,
GuestCtl2HC[n]=1 and the assertion of GuestCtl2vIP [n] will cause corresponding Root.CauseIP[n+2] to be cleared,
thus transparently affecting the transfer. Otherwise, Root would have to disable interrupts for that specific source by
clearing Root.StatusIM[n]. On the other hand, Root can use this capability to inject interrupts into Guest context for
guest virtual device drivers, as an e.g.. In this case, GuestCtl2HC[n]=0, the assumption is that there is no external inter-
rupt tied to the injected interrupt, and thus assertion of GuestCtl2vIP [n] should not cause Root.CauseIP[n+2] to be
cleared. Guest.CauseIP[n+2] is asserted in both cases described.

Virtual interrupt handling is an option that can be detected by the presence of GuestCtl2. Hardware clear capability is
also an option, even if virtual interrupts are supported. This capability exists if the field is writeable or preset to 1.

Figure 4.9 shows virtualized management of the Guest and Root Cause register IP field . In the absence of support for
GuestCtl2vIP , a hardware-only version of GuestCtl2vIP should be considered to exist. Root may write a 1 to the hard-
ware copy with MTGC0[CauseIP]. Root may also write a 0 to the hardware copy to clear the interrupt, whille deas-
sertion of HW[n] will also clear corresponding bit in this hardware register. In presence of GuestCtl2vIP, root writes to
Guest.CauseIP[7:2] is considered optional. The mode of a hardware shadow copy should not be implemented if virtual
interrupt capability is supported.

4.8 Interrupts

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 67

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.9 Guest and Root CauseIP (non-EIC) Virtualization

4.8.1.2 EIC Interrupt Handling

In EIC mode, the external interrupt controller (EIC) is responsible for combining internal and external sources into a
single interrupt-priority level, which appears in the CauseRIPL field.

When an implementation makes EIC mode available (as indicated by Guest.Config3VEIC=1), two interrupt prior-
ity-level signals must be generated within the EIC - one for the root context (affecting Root.CauseRIPL), and one for
the guest context (affecting Guest.CauseRIPL). The root and guest timer interrupt signals are combined in an imple-
mentation-dependent way with external inputs to produce the root and guest interrupt priority levels.

HW[n] GuestCtl0PIP[n]

set by MTC0[GuestCtl2vIP[n]]=1

Guest.CauseIP[n]

Guest PCI/Timer Interrupts

HW[n] GuestCtl0PIP[n]

Root PCI/Timer Interrupts

D

Root.CauseIP[n]

cleared by MTC0[GuestCtl2vIP[n]]=0, or

D

GuestCtl2vIP[n]

GuestCtl2vIP[n]

Deassertion of HW[n] if GuestCtl2HC[n]=1

GuestCtl2HC[n]

 The Virtualization Privileged Resource Architecture

68 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

In addition to RIPL, the interrupt Vector (offset or number), and EICSS will also be sent on each of the root and guest
interrupt buses. The Vector from the EIC is either utilized by hardware as is, or derived from the EIC input. A Gues-
tID accompanies only the root bus, providing GuestID is supported in the implementation. This is because the EIC
can also send an interrupt for guest on the root interrupt bus. Thus the GuestID for the root interrupt bus may be
non-zero. The GuestID for a guest interrupt taken in root mode must be registered in GuestCtl1EID as described in
Table 5.4. The guest associated with the guest bus is by default equal to GuestCtl1ID .

The EIC should assign interrupts to root and guest interrupt buses as per the following rules:

• Root interrupts must always be taken in root context and thus be presented on root interrupt bus by the EIC.

• If a guest interrupt requires root intervention, then it must be presented on the root interrupt bus by the EIC.
And interrupt for a non-resident guest must always be sent on the root interrupt bus. An interrupt for the res-
ident guest may also be sent on the root interrupt bus.

A guest interrupt while the processor is in root mode can cause an interrupt immediately unless masked by
Root.StatusIPL. Hardware should not stall the interrupt until the processor enters guest mode.

• Only an interrupt for a resident guest can be sent on the guest interrupt bus. If software programs the EIC to
send an interrupt for a non-resident guest on the guest interrupt bus, then an implementation of the core is
not required to respond to this interrupt. .

To allow the EIC to distinguish between resident and non-resident guests, the core must send GuestCtl1ID to the EIC.
An implementation must account for the delay between when the GuestCtl1ID changes and when it is visible to the
EIC to avoid a spurious interrupt for a non-resident guest from being sent on the guest interrupt bus.

The processor and EIC are required to implement a protocol to avoid the above mentioned race. On a guest context
switch, root software must first write 0 to GuestCtl1ID. This is equivalent to a STOP command for the EIC. EIC will
recognize this as a stall and will not send interrupts to guest context by setting the requested interrupt priority level to
0 on the guest interrupt bus to the core. Root software can then save and restore guest context, followed by a write of
new GuestID to GuestCtl1ID . Once the write is complete, root software can enable guest mode operation. If an EIC
implementation and root software follow this recommendation, then this prevents loss of an interrupt posted to the
guest interrupt bus while root is switching guest context. An interrupt for the formerly active guest will now be posted
on the root interrupt bus.

An EIC mode interrupt is generated in either guest or root context whenever hardware detects a change in RIPL on
the respective interrupt buses from the EIC. It is possible for an EIC implementation to have active interrupts on both
bus. In this case the root interrupt is always higher priority then the guest interrupt.

For the case of an interrupt in root context, two different interrupt vectors are used, one for root, the other for guest.
Hardware is able to distinguish between the two by checking the GuestID on the root interrupt bus. If GuestID is zero,
then it uses 0x200+Vector as interrupt vector, otherwise it uses 0x200 as interrupt vector.

If the interrupt is for guest, then the handler must compare GuestCtl1EID to GuestCtl1ID. If they are not equal, then
interrupt is for non-resident guest, and interrupt servicing may either continue in root or guest context. If interrupt
servicing is to continue in guest context, then the handler must first save the resident guest architected state (CP0,
GPRs etc) following by a restore of the new guest’s context. The root ERET instruction causes a transfer to guest
mode (when GuestCtl0GM=1), followed by a guest interrupt providing GuestCtl2GRIPL is non-zero.

If GuestCtl1EID and GuestCtl1ID are equal, then save and restore is not needed. Interrupt servicing may either
continue in root or guest context. If the interrupt is to be serviced in guest context, then the root ERET instruction

4.8 Interrupts

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 69

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

causes a change to guest mode (when GuestCtl0GM=1), following by a guest interrupt providing GuestCtl2GRIPL is
non-zero.

As described above, for any change in GuestCtl1ID, root software must first insert a STOP command on interface to
EIC by writing 0 to GuestCtl1ID. Once quiescent, root software may execute whatever software sequence it needs to.
This is followed by a write of new GuestID to GuestCtl1ID, then the root ERET instruction. There may be some
arbitrary delay between write of GuestID and ERET instruction where EIC can respond with an interrupt on guest
bus, but hardware will not trigger an interrupt because processor is in root mode.

A root interrupt must use Root.SRSCtlEICSS. Otherwise, hardware forces use of Root.SRSCtlESS if the interrupt on the
root interrupt bus is for any guest.

The guest interrupt in the scenario where the interrupt is transferred from root context after having been received on
the root interrupt bus is caused when the processor enters guest mode and hardware detects that GuestCtl2GRIPL is
non-zero.

Once in guest mode, the guest interrupt handler completes with an ERET instruction. The guest will continue
execution from its EPC, and not transfer back to root mode even if there was a change in guest context. If a return to
root mode is required, then the HYPERCALL instruction must be used.

The root CP0 register, GuestCtl2, where the root interrupt bus Vector, EICSS and RIPL is described in Section
5.4 Storage in root CP0 state is required because in a typical EIC-based implementation, an acknowlegement is
returned to the EIC when the interrupt is triggered. If an interrupt for the guest is initially triggered in root context,
then the use of these fields will not occur until the root ERET instruction is executed to effect a change to guest mode.
In the meanwhile, another root interrupt can occur which can overwrite the fields on the bus. Saving the fields as root
CP0 register allows for nesting of these fields, and thus supports nesting of interrupts.

Hardware optimizes the transfer of GuestCtl2GRIPL and GuestCtl2EICSS into guest CP0 context on guest entry.
Hardware will write GuestCtl2GRIPL to Guest.CauseRIPL, and GuestCtl2EICSS to Guest.SRSCtlEICSS providing
GuestCtl2GRIPL is non-zero. Root software thus has the option of preventing hardware transfer by clearing
GuestCtl2GRIPL before guest entry.

In the case where root injects an interrupt into guest context after the interrupt was received on the root interrupt bus,
hardware must ensure that two acknowledgements are not returned to the EIC as this may cause a loss of an interrupt.
In the case where an interrupt is received on the root interrupt bus, hardware must always send an acknowledgement
on the root interrupt bus. But in the case where the interrupt was injected into guest context by root, hardware should
not send an acknowledgement on the guest interrupt bus as the interrupt was not received on this bus. Hardware can
determine this because GuestCtl2GRIPL would be a non-zero value for the case of root injection.

The overhead of saving and restoring guest CP0 context can be minimized. Table 4.7 indicates which guest CP0
registers will cause a Guest Physical Senstive Instruction (GPSI) on guest access, and under what root configuration.
Root software can opportunistically save/restore those guest CP0 registers which cause, or can be configured to cause
a GPSI.

Guest GPR Shadow Sets are protected by virtual mapping to physical Shadow Sets. Section 4.9.1 “General Purpose
Registers and Shadow Register Sets” describes how root enables virtual mapping for a guest. For the virtual map for
Guest GPR Shadow Sets to be enabled, GuestCtl3GLSS must be written by root with appropriate value for the guest. It
is assumed that Guest.SRSCtl is saved and restored.

 The Virtualization Privileged Resource Architecture

70 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Access to COP1 FPR and COP2 may be protected setting Root.StatusCU[2:1] appropriately. If access is disabled in
root context, then it is also disabled in guest and will cause the appropriate exception (Coprocessor Unusable in root
context). Hi/Lo registers are not protected by any means, and must be saved/restored if necessary.

4.8.2 Derivation of Guest.CauseIP/RIPL

The interrupt pending value seen by the guest is calculated as shown below. The result value can be read by the guest
(and the root) from the Guest.CauseRIPL / IP field and is the value used to determine whether a guest interrupt will be
taken. Note that the value returned from Guest.CauseRIPL / IP on a read is generated from the value originally written
by the root and from the status of directly assigned external interrupts. Hence the value written by the root may not be
equal to the value read back.

4.8 Interrupts

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 71

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Returns:
Non-EIC IP7..0.
EIC - (RIPL << 2) + IP1..0

subroutine GuestInterruptPending() :

if ((Guest.Config3VEIC = 1) and
(Guest.IntCtlVS != 0) and
(Guest.CauseIV = 1) and
(Guest.StatusBEV = 0)) then
Guest in EIC mode
- GuestCtl0PIP does not apply in EIC mode.
- EIC must include guest interrupt sources in the EICGuestLevel signal
- This includes Guest’s TI, IP1, IP0 and PCI if implemented.

- FDCI is only visible in root context.
- GuestCtl2 required in EIC mode.
if (EICGuestLevel > GuestCtl2GRIPL)

irq ← EICGuestLevel
else

irq ← GuestCtl2GRIPL
h/w must clear if GuestCtl2GRIPL is source of interrupt.
GuestCtl2GRIPL ← 0

endif
Guest.CauseIP[1:0] is incorporated in EIC.
State of Guest.CauseIP[1:0] is however preserved.
r ← (irq << 2) OR Guest.CauseIP[1:0]

else
Guest in non-EIC mode
- External interrupts factored in if guest passthrough enabled.
- Internal interrupts applied here, if implemented
- Includes support for guest interrupt injection by root.
irq[7:2] ← HW[5:0]
if (GuestCtl0PT=0)

All interrupts processed first by root.
if (GuestCtl0G2=1)

root software injects interrupts.
r ← GuestCtl2vIP[5:0]

else
if GuestCtl2vIP is not supported, then root writes Guest.Cause.IP
to inject interrupt in guest context. H/W captures the write in a
shadow register called Root_HW_VIP.
r ← Root_HW_VIP[5:0]

endif
else

Guest interrupt passthrough supported.
if (GuestCtl0G2=1)

r ← Root.GuestCtl2vIP[5:0] OR (irq[7:2] AND Root.GuestCtl0PIP[5:0])
else

r ← Root_HW_VIP[5:0] OR (irq[7:2] AND Root.GuestCtl0PIP[5:0])
endif

endif
r ← r << 2
r ← r OR (GuestTimerInterrupt << Guest.IntCtlIPTI)
r ← r OR (PCIEvent << Guest.IntCtlIPPCI)
r ← r OR Guest.CauseIP[1:0]

endif

 The Virtualization Privileged Resource Architecture

72 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

return(r)
endsub

The value returned by GuestInterruptPending() will subsequently be qualified by Guest StatusIM in non-EIC mode or
Guest StatusIPL in EIC mode, as per the base architecture.

Fields in Guest Config registers indicate which interrupt options are available to the guest.

4.8.3 Timer Interrupts

Root may inject a timer interrupt in guest context by setting Guest CauseTI and indirectly Guest CauseIP[IPTI]. This
may happen under the scenario where a guest has been switched out, but its virtual timer, maintained by root, is trig-
gered. Root would set Guest CauseTI before entering guest mode for the guest. Guest would take a timer interrupt,
clear Guest Compare, which would then clear Guest CauseTI. As per baseline MIPS architecture, a write to Compare
will clear CauseTI.

Root maintaining a virtual timer for a guest is recommended if there are multiple guests in operation. Otherwise, if
there is only one guest, but the processor is in root mode, then a match on Guest Count and Guest Compare is allowed
in an implementation to set Guest CauseTI and Guest CauseIP[IPTI]. Once Root transitions to guest mode, then guest
timer interrupt can be signaled in guest mode.

Root Injection of Guest TI:

if (MTGC0[Guest.CauseTI]=1)

Root.Guest.CauseTI ← 1

else if ((MTC0[Guest.Compare]))

Root.Guest.CauseTI ← 0

endif

where Root.Guest.CauseTI is a hardware shadow copy of Guest.CauseTI that is set when Guest.CauseTI is written by
Root.

Guest.CauseIP[IPTI] = Root.Guest.CauseTI or “Other External and Internal interrupts”.

where “Other External and Internal interrupts” is defined in Section 4.8.2 “Derivation of Guest.CauseIP/RIPL”.

4.8.4 Performance Counter Interrupts

Root can configure the definition of performance counters in the Guest context via Guest Config1PC as follows:

• Guest Config1PC=0, then performance counters are unimplemented in the guest context, access is UNPRE-
DICTABLE.

• Guest Config1PC=1, the performance counters are virtually shared by root and guest contexts.

The PerfCnt register(s) are never implemented in the Guest context. A Guest may have direct access to virtual perfor-
mance counter registers under root software management when Config1PC=1. If virtually shared, the encodings of
PerfCntEC as 0 or 1 cause a GPSI Exception to be raised on Guest access to a performance counter register. Root
software may choose to configure performance counters for legal Guest access by encoding PerfCntEC as 2 or 3.

4.9 Instructions and Machine State, other than CP0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 73

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Software may choose to assign all performance counters to Guest or Root, but not both. This is the recommended pol-
icy for sharing between Root and Guest. Root will typically configure Guest access when it initializes guest context.
If assigned to Guest then Guest access will not cause a GPSI Exception.

Alternatively, an implementation may optionally choose to assign a subset of the total PerfCnt registers in Root CP0
context to Guest. Read of guest PerfCnt(N)M should return root PerfCnt(N+1)EC[1] to indicate PerfCnt(N+1) is
owned by guest. If all PerfCnt pairs are allocated to guest, then guest read of the last M bit must return 0. Guest Per-
fCnt pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is
further assumed that the allotment of performance counters to a guest is not dynamic - once established after initial
guest access (which caused GPSI), then the allotment must remain as such for duration of guest.

Once assigned to Guest or Root (default) context, that context independently manages the performance counters,
including interrupts. E.g., if the performance counters are enabled for Root, then Root CausePCI and Root
CauseIP[IPPCI] are set by hardware on counter overflow. Otherwise, counter overflow sets Guest.CausePCI and
Guest.CauseIP[IPPCI].

If Root software needs to inject a performance counter interrupt into Guest context, it must do so by setting the
most-significant bit of the PerfCnt counter. Similarly Root may clear a guest performance counter interrupt by clear-
ing the most-significant bit of the counter. Thus, Root does not require the ability to read/write Guest.CausePCI.

The PerfCntEC field is Root only virtualization control and is not visible to the Guest.

PerfCnt use of Status register K, S, U, and EXL fields is taken from the current Root or Guest context.

PerfCnt interrupt behavior is solely governed by PerfCntIE, enabled context Status register interrupt masks and
enable.

4.9 Instructions and Machine State, other than CP0

The Virtualization Module adds guest-mode context to duplicate privileged state, which is located in Coprocessor 0.
Typically, all machine state located outside Coprocessor 0 is shared by guest and root contexts and thus would require
save or restore by Root between context switches. Alternatively, in limited cases, state may be virtually shared among
different contexts as in the case of GPR Shadow Sets.

4.9.1 General Purpose Registers and Shadow Register Sets

Guest SRSCtl and SRSMap are optional in guest CP0 context. The following cases apply to use and implementation
of these CP0 registers.

1. No shadow sets are implemented. In this case, guest access to SRSCtl and SRSMap, or guest use of RDPGPR or
WRPGPR always cause a GPSI. Root would return emulated Guest SRSCtlHSS=0 in guest context to indicate to
guest that no shadow sets are present.

2. Shadow sets are implemented in root context only. In this case, guest access to SRSCtl and SRSMap, or guest use
of RDPGPR or WRPGPR always causes a GPSI. Root software would return emulated SRSCtlHSS=0 on guest
read of SRSCtl to indicate that no shadow sets are present in guest context. Hardware would return SRSCtlHSS =0
on root read of guest SRSCtl, while root writes to guest SRSCtl are ignored.

Guest is provided Root.SRSCtlCSS as its set of GPRs.

 The Virtualization Privileged Resource Architecture

74 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

3. Shadow sets are implemented in root context, and virtually shared between root and guest. In this case, guest
SRSCtl and SRSMap must be present in guest CP0 context. Guest access to SRSCtl and SRSMap will cause GPSI
to prevent guest from defining writeable SRSCtl fields specifically SRSCtlESS/PSS. Guest use of RDPGPR or
WRPGPR will not cause a GPSI as these instructions refer to guest SRSCtlPSS which is writeable only by root -
guest writes to SRSCtlPSS always cause a GPSI.

The case where Shadow Sets are implemented in guest context is not discussed in this section - it is not recommended
due to the overhead of guest context save and restore of Shadow Sets. A mechanism of virtual sharing of a unique set
of Shadow Sets amongst guests is thus not provided.

In the case of virtual sharing, the read-only field guest SRSCtlHSS must be writeable by root. This allows root software
to set the total number of Shadow Set available to guest, which is equal to guest SRSCtlHSS . The Lowest Shadow Set
is specified by GuestCtl3GLSS. Guest use will always assume GuestCtl3GLSS to GuestCtl3GLSS plus Guest SRSCtlHSS

physical Shadow Sets as available to the guest. Root can write Guest SRSCtlESS/PSS with (D)MTGC0 instructions.

A non-zero GuestCtl3GLSS is useful if a large number of Shadow Sets are implemented and can be physically
partitioned among guests and root. Prior to guest entry, root would write GuestCtl3GLSS and guest SRSCtlHSS to define
the continuous range of Shadow Sets available to the guest. This range should be non-overlapping with any other
guests and root’s range to avoid the overhead of save and restore. Root would also write Guest SRSCtlESS/PSS. Root
may also choose to write guest SRSCtlEICSS , taking the example of an EIC (External Interrupt Controller) interrupt.
In this case, root would read GuestCtl1EID then write this value to SRSCtlEICSS. unless hardware implements the
transfer itself, as described in Section 4.8.1.2 .

Hardware must offset SRSCtlESS/PSS by GuestCtl3GLSS before access of corresponding Shadow Set for guest.
Similarly, the EIC, if supported, would drive a virtual EICSS. The virtual EICSS is registered and offset similarly
before use.

A zero (default) GuestCtl3GLSS is useful is there are few Shadow Sets. Root may allocate one set for all guests, and
one set for root. Any switch between guests would require a save and restore of the related Shadow Set.

Guest SRSCtlEICSS is set by EIC. EIC must be root managed since it is a shared resource and thus access must be
virtualized amongst guests. Guest SRSCtlEICSS must always fall in guest range of Shadow Sets.

4.9.1.1 Pseudo-code for Shadow Set Handling

The pseudo-code below uses the logical term GSRSEn specifically to indicate whether Shadow Sets are available in
guest context.

GSRSEn ← (Guest.SRSCtl.HSS > 0) ? 1 : 0;

Guest Shadow Sets are thus available if Shadow Sets are implemented in guest context (not recommended), or virtu-
ally-shared between root and guest (case 3).

Determination of Current and Previous Shadow Sets:

// Mode-specific CSS
Current_Shadow_Set (SRSCtlCSS) ←

guest_mode and GSRSEn ? Guest.SRSCtlCSS + GuestCtl3GLSS : Root.SRSCtlCSS ;

In the case where the processor is in guest mode and GRSEn=0 (e.g., case 2), guest will share
Root.SRSCtlCSS Shadow Set with root.

4.9 Instructions and Machine State, other than CP0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 75

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

// Mode-specific PSS, effective for RDPGPR/WRPGPR.
Previous_Shadow_Set (SRSCtlPSS) ←

guest_mode and GSRSEn ? Guest.SRSCtlPSS + GuestCtl3GLSS :

guest_mode and not GSRSEn ? <GPSI> : Root.SRSCtlPSS ;

In the case where the processor is in guest mode and GRSEn=0 (e.g., case 2), guest use of RDPGPR/WRPGPR will
cause a GPSI.

Events that update Root or Guest PSS and CSS:

Exception taken in root mode

Root.SRSCtlPSS ← Root.SRSCtlCSS;

Root.SRSCtlCSS ← Root.SRSCtlESS/EICSS or Root.SRSMapSSVx

This behavior is also applicable to exceptions taken in guest mode that cause a guest-exit to root mode.

Exception taken in guest mode, with GSRSEn = 1

Guest.SRSCtlPSS ← Guest.SRSCtlCSS
Guest.SRSCtlCSS ← Guest.SRSCtlESS/EICSS or Guest.SRSMapSSVx

In this case that the exception originates and is taken in guest mode.

Exception taken in guest mode, with GSRSEn = 0

Not Applicable.

ERET executed in root mode

Root.SRSCtlCSS ← Root.SRSCtlPSS

This is applicable to an exception taken in root mode, or an exception that causes a guest-exit to root mode.

ERET executed in guest mode, with GSRSEn=1:

Guest.SRSCtlCSS ← Guest.SRSCtlPSS

ERET executed in guest mode, with GSRSEn=0:

Not Applicable.

4.9.2 Multiplier Result Registers

The guest and root contexts share the multiplier result registers LO and HI.

4.9.3 DSP Module

The guest and root contexts share the DSP Module, if it is implemented. The DSP Module is available to the guest
context when Guest.Config3DSPP=1.

 The Virtualization Privileged Resource Architecture

76 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

During guest mode execution, access to the DSP Module is controlled by the StatusMX bits from both the root and
guest contexts. The DSP/MDMX enable bit Guest.StatusMX is checked first. If access is not granted, a DSP Module
state unusable exception is taken in guest mode.

The Root.StatusMX bit is checked next. If access is not granted by the Root.StatusMX bit, a DSP Module state unus-
able exception is taken in root mode.

Root has the ability to deconfigure DSP resources in guest context by writing Config3DSPP and Config3DSP2P. as
given in Table 4.10. The writeable state of Guest.StatusMX, as visible in guest context, is dependent on
Guest.Config3DSPP only. An implementation may choose to limit root writeability to Guest.Config3DSPP as selective
enabling of DSP and DSP Revision 2 is not recommended in implementations. As a consequence of deconfiguration
either all DSP resources are available to guest or none.

4.9.4 Floating Point Unit (Coprocessor 1)

The guest and root contexts share the Floating Point Unit, if it is implemented. The floating point unit is available to
the guest context when Guest.Config1FP=1.

During guest mode execution, access to the floating point unit is controlled by the StatusCU1 bits from both the root
and guest contexts. The coprocessor enable bit Guest.StatusCU1 is checked first. If access is not granted, a coproces-
sor unusable exception is taken in guest mode.

The Root.StatusCU1 bit is checked next. If access is not granted by the Root.StatusCU1 bit, a coprocessor unusable
exception is taken in root mode.

4.9.5 Coprocessor 2

The guest and root contexts share coprocessor 2, if it is implemented. Coprocessor 2 is available to the guest context
when Guest.Config1C2=1.

During guest mode execution, access to the coprocessor 2 is controlled by the StatusCU2 bits from both the root and
guest contexts. The coprocessor enable bit Guest.StatusCU2 is checked first. If access is not granted, a coprocessor
unusable exception is taken in guest mode.

The Root.StatusCU2 bit is checked next. If access is not granted by the Root.StatusCU2 bit, a coprocessor unusable
exception is taken in root mode.

4.9.6 MSA (MIPS SIMD Architecture)

The guest and root contexts share the MSA module, if it is implemented. The MSA module is available to the guest
context when Guest.Config5MSAEn=1.

During guest mode execution, access to the MSA module is controlled by the Config5MSAEn bits from both the root
and guest contexts. Guest.Config5MSAEn is checked first. If access is not granted, a MSA disabled exception is taken
in guest mode.

The Root.Config5MSAEn bit is checked next. If access is not granted by Root.Config5MSAEn, a MSA disabled exception
is taken in root mode.

4.10 Combining the Virtualization Module and the MT Module

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 77

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.10 Combining the Virtualization Module and the MT Module

The MIPS MT Module defines a set of instructions and machine state which are used to implement multithreading.
The presence of the MT Module is indicated by the Config3MT field.

Like the Virtualization Module, the MT Module provides duplicate Coprocessor 0 state. A single MIPS CPU can con-
tain multiple Virtual Processing Elements (VPEs). Each of these VPEs uses a separate set of general purpose registers
(GPRs), and a separate CP0 context. Mechanisms for controlling one VPE from another are provided, to allow for
system initialization and control.

Each VPE runs a separate and independent program - a ‘thread’. Switching between VPEs happens very rapidly - for
example switching to a different VPEs on each cycle.

When used in a Symmetric Multi-Processing (SMP) configuration, the MT Module allows a single CPU core to
appear to software as multiple CPU cores which are simultaneously executing, using the same physical address space
accessed through a common set of L1 caches.

Figure 4.10 A MT Module processor equipped with three VPEs

The Virtualization Module enables virtualization for a single thread of execution. Multiple CP0 contexts are present
(guest and root), but general purpose registers (GPRs) and coprocessor registers are shared. A single thread of execu-
tion covers the hypervisor software, guest kernel software, and guest-user software.

The Virtualization Module and MT Module can co-exist in the same processor. Each VPE is treated like a separate
processor - the pre-existing machine state of each VPE is accessible to root mode, and the new guest mode and guest
CP0 context are added. In such a machine, Root.Config3MT=1 and Root.Config3VZ=1.

Figure 4.10 shows a MT Module processor equipped with three VPEs and the Virtualization Module.

CPU

VPE0

GPRs

CP0 context

Program Counter

VPE1

GPRs

CP0 context

Program Counter

VPE2

GPRs

CP0 context

Program Counter

 The Virtualization Privileged Resource Architecture

78 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.11 A MT Module processor equipped with three VPEs and the Virtualization Module

The ‘onion model’ would in theory allow a processor to be built which would incorporate MT Module state and
instructions within the guest context (Guest.Config3MT=1), but this is not recommended. The guest context of a real-
istic machine will not contain the MT Module - hence Guest.Config3MT=0. When Guest.Config3MT=0, then
(D)MTC0 and (D)MFC0 of MT Module CP0 registers are UNPREDICTABLE and attempts to execute MT Module
instructions result in a Reserved Instruction exception in Guest context.

Hypervisor software running on each VPE manages the thread of execution for that VPE - as in a multi-core system.
The hypervisor software controls the physical address space and privileges of each guest - for example whether the
VPEs share a common physical address space (e.g. a SMP machine), or are configured to be entirely separate.

A trap-and-emulate approach is required for full virtualization of a guest which uses the MT Module (though this is
not recommended). MT Module registers are never present in Guest CP0 context, even if the intent is to emulate.
Root would write Guest.Config3MT=1 to simulate presence of MT Module in guest context. Any guest-kernel access
to MT Module registers, guest use of MT instructions will trigger a Guest Privileged Sensitive Instruction exception.

When multiple guest virtual machines are running on a single-threaded machine, switches between guests occur tens,
hundreds or thousands of times per second. When a context switch takes place the outgoing guest’s machine state is
read out and saved, and the incoming guest’s machine state is loaded and restored. The processor is controlled by one
hypervisor instance, which is in control of the root context.

When multiple guest virtual machines are running on a multi-core machine, switches between guests on each core
may still occur tens or hundreds of times per second, using the context switch method. However, multiple guests can
be run simultaneously - one on each processor core. A distinct hypervisor instance on each processor is in control of
that processor’s root context - these hypervisor instances communicate to achieve shared goals, as in a traditional
SMP system.

A similar arrangement is used when multiple guest virtual machines are running on a single-core multi-threaded
machine. Switches between guests are achieved on a cycle-by-cycle basis - as the processor switches between VPEs.
Multiple guests can run simultaneously - one on each VPE. A distinct hypervisor instance on each VPE is in control
of that VPE’s root context.

CPU

VPE0

GPRs

Root CP0 context

Program Counter

VPE1

GPRs

Program Counter

VPE2

GPRs

Program Counter

Guest CP0 context

Root CP0 context

Guest CP0 context

Root CP0 context

Guest CP0 context

4.10 Combining the Virtualization Module and the MT Module

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 79

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

This concept can be further extended to a multi-threaded, multi-core machine. Each processor core features multiple
VPEs, each of which has its own guest context. A distinct hypervisor instance is present on each VPE and in control
of the root context.

The MT Module and Virtualization Module provide complementary feature sets, which allow hypervisor software the
flexibility to schedule guest virtual machines on separate cores, on separate VPEs, and to schedule using traditional
time-sharing methods.

 The Virtualization Privileged Resource Architecture

80 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.11 Guest Mode and Debug features

The Virtualization Module provides full access to Debug facilities implemented through the EJTAG interface.

When the processor is running in Debug privileged execution mode, it has full access to all resources that are avail-
able in the Root context.

As per Table 4.1, The Debug privileged execution mode exists in the root context. A processor supporting virtualiza-
tion operates in two contexts, Root and Guest. Within Guest, there are three privileged execution modes; kernel,
supervisor and user, and in Root context, there are four; kernel, supervisor, user and debug.

Table 4.15 lists debug features and their application to the Virtualization Module.

Table 4.15 Debug Features and Application to Virtualization Module

Feature Description Reference

Debug mode Guest mode is mutually exclusive with Debug mode. When in
Debug mode (DebugDM=1), the processor is not in guest mode.

Section
4.4.3 “Definition
of Guest Mode”

When the processor is running in Debug mode, it has full access to
all resources that are available to Root-Kernel mode operation.

MIPS EJTAG
Specification.
Section 7.2.3 -
Debug Mode

Handling of Pro-
cessor Resources

Debug Segment (dseg) When the processor is running in Debug mode, the memory map is
determined by the root context. Memory mappings are unchanged
from the MIPS32 and EJTAG specifications.

MIPS EJTAG
Specification.
Section 7.2.2 -
Debug Mode

Address Space

Access to guest CP0 context Debug tools access general purpose registers (GPRs) and coproces-
sor registers by executing instructions in the processor pipeline.

Access to the guest CP0 context must use the Virtualization Module
instructions provided to transfer data between the root and guest
contexts - MTGC0 and MFGC0.

Accesses to the guest TLB must use the instructions provided to ini-
tiate guest TLB operations from the root context - TLBGP, TLBGR,
TLBGWI, TLBGWR. These operations are used to transfer data
between the guest TLB and the guest CP0 context. When accessing
the guest TLB in debug mode, a two-step process is required - to
transfer data to/from the guest CP0 context and guest TLB, and to
transfer data to/from the root CP0 context and guest CP0 context.

Section 4.6.2

Hardware Breakpoints When implemented, hardware breakpoints are part of the root con-
text. The root context remains active during guest mode execution,
allowing hardware breakpoints to be used to debug guest software.

Exceptions resulting from hardware breakpoints are of type Syn-
chronous Debug or Asynchronous Debug. In both cases, the excep-
tions are handled in Debug mode.

Section 4.7.4

4.12 Watchpoint Debug Support

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 81

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.12 Watchpoint Debug Support

Root and Guest Watchpoint debug support is provided by Coprocessor 0 WatchHi and WatchLo register pair(s). These registers are present
in Root if Root Config1WR=1 and in Guest if Guest Config1WR=1 .

An implementation may choose to provide no Watch register support, Root-only Watch register support, or Root and Guest Watch register
support.

In Table 4.16, the state of Guest Config1WR. conveys what support is available to Guest.

Root-only Watch registers (Root Config1WR=1 and Guest Config1WR=0) allows for Root Watch of Root Virtual Addresses (RVA), and

optionally Guest Physical Addresses (GPA). Root Watch of GPA in this configuration is enabled through Root WatchHiWM[0].

If both Root and Guest Watch registers are present (Guest Config1WR=1), then Root and Guest Watch will operate independently. Watch

exceptions detected on match will be taken in respective modes.

The Virtualization Debug definition also allows for virtual Guest Watch via Root Watch registers (Guest Config1WR=0/1). This feature is

optional. Root Software can test R/W state of Guest Config1WR to determine whether virtual Guest Watch registers are supported.

Watch registers Support for use of watchpoint from the Guest is optionally provided. Refer to Section
4.12 “Watchpoin
t Debug Support”

Table 4.16 Guest Watchpoint Support

Guest
Config1WR Value R/W State Function

0 R No Guest Watch
registers.

1 R Guest Watch reg-
isters present.

0/1 R (Guest)
R/W (Root)

Virtual Guest
Watch support

provided.

Table 4.17 Watch Control

Guest
Config1WR Value

(in R/W State)
Root

WatchHiWM[1:0] Function

Guest
Exception on

Access

Guest
Exception on

Match
Root

Exception

0 X0 Root Watch RVA UNPREDICTABLE None Watch

0 X1 Root Watch GPA (optional) UNPREDICTABLE None Watch

1 00 Root Watch RVA GPSI None Watch

1 01 Root Watch GPA (optional) GPSI None Watch

1 10 Guest Watch GVA None Watch None

1 11 Reserved - - -

Table 4.15 Debug Features and Application to Virtualization Module

Feature Description Reference

 The Virtualization Privileged Resource Architecture

82 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

There is no support for Root emulation of Guest watch registers. Root emulation of Guest watch registers would require that every guest read
and write trap to Root. In sharing mode, once a watch register pair is assigned to Guest, Guest can setup registers without Root intervention.

Referring to Table 4.17, if Guest Config1WR=0, then no watch register pairs are enabled for Guest watch. A Guest access will be treated as

as UNPREDICTABLE. Recommended implementations may either no-op both MTC0 and MFC0, trap to Root software with a GPSI, or
no-op an MTC0 and return 0s on MFC0. If Guest Config1WR=1, then a Guest access is treated normally except a MTC0 cannot modify

WatchHiWM, and an MFC0 will return 0s for WatchHiWM.

If Guest Config1WR=1, then selected Root Watch register pairs are enabled for Root or Guest watch. Referring to Table 4.17, this is deter-

mined by Root WatchHiWM[1]. Root WatchHiWM[0] determines whether Root is watching RVA or GPA. Root Watch of GPA is optional. If

not supported, then a write of 1 to Root WatchHiWM[1:0], will write 0, defaulting to RVA watch.

If under Guest control, Guest can only watch GVA. A write of 3 to Root WatchHiWM[1:0], will write 2 in this configuration, defaulting to

GVA watch. Root can take away privilege from Guest at any time by writing to Root Watch registers. Root access will thus not take an
exception on access of a shared pair of registers under Guest control. If under Root control with Root WatchHiWM[1]=0 then a Guest access

will result in a GPSI. Root may choose to assign this register pair to Guest at this point, or return to the guest instruction following the move.

Guest watch is enabled strictly in guest mode as defined by the equation:
(Root.GuestCtl0GM = 1 and Root.StatusEXL = 0 and Root.StatusERL = 0 and Root.DebugDM = 0)

There is no facility for Guest to watch addresses related to Root intervention events. That is, events occuring when the following equation is
true:

(Root.GuestCtl0GM = 1 and (Root.StatusEXL = 1 or Root.StatusERL = 1 or Root.DebugDM = 1))

In an implementation that supports virtual sharing between Root and Guest, Root software may choose to assign all WatchHi and WatchLo to
Guest or Root, but not both. This is the recommended policy for sharing between Root and Guest. If assigned to Guest then Guest access will
not cause a GPSI exception.

Alternatively, an implementation may optionally choose to assign a subset of the total Watch register pairs in Root CP0 context to Guest for
simultaneous use by Guest and Root. Read of guest WatchHi(N)M should return root WatchHi(N+1)WM[1] to indicate to guest software that

root WatchLo/Hi(N+1) is owned by guest. If all pairs are allocated to guest, then read by guest of the M bit in the last register pair should
return 0. Initial access by guest to the Watch registers will result in a GPSI exception, allowing Root to configure Watch registers for guest
use. Watch register pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is further
assumed that the allotment of Watch registers to a guest is not dynamic - once established after initial guest access (which caused GPSI) or
on guest configuration by root software, then the allotment must remain as such for duration of guest operation.

4.13 Virtualization Module features and Hypervisor Software

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 83

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.13 Virtualization Module features and Hypervisor Software

The Virtualization Module provides many features which are intended as optimizations to reduce the number of
hypervisor traps required, and to reduce the length of each hypervisor intervention.

Table 4.18 describes an outline of the design intent of each feature, and how it is expected to be used in a virtualized
system. It is intended to be treated as a guideline, and does not aim to specify how software should be implemented.

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

Guest mode The Guest Mode allows for a “limited privilege” kernel mode, in addition to
the existing modes within the MIPS32 Privileged Resource Architecture.

The separation of privileges between user and kernel modes is duplicated in
guest mode, through the use of the guest-user and guest-kernel modes. This is
intended to minimize virtualization overhead on mode transitions within a
guest.

A separation is introduced between the existing full-privilege kernel mode and
the limited-privilege guest-kernel mode. This enables a hypervisor to selec-
tively grant access to system resources through emulation, address translation
or by granting direct access.

Separate Guest CP0 context A partial CP0 context is provided for use when in guest mode.

The guest CP0 context includes registers for processor status, exception state
and timer access. Depending on the options chosen by the implementation, the
guest CP0 context can also include registers to control segmentation and hard-
ware page table walking within the guest context.

The separate CP0 context for the guest reduces the context switch overhead
when transitioning between root and guest modes. An interrupt or exception
causing an exit from guest mode can be immediately handled using the origi-
nal (root) CP0 context without additional context switching.

The guest CP0 context is partially populated. Guest accesses to registers which
are not included can be emulated by hypervisor handling of guest exceptions.

The registers chosen to be included in the guest CP0 context are either neces-
sary to control guest mode operation, or are so frequently accessed by guest
kernels that trap-and-emulate is impractical.

 The Virtualization Privileged Resource Architecture

84 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Simultaneously active guest and root
CP0 contexts

During guest mode execution the guest CP0 context is used, but the original
(root) CP0 context remains active. This permits an ‘onion model’ whereby
guest activities are first checked against the guest CP0 context, and then
against the root CP0 context. Exceptions are taken in the mode whose context
triggered the exception.

Systems controlled by the root CP0 context continue operating during guest
mode execution. This includes CP0-controlled systems such as performance
counters and breakpoints. It also includes logic which detects external inter-
rupts and serious exceptions such as NMI, Bus Error or Cache Error. The
onion model allows the pre-existing programming interface for these systems
to be retained, and for their continued operation during guest mode execution.

The addition of the guest-mode CP0 context allows an inner layer of systems
to be used by the guest without hypervisor intervention. For example, the guest
interrupt, timekeeping and address translation systems can be programmed
and maintained by the guest kernel. Since these systems are active only during
guest mode execution, and the pre-existing root-context systems remain active,
little hypervisor intervention is required, as the guest cannot inflict damage to
the root.

When an exception returns control to root mode during guest mode execution,
the guest context is immediately disabled. No context switch is required. The
presence of two separate contexts allows for an immediate entry to the
root-mode exception handler, using the root-mode exception state. On exit, an
immediate return to the guest is possible. No time-consuming memory
accesses for context switch are required.

Following the rules of the ‘onion model’, access to coprocessors must be
enabled by both the guest and original CP0 contexts. This allows for lazy con-
text switch of coprocessors (for example, the floating point unit) when switch-
ing between guests.

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

4.13 Virtualization Module features and Hypervisor Software

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 85

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Dual-level address translation and
guest TLB

In a fully virtualized system, the ‘onion model’ is applied to address transla-
tion.

Memory accesses from the guest are translated using the guest context Seg-
ment Configurations and the guest context TLB. Exceptions or TLB refills
resulting from this translation step are handled by the guest. The result is a
‘guest physical’ address (GPA).

The root TLB (the original TLB) is used to perform a second level of transla-
tion - from the ‘guest physical’ address to a machine physical address. Excep-
tions or TLB refills resulting from this translation step are handled by the
hypervisor, using the pre-existing TLB exceptions, or the new hardware page
table walking system.

This arrangement allows the guest kernel to maintain its own page tables
which map guest-virtual to guest-physical addresses. The guest kernel can
handle TLB refills and other exceptions without hypervisor intervention.

The hypervisor maintains a separate page table which maps guest-physical
addresses to machine physical addresses. The hypervisor is not required to
parse or otherwise interpret the guest page tables, or to maintain a page table
on behalf of the guest. No hypervisor knowledge of guest-virtual addresses is
required.

The two translation systems operate independently, greatly simplying the soft-
ware architecture. Despite the two levels of translation, hardware implementa-
tions ensure that each memory access is translated only once within processor
pipeline stages. This is done by dynamically creating single-level translations
which combine the translations held within both guest and root TLBs.

If the root TLB and guest TLB use the same page size, a guest TLB refill is
likely to require a root TLB refill. When the root TLB uses page sizes larger
than those used by the guest operating system, the number of root TLB refills
can be reduced.

Guest context Config0-7 registers The guest context includes its own set of Config0-7 registers. These are used

for two purposes within a virtualized system.

The first purpose is to indicate to hypervisor software how the guest context is
configured in the particular hardware implementation. For example the hyper-
visor can determine the size of the guest TLB, and which optional features are
included.

The second purpose is for the hypervisor software to indicate to the hardware
implementation how the guest context should behave. Hardware implementa-
tions can choose to allow writes to fields within guest context Config0-7 regis-

ters.
This allows the hypervisor to enable or disable certain architectural features,
or to change the virtual machine behavior seen by the guest.

The guest Config0-7 register are primarily intended for use by hypervisor soft-

ware, but access by guest kernels can be enabled. Given the infrequent access
to Config0-7 registers, it is likely that a hypervisor would choose to trap and

emulate guest accesses.

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

 The Virtualization Privileged Resource Architecture

86 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Interrupt delivery to guests Global and individual interrupt enables are included in the guest context, along
with interrupt-pending signals. Interrupt handlers are located at the standard
entry points within the guest address space, or controlled by the guest context
exception base register.

Hypervisor software can deliver interrupts to a guest by writing the interrupt
pending bits within the guest context. The hypervisor can enable immediate
delivery of an external interrupt to a guest through direct assignment (pending
interrupt passthrough).

Guest kernels can implement critical regions using the normal interrupt
enable/disable mechanisms, thus holding off delivery of interrupts to the guest
context.

External interrupts controlled by the root context cause an immediate exit from
guest mode, returning control to a hypervisor interrupt handler. The guest can-
not hold off these interrupts, as they are controlled by the root context.

Guest Timer system Hypervisor software needs to control the passage of time as viewed by a guest.
Guests need an efficient method to set up timer interrupts without incurring
drift.

The hypervisor can set a control bit to which allows a guest to read from the
timer’s Count register, and allows the guest to set up timer interrupts with the
Compare register.

The timer value seen by the guest is created by adding an offset to the real
timer value, stored in Root.GTOffset. The guest does not have direct write
access to its timer value - writes must be trapped and emulated by the hypervi-
sor.

It may be necessary for a hypervisor to disallow guest timer access when emu-
lation is required. This may be the case if a guest kernel is booted on a system
with one timer clock frequency, and is subsequently required to be re-sched-
uled on a core with a different timer clock frequency.

Secure, unique TLB entries based on
GuestID.

An optional GuestID feature provides a Root programmable unique identifier
for use in TLB entries eliminating the requirement for invalidation of TLB
entries on virtual machine context switch. Refer to documentation on
GuestCtl1ID and GuestCtl1RID fields in Section 5.3 “GuestCtl1 Register

(CP0 Register 10, Select 4)”.

Root control of Guest TLB mapping
and Guest TLB resources.

1) mapping using Guest TLB
2) Guest TLB instructions/registers -
GuestCtl0AT

The GuestCtl0AT field provides control for whether the guest may use the

privileged registers and instructions related to the MMU.

This allows the situation where the guest TLB and Segmentation Control is
part of the address translation, but any guest access to the control registers
results in an exception (GuestCtl0AT=1). This can be used both for hypervisor

control and to debug guest behavior.

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

4.13 Virtualization Module features and Hypervisor Software

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 87

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Guest Software Field Change excep-
tions

The Guest Software Field Change exception system allows for hypervisor
intervention before certain guest-context register fields are changed. The
exception is taken prior to execution of the instruction which would have mod-
ified the field.

Some guest register fields are implemented which correspond to fields in the
root CP0 context, but are not actually connected to hardware. An example is
the “reduced power” control bit StatusRP. When the guest kernel changes the

value of such a field, it is expecting some change of behavior in the virtual
machine. The field-change exception allows the hypervisor to respond appro-
priately.
In other cases (e.g., CauseIV) the field change would affect guest execution,

but hypervisor intervention may be required in order to set up some other
aspect of the virtual machine - for the example given, changes may be required
to how external interrupts are passed to the guest.

Guest Hardware Field Change excep-
tion

The Guest Hardware Field Change exception is related to the Guest Software
Field Change exception. It is used to trigger hypervisor intervention on a hard-
ware initiated field change within a guest. This mechanism can be used for
debug, security or emulation purposes by the hypervisor.

Guest Privileged Sensitive Instruction
exceptions

The guest kernel mode is a limited privilege mode. The Guest Privileged Sen-
sitive Instruction exception is the primary mechanism by which the hypervisor
traps privileged instructions executed in guest mode.

It can be used for emulation of non-existent CP0 registers, and emulation of
accesses to registers which have been disabled by the hypervisor.

The hypervisor is provided with a catch-all mechanism to trap on all guest
privileged operations (GuestCtl0CP0), and a number of more targeted

enables. These targeted enables include fields to control access to guest
address translation (GuestCtl0AT), the guest timer (GuestCtl0GT), limited

cache operations (GuestCtl0CG), and the Config0-7 registers present in the

guest context (GuestCtl0CF).

The ability to control access to these features allows the hypervisor to restrict
guest permissions, or to emulate the hardware behavior expected by a guest -
for example different Config0-7 registers than are present in the machine.

Guest Reserved Instruction Redirect
exception

A control bit is provided (GuestCtl0RI) which allows guest RI exceptions to

be redirected to hypervisor software. This enables emulation of instructions
which are not available in the guest context.

New privileged instruction HYP-
CALL

A new instruction is provided, specifically to allow guest kernels to make API
calls to the hypervisor software. This can be used from both guest-kernel and
root-kernel modes.

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

 The Virtualization Privileged Resource Architecture

88 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

New privileged instructions
MFGC0, MTGC0
TLBGINV, TLBGINVF,
TLBGR, TLBGWI,
TLBGP, TLBGWR

New instructions are provided to allow access to the guest CP0 context for
hypervisor software running in root mode. These instructions also provide
access to the guest CP0 context for instructions executed in Debug mode, pro-
vided by the EJTAG debug system.

The instructions MFGC0 and MTGC0 allow data to be transferred between
general purpose registers (GPRs) and guest CP0 context registers.

The instructions TLBGINV, TLBGINVF, TLBGP, TLBGR, TLBGWI and
TLBGWR are used from root mode to access the guest context TLB using the
TLB registers located in the guest context.

Table 4.18 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

4.14 Lightweight Virtualization

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 89

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.14 Lightweight Virtualization

4.14.1 Introduction

The Virtualization architecture provides support for a lightweight implementation. The focus of such an implementa-
tion is to reduce implementation cost and feature complexity. The added benefit of reduced feature complexity is that
root software is simplified to the point where it need not be a complete hypervisor. For example, it may handle guest
interrupts, guest exceptions and related context switching, but it wouldn’t provide support for an added level of guest
translation.

The lightweight virtualization specification may also support a different class of embedded applications. For exam-
ple, where a Root Protection Unit (RPU) is used, the guests are not different OSes, but applications within an OS,
where the applications are from different vendors who do not trust each other. Virtualization in this case has been
extended to secure embedded applications.

4.14.2 Support for Lightweight Virtualization

4.14.2.1 Root Protection Unit (RPU)

The RPU is a defeatured Root TLB that does not translate a guest physical address to a root physical address, and thus
does not require storage for root physical address. Instead it assumes that the guest physical address is identity
mapped to physical memory. However, the RPU checks the guest physical address on a page basis, where the page is
programmed by root software. If the page matches, then the guest has access to related physical memory. Otherwise
the access will trap to root software, using standard exceptions.

The RPU and its software interface support all instructions and COP0 registers of the baseline architecture and exten-
sions provided in the Virtualization Module. Root EntryLo0 and EntryLo1 PFN fields are assumed read-only as 0
since the RPU does not translate guest physical addresses. Similarly, the CCA(Cache Coherency Attribute) field is
not supported. This field in EntryLo0 and EntryLo1 is read-only as 0 in hardware.

The RPU supports XI(Execute-Inhibit), RI(Read-Inhibit) along with D(Dirty) page attributes which are mandatory in
an RPU implementation.

An RPU will support multiple page-sizes, though it is implementation dependent in the baseline architecture as to
which page sizes are supported.

The RPU is only supported in a configuration with a root FMT (Fixed Mapping Table). Any addresses in root mode
must use the Root FMT. Any guest addresses go through the guest FMT or TLB, and RPU.

An RPU is present in an implementation that supports virtualization (Root.Config3VZ=1) and has a root FMT
(Root.ConfigMT=3). It is thus possible for the guest MMU to support a guest TLB with an RPU.

Refer to Table 4.19 for possible MMU configurations with an RPU.

Table 4.19 MMU Configurations with RPU

Guest Logical Address
Translation

Root Logical Address
Translation1st Pass 2nd Pass

FMT RPU FMT

 The Virtualization Privileged Resource Architecture

90 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.14.2.2 Architectural Control

Additional software visible control has been added for lightweight virtualization.

1. GuestCtl0ExtFCD

This field disables hardware generation of Guest Hardware Field Change Exception, and Guest Software Field
Change Exceptions. Consequently, root software does not need to support related exception handlers.

See Section 5.6 for reference.

2. GuestCtl3GLSS

This field allows virtualization Shadow Set allocation among guests. This root managed field provides the lowest
shadow set allocated to a guest, with the upper bounds provided by root-writeable Guest.SRSCtlHSS . The context
switch penalty is minimized as root need only write GuestCtl3GLSS when entering a new guest.

See Section 5.5 and Section 4.9.1 for reference.

3. GuestCtl0ExtMG,OG,BG

These fields have been introduced to enable GPSI on guest access to specified guest CP0 registers. This is useful
for fast guest context switching. In this case, root will save and restore limited guest CP0 registers, but in case the
unsaved registers are accessed by guest, then an exception to root will allow root software to save and restore the
effected registers opportunistically.

See Section 5.6 for reference.

4. GuestCtl2GRIPL,GEICSS,GVEC

See Section 5.4 and Figure 5.4, for reference for reference.

In EIC(External Interrupt Controller) mode for interrupt handling, GuestCtl2 provides the capability of fast
guest-to-guest interrupt switching capability. A guest interrupt on the root interrupt bus from the EIC will cause
capture of interrupt related state (GRIPL,GEICSS,GVEC) in GuestCtl2. Guest entry will subsequently cause
hardware to load GRIPL and GEICSS into guest context automatically, and GVEC would be used by the guest
interrupt handler directly. The root interrupt handler thus does not have to copy state from GuestCtl2 to guest
context.

See Section 4.8.1.2 for a description of EIC handling.

TLB RPU FMT

Table 4.19 MMU Configurations with RPU

Guest Logical Address
Translation

Root Logical Address
Translation1st Pass 2nd Pass

4.14 Lightweight Virtualization

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 91

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

4.14.2.3 Optional Features of Virtualization Architecture

Certain features are optional in the virtualization architecture. An implementation may choose to support such fea-
tures based on the class of applications that the product will support. An example being that an implementation need
not support root write of all Configuration fields listed in Table 4.11.

 The Virtualization Privileged Resource Architecture

92 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 5

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 93

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Coprocessor 0 (CP0) Registers

The Coprocessor 0 (CP0) registers provide the interface between the Instruction Set Architecture (ISA) and the Privi-
leged Resource Architecture (PRA). The CP0 registers that are added or extended by the Virtualization Module are
discussed below, with the registers presented in numerical order, first by register number, then by select field number.

5.1 CP0 Register Summary

Table 5.1 lists the CP0 registers affected by the Virtualization Module specification, in numerical order. The individ-
ual registers are described later in this document. Registers which are not described here follow the definitions from
the MIPS32 Privileged Resource Architecture. The Sel column indicates the value to be used in the field of the same
name in the MFC0 and MTC0 instructions.

Section 4.6.3 “Guest CP0 registers” describes CP0 register availability in guest mode.

Table 5.1 Virtualization Module Changes to Coprocessor 0 Registers in Numerical Order

Register
Number Sel

Register
Name Modification Reference

Compliance
Level

12 6 GuestCtl0 New Register. Controls guest mode behavior. Section 5.2 Required

10 4 GuestCtl1 New Register. Guest ID Section 5.3 Optional

10 5 GuestCtl2 New Register. Interrupt related Section 5.4 Optional

10 6 GuestCtl3 New Register. GPR Shadow Set related. Section 5.5 Optional

11 4 GuestCtl0Ext Extension to GuestCtl0 Section 5.6 Optional

12 7 GTOffset New Register. Guest timer offset. Section 5.7 Required

13 0 Cause Addition of hypervisor cause code. Section 5.8 Required

16 3 Config3 Identifies Virtualization Module feature set. Section 5.9 Required

19 0 WatchHi Watch Debug. Section 5.10 Optional

25 0 PerfCnt Performance Counter, adds virtualization support. Section 5.10 Optional

31 2 KScratch1 Required in root context. - Required

31 3 KScratch2 Required in root context. - Required

 Coprocessor 0 (CP0) Registers

94 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

Compliance Level: Required by the Virtualization Module.

The GuestCtl0 register contains control bits that indicate whether the base mode of the processor is guest mode or
root mode, plus additional bits controlling guest mode access to privileged resources. The GuestCtl0 register is acces-
sible only in root mode.

The GuestCtl0 register is instantiated per-VPE in a MT Module processor. This register is added by the Virtualization
Module.

Note on behaviour of GuestCtl0DRG/RAD: These R/W fields define additional functions for the Guest and Root TLBs.
Both must be interpreted together. An implementation does not have to support all valid combinations. Root software
can test supported combinations by writing then reading legal values. Legal values for (RAD,DRG)={00,01,11}.

Figure 5.1 shows the format of the Virtualization Module GuestCtl0 register; Table 5.2 describes the GuestCtl0 regis-
ter fields.

Figure 5.1 GuestCtl0 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GM RI MC CP0 AT GT CG CF G1 Impl
G

0E PT ASE PIP

R
A

D

D
R

G

G
2 GExcCode

S FC
2

S FC
1

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 95

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

GM 31 Guest Mode
The processor is in guest mode when GM=1, Root.StatusEXL=0 and

Root.StatusERL=0 and Root.DebugDM=0.

R/W 0 Required

RI 30 Guest Reserved Instruction Redirect. R/W 0 Required

MC 29 Guest Mode-Change exception enable. The purpose of this enable is to
provide Root software control over certain mode-changing events
within guest context that may be frequent in guest context by causing
Field Change exceptions.

R/W 0 Required

Encoding Meaning

0 Reserved Instruction exceptions dur-
ing guest-mode execution are taken in
guest mode.

1 Reserved Instruction exceptions dur-
ing guest-mode execution result in a
Guest Reserved Instruction Redirect
exception, taken in root mode.

Encoding Meaning

0 During guest mode execution a hardware
initiated change to Guest.StatusEXL will

not trigger a Guest Hardware Field
Change Exception.
During guest mode execution, a software
initiated change to Guest.StatusUM/KSU
will not trigger a Guest Software Field
Change Exception.

1 During guest mode execution a hardware
initiated change to Guest.StatusEXL will

trigger a Guest Hardware Field Change
Exception.
During guest mode execution, a software
initiated change to Guest.StatusUM/KSU

will trigger a Guest Software Field
Change Exception.

 Coprocessor 0 (CP0) Registers

96 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

CP0 28 Guest access to coprocessor 0.

The list of Guest Privileged Sensitive instructions which trigger a
Guest Privileged Sensitive Instruction exception is given in Section
4.7.7
The CP0 bit has no other effect on the operation of coprocessor 0 in
guest mode.

R/W 0 Required

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Guest-kernel use of any Guest Privi-
leged Sensitive Instruction will trigger
a Guest Privileged Sensitive Instruc-
tion exception.
E.g., Guest use of TLBWI always
causes GPSI if CP0=0.

1 Guest-kernel use of selective Guest
Privileged Sensitive Instructions is
permitted, subject to all other excep-
tion conditions.
Eg., Guest use of TLBWI only causes
GPSI if GuestCtl0AT !=3 while CP0=1

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 97

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

AT 27:26 Guest Address Translation control.

Guest TLB resources are:
• TLB related Instructions - TLBWR, TLBWI, TLBR, TLBP, TLB-

INV, TLBINVF.
• Supporting Registers - Index, Random, EntryLo0, EntryLo1,

EntryHi, Context, XContext, ContextConfig, PageMask,
PageGrain, SegCtl0, SegCtl1, SegCtl2, PWBase, PWField,
PWSize, PWCtl.

If the Guest TLB resources (excluding Index, Random, EntryLo0,
EntryLo1, Context, XContext, ContextConfig, PageMask and
EntryHi) are under Root control (GuestCtl0AT=1), Guest use of these

instructions or access to any of these registers (see Table 4.7), will
trigger a Guest Privileged Sensitive Instruction exception, allowing
Root to control Guest address translation directly. For additional infor-
mation refer to Table 4.18, Entry: “Root control of Guest TLB map-
ping and Guest TLB resources.”

In default mode (GuestCtl0AT=3), the Guest TLB resources are active

under Guest control. Refer to Section 4.5 “Virtual Memory” for addi-
tional information on guest virtual address translation.

R or R/W
if more

than
default
mode
imple-

mented.

Imple-
mentation

defined

Required

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Reserved.

1 Guest MMU under Root control.

Guest and Root MMU both implemented and
active in hardware.
This mode is optional.

2 Reserved

3 Guest MMU under Guest control.

Guest and Root MMU both implemented and
active in hardware.
This mode is required.

 Coprocessor 0 (CP0) Registers

98 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

GT 25 Timer register access.

The GT bit has no other effect on the operation of timers in guest
mode.

R/W 0 Required

CG 24 Cache Instruction Guest-mode enable.
If R0, then GPSI exception will always occur. CG as an enable in thuis
thus optional.

CACHEE is optional in the baseline architecture.

R0,
R/W

0 Optional

CF 23 Config register access.

The CF bit has no other effect on the operation of Config register
fields in guest mode.

R/W 0 Required

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Guest-kernel access to Count or
Compare registers, or a read from
CC with RDHWR will trigger a Guest
Privileged Sensitive Instruction
exception.

1 Guest kernel read access from Count
and guest-kernel read or write access
to Compare is permitted. Guest reads
from CC using RDHWR are permitted
in any mode.

Encoding Meaning

0 A Guest Privileged Sensitive Instruc-
tion exception will result from use the
CACHE, CACHEE instruction.

1 The CACHE, CACHEE instruction
can be used with an Effective Address
Operand type of ‘Address’. A Guest
Privileged Sensitive Instruction
exception will result from use of any
other Effective Address Operand type.

Encoding Meaning

0 Guest-kernel write access to
Config0-7 will trigger a Guest Privi-
leged Sensitive Instruction exception.

1 Guest-kernel access to Config0-7 is
permitted.

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 99

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

G1 22 GuestCtl1 register implemented. Set by hardware. R preset Required

Impl 21..20 Implementation defined.
These bits are implementation dependent and not
defined by the architecture. If not implemented,
they must be ignored on write and read as zero.
If implemented and if modifying the behavior of
the processor, it must be defined in such a way that
correct behavior is preserved if software, with no knowledge
of these bits, reads the GuestCtl0 register, modifies
another field, and writes the updated value back to the
GuestCtl0 register.

R/W 0 Required

G0E 19 GuestCtl0Ext register implemented. Set by hardware. R preset Required

PT 18 Defines the existence of the Pending Interrupt Passthrough feature.

Implementation of the Pending Interrupt Passthrough feature is
strongly recommended.

R preset Required

ASE 17..16 Reserved for MCU Module Pending Interrupt Passthrough. 0 0 Required for
MCU Module;

Otherwise
Reserved

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Unimplemented

1 Implemented.

Encoding Meaning

0 Unimplemented

1 Implemented.

Encoding Meaning

0 GuestCtl0PIP not supported.

GuestCtl0PIP is a reserved field.

All external interrupts are processed
via Root intervention.

1 GuestCtl0PIP supported. Interrupts

may be assigned to Root or Guest.

 Coprocessor 0 (CP0) Registers

100 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

PIP 15..10 Pending Interrupt Passthrough.
In non-EIC mode, controls how external interrupts are passed through
to the guest CP0 context. Interpreted as a bit mask and applies 1:1 to
Guest.CauseIP[7:2]. GuestCtl1PIP may be extended by GuestCtl1ASE.

Existence of the PIP feature is defined by the GuestCtl0PT field.

See Section 4.8.

R/W
R0 if

unimple-
mented

0 Required

RAD 9 RAD, or “Root ASID Dealias” mode determines the means that a Vir-
tualized MMU implementation uses Root ASID to dealias different
contexts.

R 0 Required

DRG 8 DRG, or “Direct Root to Guest” access determines whether an imple-
mentation provides root kernel the means to access guest entries
directly in the Root TLB for access to guest memory.
If GuestCtl0DRG=1 then GuestCtl0RID must be used. If GuestID for

root operation is non-zero, root is in kernel mode, Root.Statu-
sEXL,ERL=0 and DebugDM=0, then all root kernel data accesses are

mapped, root SegCtl is ignored and Root TLB CCA is used. Access in
root mode by other than kernel will cause an address error. H/W must
set G=1 as if the access were for guest.

DRG is R0 if only DRG=0 supported, otherwise it must be R/W.

R0,
R/W

0 Required

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Corresponding interrupt request is not
visible in guest context.

1 Corresponding interrupt request is
visible in guest context.

Encoding Meaning

0 GuestID used to dealias both Guest
and Root TLB entries.

1 Root ASID is used to dealias Root
TLB entries, while Guest TLB con-
tains only one context at any given
time.

Encoding Meaning

0 Root software cannot access guest
entries directly.

1 Root software can access guest entries
directly.

5.2 GuestCtl0 Register (CP0 Register 12, Select 6)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 101

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 5.3 describes the cause codes use for GExcCode.

G2 7 GuestCtl2 register implemented. Set by hardware. R preset Required

GExc-
Code

6..2 Hypervisor exception cause code. Described in Table 5.3.
This field is UNDEFINED on a root exception.

R Undefined Required

SFC2 1 Guest Software Field Change exception enable for Guest.StatusCU[2].

The purpose of this enable is to provide Root software control over
guest COP2 enable related Field Change exception. Guest software
may utilize StatusCU2 for COP2 specific context switching.

R/W if
imple-

mented, 0
otherwise

0 Optional

SFC1 0 Guest Software Field Change exception enable for Guest.StatusCU[1].

The purpose of this enable is to provide Root software control over
guest COP1 enable related Field Change exception. Guest software
may utilize StatusCU1 for COP1 specific context switching.

R/W if
imple-

mented, 0
otherwise.

0 Optional

Table 5.3 GuestCtl0 GExcCode values

Exception code value

Mnemonic DescriptionDecimal Hexadecimal

0 0x00 GPSI Guest Privileged Sensitive instruction. Taken when execution of a Guest Privi-
leged Sensitive Instruction was attempted from guest-kernel mode, but the
instruction was not enabled for guest-kernel mode.

1 0x01 GSFC Guest Software Field Change event

2 0x02 HC Hypercall

Table 5.2 GuestCtl0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Unimplemented

1 Implemented.

Encoding Meaning

0 GSFC exception taken if CU[2] is
modified by guest.

1 GSFC exception not taken if CU[2]
modified by guest.

Encoding Meaning

0 GSFC exception taken if CU[1] is
modified by guest.

1 GSFC exception not taken if CU[1]
modified by guest.

 Coprocessor 0 (CP0) Registers

102 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

3 0x03 GRR Guest Reserved Instruction Redirect. A Reserved Instruction exception would
be taken in guest mode. When GuestCtl0RI=1, this root-mode exception is

raised before the guest-mode exception can be taken.

4 - 7 0x4 - 0x7 IMP Available for implementation specific use

8 0x08 GVA Guest mode initiated Root TLB exception has Guest Virtual Address available.
Set when a Guest mode initiated TLB translation results in a Root TLB related
exception occurring in Root mode and the Guest Physical Address is not avail-
able.

9 0x09 GHFC Guest Hardware Field Change event

10 0x0A GPA Guest mode initiated Root TLB exception has Guest Physical Address avail-
able.
Set when a Guest mode initiated TLB translation results in a Root TLB related
exception occurring in Root mode and the Guest Physical Address is available.

11 - 31 0xB - 0x1f - Reserved

Table 5.3 GuestCtl0 GExcCode values

Exception code value

Mnemonic DescriptionDecimal Hexadecimal

5.3 GuestCtl1 Register (CP0 Register 10, Select 4)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 103

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.3 GuestCtl1 Register (CP0 Register 10, Select 4)

Compliance Level: Optional in the Virtualization Module.

The GuestCtl1 register defines GuestID control fields for Root (GuestCtl1RID) and Guest (GuestCtl1ID) which may be
used in the context of TLB instructions, instruction and data address translation. The GuestCtl1RID field additionally
is written by the processor on a TLBR or TLBGR instruction in Root mode, then containing the GuestID read from
the TLB entry. A TLBR executed in Guest mode does not cause a write to either GuestCtl1ID and GuestCtl1RID.

GuestCtl1 is optional and thus the use of GuestID is optional in the context of TLB instructions, instruction and data
address translation. The GuestCtl1 register only exists in Root Context. GuestID value of 0 is reserved for Root.

Section 4.5.1 “Virtualized MMU GuestID Use” provides additional detail on GuestID usage as it applies to instruc-
tion and data address translation. Section 4.6.2 “New CP0 Instructions” describes the TLB instructions and their use
of GuestID.

The primary purpose of the GuestID is to provide a unique component of the Guest/Root TLB entry eliminating TLB
invalidation overhead on virtual machine level context switch.

A system implementing a GuestID is required to support a guest identifier field (GID) in each Guest and Root TLB
entry. This GuestID field within the TLB is not accessible to the Guest. While operating in guest context, the behavior
of guest TLB operations is constrained by the GuestCtl1ID field so that only guest TLB entries with a matching GID
field are considered.

The actual number of bits usable in the GuestCtl1ID and GuestCtl1RID fields is implementation dependent. Software
may determine the usable size of these fields by writing all ones and reading the value back. The size of GuestCtl1ID

and GuestCtl1RID must be equal.

The GuestCtl1 register is instantiated per-VPE in a MT Module processor.

Figure 5.2 shows the format of the Virtualization Module GuestCtl1 register; Table 5.4 describes the GuestCtl1 regis-
ter fields.

Figure 5.2 GuestCtl1 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EID RID 0 ID

 Coprocessor 0 (CP0) Registers

104 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 5.4 GuestCtl1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

EID 31..24 External Interrupt Controller Guest ID.
Required if an External Interrupt Controller (EIC) is supported.
A guest interrupt which is posted by the EIC to the root interrupt bus,
must cause the Guest ID of the root interrupt bus to be registered in EID
once the interrupt is taken.
If implemented, the field is read-only and set by hardware.
If not implemented then must be written as zero; returns zero on read.

R0 or R 0 Optional

RID 23..16 Root control GuestID. Used by root TLB operations, and when
GuestCtl0DRG=1 in root mode.

R/W 0 Required

0 15..8 Must be written as zero; returns zero on read. R0 0 Reserved

ID 7..0 Guest control GuestID. Identifies resident guest. Applies to guest
address translation.

R/W 0 Required

5.4 GuestCtl2 Register (CP0 Register 10, Select 5)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 105

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.4 GuestCtl2 Register (CP0 Register 10, Select 5)

Compliance Level: Optional in the Virtualization Module.

The GuestCtl2 register is optional in an implementation. It is only required if support for Virtual Interrupts in
non-EIC mode is included in an implementation. Alternatively, if EIC mode is supported, then GuestCtl2 is required.
Refer to Section 4.8.1 “External Interrupts” for a description of interrupt handling in EIC and non-EIC modes.

An implementation that supports the virtual interrupt functionality of GuestCtl2 is not required to support root writes
of Guest.CauseIP[7:2] or Guest.CauseRIPL as described in Table 4.11.

GuestCtl2 is present in an implementation if GuestCtl2G2=1.

The GuestCtl2 register is instantiated per-VPE in a MT Module processor.

Figure 5.3 shows the format of the Virtualization Module GuestCtl2 register in non-EIC mode. Table 5.5 describes
the non-EIC mode GuestCtl2 register fields.

Figure 5.4 shows the format of the Virtualization Module GuestCtl2 register in EIC mode. Table 5.6 describes the
EIC mode GuestCtl2 register fields.

Figure 5.3 GuestCtl2 Register Format for non-EIC mode

Figure 5.4 GuestCtl2 Register Format for EIC mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASE HC 0 ASE VIP 0 Impl

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASE GRIPL 0 GEICSS 0 GVEC

 Coprocessor 0 (CP0) Registers

106 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 5.5 non-EIC mode GuestCtl2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ASE 31:30 MCU Module extension for HC. Must be written as zero; returns zero
on read.

R0 0 Reserved

HC 29..24 Hardware Clear for GuestCtl2VIP

This set of bits maps one to one to GuestCtl2VIP.

HC may be bit-wise Read-only or R/W. If a bit is Read-only, then it may
be preset to 0 or 1. Similarly, if a bit is R/W, then it may be reset to 0 or
1. The interpretation of 0 or 1 state follows.

In the case of HC=0, Guest.StatusIP[n+2] could continue to be asserted

due to an external interrupt when GuestCtl2VIP[n] is cleared by soft-

ware. Source of external interrupt must be serviced appropriately.

The choice of Read-only vs. R/W is implementation dependent. Root
software can write then read field to determine supported configuration.

R,
R/W

0 or 1 Optional

0 25..18 Must be written as zero; returns zero on read. R0 0 Reserved

ASE 17:16 MCU Module extension for VIP. Must be written as zero; returns zero
on read.

R0 0 Reserved

Encoding Meaning

0 The deassertion of related external
interrupt (IRQ[n]) has no effect on
GuestCtl2VIP[n]. Root software must

write zero to GuestCtl2VIP[n] to clear

the virtual interrupt.

1 The deassertion of related external
interrupt (IRQ[n]) causes
GuestCtl2VIP[n] to be cleared by h/w.

5.4 GuestCtl2 Register (CP0 Register 10, Select 5)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 107

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

VIP 15..10 Virtual Interrupt Pending.
The VIP field is used by root to inject virtual interrupts into Guest con-
text. VIP[5..0] maps to Guest.StatusIP[7..2]. VIP effects Guest.StatusIP

in the the following manner:

R/W 0 Required

0 9..5 Must be written as zero; returns zero on read. R0 0 Reserved

Impl 4:0 Implementation.
These bits are implementation dependent and not
defined by the architecture. If not implemented,
they must be written as 0, and read as zero.
If implemented and if modifying the behavior of
the processor, it must be defined in such a way that
correct behavior is preserved if software, with no knowledge
of these bits, reads the GuestCtl2 register, modifies
another field, and writes the updated value back to the
GuestCtl2 register.

R/W 0 Required

Table 5.5 non-EIC mode GuestCtl2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Guest.StatusIP[n+2] cannot be

asserted due to VIP[n], though it may
be asserted by an external interrupt
IRQ[n]. n = 5..0

1 Guest.StatusIP[n+2] must at least be

asserted due to VIP[n]. It may also be
asserted by a concurrent external
interrupt. n=5..0

 Coprocessor 0 (CP0) Registers

108 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 5.6 EIC mode GuestCtl2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ASE 31:30 MCU Module extension for GRIPL. Must be written as zero; returns
zero on read.

R0 0 Reserved

GRIPL 29..24 Guest RIPL
This field is written only when an interrupt received on the root interrupt
bus for a guest is taken. The RIPL(Requested Interrupt Priority Level)
sent by EIC on the root interrupt bus is written to this field.

Root software can write the field if it needs to modify the EIC value
before assigning to guest. It may also clear this field to prevent a transi-
tion to guest mode from causing an interrupt if this field was set with a
non-zero value earlier.

GRIPL is 10 bits only for an implementation that complies with the
MCU Module, otherwise it is 8 bits as in baseline architecture.

R/W 0 Required

GEICSS 21:18 Guest EICSS
This field is written only when an interrupt received on the root interrupt
bus for a guest is taken. The EICSS (External Interrupt Controller
Shadow Set) sent by EIC on the root interrupt bus is written to this field

Root software can write the field if it needs to modify the EIC value
before assigning to guest.

R/W Undefined Required

0 17:16 Must be written as zero; returns zero on read. R0 0 Reserved

GVEC 15:0 Guest Vector
This field is written only when an interrupt is received on the root inter-
rupt bus for a guest. The Vector Offset (or Number) sent by EIC on the
root interrupt bus is written to this field.

GVEC is not loaded into any guest CP0 field, but is used to generate an
interrupt vector in guest mode using the root interrupt bus vector and not
the guest interrupt bus vector. This will only occur if the interrupt was
first taken in root mode.

Root software can write the field if it needs to modify the EIC value
before assigning to guest.

R/W Undefined Required

5.5 GuestCtl3 Register (CP0 Register 10, Select 6)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 109

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.5 GuestCtl3 Register (CP0 Register 10, Select 6)

Compliance Level: Optional in the Virtualization Module.

The GuestCtl3 register is optional. It is required only if Shadow GPR Sets are supported, and the Shadow Sets used
by a guest are virtual and require mapping to physical Shadow Sets. With this mechanism, a pool of Shadow Sets can
be physically shared by partitioning the sets among multiple guests and root, under root control.

Virtual mapping of Guest GPR set(s) is supported if Guest SRSCtlHSS is writeable by root. Presence of GuestCtl3 can
be detected by root software by writing any non-zero value less than or equal to root SRSCtlHSS to Guest SRSCtlHSS.

If a read returns the value written, then GuestCtl3 is present.

The GuestCtl3 register is instantiated per-VPE in a MT Module processor.

Figure 5.3 shows the format of the Virtualization Module GuestCtl3 register; Table 5.7 describes the GuestCtl3 regis-
ter fields.

Figure 5.5 GuestCtl3 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 GLSS

Table 5.7 GuestCtl3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:4 This bit must be written as zero, returns zero on read. R0 0 Reserved

GLSS 3:0 Guest Lowest Shadow Set number.
This determines the lowest physical Shadow Set number assigned by
root to guest. Guest is thus assigned physical Shadow Sets GLSS to
GLSS plus Guest SRSCtlHSS.

If this field is reserved, then all writes must be zero, and reads should
return 0.

 R0,
R/W

0 Required

 Coprocessor 0 (CP0) Registers

110 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.6 GuestCtl0Ext Register (CP0 Register 11, Select 4)

Compliance Level: Optional in the Virtualization Module.

GuestCtl0Ext is an optional extension to GuestCtl0. If not supported, the register must read as 0.

GuestCtl0G0E should be read by software to determine if GuestCtl0Ext is implemented.

The GuestCtl0Ext register is instantiated per-VPE in a MT Module processor.

Figure 5.6 shows the format of the Virtualization Module GuestCtl0Ext register; Table 5.8describes the GuestCtl0Ext
register fields.

Figure 5.6 GuestCtl0Ext Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

C
G

I

FC
D

O
G

B
G

M
G

5.6 GuestCtl0Ext Register (CP0 Register 11, Select 4)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 111

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 5.8 GuestCtl0Ext Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:2 This bit must be written as zero, returns zero on read. R0 0 Reserved

CGI 4 Related to GuestCtl0CG. Allows execution of CACHE, CACHEE Index

Invalidate operations in guest mode.

This field is R0 if feature is not implemented.
The CACHEE instruction is optional in the baseline architecture.

R0,
R/W

0 Optional

FCD 3 Disables Guest Software/Hardware Field Change Exceptions
(GSFC/GHFC).
This mode is useful for an implementation with root software that is not
a full-featured hypervisor. For e.g., the software may just support mem-
ory protection, but may not require protection of CP0 state.

If FCD=1, then hardware must treat guest write, in case of GSFC, and
hardware events, in case of GHFC, as in the baseline architecture.

This field is R0 if feature is not implemented.

R0,
R/W

0 Optional

Encoding Meaning

0 Definition of GuestCtl0CG does not

change.

1 If GuestCtl0CG =1 and

GuestCtl0ExtCGI =1, then all CACHE,

CACHEE Index Invalidate (code
0xb000) operations may execute in
guest mode without causing a GPSI.

Encoding Meaning

0 GSFC or GHFC event will cause
exception.

1 GSFC or GHFC event will not cause
exception.

 Coprocessor 0 (CP0) Registers

112 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

OG 2 Other GPSI Enable. Applies to UserLocal, WREna, LLAddr, Reserved
(for Architecture), UserTraceData1, UserTraceData2, KScratch1
through KScratch6, when implemented. If function is not supported, this
field reads as 0.

For a description of Reserved for Architecture registers, see Section
4.6.3.1 .
UserTraceData1, UserTraceData2 are optional CP0 registers defined in
MIPS iFlowTrace specification.

This field is R0 if feature is not implemented.

R0,
R/W

0 Optional

BG 1 Bad register GPSI Enable. Applies to BadVAddr, BadInstr, BadInstrP
when implemented. If function is not supported, this field reads as 0.

This field is R0 if feature is not implemented.

R0,
R/W

0 Optional

MG 0 MMU GPSI Enable. Applies to Index, Random, EntryLo0, EntryLo1,
Context, ContextConfig, PageMask, EntryHi. If function is not sup-
ported, this field reads as 0.

This field is R0 if feature is not implemented.

R0,
R/W

0 Optional

Table 5.8 GuestCtl0Ext Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtl0CP0=0.

1 GPSI enabled for these registers.

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtl0CP0=0.

1 GPSI enabled for these registers.

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtl0CP0=0.

1 GPSI enabled for these registers.

5.7 GTOffset Register (CP0 Register 12, Select 7)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 113

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.7 GTOffset Register (CP0 Register 12, Select 7)

Compliance Level: Required by the Virtualization Module.

Timekeeping within the guest context is controlled by root mode. The guest time value is generated by adding the
two’s complement offset in the Root.GTOffset register to the root timer in value Root.Count.

The guest time value is used to generate timer interrupts within the guest context, by comparison with the
Guest.Compare register. The guest time value can be read from the Guest.Count register. Guest writes to the
Guest.Count register always result in a Guest Privileged Sensitive Instruction exception.

The number of bits supported in GTOffset is implementation dependent but must be non-zero. It is recommended that
a minimum of 16 bits be implemented. Root software can check the number of implemented bits by writing all ones
and then reading. Unimplemented bits will return zero.

The GTOffset register is instantiated per-VPE in a MT Module processor. This register is added by the Virtualization
Module.

See Section 4.6.8 “Guest Timer”.

Figure 5.7 shows the Virtualization Module format of the GTOffset register; Table 5.9 describes the GTOffset register
fields.

Figure 5.7 GTOffset Register Format
31 0

GTOffset

Table 5.9 GTOffset Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

GTOffset 31:0 Two’s complement offset from Root.Count R/W 0 Required

 Coprocessor 0 (CP0) Registers

114 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.8 Cause Register (CP0 Register 13, Select 0)

Compliance Level: Required by the Virtualization Module.

As in MIPS32, the Cause register describes the cause of the most recent exception, and provides control of software
interrupt requests and interrupt vector selection.

The behavior of the Cause register is changed by the Virtualization Module only by the addition of one new cause
code.

The Cause register is instantiated per-VPE in a MT Module processor.

Figure 5.8 shows the format of the Cause register; Table 5.10 describes fields modified by the Virtualization Module.

Figure 5.8 Virtualization Module Cause Register Format

Table 5.11 describes the new cause code value defined for ExcCode.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 2 1 0

BD TI CE DC PCI 0 IV WP 0
Mod-
ule

IP7..IP2 / RIPL IP1..IP0 0 ExcCode 0

Table 5.10 Cause Register Field Description, modified by Virtualization Module

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ExcCode 6..2 Exception Code - See Table 5.11.
Addition of Hypervisor (GE) code.

R Undefined Required

Table 5.11 Cause Register ExcCode values

Exception code value

Mnemonic DescriptionDecimal Hexadecimal

27 0x1b GE Hypervisor Exception (Guest Exit). Hypervisor-intervention exception
occurred during guest code execution. GuestCtl0GExcCode contains additional

cause information.

5.9 Configuration Register 3 (CP0 Register 16, Select 3)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 115

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.9 Configuration Register 3 (CP0 Register 16, Select 3)

Compliance Level: Required by the Virtualization Module.

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

This register operates as described by the base architecture, except that the VZ field is added.

If Virtualization is supported (Config3VZ=1), and GuestID is supported, then explicit invalid TLB entry support
(EHINV) is required in order for a Guest to be able to detect invalid entries in the Guest TLB.

In Guest context, the VZ field is reserved and read as 0.

Figure 5-9 shows the format of the Config3 register; Table 5.12 describes the fields added to the Config3 register by
the Virtualization Module.

Figure 5-9 Config3 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M
B
P
G

C
M
G
C
R

M
S
A

B
P

B
I

S
C

P
W

V
Z

IPLW MMAR
M
u
C
o
n

ISA
On
Exc

ISA

U
L
R
I

R
X
I

D
S
P
2
P

D
S
P
P

C
T
X
T
C

I
T
L

L
P
A

V
E
I
C

V
I
n
t

SP
CD
M
M

M
T

SM TL

Table 5.12 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

VZ 23 MIPS® Virtualization Module implemented. This bit
indicates whether the Virtualization Module is present.

R Preset
(Always 0
in Guest
context)

Required

Encoding Meaning

0 Virtualization Module not imple-
mented

1 Virtualization Module is implemented

 Coprocessor 0 (CP0) Registers

116 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.10 WatchHi Register (CP0 Register 19)

Compliance Level: Optional.

The WatchHi register is as defined in the base architecture, except that it has been extended to optionally support
watch management in virtualized guest and root contexts.

Figure 5-10 shows the format of the WatchHi register; Table 5.13 describes the added WatchHi register fields.

The WatchHi register has a 10b wide ASID field only if Config4AE=1. Otherwise, the ASID field is 8b wide.

Figure 5-10 WatchHi Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M G WM 0 ASID 0 Mask I R W

Table 5.13 WatchHi Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

WM 29..28 This field is used for Root management of Watch func-
tionality in an implementation supporting the Virtualiza-
tion Module.
This field is reserved and read as 0, for Guest WatchHi,
or if such functionality is unimplemented. Software can
determine existence of this feature by writing then read-
ing this field.
Refer to Section 4.12 “Watchpoint Debug Support”

R/W or
R

0 Required
(Release 3)

5.11 Performance Counter Register (CP0 Register 25)

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 117

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.11 Performance Counter Register (CP0 Register 25)

Compliance Level: Optional.

The PerfCnt register(s) are as defined in the base architecture, except that the EC field has been added to optionally
support performance measurement in virtualized guest and root contexts.

The Control Register associated with each performance counter controls the behavior of the performance counter.
Figure 5-11 shows the format of the Performance Counter Control Register; Table 5.14 describes the new Perfor-
mance Counter Control Register fields.

Figure 5-11 Performance Counter Control Register Format
31 30 29 25 24 23 22 16 15 14 11 10 5 4 3 2 1 0

M W Impl EC 0 PCTD EventExt Event IE U S K EXL

 Coprocessor 0 (CP0) Registers

118 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Table 5.14 New Performance Counter Control Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

EC 24:23 Event Class. Root only. Reserved, read-only 0 in all
other contexts. An implementation may detect the exist-
ence of this feature by writing a non-zero value to the
field and reading. If value read is 0, then EC is not sup-
ported.

Root events are those that occur when GuestCtl0GM=0.

Root intervention events are those that occur when
GuestCtl0GM=1 and !(Root.StatusEXL=0 and Root.Sta-

tusERL=0 and Root.DebugDM=0)

Guest events are those that occur when GuestCtl0GM=1

and Root.StatusEXL=0 and Root.StatusERL=0 and

Root.DebugDM=0

For the case of root intervention mode, PerfCtlU/S/K/EXL

are ignored as Root.StatusEXL=1 and root must be in

kernel mode.

An implementation must qualify existing performance
counter events with the value of EC. For example, if an
event is “Instructions Graduated” and EC=0, then only
instructions graduated in root mode are counted.

R/W in
Root

mode.
R0 in all
others.

0 Optional

Encoding Meaning

0 Root events counted. [default]
Active in Root context.

1 Root intervention events counted,
Active in Root context.

2 Guest events counted.
Active in Guest context.

3 Guest events plus Root intervention
events counted.
Active in Guest context.
Root will only assign encoding if it
wants to give Guest visibility into
Root intervention events.

5.12 Note on future CP0 features

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 119

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

5.12 Note on future CP0 features

Implementation note: Addition of a new feature to the root context does not mean that it must be included in the guest
context. However, when it becomes necessary to include a new architectural feature in the guest CP0 context, the fol-
lowing rules must be followed.

• A new architectural feature must have a corresponding Guest.Config field, which matches the Root.Config defini-
tion.

• The guest context must always be a subset of the root. No feature can be specified with a Guest.Config field
which does not also exist in the root.

• It is recommended that the Guest.Config field be writable from root mode, to allow the feature to be disabled and
become invisible to the guest.

• When the corresponding Guest.Config field indicates that a feature is present, it will operate as specified for root
mode, and will only use state held in the guest context. The functional behavior of the feature will not be altered
by fields in the root context. Timing may be affected.

• Root mode state can only be used to apply translations to the inputs or outputs of the feature, to check for excep-
tion conditions within the feature, or to check guest interaction with the feature. The GuestCtl0 register should be
used for single-bit exception-enable bits.

• Hypervisor exceptions can be triggered without the need for a GuestCtl0 bit, if the exception always results from
specified guest-mode interactions with the feature, or specified events within the feature itself. These exceptions
will be taken in root mode.

• All memory accesses performed by the feature must be translated under root control. This will be through the
root TLB unless another mechanism is provided (e.g. an IOMMU).

• Synchronous exceptions detected by the guest context have a higher priority than the equivalent exception
detected by the root context. Synchronous exceptions originate from the ‘inside of the onion’ - the first boundary
to be crossed is the guest context, then the root context.

• Asynchronous exceptions detected by the root context have higher priority than the equivalent exception detected
by the guest context. Asynchronous exceptions (e.g. interrupts, memory error) originate from ‘outside of the
onion’ - the first boundary to be crossed is the root context, and then the guest context.

 Coprocessor 0 (CP0) Registers

120 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 6

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 121

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Instruction Descriptions

6.1 Overview

The Virtualization Module adds new and modifies existing instructions to allow root-mode access to the guest Copro-
cessor 0 context and the guest TLB. A new ‘hypercall’ instruction is added, to allow hypervisor calls to be made from
guest mode.

Table 6.1 lists in alphabetical order the instructions newly defined or modified by the Virtualization Module.

Table 6.1 New and Modified Instructions

Mnemonic Instruction Description Reference

HYPCALL Hypercall Trigger Hypercall exception. “HYPCALL” on
page 124

MFGC0 Move from Guest Coprocessor 0 Read guest coprocessor 0 into GPR. “MFGC0” on
page 125

MTGC0 Move from Guest Coprocessor 0 Write guest coprocessor 0 from GPR. “MTGC0” on
page 127

TLBGINV Guest TLB Invalidate Trigger guest TLB invalidate from root mode. “TLBGINV” on
page 128

TLBGINVF Guest TLB Invalidate Flush Trigger guest TLB invalidate from root mode. “TLBGINVF” on
page 130

TLBGP Probe Guest TLB Trigger guest TLB probe from root mode. “TLBGP” on
page 133

TLBGR Read Guest TLB Trigger guest TLB read from root mode. “TLBGR” on
page 136

TLBGWI Write Guest TLB Trigger guest TLB write from root mode. “TLBGWI” on
page 138

TLBGWR Write Guest TLB Trigger guest TLB write from root mode. “TLBGWR” on
page 140

TLBINV TLB Invalidate Modified TLB Invalidate behavior. “TLBINV” on
page 144

TLBINVF TLB Invalidate Flush Modified TLB Invalidate Flush behavior. “TLBINVF” on
page 142

TLBP TLB Probe Modified TLB probe behavior. “TLBP” on
page 145

TLBR Read TLB Modified TLB read behavior. “TLBR” on
page 147

TLBWI Write TLB, Indexed Modified indexed TLB write behavior. “TLBWI” on
page 150

 Instruction Descriptions

122 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

TLBWR Write TLB, Random Modified random TLB write behavior. “TLBWR” on
page 170

Table 6.1 New and Modified Instructions

Mnemonic Instruction Description Reference

6.1 Overview

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 123

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Hypervisor Call HYPCALL

124 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: HYPCALL MIPS32

Purpose: Hypervisor Call

To cause a Hypercall exception

Description:

A hypervisor call (hypercall) exception occurs, immediately and unconditionally transferring control to the exception
handler.

The code field is available for use as a software parameter. It can be retrieved by the exception handler from the
BadInstr register, or by loading the contents of the memory word containing the instruction.

Restrictions:

This instruction is available to debug, root kernel and guest kernel modes.

Execution of Hypercall in debug mode is defined, but will not cause a mode transition to root. The processor will stay
in debug mode (DebugDM=1), and root COP0 state is unmodified.

Refer to MD00047, “EJTAG Specification”, for rules regarding Hypercall exception processing in debug mode.
Hypercall exception falls into the category of “Other execution-based exceptions” in EJTAG Section 2.4.1. Debug-
DExcCode is set to GE=27 (see Table 5.3), no COP0 state is modified, and other modifications to COP0 Debug state
are made according to the rules in EJTAG Section 2.4.3.

Further, if root executes a hypercall in root mode, Root.CauseExcCode gets set to GE=27 (even though its not a guest-
exit) and GuestCtl0GExcCode is set to HC=2. Root can distinguish a root hypercall from a guest hypercall by looking
at GuestCtl0GM. If it is set, then the hypercall must have come from a guest, if it is reset, then hypercall must have
come from root since Root.StatusEXL must have been 0, otherwise hypercall in root mode would not cause an excep-
tion.

Execution of hypercall in either root-kernel or debug mode is not recommended.

Operation:

if IsCoprocessorEnabled(0) then
SignalException(HyperCall, 0)

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

HyperCall Exception

Coprocessor Unusable Exception

31 26 25 24..21 20 11 10 6 5 0

COP0
010000

CO
1

0000 code 00000 HYPCALL
101000

6 1 4 10 5 6

Move from Guest Coprocessor 0 IMFGC0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 125

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: MFGC0 rt, rd MIPS32
MFGC0 rt, rd, sel MIPS32

Purpose: Move from Guest Coprocessor 0

To move the contents of a guest coprocessor 0 register to a general register.

Description: GPR[rt] ← Guest.CPR[0, rd, sel]

The contents of the guest context coprocessor 0 register specified by the combination of rd and sel are loaded into
general register rt. Note that not all guest context coprocessor 0 registers support the sel field. In those instances, the
sel field must be zero.

Restrictions:

The results are UNDEFINED if the guest context coprocessor 0 does not contain the register specified by rd and sel.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
reg = rd

data ← Guest.CPR[0,reg,sel]
GPR[rt] ← data

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 8 7 3 2 0

COP0
010000

V
00011

rt rd 000 00000 sel

6 5 5 5 3 5 3

Move from Guest Coprocessor 0 MFGC0

126 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Move to Guest Coprocessor 0 IMTGC0

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 127

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: MTGC0 rt, rd MIPS32
MTGC0 rt, rd, sel MIPS32

Purpose: Move to Guest Coprocessor 0

To move the contents of a general register to a guest coprocessor 0 register.

Description: Guest.CPR[0, rd, sel] ← GPR[rt]

The contents of general register rt are loaded into the guest context coprocessor 0 register specified by the combina-
tion of rd and sel. Not all guest context coprocessor 0 registers support the sel field. In those instances, the sel field
must be set to zero.

Restrictions:

The results are UNDEFINED if guest context coprocessor 0 does not contain the register as specified by rd and sel or
the destination register is the Guest.Count register, which is read-only

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

In a 64-bit processor, the MTGC0 instruction writes all 64 bits of register rt into the guest context coprocessor regis-
ter specified by rd and sel if that register is a 64-bit register.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
data ← GPR[rt]
reg ← rd
Guest.CPR[0,reg,sel] ← data

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 21 20 16 15 11 10 8 7 3 2 0

COP0
010000

V
00011

rt rd 010 00000 sel

6 5 5 5 3 5 3

Guest TLB Invalidate TLBGINV

128 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBGINV MIPS32

Purpose: Guest TLB Invalidate

TLBGINV invalidates a set of guest TLB entries based on ASID and guest Index match. The virtual address is
ignored in the match.

Implementation of the TLBGINV instruction is optional. The implementation of this instruction is indicated by the IE
field in Config4.

Implementation of EntryHIEHINV field is required for implementation of TLBGINV instruction.

Support for TLBGINV is recommended for implementations supporting VTLB/FTLB type TLB’s.

Description:

On execution of the TLBGINV instruction, the set of guest TLB entries with matching ASID are marked invalid,
excluding those guest TLB entries which have their G bit set to 1.

The EntryHIASID field has to be set to the appropriate ASID value before executing the TLBGINV instruction.

Behavior of the TLBGINV instruction applies to all applicable guest TLB entries and is unaffected by the setting of
the Guest.Wired register.

For JTLB-based MMU(ConfigMT=1):
All matching entries in the guest JTLB are invalidated. Index is unused.

For VTLB/FTLB -based MMU(ConfigMT=4):

A TLBGINV with Index set in guest VTLB range causes all matching entries in the guest VTLB to be invali-
dated. A TLBGINV with Index set in guest FTLB range causes all matching entries in the single addressed guest
FTLB set to be invalidated.

If TLB invalidate walk is implemented in software (Config4IE=2), then software must do these steps:

1. one TLBGINV instruction is executed with an index in guest VTLB range (invalidates all matching guest
VTLB entries)

2. a TLBGINV instruction is executed for each guest FTLB set (invalidates all matching entries in guest FTLB
set)

If TLB invalidate walk is implemented in hardware (Config4IE=3), then software must do these steps:

1. one TLBGINV instruction is executed (invalidates all matching entries in both guest FTLB & guest VTLB).
In this case, Index is unused.

In an implementation supporting GuestID (GuestCtl0G1=1), matching of guest TLB entries includes comparison of
the TLB entry GuestID with the Root GuestID control field, GuestCtl1RID .

Note that the TLBGINV instruction only invalidates guest virtual address translations in the guest TLB, invalidation
of guest physical address translations requires execution of the equivalent TLBINV instruction sequence in the root
TLB.

Restrictions:

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBGINV
001011

6 1 19 6

Guest TLB Invalidate ITLBGINV

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 129

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-
able TLB entries (for the case of ConfigMT=4).

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include a TLB, the operation of this instruction is UNDEFINED. The preferred implemen-
tation is to signal a Reserved Instruction Exception.

Operation:

if (Guest.ConfigMT=1 or
(Guest.ConfigMT=4 & Guest.Cοnfig4IE=2 & Index ≤ Guest.Config1MMU_SIZE-1))
startnum ← 0
endnum ← Guest.Config1MMU_SIZE-1

endif
// treating VTLB and FTLB as one array
if (Guest.ConfigMT=4 & Guest.Cοnfig4IE=2 & Index > Guest.Config1MMU_SIZE-1)

startnum ← start of selected Guest FTLB set // implementation specific
endnum ← end of selected Guest FTLB set - 1 //implementation specifc

endif

if (Guest.ConfigMT=4 & Guest.Cοnfig4IE=3))
startnum ← 0
endnum ← Guest.Config1MMU_SIZE-1 +
((Guest.Config4FTLBWays + 2) * Guest.Config4FTLBSets)

endif

if IsCoprocessorEnabled(0) then
for (i = startnum to endnum)

if ((Guest.TLB[i]ASID = EntryHiASID) & (Guest.TLB[i]G = 0))
if (GuestCtl0G1 = 1)

if (Guest.TLB[i]GuestID = GuestCtl1RID)
Guest.TLB[i]hardware_invalid ← 1

endif
else

Guest.TLB[i]hardware_invalid ← 1
endif

endif
endfor

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Guest TLB Invalidate Flush TLBGINVF

130 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBGINVF MIPS32

Purpose: Guest TLB Invalidate Flush

TLBGINVF invalidates a set of Guest TLB entries based on Index match. The virtual address and ASID are ignored
in the match.

Implementation of the TLBGINVF instruction is optional. The implementation of this instruction is indicated by the
IE field in Config4.

Implementation of the EntryHIEHINV field is required for implementation of TLBGINV and TLBGINVF instruc-
tions.

Support for TLBGINVF is recommend for implementations supporting VTLB/FTLB type TLB’s.

Description:

On execution of the TLBGINVF instruction, all entries within range of guest Index are invalidated.

Behavior of the TLBGINVF instruction applies to all applicable guest TLB entries and is unaffected by the setting of
the Wired register.

For JTLB-based MMU(ConfigMT=1):

TLBGINVF causes all entries in the guest JTLB to be invalidated. Index is unused.

For VTLB/FTLB-based MMU(ConfigMT=4):

TLBINVF with Index in guest VTLB range causes all entries in the guest VTLB to be invalidated.

TLBINVF with Index in guest FTLB range causes all entries in the single corresponding set in the guest FTLB
to be invalidated.

If TLB invalidate walk is implemented in software (Config4IE=2), then software must do these steps:

1. one TLBGINV instruction is executed with an index in guest VTLB range (invalidates all matching guest
VTLB entries)

2. a TLBGINV instruction is executed for each guest FTLB set (invalidates all matching entries in guest FTLB
set)

If TLB invalidate walk is implemented in hardware (Config4IE=3), then software must do these steps:

1. one TLBGINV instruction is executed (invalidates all matching entries in both guest FTLB & guest VTLB).
In this case, Index is unused.

In an implementation supporting GuestID (GuestCtl0G1=1), matching of guest TLB entries includes comparison of
the TLB entry GuestID with the Root GuestID control field, GuestCtl1RID .

Note that the TLBGINVF instruction only invalidates guest virtual address translations in the guest TLB, invalidation
of guest physical address translations requires execution of the equivalent TLBINVF instruction sequence in the root
TLB.

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBGINVF
001100

6 1 19 6

Guest TLB Invalidate Flush ITLBGINVF

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 131

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries visible as defined by the Config4 register.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if (Guest.ConfigMT=1 or
(Guest.ConfigMT=4 & Guest.Cοnfig4IE=2 & Index ≤ Guest.Config1MMU_SIZE-1))
startnum ← 0
endnum ← Guest.Config1MMU_SIZE-1

endif
// treating VTLB and FTLB as one array
if (Guest.ConfigMT=4 & Guest.Cοnfig4IE=2 & Index > Guest.Config1MMU_SIZE-1)

startnum ← start of selected Guest FTLB set // implementation specific
endnum ← end of selected Guest FTLB set - 1 //implementation specifc

endif

if (Guest.ConfigMT=4 & Guest.Cοnfig4IE=3))
startnum ← 0
endnum ← Guest.Config1MMU_SIZE-1 +
((Guest.Config4FTLBWays + 2) * Guest.Config4FTLBSets)

endif

if IsCoprocessorEnabled(0) then
for (i = startnum to endnum)

if (GuestCtl0G1 = 1)
if (Guest.TLB[i]GuestID = GuestCtl1RID)

Guest.TLB[i]hardware_invalid ← 1
endif

else
Guest.TLB[i]hardware_invalid ← 1

endif
endfor

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Guest TLB Invalidate Flush TLBGINVF

132 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Probe Guest TLB for Matching Entry ITLBGP

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 133

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBGP MIPS32

Purpose: Probe Guest TLB for Matching Entry

To find a matching entry in the Guest TLB, initiated from root mode.

Description:

The Guest.Index register is loaded with the address of the Guest TLB entry whose contents match the contents of the
Guest.EntryHi register. If no Guest TLB entry matches, the high-order bit of the Guest.Index register is set.

In an implementation supporting GuestID (GuestCtl0G1=1), if the GuestID read does not match GuestCtl1RID, then
the match fails.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If an implementation detects multiple matches, and does not detect all multiple matches on TLB write, then a TLBGP
instruction can take a Machine Check Exception if multiple matches occur.

For processors that do not include a TLB in the guest context, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
Guest.Index ← 1 || UNPREDICTABLE31

// If a set-associative TLB is used, then a single set may be probed.

for i in 0...Guest.TLBEntries-1
if (((Guest.TLB[i]VPN2 and ~(Guest.TLB[i]Mask)) =

(Guest.EntryHiVPN2 and ~(Guest.TLB[i]Mask))) and
(Config4IE and not TLB[i]hardware_invalid) and
(Guest.TLB[i]G or (Guest.TLB[i]ASID = Guest.EntryHiASID)))then

if (GuestCtl0G1 = 1)
if (Guest.TLB[i]GuestID = GuestCtl1RID)

Guest.Index ← i
endif

else
Guest.Index ← i

endif
endif

endfor
else

SignalException(CoprocessorUnusable, 0)
endif

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBGP
010000

6 1 19 6

Probe Guest TLB for Matching Entry TLBGP

134 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Exceptions:

Coprocessor Unusable

Machine Check (implementation dependent)

Reserved Instruction

Probe Guest TLB for Matching Entry ITLBGP

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 135

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Read Indexed Guest TLB Entry TLBGR

136 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBGR MIPS32

Purpose: Read Indexed Guest TLB Entry

To read an entry from the Guest TLB into the guest context, initiated from root mode.

Description:

The Guest.EntryHi, Guest.EntryLo0, Guest.EntryLo1, and Guest.PageMask registers are loaded with the con-
tents of the Guest TLB entry pointed to by the Guest.Index register. Note that the value written to the
Guest.EntryHi, Guest.EntryLo0, and Guest.EntryLo1 registers may be different from that originally written to the
TLB via these registers in that:

• The value returned in the VPN2 field of the EntryHi register may have those bits set to zero corresponding to the
one bits in the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed after a TLB
entry is written and then read.

• The value returned in the PFN field of the EntryLo0 and EntryLo1 registers may have those bits set to zero cor-
responding to the one bits in the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
after a TLB entry is written and then read.

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bits in EntryLo0 and EntryLo1 when
the TLB was written.

In an implementation supporting GuestID, if the TLB entry is not marked invalid, the GuestCtl1RID field is written
with the GuestID of the TLB entry read.

Restrictions:

The operation is UNDEFINED if the contents of the Guest.Index register are greater than or equal to the number of
TLB entries in the guest context.

If root-mode access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
i ← Guest.Index
if i > (Guest.TLBEntries - 1) then

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBGR
001001

6 1 19 6

Read Indexed Guest TLB Entry ITLBGR

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 137

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

UNDEFINED
endif
if (Config4IE = 1 && Guest.TLB[i]EHINV = 1) then

GuestCtl1RID ← 0
Guest.PagemaskMask ← 0
Guest.EntryHi ← 0
Guest.EntryLo1 ← 0
Guest.EntryLo0 ← 0
Guest.EntryHiEHINV ← 1
break

endif
if (GuestCtl0G1 = 1)

GuestCtl1RID ← Guest.TLB[i]GuestID
endif
Guest.PageMaskMask ← Guest.TLB[i]Mask
Guest.EntryHi ←

(Guest.TLB[i]VPN2 and not Guest.TLB[i]Mask) || # Masking impl dependent
05 || Guest.TLB[i]ASID

Guest.EntryLo1 ← 02 ||
(Guest.TLB[i]PFN1 and not Guest.TLB[i]Mask) || # Masking impl dependent
Guest.TLB[i]C1 || Guest.TLB[i]D1 || Guest.TLB[i]V1 || Guest.TLB[i]G

Guest.EntryLo0 ← 02 ||
(Guest.TLB[i]PFN0 and not Guest.TLB[i]Mask) || # Masking impl dependent
Guest.TLB[i]C0 || Guest.TLB[i]D0 || Guest.TLB[i]V0 || Guest.TLB[i]G

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Write Indexed Guest TLB Entry TLBGWI

138 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBGWI MIPS32

Purpose: Write Indexed Guest TLB Entry

To write a Guest TLB entry indexed by the Index register, initiated from root mode.

Description:

The Guest TLB entry pointed to by the Guest.Index register is written from the contents of the Guest.EntryHi,
Guest.EntryLo0, Guest.EntryLo1, and Guest.PageMask registers. The information written to the Guest TLB
entry may be different from that in the Guest.EntryHi, Guest.EntryLo0, and Guest.EntryLo1 registers, in that:

• The value written to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bits in the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed during a
TLB write.

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0 and EntryLo1 regis-
ters.

• In an implementation supporting GuestID, GuestCtl1RID is written in the TLB entry.

If EHINV is implemented, the TLBGWI instruction also acts as an explicit TLB entry invalidate operation. The Guest
TLB entry pointed to by the Guest.Index register is marked invalid when guest EntryHIEHINV=1.

When EntryHIEHINV=1, no machine check generating error conditions exist.

Implementation of the TLBGWI invalidate feature is required if the TLBGINV and TLBGINVF instructions are
implemented, optional otherwise.

Restrictions:

The operation is UNDEFINED if the contents of the Guest.Index register are greater than or equal to the number of
TLB entries in the guest context.

If access to the root Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an FTLB enabled system, if Guest.Index is in FTLB range and the page size specified does not match FTLB
page size, recommended behavior is that the write not complete and a Machine Check Exception be signaled.

On an FTLB enabled system, for a write in FTLB range, if the VPN is inconsistent with Index, it is recommended that
a Machine Check Exception be signaled.

It is implementation dependent whether multiple TLB matches are detected on a TLBGWI, though it is recom-
mended. If a TLB write detects multiple matches, but not necessarily all multiple matches, then it is recommended
that a TLB lookup or TLB probe operation signal a Machine Check Exception on detection of multiple matches.

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBGWI
001010

6 1 19 6

Write Indexed Guest TLB Entry ITLBGWI

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 139

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

If multiple match detection is implemented, then on detection, it is recommended that the multiple match be invali-
dated and the write completed. It is recommended that no Machine Check Exception be signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction Exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

SignalException(ReservedInstruction, 0)
break

endif
i ← Guest.Index
if (Config4IE = 1) then

Guest.TLB[i]hardware_invalid ← 0
if (EntryHIEHINV=1) then

Guest.TLB[i]hardware_invalid ← 1
endif

endif
Guest.TLB[i]Mask ← Guest.PageMaskMask
Guest.TLB[i]R ← Guest.EntryHiR
Guest.TLB[i]VPN2 ← Guest.EntryHiVPN2 and not Guest.PageMaskMask # Impl dependent
Guest.TLB[i]ASID ← Guest.EntryHiASID
Guest.TLB[i]G ← Guest.EntryLo1G and Guest.EntryLo0G
Guest.TLB[i]PFN1 ← Guest.EntryLo1PFN and not Guest.PageMaskMask # Impl dependent
Guest.TLB[i]C1 ← Guest.EntryLo1C
Guest.TLB[i]D1 ← Guest.EntryLo1D
Guest.TLB[i]V1 ← Guest.EntryLo1V
Guest.TLB[i]PFN0 ← Guest.EntryLo0PFN and not Guest.PageMaskMask # Impl dependent
Guest.TLB[i]C0 ← Guest.EntryLo0C
Guest.TLB[i]D0 ← Guest.EntryLo0D
Guest.TLB[i]V0 ← Guest.EntryLo0V
if (GuestCtl0G1) then

Guest.TLB[i]GuestID ← GuestCtl1RID
endif

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (disabled if guest EntryHIEHINV=1.)

Write Random Guest TLB Entry TLBGWR

140 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBGWR MIPS32

Purpose: Write Random Guest TLB Entry

To write a Guest TLB entry indexed by the Random register, initiated from root mode.

Description:

The Guest TLB entry pointed to by the Guest.Random register is written from the contents of the Guest.EntryHi,
Guest.EntryLo0, Guest.EntryLo1, and Guest.PageMask registers.

The information written to the Guest TLB entry may be different from that in the Guest.EntryHi, Guest.EntryLo0,
and Guest.EntryLo1 registers, in that:

• The value written to the VPN2 field of the Guest TLB entry may have those bits set to zero corresponding to the
one bits in the Mask field of the Guest.PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a Guest TLB write.

• The value written to the PFN0 and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bits in the Mask field of Guest.PageMask register (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It is implementation dependent whether these bits are preserved or zeroed
during a Guest TLB write.

• The single G bit in the Guest TLB entry is set from the logical AND of the G bits in the Guest.EntryLo0 and
Guest.EntryLo1 registers.

• In an implementation supporting GuestID, GuestCtl1RID is written in the TLB entry.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an VTLB/FTLB enabled implementation, if the Pagemask register contains a page size differing from the FTLB
page size defined in Config4, then the write goes into a random entry in the VTLB.

It is implementation dependent whether multiple TLB matches are detected on a TLBGWR, though it is recom-
mended. If a TLB write detects multiple matches, but not necessarily all multiple matches, then a TLB lookup or TLB
probe operation should signal a Machine Check Exception on detection of multiple matches.

If multiple match detection is implemented, then on detection, the multiple match should be invalidated and the write
completed. No Machine Check Exception should be signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3VZ = 0) then

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBWR
001110

6 1 19 6

Write Random Guest TLB Entry ITLBGWR

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 141

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

SignalException(ReservedInstruction, 0)
break

endif
i ← Guest.Random
if (Config4IE = 1) then

Guest.TLB[i]hardware_invalid ← 0
if (EntryHIEHINV=1) then

Guest.TLB[i]hardware_invalid ← 1
endif

endif
Guest.TLB[i]Mask ← Guest.PageMaskMask
Guest.TLB[i]R ← Guest.EntryHiR
Guest.TLB[i]VPN2 ← Guest.EntryHiVPN2 and not Guest.PageMaskMask # Impl. dependent
Guest.TLB[i]ASID ← Guest.EntryHiASID
Guest.TLB[i]G ← Guest.EntryLo1G and Guest.EntryLo0G
Guest.TLB[i]PFN1 ← Guest.EntryLo1PFN and not PageMaskMask # Impl. dependent
Guest.TLB[i]C1 ← Guest.EntryLo1C
Guest.TLB[i]D1 ← Guest.EntryLo1D
Guest.TLB[i]V1 ← Guest.EntryLo1V
Guest.TLB[i]PFN0 ← Guest.EntryLo0PFN and not PageMaskMask # Impl. dependent
Guest.TLB[i]C0 ← Guest.EntryLo0C
Guest.TLB[i]D0 ← Guest.EntryLo0D
Guest.TLB[i]V0 ← Guest.EntryLo0V
if (GuestCtl0G1) then

Guest.TLB[i]GuestID ← GuestCtl1RID
endif

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (implementation dependent)

TLB Invalidate Flush TLBINVF

142 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBINVF MIPS32

Purpose: TLB Invalidate Flush

Description:

The TLBINVF instruction is unmodified from the base architectural definition, except in an implementation support-
ing GuestID:

• When executing in Guest mode, if the GuestID read does not match GuestCtl1ID, then the TLB entry is not
modified.

• When executing in Root mode, if the GuestID read does not match GuestCtl1RID, then the TLB entry is not
modified. Note that this only applies to the root TLB, invalidation of guest virtual address translations requires
execution of the equivalent TLBGINVF instruction sequence to modify the guest TLB.

Restrictions:

Unchanged from the base architecture.

Exceptions:

Coprocessor Unusable

Reserved Instruction

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBINVF
000100

6 1 19 6

TLB Invalidate Flush ITLBINVF

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 143

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

TLB Invalidate TLBINV

144 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBINV MIPS32

Purpose: TLB Invalidate

Description:

The TLBINV instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

• When executing in Guest mode, if the GuestID read does not match GuestCtl1ID, then the TLB entry is not
modified.

• When executing in Root mode, if the GuestID read does not match GuestCtl1RID, then the TLB entry is not
modified. Note that this only applies to the root TLB, invalidation of guest virtual address translations requires
execution of the equivalent TLBGINV instruction sequence to modify the guest TLB.

Restrictions:

Unchanged from the base architecture.

Exceptions:

Unchanged from the base architecture.

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBINV
000011

6 1 19 6

Probe TLB for Matching Entry ITLBP

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 145

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBP MIPS32

Purpose: Probe TLB for Matching Entry

To find a matching entry in the TLB.

Description:

The TLBP instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

• When executing in Guest mode, if the GuestID read does not match GuestCtl1ID, then the match fails.

• When executing in Root mode, if the GuestID read does not match GuestCtl1RID, then the match fails.

Restrictions:

Unchanged from the base architecture.

Operation:

if IsCoprocessorEnabled(0) then
Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i]VPN2 & ~(TLB[i]Mask)) = (EntryHiVPN2 & ~(TLB[i]Mask))) and

(Config4IE=1 && TLB[i]hardware_invalid != 1) and
((IsRootMode() and (TLB[i]GuestID = GuestCtl1RID)) or
(IsGuestMode() and (TLB[i]GuestID = GuestCtl1ID))) and
((TLB[i]G = 1) or (TLB[i]ASID = EntryHiASID))then
Index ← i

endif
endfor

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (implementation defined)

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBP
001000

6 1 19 6

Probe TLB for Matching Entry TLBP

146 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Read Indexed TLB Entry ITLBR

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 147

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBR MIPS32

Purpose: Read Indexed TLB Entry

To read an entry from the TLB.

Description:

The TLBR instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

• When executing in Guest mode, if the GuestID read does not match GuestCtl1ID, then the TLB related CP0 reg-
isters are zeroed and EHINV is set to 1.

• When executing in Root mode and the TLB entry is not marked as invalid, GuestCtl1RID is set to the GuestID of
the TLB entry read.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entries in the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDEFINED. The
preferred implementation is to signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
if (Config4IE=1 && TLB[i]hardware_invalid = 1) then

GuestCtl1RID ← 0
PagemaskMask ← 0
EntryHi ← 0
EntryLo1 ← 0
EntryLo0 ← 0
EntryHiEHINV ← 1
break

endif
PageMaskMask ← TLB[i]Mask
EntryHi ←

(TLB[i]VPN2 and not TLB[i]Mask) || # Masking implementation dependent
05 || TLB[i]ASID

EntryLo1 ← 02 ||
(TLB[i]PFN1 and not TLB[i]Mask) || # Masking mplementation dependent
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ← 02 ||
(TLB[i]PFN0 and not TLB[i]Mask) || # Masking mplementation dependent
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBR
000001

6 1 19 6

Read Indexed TLB Entry TLBR

148 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

if in guest mode, if the TLB entry guest id != guest id
zero the result
if (GuestCtl0G1 = 1)

if (GuestCtl0GM=1) and (Root.DebugDM=0) and
(Root.StatusERL=0) and (Root.StatusEXL=0) then

if (TLB[i]ID != GuestCtl1ID) then
PagemaskMask ← 0
EntryHi ← 0
EntryLo1 ← 0
EntryLo0 ← 0
EntryHiEHINV ← 1

endif
else #in root mode, save read GuestID

GuestCtl1RID ← TLB[i]GuestID
endif

endif
else

SignalException(CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Read Indexed TLB Entry ITLBR

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 149

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Write Indexed TLB Entry TLBWI

150 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Format: TLBWI MIPS32

Purpose: Write Indexed TLB Entry

To write a TLB entry indexed by the Index register.

Description:

The TLBWI instruction is unmodified from the base architecture, except in an implementation supporting GuestID:

• When executing in Guest mode, GuestCtl1ID is written in the guest TLB entry.

• When executing in Root mode GuestCtl1RID is written in the root TLB entry.

It is expected that a Guest entry in the Root TLB must have its Global(G) bit set to 1 on a TLB write. This is because
the ASID field is not applicable for a Guest entry in the Root TLB.

If EHINV is implemented, the TLBWI instruction also acts as an explicit TLB entry invalidate operation. The TLB
entry pointed to by the Index register is marked invalid when EntryHIEHINV=1.

When EntryHIEHINV=1, no machine check generating error conditions exist.

Restrictions:

Unmodified from the base architecture.

Operation:

if IsCoprocessorEnabled(0) then
i ← Index
if (Config4IE=1) then

TLB[i]hardware_invalid ← 0
if (EntryHIEHINV=1) then

TLB[i]hardware_invalid ← 1
endif

endif
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2 and not PageMaskMask # Implementation dependent
TLB[i]ASID ← EntryHiASID
if (GuestCtl0G1) then

if ((GuestCtl0RAD=0) and IsRootMode() and (GuestCtl1RID != 0))
TLB[i]G ← 1

else
TLB[i]G ← EntryLo1G and EntryLo0G

endif
else

TLB[i]G ← EntryLo1G and EntryLo0G
endif
if (IsRootMode()) then

TLB[i]GuestID ← GuestCtl1RID
else

TLB[i]GuestID ← GuestCtl1ID

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

TLBWI
000010

6 1 19 6

Write Indexed TLB Entry ITLBWI

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 151

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

endif
TLB[i]PFN1 ← EntryLo1PFN and not PageMaskMask # Implementation dependent
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN and not PageMaskMask # Implementation dependent
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Unmodified from the base architecture.

Write Indexed TLB Entry TLBWI

152 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Chapter 7

MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03 153

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

Notes

This Virtualization Module specification is a work in progress. Feedback and comments are welcomed on the func-
tional behavior, and the explanations of that behavior.

7.1 Potential areas of improvement

The following items have been identified as potential areas of improvement in the specification.

• Extensions to EJTAG specification to allow additional control over hardware breakpoints used during guest exe-
cution.

• Consider options to allow for translation of 36-bit physical addresses

• Consider options to reduce the cost of guest0-guest1-guest0 context switching.

• Security: JTAG, DEBUG, Boot, IOMMU

 Notes

154 MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture, Revision 1.03

Copyright © 2010-2012 MIPS Technologies Inc. All rights reserved.

	MIPS32® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS32® Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	The Virtualization Module of the MIPS32® Architecture
	2.1 Base Architecture Requirements
	2.2 Software Detection of the Module
	2.3 Compliance and Subsetting
	2.4 Overview of the Virtualization Module
	2.5 Instruction Bit Encoding

	Overview of Virtualization Support
	3.1 Overview

	The Virtualization Privileged Resource Architecture
	4.1 Introduction
	4.2 Overview
	4.3 Compliance
	4.4 Operating Modes
	4.4.1 The Onion Model
	4.4.2 Terminology
	4.4.3 Definition of Guest Mode
	4.4.3.1 Definition
	4.4.3.2 Entry to Guest mode
	4.4.3.3 Exit from Guest mode
	4.4.3.4 Guest mode execution
	4.4.3.5 Reset
	4.4.3.6 Debug Mode
	4.4.3.7 Fields affecting processor mode

	4.4.4 The Guest Context

	4.5 Virtual Memory
	4.5.1 Virtualized MMU GuestID Use
	4.5.2 Root and Guest Shared TLB Operation

	4.6 Coprocessor 0
	4.6.1 New and Modified CP0 Registers
	4.6.2 New CP0 Instructions
	4.6.3 Guest CP0 registers
	4.6.3.1 Guest Reserved Register Handling

	4.6.4 Guest Privileged Sensitive Features
	4.6.5 Access Control for Guest CP0 Register Fields
	4.6.6 Guest Config Register Fields
	4.6.7 Guest Context Dynamically Set Read-only Fields
	4.6.8 Guest Timer
	4.6.9 Guest Cache Operations
	4.6.10 UNPREDICTABLE and UNDEFINED in Guest Mode

	4.7 Exceptions
	4.7.1 Exceptions in Guest Mode
	4.7.2 Faulting Address for Exceptions from Guest Mode
	4.7.3 Guest initiated Root TLB Exception
	4.7.4 Exception Priority
	4.7.5 Exception Vector Locations
	4.7.6 Synchronous and Synchronous Hypervisor Exceptions
	4.7.7 Guest Privileged Sensitive Instruction Exception
	4.7.8 Guest Software Field Change Exception
	4.7.9 Guest Hardware Field Change Exception
	4.7.10 Guest Reserved Instruction Redirect
	4.7.11 Hypercall Exception
	4.7.12 Guest Exception Code in Root Context

	4.8 Interrupts
	4.8.1 External Interrupts
	4.8.1.1 Non-EIC Interrupt Handling
	4.8.1.2 EIC Interrupt Handling

	4.8.2 Derivation of Guest.CauseIP/RIPL
	4.8.3 Timer Interrupts
	4.8.4 Performance Counter Interrupts

	4.9 Instructions and Machine State, other than CP0
	4.9.1 General Purpose Registers and Shadow Register Sets
	4.9.1.1 Pseudo-code for Shadow Set Handling

	4.9.2 Multiplier Result Registers
	4.9.3 DSP Module
	4.9.4 Floating Point Unit (Coprocessor 1)
	4.9.5 Coprocessor 2
	4.9.6 MSA (MIPS SIMD Architecture)

	4.10 Combining the Virtualization Module and the MT Module
	4.11 Guest Mode and Debug features
	4.12 Watchpoint Debug Support
	4.13 Virtualization Module features and Hypervisor Software
	4.14 Lightweight Virtualization
	4.14.1 Introduction
	4.14.2 Support for Lightweight Virtualization
	4.14.2.1 Root Protection Unit (RPU)
	4.14.2.2 Architectural Control
	4.14.2.3 Optional Features of Virtualization Architecture

	Coprocessor 0 (CP0) Registers
	5.1 CP0 Register Summary
	5.2 GuestCtl0 Register (CP0 Register 12, Select 6)
	5.3 GuestCtl1 Register (CP0 Register 10, Select 4)
	5.4 GuestCtl2 Register (CP0 Register 10, Select 5)
	5.5 GuestCtl3 Register (CP0 Register 10, Select 6)
	5.6 GuestCtl0Ext Register (CP0 Register 11, Select 4)
	5.7 GTOffset Register (CP0 Register 12, Select 7)
	5.8 Cause Register (CP0 Register 13, Select 0)
	5.9 Configuration Register 3 (CP0 Register 16, Select 3)
	5.10 WatchHi Register (CP0 Register 19)
	5.11 Performance Counter Register (CP0 Register 25)
	5.12 Note on future CP0 features

	Instruction Descriptions
	6.1 Overview
	HYPCALL
	MFGC0
	MTGC0
	TLBGINV
	TLBGINVF
	TLBGP
	TLBGR
	TLBGWI
	TLBGWR
	TLBINVF
	TLBINV
	TLBP
	TLBR
	TLBWI

	Notes
	7.1 Potential areas of improvement

