
Document Number: MD00047
Revision 6.10

February 07, 2013

MIPS Technologies, Inc.
955 East Arques Avenue

Sunnyvale, CA 94085-4521

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

MIPS® EJTAG Specification

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Template: nB1.03, Built with tags: 2B

Copyright © 2000-2012 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this
information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals,
is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16, MIPS16e, MIPS-Based,
MIPSsim, MIPSpro, MIPS Technologies logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd,
M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc, 1074Kf,
R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CoreLV, EC,
FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED,
MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered
trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS® EJTAG Specification, Revision 6.10 3

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: Overview of the EJTAG System ... 15
1.1: Introduction to EJTAG ... 15
1.2: Historical Perspective .. 16
1.3: EJTAG Capabilities ... 19

1.3.1: Debug Exception and Debug Mode ... 19
1.3.2: Off-board EJTAG Memory ... 19
1.3.3: Debug Breakpoint Instruction... 19
1.3.4: Hardware Breakpoints.. 20
1.3.5: Single-Step Execution.. 20

1.4: EJTAG Components and Options ... 20
1.4.1: EJTAG Processor Core Extensions ... 21
1.4.2: EJTAG Test Access Port ... 22
1.4.3: Debug Control Register.. 22
1.4.4: Hardware Breakpoint Unit .. 22
1.4.5: Fast Debug Channel .. 23

1.5: Complex Breakpoint and Trigger (CBT) Block .. 23
1.6: EJTAG-Specific Coprocessor 0 Registers... 23
1.7: Memory-Mapped EJTAG Registers... 24

1.7.1: Debug Control Register.. 24
1.7.2: Debug Exception Vector Location Register ... 25
1.7.3: Load Data Value Register .. 25
1.7.4: Instruction Hardware Breakpoint Registers.. 25
1.7.5: Data Hardware Breakpoint Registers... 26
1.7.6: Complex Break and Trigger Registers ... 26

1.8: Memory-Mapped EJTAG Memory Segment ... 27
1.9: Memory-Mapped Fast Debug Channel Registers ... 27
1.10: EJTAG Test Access Port Registers... 28
1.11: The Implications of Multiprocessing and Multithreading for EJTAG .. 29
1.12: Related Documents ... 29
1.13: Notations and Conventions ... 30

1.13.1: Compliance .. 30
1.13.2: UNPREDICTABLE and UNDEFINED Operations ... 30
1.13.3: Register Field Notations... 31
1.13.4: Value Notations.. 32
1.13.5: Address Notations.. 32

Chapter 2: EJTAG Processor Core Extensions ... 33
2.1: Overview.. 33
2.2: Debug Mode Execution ... 34

2.2.1: Debug Mode Instruction Set... 34
2.2.2: Debug Mode Address Space ... 34
2.2.3: Debug Mode Handling of Processor Resources .. 39
2.2.4: CP0 and dseg Segment Hazards... 41

2.3: Debug Exceptions ... 43
2.3.1: Debug Exception Priorities... 43
2.3.2: Debug Exception Vector Location.. 44
2.3.3: Debug Exception ISA mode... 46

4 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.3.4: General Debug Exception Processing ... 47
2.3.5: Debug Breakpoint Exception.. 48
2.3.6: Debug Instruction Break Exception.. 49
2.3.7: Debug Data Break Load/Store Exception .. 49
2.3.8: Debug Data Break Load/Store Imprecise Exception.. 49
2.3.9: Debug Single Step Exception .. 50
2.3.10: Debug Interrupt Exception ... 52

2.4: Debug Mode Exceptions ... 53
2.4.1: Exceptions Taken in Debug Mode ... 54
2.4.2: Exceptions on Imprecise Errors ... 55
2.4.3: Debug Mode Exception Processing ... 55

2.5: Interrupts and NMIs ... 56
2.5.1: Interrupts .. 57
2.5.2: NMIs... 57

2.6: Reset and Soft Reset of Processor ... 57
2.6.1: EJTAGBOOT Feature .. 57
2.6.2: Reset from Probe... 58
2.6.3: Processor Reset by Probe through Test Access Port.. 58
2.6.4: Reset Occurred Indication through Test Access Port .. 58
2.6.5: Soft Reset Enable .. 58
2.6.6: Reset of Other Debug Features ... 58

2.7: EJTAG Coprocessor 0 Registers .. 58
2.7.1: Debug Register (CP0 Register 23, Select 0) ... 59
2.7.2: Debug2 Register (CP0 Register 23, Select 6) ... 68
2.7.3: Debug Exception Program Counter Register (CP0 Register 24, Select 0) 69
2.7.4: Debug Exception Save Register (CP0 Register 31, Select 0) ... 70

2.8: EJTAG Instructions.. 70

Chapter 3: Debug Control Register... 79

Chapter 4: EJTAG Test Access Port ... 87
4.1: TAP Overview.. 87
4.2: TAP Signals... 88

4.2.1: Test Clock Input (TCK)... 88
4.2.2: Test Mode Select Input (TMS) ... 88
4.2.3: Test Data Input (TDI) ... 89
4.2.4: Test Data Output (TDO)... 89
4.2.5: Test Reset Input (TRST*)... 89

4.3: TAP Controller ... 89
4.3.1: Test-Logic-Reset State .. 90
4.3.2: Capture-IR State .. 90
4.3.3: Shift-IR State.. 90
4.3.4: Update-IR State ... 91
4.3.5: Capture-DR State... 91
4.3.6: Shift-DR State .. 91
4.3.7: Update-DR State.. 91

4.4: Instruction Register and Special Instructions .. 91
4.4.1: ALL Instruction ... 92
4.4.2: EJTAGBOOT and NORMALBOOT Instructions .. 93
4.4.3: FASTDATA Instruction... 93
4.4.4: FDC Instruction .. 93

4.5: TAP Data Registers... 94
4.5.1: Device Identification (ID) Register (TAP Instruction IDCODE)... 95

MIPS® EJTAG Specification, Revision 6.10 5

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5.2: Implementation Register (TAP Instruction IMPCODE) .. 96
4.5.3: Data Register (TAP Instruction DATA, ALL, or FASTDATA) ... 98
4.5.4: Address Register (TAP Instruction ADDRESS or ALL).. 101
4.5.5: EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL) ... 102
4.5.6: Fastdata Register (TAP Instruction FASTDATA) ... 108
4.5.7: PCsample Register (PCSAMPLE Instruction).. 110
4.5.8: Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused) 110

4.6: Examples of Use ... 111
4.6.1: TAP Operation ... 111
4.6.2: ManufID Value ... 112
4.6.3: Rocc Bit Usage .. 112
4.6.4: EJTAG Memory Access Through Processor Access... 113

Chapter 5: Hardware Breakpoints... 117
5.1: Introduction.. 117

5.1.1: Instruction Breakpoint Features ... 118
5.1.2: Data Breakpoint Features .. 118

5.2: Overview of Instruction and Data Breakpoint Registers .. 119
5.2.1: Overview of Instruction Breakpoint Registers .. 119
5.2.2: Overview of Data Breakpoint Registers ... 119

5.3: Conditions for Matching Breakpoints... 120
5.3.1: Conditions for Equality and Mask Matching Instruction Breakpoints ... 120
5.3.2: Conditions for Equality and Mask Matching Data Breakpoints .. 122
5.3.3: Precise Exceptions on Data Value Match Breaks.. 127
5.3.4: Address Range Triggered Instruction Breakpoints .. 128
5.3.5: Address Range Triggered Data Breakpoints ... 130

5.4: Debug Exceptions from Breakpoints ... 131
5.4.1: Debug Exception Caused by Instruction Breakpoint.. 131
5.4.2: Debug Exception by Data Breakpoint .. 131

5.5: Breakpoints Used as Triggerpoints ... 133
5.6: Instruction Breakpoint Registers.. 134

5.6.1: Instruction Breakpoint Status (IBS) Register.. 135
5.6.2: Instruction Breakpoint Address n (IBAn) Register.. 136
5.6.3: Instruction Breakpoint Address Mask n (IBMn) Register ... 137
5.6.4: Instruction Breakpoint ASID n (IBASIDn) Register .. 137
5.6.5: Instruction Breakpoint Control n (IBCn) Register ... 140

5.7: Data Breakpoint Registers... 142
5.7.1: Data Breakpoint Status (DBS) Register ... 142
5.7.2: Data Breakpoint Address n (DBAn) Register ... 144
5.7.3: Data Breakpoint Address Mask n (DBMn) Register... 145
5.7.4: Data Breakpoint ASID n (DBASIDn) Register.. 145
5.7.5: Data Breakpoint Control n (DBCn) Register .. 148
5.7.6: Data Breakpoint Value n (DBVn) Register ... 151

5.8: Recommendations for Implementing Hardware Breakpoints .. 151
5.8.1: Number of Instruction Breakpoints Without Single Stepping ... 152
5.8.2: Data Breakpoints with Data Value Compares.. 152
5.8.3: Data Breakpoint Compare on Invalid Data... 152
5.8.4: Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares 152

5.9: Breakpoint Examples... 153
5.9.1: Instruction Breakpoint Examples.. 153
5.9.2: Data Breakpoint ... 153

Chapter 6: Complex Break and Trigger Block ... 157

6 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.1: Complex Trigger Features/Capabilities ... 157
6.2: General Complex Break Behavior ... 157
6.3: Registers in the Complex Break and Trigger Block... 158

6.3.1: Complex Break and Trigger Control (CBTC) Register (0x8000).. 158
6.3.2: Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n * 0x100)....................... 160
6.3.3: Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100).............................. 161
6.3.4: Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n * 0x100) 162
6.3.5: Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100) 163
6.3.6: Priming Condition A I/D n (PrCndA/B/C/DI/Dn) Registers ... 164
6.3.7: Stopwatch Timer Control (STCtl) Register (0x8900).. 165
6.3.8: Stopwatch Timer Count (STCnt) Register (0x8908) .. 166

6.4: Tuple Breakpoints.. 167
6.5: Pass Counters ... 167
6.6: Data Qualified Breakpoints.. 168
6.7: Primed Breakpoints ... 169
6.8: Stopwatch Timer.. 170
6.9: Reporting of the Complex Breakpoints in the Debug Register .. 171

6.9.1: Debug Register (23, select 0) Changes for Complex Breakpoints... 171
6.9.2: Debug2 Register (23, select 6) .. 171

Chapter 7: PC Sampling... 173
7.1: Introduction.. 173
7.2: PC and Data Address Sampling.. 173

7.2.1: PC Sampling in Wait State... 176
7.2.2: PC Sampling a MT Processor.. 176
7.2.3: Cache Miss PC Sampling .. 176
7.2.4: Data Address Sampling ... 176

Chapter 8: Fast Debug Channel .. 177
8.1: Overview.. 177
8.2: FDC Features .. 177

8.2.1: Fast Debug Interrupt .. 177
8.2.2: FDC TAP Instruction .. 179

8.3: Fast Debug Channel Registers ... 180
8.3.1: FDC Access Control and Status (FDACSR) Register (Offset 0x0) .. 180
8.3.2: FDC Configuration (FDCFG) Register (Offset 0x8) ... 181
8.3.3: FDC Status (FDSTAT) Register (Offset 0x10) ... 182
8.3.4: FDC Receive (FDRX) Register (Offset 0x18) .. 183
8.3.5: FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n).. 183

Chapter 9: SecureDebug.. 185
9.1: Disabling EJTAG debugging ... 185

9.1.1: EJ_DisableProbeDebug Signal.. 185
9.1.2: Override for EjtagBrk and DINT disable... 186

9.2: EJTAG Features unmodified by SecureDebug ... 186

Chapter 10: On-Chip Interfaces... 187
10.1: Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals .. 187
10.2: Optional TRST* Pin ... 187
10.3: Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins ... 187
10.4: Connecting Multi-Core Test Access Port (TAP) Controllers.. 188

MIPS® EJTAG Specification, Revision 6.10 7

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 11: Off-Chip and Probe Interfaces .. 189
11.1: Logical Signals .. 189

11.1.1: Test Access Port Signals ... 190
11.1.2: Debug Interrupt Signal ... 191
11.1.3: System Reset Signal.. 191
11.1.4: Return Test Clock Input ... 191
11.1.5: Voltage Sense for I/O Signal.. 192

11.2: AC Timing Characteristics ... 192
11.2.1: Test Access Port Timing .. 192
11.2.2: Debug Interrupt Timing .. 194
11.2.3: System Reset Timing ... 194
11.2.4: Voltage Sense for I/O (VIO) Timing ... 195

11.3: DC Electrical Characteristics ... 195
11.4: Mechanical Connector... 196
11.5: Target System PCB Design... 197

11.5.1: Electrical Connection ... 197
11.5.2: Layout Considerations ... 199

11.6: Probe Requirements and Recommendations.. 199
11.6.1: Target System Power-Up with Probe Attached.. 199
11.6.2: Hot Plug in of Probe... 200
11.6.3: TDO Level when 3-Stated.. 200
11.6.4: RST* Drive by Open Collector ... 200
11.6.5: Changing TMS and TDI ... 200
11.6.6: Mechanical Connector ... 200

Appendix A: Differences for R3000 Privileged Environments ... 201
A.1: EJTAG Processor Core Extensions .. 201

A.1.1: SYNC Instruction ... 201
A.1.2: Debug Exception Vector Location ... 201
A.1.3: SYNC Instruction Substitute .. 201
A.1.4: CP0 Register Numbers for Debug and DEPC Registers... 201

A.2: Hardware Breakpoints... 202
A.2.1: Instruction Breakpoint Registers.. 202
A.2.2: Conditions for Matching Instruction Breakpoints ... 202
A.2.3: ASID Field in IBCn Register .. 202
A.2.4: Data Breakpoint Registers... 202
A.2.5: Conditions for Matching Data Breakpoints .. 203
A.2.6: ASID Field in DBCn Register... 203

A.3: EJTAG Test Access Port .. 203

Appendix B: Terminology .. 205

Appendix C: Functional Clarifications from Old EJTAG 2.5... 207

Appendix D: Multithreaded and Multi-Core Debug.. 209
D.1: Introduction ... 209
D.2: MCBU Register Map ... 209
D.3: MCBU Registers ... 210

D.3.1: Debug_Int_i ... 210
D.3.2: Reset ... 211
D.3.3: Debug Interrupt.. 212

D.4: Possible Implementation... 213

8 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix E: DRSEG Memory Map .. 214

Appendix F: Revision History.. 217

MIPS® EJTAG Specification, Revision 6.10 9

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1.1: Setup of Debug System without EJTAG .. 16
Figure 1.2: Setup of Debug System with EJTAG ... 17
Figure 1.3: Test Access Port (TAP) to Internal Connections ... 18
Figure 1.4: Simplified Block Diagram of EJTAG Components .. 21
Figure 2.1: Virtual Address Spaces with Debug Mode Segments .. 36
Figure 2.2: DebugVectorAddr Register Format when Config3SC=0 .. 45
Figure 2.3: DebugVectorAddr Register Format when Config3SC=1 .. 46
Figure 2.4: Example 1: Single-stepping One Thread TC0 with Non-single-Stepping Thread TC1......................... 51
Figure 2.5: Example 2: Single-stepping Two Threads TC0 and TC1.. 52
Figure 2.6: Example 3: Single-stepping Two Threads TC0 and TC1 with Other Threads TC2 and TC3 52
Figure 2.7: Debug Register Format... 60
Figure 2.8: Debug2 Register Format .. 68
Figure 2.9: DEPC Register Format ... 70
Figure 2.10: DESAVE Register Format .. 70
Figure 3.1: DCR Register Format ... 80
Figure 4.1: Test Access Port (TAP) Overview .. 88
Figure 4.2: TAP Controller State Diagram .. 90
Figure 4.3: TDI to TDO Path when in Shift-IR State ... 91
Figure 4.4: TDI to TDO Path for Selected Data Register(s) when in Shift-DR State .. 91
Figure 4.5: TDI to TDO Path when in Shift-DR State and ALL Instruction is Selected ... 93
Figure 4.6: TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected............................... 93
Figure 4.7: Device ID Register Format ... 95
Figure 4.8: Implementation Register Format .. 97
Figure 4.9: Data Register Format ... 99
Figure 4.10: Address Register Format ... 102
Figure 4.11: EJTAG Control Register Format .. 103
Figure 4.12: Fastdata Register Format ... 108
Figure 4.13: Bypass Register Format ... 111
Figure 4.14: TAP Operation Example ... 111
Figure 4.15: Write Processor Access Example... 114
Figure 4.16: Read Processor Access Example... 115
Figure 5.1: Instruction Breakpoint Overview ... 118
Figure 5.2: Data Breakpoint Overview .. 118
Figure 5.3: IBS Register Format .. 135
Figure 5.4: IBAn Register Format .. 136
Figure 5.5: IBMn Register Format .. 137
Figure 5.6: IBASIDn Register Format .. 138
Figure 5.7: IBCn Register Format .. 140
Figure 5.8: DBS Register Format ... 143
Figure 5.9: DBAn Register Format ... 144
Figure 5.10: DBMn Register Format .. 145
Figure 5.11: DBASIDn Register Format ... 146
Figure 5.12: DBCn Register Format ... 148
Figure 5.13: DBVn Register Format ... 151
Figure 5.14: Data Break on Store with Value Compare.. 154
Figure 5.15: Data Break on Store with Value Compare.. 155
Figure 6.1: CBTC Register Format .. 158

10 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 6.2: IBCCn Register Format .. 160
Figure 6.3: IBPCn Register Format .. 161
Figure 6.4: DBCCn Register Format .. 162
Figure 6.5: DBPCn Register Format .. 163
Figure 6.6: PrCndA Register Format .. 164
Figure 6.7: STCtl Register Format ... 165
Figure 6.8: STCnt Register Format .. 167
Figure 7.1: PCSAMPLE TAP Register Format (MIPS32) ... 174
Figure 7.2: PCSAMPLE TAP Register Format (MIPS64) .. 174
Figure 8.1: FDC Block Diagram and TDI to TDO Path ... 180
Figure 8.2: FDC Access Control and Status Register... 180
Figure 8.3: FDC Configuration Register.. 181
Figure 8.4: FDC Status Register ... 182
Figure 8.5: FDC Receive Register .. 183
Figure 8.6: FDC Transmit Register ... 184
Figure 10.1: Daisy-chaining of Multi-core EJTAG TAP Controllers... 188
Figure 11.1: Signal Flow Between Chip, Target System PCB, and Probe.. 190
Figure 11.2: Test Access Port Signals Timing .. 193
Figure 11.3: Debug Interrupt Signal Timing .. 194
Figure 11.4: System Reset Signal Timing... 194
Figure 11.5: Voltage Sense for I/O Signal Timing... 195
Figure 11.6: EJTAG Connector Mechanical Dimensions.. 197
Figure 11.7: Target System Electrical EJTAG Connection ... 198
Figure 11.8: Target System Layout for EJTAG Connection.. 199
Figure D.1: Debug_Int_i Register Format .. 210
Figure D.2: Reset Register Format .. 211
Figure D.3: Cold Reset Register Format .. 211
Figure D.4: NMI Register Format ... 212
Figure D.5: Debug Interrupt Register Format ... 212
Figure D.6: An Example Implementation .. 213

MIPS® EJTAG Specification, Revision 6.10 11

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1.1: EJTAG TAP Instructions .. 18
Table 1.2: Overview of Coprocessor 0 Registers for EJTAG.. 24
Table 1.3: Overview of Debug Control Register as Memory-Mapped Register for EJTAG 24
Table 1.4: Overview of Debug Exception Vector Location Register ... 25
Table 1.5: Overview of Load Data Value Register .. 25
Table 1.6: Overview of Instruction Hardware Breakpoint Registers.. 25
Table 1.7: Overview of Data Hardware Breakpoint Registers... 26
Table 1.8: Overview of Complex Break and Trigger Registers ... 26
Table 1.9: Overview of Fast Debug Channel Registers .. 27
Table 1.10: Overview of Test Access Port Registers.. 28
Table 1.11: Register Field Notations... 31
Table 2.1: Presence of the dseg Segment.. 35
Table 2.2: Physical Address and Cache Attribute for dseg, dmseg and drseg... 37
Table 2.3: Access to dmseg Segment Address Range... 37
Table 2.4: Access to drseg Segment Address Range .. 38
Table 2.5: SYNC and EHB Instruction References... 41
Table 2.6: Execution Hazards... 42
Table 2.7: Hazard Clearing Instructions.. 42
Table 2.8: Priority of Non-Debug and Debug Exceptions ... 43
Table 2.9: Debug Exception Vector Location.. 44
Table 2.10: DebugVectorAddr Register Field Descriptions when Config3SC=0 .. 45
Table 2.11: DebugVectorAddr Register Field Descriptions when Config3SC=1 .. 46
Table 2.12: Exception Handling in Debug Mode... 54
Table 2.13: Coprocessor 0 Registers for EJTAG.. 58
Table 2.14: Debug Register Field Descriptions... 60
Table 2.15: Debug2 Register Field Descriptions... 68
Table 2.16: DEPC Register Field Description ... 70
Table 2.17: DESAVE Register Field Descriptions... 70
Table 3.1: DCR Register Field Descriptions ... 81
Table 4.1: TAP Instruction Overview... 92
Table 4.2: EJTAG TAP Data Registers... 94
Table 4.3: Device ID Register Field Descriptions.. 96
Table 4.4: Implementation Register Field Descriptions... 97
Table 4.5: Data Register Field Descriptions.. 99
Table 4.6: Data Register Contents for 32-bit Processors.. 100
Table 4.7: Data Register Contents for 64-bit Processors.. 101
Table 4.8: Address Register Field Descriptions.. 102
Table 4.9: EJTAG Control Register Field Descriptions ... 103
Table 4.10: Combinations of ProbTrap and ProbEn ... 108
Table 4.11: Fastdata Register Field Description... 109
Table 4.12: Operation of the FASTDATA access ... 110
Table 4.13: Bypass Register Field Description ... 111
Table 4.14: ManufID Field Value Examples.. 112
Table 4.15: Information Provided to Probe at Processor Access.. 113
Table 5.1: Instruction Breakpoint Register Summary.. 119
Table 5.2: Data Breakpoint Register Summary... 120
Table 5.3: Instruction Breakpoint Condition Parameters... 121

12 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 5.4: Data Breakpoint Condition Parameters.. 122
Table 5.5: BYTELANE at Unaligned Address for 32-bit Processors... 126
Table 5.6: BYTELANE at Unaligned Address for 64-bit Processors... 126
Table 5.7: Behavior on Precise Exceptions from Data Breakpoints.. 132
Table 5.8: Rules for Update of Break Status (BS) Bits on Precise Exceptions from Data Breakpoints 132
Table 5.9: Actions Resulting from an Instruction/Data Match for Specified BE and TE Bit Values....................... 133
Table 5.10: Rules for Update of Break Status (BS) Bits on Data Triggerpoints.. 134
Table 5.11: Instruction Breakpoint Register Mapping ... 134
Table 5.12: IBS Register Field Descriptions ... 135
Table 5.14: IBMn Register Field Descriptions... 137
Table 5.13: IBAn Register Field Descriptions ... 137
Table 5.15: IBASIDn Register Field Descriptions ... 138
Table 5.16: IBCn Register Field Descriptions ... 140
Table 5.17: Data Breakpoint Register Mapping .. 142
Table 5.18: DBS Register Field Descriptions.. 143
Table 5.20: DBMn Register Field Descriptions ... 145
Table 5.19: DBAn Register Field Descriptions.. 145
Table 5.21: DBASIDn Register Field Descriptions.. 146
Table 5.22: DBCn Register Field Descriptions.. 148
Table 5.23: DBVn Register Field Descriptions.. 151
Table 6.1: Registers in the Complex Break and Trigger Block and Their drseg Memory Addresses 158
Table 6.2: CBTC Register Field Descriptions ... 159
Table 6.3: IBCCn Register Field Descriptions... 160
Table 6.4: IBPCn Register Field Descriptions... 161
Table 6.5: DBCCn Register Field Descriptions ... 162
Table 6.6: DBPCn Register Field Descriptions ... 164
Table 6.8: STCtl Register Field Descriptions .. 165
Table 6.7: PrCndA Register Field Descriptions... 165
Table 6.9: STCnt Register Field Descriptions... 167
Table 6.10: Addresses for PrCnd[A-D][I/D]N Registers in drseg Memory .. 169
Table 6.11: Debug Break Indicator Bits Set for Simple and Complex Breaks .. 172
Table 7.1: PCsample Register Field Descriptions... 174
Table 8.1: Cause Register FDC Field Description .. 178
Table 8.2: IntCtl Register FDC Field Description .. 179
Table 8.3: Instruction Breakpoint Register Mapping ... 180
Table 8.4: FDC Access Control and Status Register Field Descriptions .. 181
Table 8.5: FDC Configuration Register Field Descriptions ... 182
Table 8.7: FDC Receive Register Field Descriptions.. 183
Table 8.6: FDC Status Register Field Descriptions... 183
Table 8.8: FDC Transmit Register Field Descriptions... 184
Table 9.1: EJ_DisableProbeDebug Signal Overview.. 185
Table 11.1: Test Access Port Signals Overview ... 190
Table 11.2: Debug Interrupt Signal Overview ... 191
Table 11.3: System Reset Signal Overview.. 191
Table 11.4: Voltage Sense for I/O Signal Overview.. 191
Table 11.5: Voltage Sense for I/O Signal Overview.. 192
Table 11.6: Test Access Port Signals Timing Values ... 193
Table 11.7: Debug Interrupt Signal Timing Values ... 194
Table 11.8: System Reset Signal Timing Value.. 194
Table 11.9: Voltage Sense for I/O Signal Timing Value.. 195
Table 11.10: DC Electrical Characteristics.. 195
Table 11.11: EJTAG Connector Pinout... 197
Table A.1: Debug Exception Vector Location for R3k Privileged Environment Processors.................................. 201

MIPS® EJTAG Specification, Revision 6.10 13

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table A.2: Offsets for Instruction Breakpoint Registers for R3k Privileged Environment Processors................... 202
Table A.3: ASID Field in IBCn Register .. 202
Table A.4: Offsets for Data Breakpoint Registers for R3k Privileged Environment Processors............................ 202
Table A.5: ASID Field in DBCn Register... 203
Table D.1: sMCBU Register Memory Map.. 209
Table D.2: MCBU Debug_Int Register Memory Map.. 209
Table D.3: Debug_Int_i Register Field Descriptions ... 210
Table D.4: Reset Register Field Descriptions ... 211
Table D.5: Cold Reset Register Field Descriptions... 211
Table D.6: NMI Register Field Descriptions .. 212
Table D.7: Debug Interrupt Register Field Descriptions.. 212
Table E.1: drseg Memory Map.. 214

14 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 1

MIPS® EJTAG Specification, Revision 6.10 15

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Overview of the EJTAG System

This specification describes the behavior and organization of on-chip EJTAG hardware resources as seen by software
and by external agents. The software and firmware components of an EJTAG-based debugging environment are out-
side the scope of this document, as is the underlying physical implementation of EJTAG features.

This chapter contains the following sections:

• Section 1.1, "Introduction to EJTAG"

• Section 1.2, "Historical Perspective"

• Section 1.3, "EJTAG Capabilities"

• Section 1.4, "EJTAG Components and Options"

• Section 1.6, "EJTAG-Specific Coprocessor 0 Registers"

• Section 1.7, "Memory-Mapped EJTAG Registers"

• Section 1.8, "Memory-Mapped EJTAG Memory Segment"

• Section 1.9, "Memory-Mapped Fast Debug Channel Registers"

• Section 1.10, "EJTAG Test Access Port Registers"

• Section 1.11, "The Implications of Multiprocessing and Multithreading for EJTAG"

• Section 1.12, "Related Documents"

• Section 1.13, "Notations and Conventions"

For comments or questions on the EJTAG Architecture or this document, send Email to support@mips.com.

1.1 Introduction to EJTAG

EJTAG is a hardware/software subsystem that provides comprehensive debugging and performance-tuning capabili-
ties for MIPS® microprocessors and for system-on-a-chip components that have MIPS processor cores. It exploits
the infrastructure provided by the IEEE 1149.1 JTAG Test Access Port (TAP) standard to provide an external inter-
face, and extends the MIPS instruction set and privileged resource architectures to provide a standard software archi-
tecture for integrated system debugging.

mailto:architecture@mips.com

 Overview of the EJTAG System

16 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.2 Historical Perspective

Emulating and debugging embedded hardware and software in a real-world environment remains one of the most dif-
ficult tasks facing designers of embedded systems. Embedded microprocessor cores are growing more complex, have
increasingly higher performance requirements, and use larger software programs than ever before. To meet these
challenges, embedded-systems engineers and programmers must have advanced tools to perform the required levels
of in-circuit emulation and debugging.

The MIPS architecture has historically provided a set of primitives for debugging software and systems that is consis-
tent with the “RISC” philosophy of integrated hardware/software architecture, providing functionality at a minimum

cost in silicon. The base philosophy of integrated MIPS32®/MIPS64® Instruction Set Architecture (ISA) and
MIPS16e™ Application Specific Extension (ASE), includes:

• A breakpoint instruction, BREAK, whose execution causes a specific exception.

• A set of trap instructions, whose execution causes a specific exception when certain register value criteria are sat-
isfied.

• A pair of optional Watch registers that can be programmed to cause a specific exception on a load, store, or
instruction fetch access to a specific 64-bit doubleword in virtual memory.

• An optional TLB-based MMU that can be programmed to trap on any access, or more specifically, on any store
to a page of memory.

All of these mechanisms assume software support in the form of an operating system, or at least a software monitor,
that can modify program memory to insert breakpoints, manipulate the system coprocessor to set watchpoints, and
change virtual memory page protection, handle the exceptions produced, and communicate with a user. Additional
external hardware tools can supplement these basic mechanisms, such as logic analyzers and in-circuit emulators
(ICEs) for additional control and information about program execution. Figure 1.1 shows a possible setup for the
debug of an embedded system.

Figure 1.1 Setup of Debug System without EJTAG

While this model of debug works well for many sorts of systems, it has the following shortcomings when the system
to be debugged is a highly-integrated design:

• System-On-a-Chip (SOC) component design no longer provides an external interface to the processor pinout or
system bus, making the use of logic analyzers and ICEs difficult to impossible.

Debug Host

Logic
Analyzer CPU

Peripheral
I/O Device

Debugger
ROM

Program
RAM or
FLASH

System PrototypeCPU Pinout or
System Bus

RS-232 or
Ethernet

> set break at 0x3
> resume

running....

1.2 Historical Perspective

MIPS® EJTAG Specification, Revision 6.10 17

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• Debugging based on software breakpoints or the insertion of trap-on-condition instructions assumes that pro-
grams reside in RAM. It is impractical for fully ROM-based systems and assumes support in the O/S for these
techniques.

• For consumer electronic applications, a communication port like Ethernet or RS-232 serves no purpose beyond
software debug and adds disproportionately to the cost and size of the design.

• Similarly, the ROM necessary to support a debug software monitor on a consumer electronic application could
add unacceptable costs.

One alternative to ICE is a specially-packaged device that is a bond-out of the chip. But this solution has the disad-
vantage of adding to overall product development cost. It also adds the extra requirement of a specially-designed PCB
that is needed to access the signals available only on the development chip.

On-Chip Debug (OCD) provides a solution for all these issues, and the EJTAG Debug Solution defines an advanced
and scalable feature-set for OCD that allows debugging while executing CPU code at full speed.

One could say that OCD puts the ICE functionality on the chip. Although OCD does add a little extra die area for fea-
tures that are only required during development, the die area is minimal. More importantly, with development time
and overall time-to-market becoming increasingly critical, the trade-off between die area and time seems reasonable.

Having the debug solution on-chip also makes it possible to use it for software upgrades, field testing, and for diag-
nostics in the final product.

EJTAG supplements the MIPS Architecture in dealing with these problems. A processor or system-on-a-chip imple-
menting EJTAG can be tied into a JTAG scan chain and comprehensively debugged using an external EJTAG probe
connected to the system’s JTAG TAP interface, as shown in Figure 1.2.

Figure 1.2 Setup of Debug System with EJTAG

EJTAG uses the five-pin interface defined in IEEE 1149.1 JTAG, which forms the Test Access Port (TAP). The five
pins (TRST, TCK, TMS, TDI, and TDO) can be reused to limit pin count if the TAP is on-chip for some other pur-
pose.

> set break at 0x3
> resume

running....

TAP access

Debug host
EJTAG probe

Ethernet
RS-232

etc.
JTAG TAP
interface

CPU
with
EJTAG

SOC ASIC/ASSP

Other
System
Logic

System Prototype

JTAG scan
chain

 Overview of the EJTAG System

18 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 1.3 Test Access Port (TAP) to Internal Connections

This EJTAG interface through the TAP is a serial communications channel with frequencies up to 40 MHz on TCK.
The TAP Controller uses the TMS pin, which determines if instruction or data registers should be accessed in the shift
path between TDI and TDO. The TRST signal is used for reset of the TAP.

A number of TAP instructions are defined in EJTAG that allow access to corresponding EJTAG registers, as listed in
Table 1.1.

The size of the EJTAG Address and Data Registers depends on the specific implementation, but usually they are at
least 32 bits. The size of the Device ID, Implementation, and EJTAG Control Registers is 32 bits; these registers allow
the user to do debug setup and provide important status information during the debug session. For exact descriptions
and size of these registers see 4.4 “Instruction Register and Special Instructions” on page 91.

Table 1.1 EJTAG TAP Instructions

EJTAG Instruction Description of Register Usage

IDCODE Device Identification Register with manufacturer, part number, and version ID
for the specific chip.

IMPCODE Implementation Register indicating implemented EJTAG features in this spe-
cific chip.

ADDRESS EJTAG Address Register used to access the on-chip address bus.

DATA EJTAG Data Register used to access the on-chip data bus.

CONTROL EJTAG Control Register used for setup and status information.

ALL Access to EJTAG Address, Data and Control registers in one chain.

EJTAGBOOT Causes processor to fetch code from the debug exception vector after reset.

NORMALBOOT Causes processor to fetch code from the reset handler after reset.

FASTDATA Access to the Data and FastData registers.

TCBCONTROLA Access to the control register TCBControlA in the Trace Control Block (TCB).

TCBCONTROLB Access to the other control register TCBControlB in the TCB.

TCBDATA Provides access to the registers specified by the TCBCONTROLBREG field.

TCBCONTROLC Access to another control register TCBControlC in the TCB.

PCSAMPLE Access the PCsample register.

TCBCONTROLD Access to another control register TCBControlD in the TCB.

TCBCONTROLE Access to another control register TCBControlE in the TCB.

FDC Access to the Fast Debug Channel.

BYPASS One-bit register with no operation.

TAP Controller

Instruction, data &
control registers

TRST
TMS

TCK

TDO

TDI

TAP
PORT

1.3 EJTAG Capabilities

MIPS® EJTAG Specification, Revision 6.10 19

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.3 EJTAG Capabilities

1.3.1 Debug Exception and Debug Mode

To allow inspection of the CPU state at any time in the execution flow, a debug exception with priority over all other
exceptions is introduced.

When a debug exception occurs, the CPU enters Debug Mode, a special mode with no restrictions on access to copro-
cessors, memory areas, etc., and where usual exceptions like address error and interrupt are masked.

The debug exception handler is executed in Debug Mode and provided by the debug system. It can be executed from
the probe through a processor access, or may also reside in the application code if the developer chooses to use a
debug task in the application.

An overall requirement is that debugging be non-intrusive to the application so that execution of the application can
be continued after the needed debug operations. However, loss of real-time operation is inevitable when the debug
exception handler is executed. The system designer may chose to indicate debug mode by a signal to certain hardware
modules to freeze them when executing the debug exception handler.

EJTAG provides a standard debug I/O interface, enabling the use of traditional MIPS debug facilities on sys-
tem-on-a-chip components. In addition, EJTAG provides the following new capabilities for software and system
debug.

1.3.2 Off-board EJTAG Memory

EJTAG allows a MIPS processor in Debug Mode to reference instructions or data that are not resident on the system
under test. This EJTAG memory is mapped to the processor as if it were virtual memory in the kseg3 segment, and
references to it are converted into transactions on the TAP interface. Both instructions and data can be accessed in
EJTAG memory, which allows debugging of systems without requiring the presence of a ROM monitor or debugger
scratchpad RAM. It also provides a communications channel between debug software executing on the processor and
an external debugging agent.

The EJTAG probe polls the EJTAG Control Register through the TAP, and a bit in this register indicates when a pro-
cessor access is pending. The physical address of the transaction is then available in the EJTAG Address Register, and
the transaction size and read/write indication are available in the EJTAG Control Register. The EJTAG Data Register
is then accessed either to get data from a write or to provide data for a read. Finally the EJTAG Control Register is
updated to indicate that the processor access is done.

Going through this sequence requires approximately 200 TCK periods for access to 32-bit address and data registers.
With a 40 MHz TCK, the access time is in the range of 5 µs, resulting in a bandwidth in the range of 800 KB/s for
instruction and data transfers. However, the servicing may be optimized for instruction stuffing, because the address
depends on the provided instructions and could thus be predicted to some extent. In addition, the FASTDATA feature
(see Section 4.4.3 “FASTDATA Instruction”) of the TAP controller permits fast download or upload of data between
target memory and debug memory.

1.3.3 Debug Breakpoint Instruction

EJTAG introduces a new breakpoint instruction, SDBBP, which differs from the MIPS32 and MIPS64 BREAK
instruction in that the resulting exception, like the single-step and hardware breakpoint debug exceptions described
below, places the processor in Debug Mode and can fetch its associated handler code from EJTAG memory.

 Overview of the EJTAG System

20 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.3.4 Hardware Breakpoints

EJTAG defines various types of hardware breakpoints for interrupting the CPU when certain transactions occur on the
CPU buses. The debug exception happens before the bus transaction causing the exception modifies any memory or
CPU state, e.g., a fetched instruction with a break is not executed, or a data load/store transaction is not allowed to
change the register file or the memory.

Hardware breaks on instructions have the advantage over software debug breaks in that it is possible to set them in
any address area. Furthermore, if memory cannot be altered by inserting SDBBP codes, the hardware breaks can still
be used. Hardware data breakpoints allow breaks on load/store operations.

EJTAG implements two kinds of simple breaks:

• Instruction breaks, in which a break may be set on an instruction fetch from a specific virtual address

• Data breaks, in which a break may be set on a load/store reference from a specific virtual address, which addi-
tionally can be qualified by a data value.

There may be up to 15 break channels of each type implemented, and each break channel may be programmed with
address, address mask, ASID, and reference type.

EJTAG specification 4.00 and above also define complex breakpoints. There are many different types of complex
breakpoints defined the complex break chapter. Like the simple breaks, the complex breaks can cause a trigger signal
that can be used to enable or disable tracing via the MIPS PDtrace architecture.

1.3.5 Single-Step Execution

EJTAG provides support for single-step execution of programs and operating systems, without requiring that the code
reside in RAM.

1.4 EJTAG Components and Options

EJTAG hardware support consists of several distinct components: extensions to the MIPS processor core, the EJTAG
Test Access Port, the Debug Control Register, and the Hardware Breakpoint Unit. Figure 1.4 shows the relationship
between these components in an EJTAG implementation. Some components and features are optional, and are imple-
mented based on the needs of an implementation.

1.4 EJTAG Components and Options

MIPS® EJTAG Specification, Revision 6.10 21

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 1.4 Simplified Block Diagram of EJTAG Components

1.4.1 EJTAG Processor Core Extensions

A MIPS processor or core supporting EJTAG must support EJTAG-specific instructions, additional system coproces-
sor (CP0) registers and vectoring to Debug Exceptions, which puts the processor in a special Debug Mode of execu-
tion, as described in Chapter 2, “EJTAG Processor Core Extensions” on page 33.

EJTAG processor core extensions are required in any EJTAG implementation, with the following implementa-
tion-dependent options:

• The single-step execution feature is optional. The presence or absence of single step execution capability is indi-
cated to debug software via the CP0 Debug register.

• The debug interrupt request from the TAP via the DINT probe signal or through an implementation-dependent
internal signal is optional.

• The Test Access Port (TAP) is optional.

• The Hardware Breakpoint Unit (HBU) is optional. Note that it is required if the CBT is implemented.

• The Complex Break and Trigger (CBT) block is optional.

• The Debug Control Register (DCR) is optional. Note that it is required if either the HBU or the CBT is imple-
mented.

• The PC Sampling feature of EJTAG is optional.

• The Fast Debug Channel feature of EJTAG is optional.

Processor

MMU

Cache
Controller

Hardware
Breakpoint

(TLB)
Bus Interface

Debug Control
Interrupt and NMI

PC
ADDR

Debug
exception

control etc.

ASID
TYPE
BYTELANE
DATA

EJTAG
TAP TAP

Memory

DINT

System
Interface

dmseg/fdc

Probe enable indication

Debug exception control, debug interrupt request etc.

Debug interrupt request

Unit (BIU)

and
Coprocessor 0

Register (DCR)

Non-EJTAG features Required EJTAG features Optional EJTAG features

Unit

access
bus

drseg
access
bus

 Overview of the EJTAG System

22 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.4.2 EJTAG Test Access Port

The EJTAG Test Access Port (TAP) provides a standard TAP interface to the EJTAG system. It is necessary for all
TAP-based EJTAG capabilities for host-based debugging and processor access to external debug memory.

The TAP is optional. Implementation without a TAP implicitly disallows the EJTAG memory and TAP system access
capabilities, but provides the remaining EJTAG services (Debug Mode, single-step, software and hardware break-
points) while executing from RAM or ROM. Refer to Chapter 4, “EJTAG Test Access Port” on page 87 for more
information on the TAP.

Implementation without a TAP also disallows the PC Sampling feature.

The presence or absence of off-board EJTAG memory is indicated to debug software via the Debug Control Register.

1.4.3 Debug Control Register

The Debug Control Register (DCR) is a memory-mapped register that can be implemented as part of either the pro-
cessor core or an external logic block. It indicates the availability and status of EJTAG features. The memory-mapped
region containing the DCR is available to software only in Debug Mode.

Implementation of the DCR is optional, but the DCR must be implemented if either the EJTAG TAP or EJTAG hard-
ware breakpoints are implemented. The presence or absence of the DCR is indicated in the CP0 Debug register. Refer
to Chapter 3, “Debug Control Register” on page 79 for more information on the DCR.

1.4.4 Hardware Breakpoint Unit

The Hardware Breakpoint Unit implements memory-mapped registers that control the instruction and data hardware
breakpoints. The memory-mapped region containing the hardware breakpoint registers is accessible to software only
in Debug Mode.

EJTAG hardware breakpoint support, as described in Chapter 5, “Hardware Breakpoints” on page 117, is optional,
and can be implemented with the following functionality:

• From zero to 15 independent instruction hardware breakpoints

• From zero to 15 independent data hardware breakpoints

• Breakpoint address comparisons for instruction and data hardware breakpoints optionally qualified with a com-
parison of the MMU ASID

• Data hardware breakpoints optionally qualified with a data value comparison

• The sense of the data value qualifier can be inverted, that is, when the store data for example does NOT match the
specified value in the data break register. This is an optional functionality whose presence is indicated by a bit
(15) in the DCR register. This feature is defined in revision 4.00 and above.

• Debug logic can optionally save the load data value in a specified drseg address register for software replay of the
exception-causing load instruction. This is needed to preserve the load data value in situations where the data was
obtained not from non-volatile memory but from say a FIFO or an I/O register. Whether or not this feature is
implemented is indicated by a bit (14) in the DCR register. This feature is defined in revision 4.00 and above.

The presence or absence of hardware breakpoint capability is indicated to debug software in the DCR.

1.5 Complex Breakpoint and Trigger (CBT) Block

MIPS® EJTAG Specification, Revision 6.10 23

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The number of breakpoints and the availability of optional qualifiers is indicated to debug software in the instruction
and data breakpoint status registers.

1.4.5 Fast Debug Channel

EJTAG version 5.0 adds the optional Fast Debug Channel (FDC) mechanism for data transfer between a debug
host/probe and a target. The FDC mechanism allows the user to set up a data transfer, and then resume normal opera-
tion. The data transfer occurs in the background, and the target CPU can either choose to check the status of the trans-
fer periodically, or it can choose to be interrupted at the end of the transfer.

The FDC mechanism adds two First In First Out (FIFO) structures that are mapped into the target CPU physical
address map. The probe uses the new FDC TAP instruction to access these FIFOs, while the CPU itself accesses them
using memory accesses.

When compared with the pre-existing FASTDATA mechanism (See Section 4.4.3 “FASTDATA Instruction”), the
primary advantage of FDC is that it does not require the CPU to be blocked when the probe is reading or writing to
the data transfer FIFOs. This significantly reduces the CPU overhead and makes data transfers far less intrusive to the
code executing on the CPU.

More information can be found in Chapter 8, “Fast Debug Channel” on page 177.

1.5 Complex Breakpoint and Trigger (CBT) Block

The presence or absence of this optional block is indicated by a bit (10) in the DCR register. Each of the listed fea-
tures of this block is optional and the presence or absence of this feature is indicated by bits in the CBTcontrol regis-
ter which is a drseg address-mapped register at address 0x8000:

• Pass Counters - each break channel, instruction, data, or complex has a counter associated with it that enables a
breakpoint to be taken only after the address/value condition has been met a certain number of times.

• Ability to support 0 to 15 ‘tuples’ - breakpoints that only fire when both instruction and data conditions match on
a single instruction.

• Qualified Instruction breakpoints - breakpoints that can be enabled and disabled based on the state of a data
breakpoint condition, which can be used to only match on instructions executed in a certain process.

• Primed breakpoints - breakpoints that are only enabled when another breakpoint has occurred, which allows
breaking on a simple sequences of events. It is an implementation choice as to how many priming conditions are
supported for each break; up to 16 priming conditions are possible. Note that the default priming condition is the
simple break, that is, no priming condition.

• Stopwatch timer - a counter that can be configured to start or stop based on specific instruction breakpoints. It is
an implementation choice which breakpoints are used to start and stop the stopwatch timer. Up to two such pairs
may be supported.

1.6 EJTAG-Specific Coprocessor 0 Registers

This section summarizes the registers and special memory that are used for the EJTAG debug solution. More detailed
information regarding mandatory and optional registers and memory locations is provided in the relevant chapter.

 Overview of the EJTAG System

24 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 1.2 summarizes the Coprocessor 0 (CP0) registers for EJTAG. These registers are accessible by debug software
executed on the processor and provide debug control and status information. General information about the debug
CP0 registers is found in 2.7 “EJTAG Coprocessor 0 Registers” on page 58.

1.7 Memory-Mapped EJTAG Registers

The memory-mapped EJTAG registers are located in the debug register segment (drseg), which is a sub-segment of
the debug segment (dseg). They are accessible by debug software when the processor is executing in Debug Mode.
These registers provide both miscellaneous debug control and control of hardware breakpoints. General information
about the debug segment and registers is found in Section 2.2.2 on page 34 and Section 2.2.2.2 on page 38.

1.7.1 Debug Control Register

Table 1.3 summarizes the Debug Control Register (DCR), which provides miscellaneous debug control.

Table 1.2 Overview of Coprocessor 0 Registers for EJTAG

Register Name
Register

Mnemonic Functional Description Reference

Debug Debug Debug indications and controls for the processor, includ-
ing information about recent debug exception.

See Section 2.7.1
on page 59

Debug2 Debug2 Indicates cause of debug exceptions due to complex
breakpoints.

See Section 2.7.2
on page 68

Debug Exception
Program Counter

DEPC Program counter at last debug exception or exception in
Debug Mode.

See Section 2.7.3
on page 69

Debug Exception Save DESAVE Scratchpad register available for the debug handler. See Section 2.7.4
on page 70

Table 1.3 Overview of Debug Control Register as Memory-Mapped Register for EJTAG

Register Name
Register

Mnemonic Functional Description Reference

Debug Control Register DCR Indicates available EJTAG memory, and controls enabling
and disabling of interrupts and NMI in Non-Debug Mode.

See Chapter 3, “Debug
Control Register” on
page 79

1.7 Memory-Mapped EJTAG Registers

MIPS® EJTAG Specification, Revision 6.10 25

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.7.2 Debug Exception Vector Location Register

Table 1.4 summarizes the optional Debug Exception Vector Location register, which enables relocation of the debug
exception vector..

1.7.3 Load Data Value Register

Table 1.5 summarizes the Load Data Value register, which allows for software emulation of a load where returning
data triggered a precise hardware data breakpoint. More information can be found in Section 5.3.3 on page 127.

1.7.4 Instruction Hardware Breakpoint Registers

Table 1.6 summarizes the instruction hardware breakpoint registers, which are controlled through a number of mem-
ory-mapped registers. Certain registers are provided for each implemented instruction hardware breakpoint, as indi-
cated with an “n”. General information about the instruction hardware breakpoint registers is found in Section 5.6 on
page 134.

Table 1.4 Overview of Debug Exception Vector Location Register

Register Name
Register

Mnemonic Functional Description Reference

Debug Exception Vector
Location

DebugVectorAddr Allows debug exception vector to be relocated
and determines the ISA mode to be used on a
debug exception.

See Section 2.3.2 on
page 44

Table 1.5 Overview of Load Data Value Register

Register Name
Register

Mnemonic Functional Description Reference

Load Data Value LoadData-
Value

Contains data returned from load, when hardware data
breakpoints can be triggered from returning data, and can
be taken precisely.

See Section 5.3.3
on page 127

Table 1.6 Overview of Instruction Hardware Breakpoint Registers

Register Name
Register

Mnemonic Functional Description Reference

Instruction Breakpoint
Status

IBS Indicates number of instruction hardware breakpoints and
status on a previous match.

See Section 5.6.1
on page 135

Instruction Breakpoint
Address (n)

IBAn Address to compare for breakpoint n. See Section 5.6.2
on page 136

Instruction Breakpoint
Address Mask (n)

IBMn Mask for address comparison for breakpoint n. See Section 5.6.3
on page 137

Instruction Breakpoint
ASID (n)

IBASIDn ASID value to compare for breakpoint n. See Section 5.6.4
on page 137

Instruction Breakpoint
Control (n)

IBCn Control of breakpoint n: comparison of ASID and gener-
ated event on match.

See Section 5.6.5
on page 140

 Overview of the EJTAG System

26 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.7.5 Data Hardware Breakpoint Registers

Table 1.7 summarizes the data hardware breakpoint registers, which are controlled as a number of memory-mapped
registers. Certain registers are provided for each implemented data hardware breakpoint, as indicated with an “n”.
General information about the data hardware breakpoint registers is found in Section 5.7 on page 142.

1.7.6 Complex Break and Trigger Registers

Table 1.8 summarizes the registers used by the Complex Break and Trigger Block, which are implemented as a num-
ber of memory-mapped registers. Certain registers are provided for each implemented instruction and data hardware
breakpoint, as indicated with an “n”. General information about the Complex Break and Trigger registers is found in
Section 6.3 “Registers in the Complex Break and Trigger Block”. .

Table 1.7 Overview of Data Hardware Breakpoint Registers

Register Name
Register

Mnemonic Functional Description Reference

Data Breakpoint Status DBS Indicates number of data hardware breakpoints and status
on a previous match.

See Section 5.7.1
on page 142

Data Breakpoint Address (n) DBAn Address to compare for breakpoint n. See Section 5.7.2
on page 144

Data Breakpoint Address
Mask (n)

DBMn Mask for address comparison for breakpoint n. See Section 5.7.3
on page 145

Data Breakpoint
ASID (n)

DBASIDn ASID value to compare for breakpoint n. See Section 5.7.4
on page 145

Data Breakpoint
Control (n)

DBCn Control of breakpoint n: match on load/store, data bytes,
access to data bytes, comparison of ASID, and generated
event on match.

See Section on
page 148

Data Breakpoint
Value (n)

DBVn Data value to match for breakpoint n. See Section
5.7.6 “Data
Breakpoint Value n
(DBVn) Register”

Table 1.8 Overview of Complex Break and Trigger Registers

Register Name
Register

Mnemonic Functional Description Reference

Complex Break and Trig-
ger Control

CBTC Configuration bits indicate the complex breakpoint fea-
tures implemented, plus stopwatch control bits.

Section 6.3.1 on
page 158

Instruction Breakpoint
Complex Control (n)

IBCCn Complex Instruction Breakpoint condition registers Section 6.3.2 on
page 160

Instruction Breakpoint
Pass Counter (n)

IBPCn Instruction Breakpoint countdown registers Section 6.3.3 on
page 161

Data Breakpoint Complex
Control (n)

DBCCn Complex Data Breakpoint condition registers Section 6.3.4 on
page 162

Data Breakpoint Pass
Counter (n)

DBPCn Data Breakpoint countdown registers Section 6.3.5 on
page 163

1.8 Memory-Mapped EJTAG Memory Segment

MIPS® EJTAG Specification, Revision 6.10 27

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.8 Memory-Mapped EJTAG Memory Segment

The processor’s memory-mapped EJTAG memory is located in the debug memory segment (dmseg), which is a
sub-segment of the debug segment (dseg). It is accessible by debug software when the processor is executing in
Debug Mode. The EJTAG probe handles all accesses to this segment through the Test Access Port (TAP), whereby
the processor has access to dedicated debug memory even if no debug memory was originally located in the system.
General information about the debug segment and memory is found in Section 2.2.2 on page 34 and Section 2.2.2.1
on page 37.

1.9 Memory-Mapped Fast Debug Channel Registers

Processor accesses to Fast Debug Channel registers are performed through the common device memory map
(CDMM) region. The registers allow communication between a debug host and target-resident code.f

More information can be found in Chapter 8, “Fast Debug Channel” on page 177.

Priming Condition A,
Instruction and Data
Breakpoint (n)

PrCndAIn,
PrCndADn

Read-only registers describing implementation-specific
details of complex breakpoint priming conditions

Section 6.3.6 on
page 164

Stopwatch Timer Control STCtl Control register for Stopwatch Timer Section 6.3.7 on
page 165

Stopwatch Timer Count STCnt Count register for Stopwatch Timer Section 6.3.8 on
page 166

Table 1.9 Overview of Fast Debug Channel Registers

Register Name
Register

Mnemonic Functional Description Reference

FDC Access Control and
Status

FDACSR Defines device type, and controls user and supervisor
mode access to Fast Debug Channel registers

See Section 8.3.1
on page 180

FDC Configuration FDCFG Configuration register and interrupt controls See Section 8.3.2
on page 181

FDC Status FDSTAT FIFO status register See Section 8.3.3
on page 182

FDC Receive FDRX Top entry in receive FIFO See Section 8.3.4
on page 183

FDC Transmit (n) FDTXn Tagged access to bottom entry in transmit FIFO See Section 8.3.5
on page 183

Table 1.8 Overview of Complex Break and Trigger Registers (Continued)

Register Name
Register

Mnemonic Functional Description Reference

 Overview of the EJTAG System

28 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.10 EJTAG Test Access Port Registers

The probe accesses EJTAG Test Access Port (TAP) registers (shown in Table 1.10) through the TAP, so the processor
cannot access these registers. These registers allow specific control of the target processor through the TAP. General
information about the TAP registers is found in Section 4.5 on page 94.

Table 1.10 Overview of Test Access Port Registers

Register Name
Register

Mnemonic Functional Description Reference

Device ID (none) Identifies device and accessed processor in the device. See Section 4.5.1
on page 95

Implementation (none) Identifies main debug features implemented and accessi-
ble through the TAP.

See Section 4.5.2
on page 96

Data (none) Data register for processor accesses used to support the
EJTAG memory.

See Section 4.5.3
on page 98

Address (none) Address register for processor access used to support the
EJTAG memory.

See Section 4.5.4
on page 101

EJTAG Control ECR Control register for most EJTAG features used through the
TAP.

See Section 4.5.5
on page 102

Bypass (none) Provides a one-bit shift path through the TAP. See Section 4.5.8
on page 110

Fastdata (none) Provides a one-bit tag in front of the data register to cap-
ture the processor access pending bit for fast data transfer.

See Section 4.5.8
on page 110

TCBControlA (none) Used by the Trace Control Block to hold control bits for
tracing.

See the PDtrace
and TCB specifica-
tion document

TCBControlB (none) Used by the Trace Control Block to hold control bits for
tracing.

See the PDtrace
and TCB specifica-
tion document

TCBData (none) Used by the Trace Control Block to access data from
on-chip trace memory if present

See the PDtrace
and TCB specifica-
tion document

TCBControlC (none) Used by the Trace Control Block to hold control bits for
tracing

See the PDtrace
and TCB specifica-
tion document

PCsample (none) Used by the PC Sampling logic to write out the PC sample
and associated information

See Section 4.5.7
on page 110 and
Chapter 7, “PC
Sampling” on
page 173.

TCBControlD (none) Used by the Trace Control Block to hold control bits for
tracing

See the PDtrace
and TCB specifica-
tion document

1.11 The Implications of Multiprocessing and Multithreading for EJTAG

MIPS® EJTAG Specification, Revision 6.10 29

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.11 The Implications of Multiprocessing and Multithreading for EJTAG

The MIPS® MT Module allows a processor to implement multiple VPEs (Virtual Processing Elements). Theoreti-
cally, as far as applications are concerned, this view of the hardware (which must be supported by system software), is
no different from that where there are multiple physical processors present. MIPS MT also allows multiple thread
contexts within a VPE. See the MIPS MT specification for details.

EJTAG visibility is on a per-VPE or per-processor basis. That is, each debug unit implemented in the system exposes
a TAP controller to the external probe hardware. The probe software must be aware of the number of daisy-chained
debug units and their order so that it can communicate correctly to the correct debug unit.

Note that by the MIPS MT Module specification, an implementation with multiple VPEs and hence multiple debug
units, most of the EJTAG hardware is physically not shared between the VPEs. For example, each VPE has its own
copy of the Debug Register, Debug Control Register, TAP controller, and TAP registers. But the hardware breakpoint
registers may either be shared or not shared by the VPEs. The TAP controllers are daisy-chained.

The other sections in this document that describe changes for the MIPS MT Module are:

• Debug Exception in the presence of MIPS MT (see Section 2.2 on page 34).

• Single-Step control bit in the Debug register (see Section 2.7 on page 58 and Section 2.3.9 on page 50).

• Modifications to the Instruction and Data breakpoints matching conditions (see Section 5.3 on page 120).

• Modifications to the Instruction and Data Hardware Breakpoint registers for MIPS MT (see Section 5.6.5 on
page 140, Section 5.7.4 on page 145, and Section on page 148).

• Modification to indicate whether the Instruction and Data Hardware Breakpoints are shared or not shared across
the VPEs (see Section 5.6.1 on page 135 and Section 5.7.1 on page 142).

• A bit added to the DCR (VPED), to indicate whether the current VPE is disabled or enabled.

• A bit added to the Debug register to allow MIPS MT thread contexts (TCs) to be taken off-line during debug (see
Section 2.7.1 on page 59).

1.12 Related Documents

The following documents are useful in understanding this specification.

• IEEE Std. 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture

• MIPS32® Architecture for Programmers, Volumes I-IV

TCBControlE (none) Used by the Trace Control Block to hold control bits for
tracing

See the PDtrace
and TCB specifica-
tion document

Table 1.10 Overview of Test Access Port Registers (Continued)

Register Name
Register

Mnemonic Functional Description Reference

 Overview of the EJTAG System

30 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• MIPS64® Architecture for Programmers, Volumes I-IV

• The PDtrace™ Interface and Trace Control Block Specification (MD00439)

• MIPS32® Architecture for Programmers Volume IV-f: The MIPS® MT Application-Specific Extension to the
MIPS32® Architecture (MD00378)

• The iFlowtrace™ Architecture Specification (MD00526)

1.13 Notations and Conventions

This section defines notations and conventions that are used throughout this document.

1.13.1 Compliance

Throughout this document, compliance levels are indicated for specific features. Features are defined as Required,
Optional, or Recommended.

Features defined as required are required of all processors claiming compatibility with the EJTAG architecture.

Features defined as optional provide a standardization that might or might not be appropriate for a particular EJTAG
implementation. If such a feature is implemented, it must be implemented as described in this document for a proces-
sor to claim compatibility with the EJTAG architecture.

In some cases, there are features within features that have different levels of compliance. For example, if there is an
optional field within a required register, the register must be implemented, but the field does not have to be imple-
mented, depending on the needs of the implementation. Similarly, if there is a required field within an optional regis-
ter, if the register is implemented, it must have the specified field.

Features defined as recommended should be implemented unless there is an overriding need not to do so.

1.13.2 UNPREDICTABLE and UNDEFINED Operations

These definitions of UNPREDICTABLE and UNDEFINED are similar to the descriptions in the MIPS32 and
MIPS64 specifications. They are included here for those readers who are not familiar with these documents.

The terms UNPREDICTABLE and UNDEFINED describe the behavior of the processor in certain cases. UNDE-
FINED behavior or operations can occur only as the result of executing instructions in a privileged mode (in Kernel
Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unprivileged software can never cause
UNDEFINED behavior or operations. Conversely, both privileged and unprivileged software can cause UNPRE-
DICTABLE results or operations.

1.13.2.1 UNPREDICTABLE

UNPREDICTABLE results can vary from implementation to implementation, instruction to instruction, or as a func-
tion of time in the same implementation or instruction. Software can never depend on results that are UNPREDICT-
ABLE. An UNPREDICTABLE operation might or might not cause a result to be generated. If it does generate a
result, the result is UNPREDICTABLE. UNPREDICTABLE operations can cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

1.13 Notations and Conventions

MIPS® EJTAG Specification, Revision 6.10 31

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• UNPREDICTABLE results must not depend on any data source (memory or internal state) that is inaccessible in
the current processor mode.

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or an internal state that is
inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in User Mode
must not access memory or internal state that is only accessible in Kernel Mode, Debug Mode, or in another pro-
cess.

• UNPREDICTABLE operations must not halt or hang the processor.

1.13.2.2 UNDEFINED

UNDEFINED operations or behavior can vary from implementation to implementation, instruction to instruction, or
as a function of time on the same implementation or instruction. UNDEFINED operations or behavior can vary from
nothing to creating an environment in which execution can no longer continue. UNDEFINED operations or behavior
can cause data loss.

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which there is
no exit other than powering down the processor). The assertion of any reset signal must restore operation to a deter-
ministic state.

1.13.3 Register Field Notations

Table 1.11 defines the notations used to describe the read/write properties of the registers in this document. The nota-
tions below are similar to those in the MIPS32 and MIPS64 specifications, with addition of R/W0 and R/W1.

Table 1.11 Register Field Notations

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and potentially by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are visible by
hardware reads.
If the Reset State of this field is “Undefined”, either software or hardware must initialize the value before the
first read will return a predictable value. This operation should not be confused with the formal definition of
UNDEFINED behavior.

R/W0 Similar to the R/W interpretation, except a software write of value 1 to this bit is ignored.

R/W1 Similar to the R/W interpretation, except a software write of value 0 to this bit is ignored.

R A field that is either static or updated only by hard-
ware.
If the Reset State of this field is either “0” or “Pre-
set”, hardware initializes this field to zero or to the
appropriate state, respectively, on power-up.
If the Reset State of this field is “Undefined”, hard-
ware updates this field only under those conditions
specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software can write any value to
this field without affecting hardware behavior. Soft-
ware reads of this field return the last value updated
by hardware.
If the Reset State of this field is “Undefined”, soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

 Overview of the EJTAG System

32 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.13.4 Value Notations

The following conventions are used for numeric values in this document:

• Decimal values are written as standard base 10 numbers.

• Hexadecimal values are prefaced with “0x”.

• Binary numbers are appended with “2“.

For example, the following numbers are equivalent: 13 = = 0xD = = 11012.

1.13.5 Address Notations

Except where addresses are obviously 32 bits by context (as for a R3000 privileged environment), addresses in this
document are shown as 64 bits. For 32-bit implementations, ignore the upper 32 bits of the address.

Addresses (ADDR) are usually marked in hexadecimal notation as 0xADDR.

0 A field that hardware does not update, and for which
hardware can assume a zero value.

A field to which the value written by software must
be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zeros.
If the Reset State of this field is “Undefined”, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

Table 1.11 Register Field Notations

Read/Write
Notation Hardware Interpretation Software Interpretation

Chapter 2

MIPS® EJTAG Specification, Revision 6.10 33

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

This chapter describes the behavior of processors that support EJTAG. It contains the following sections:

• Section 2.1 “Overview”

• Section 2.2 “Debug Mode Execution”

• Section 2.3 “Debug Exceptions”

• Section 2.4 “Debug Mode Exceptions”

• Section 2.5 “Interrupts and NMIs”

• Section 2.6 “Reset and Soft Reset of Processor”

• Section 2.8 “EJTAG Instructions”

• Section 2.7 “EJTAG Coprocessor 0 Registers”

2.1 Overview

The extensions for EJTAG provide the following major features:

• Debug Mode, associated exceptions and dedicated debug vector

• Instruction set extensions: SDBBP (Software Debug Breakpoint) and DERET (Debug Exception Return)

• CP0 registers: Debug, DEPC and DESAVE

• Memory-mapped debug segment (dseg) (optional)

• Interrupt and NMI control from Debug Control Register (DCR) (optional)

• Single step (optional)

• Debug interrupt request signal (optional)

Note that some of the features are optional.

The general description in this chapter covers MIPS32 and MIPS64 processors, implying an R4000-like privileged
environment. Differences for processors with R3000 privileged environments are described in Appendix A,
“Differences for R3000 Privileged Environments” on page 201.

 EJTAG Processor Core Extensions

34 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.2 Debug Mode Execution

Debug Mode is entered only through a debug exception. It is exited as a result of either the execution of a DERET
instruction or application of a reset or soft reset.

When the processor is operating in Debug Mode, it has access to the same resources, instructions, and CP0 registers
as it has in Kernel Mode. The restrictions on Kernel Mode accesses (non-zero coprocessor references, access to
extended addressing controlled by UX, SX, KX, etc.) apply equally to Debug Mode, but Debug Mode provides some
additional capabilities described in this chapter.

Other processor modes (Kernel Mode, Supervisor Mode, User Mode) are collectively considered as Non-Debug
Mode. Debug software can determine if the processor is in Non-Debug Mode or Debug Mode through the DM bit in
the Debug register.

A debug exception in a processor implementing the MIPS MT Module will cause all other TCs (Thread Contexts) in
the processor, except the one executing the exception handler, to be suspended from concurrent execution until the
DERET instruction is executed. Debug-mode execution takes priority over all other TC scheduling rules in MIPS
MT. A TC which is otherwise not permitted to issue instructions, due to a Halted, non-Activated (see the MIPS MT
specification), or OffLine state (see Section 2.7.1 on page 59) may still be used to service a debug exception.

When a MIPS MT processor is operating in Debug Mode, it has access to the same resources and capabilities as if the
VPE in Debug Mode had the MVP bit of the VPEConf0 register set, which allows access to all the processor’s VPEs.

The ability of an OffLine MIPS MT TC to execute in Debug mode makes it possible for EJTAG-based debuggers to
allow other TCs and/or other VPEs to continue executing while a particular TC has been stopped for debugging. The
Debug exception handler can cause the TC to put itself, and/or other TCs, in an OffLine state and then execute a
DERET. On exiting Debug mode, the processor will resume normal scheduling of “on-line” TCs, but the OffLine
ones will remain frozen until released by, for example, service of a subsequent DINT Debug exception.

It is not a requirement in EJTAG, but it is left as an implementation option in multiprocessor/multicore systems
whether or not a global debug state is defined and can be set by the debugger to suspend other processors when one of
the processors in a multi-core system encounters debug exception. Similarly, implementation can also trigger re-start-
ing of other processors when the one in debug mode executes a DERET. See Appendix <TBD> for a description of
this mechanism.

2.2.1 Debug Mode Instruction Set

The full native ISA of the processor is accessible in Debug Mode.

Coprocessor loads and stores to the dseg segment are not supported. The operation of the processor is UNDEFINED
if a coprocessor load or store to dseg is executed in Debug Mode. Refer to Section 2.2.2 on page 34 for more informa-
tion on the dseg address space.

2.2.2 Debug Mode Address Space

Debug Mode access to unmapped address space is identical to that of Kernel Mode. Mapped addresses are accessible
as in Kernel Mode, but only if a valid translation is immediately provided by the MMU. This is because a memory
access that would cause a TLB-type exception in Kernel Mode, would, when tried in Debug Mode, cause re-entry
into Debug Mode through an exception (see Section 2.4 on page 53). Memory accesses usually causing TLB-type
exceptions are therefore not handled by the usual memory management routines if these memory accesses are made
while in Debug Mode.

2.2 Debug Mode Execution

MIPS® EJTAG Specification, Revision 6.10 35

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Updating and handling of cached areas is the same as that in Kernel Mode.

In addition, an optional uncached and unmapped debug segment dseg (EJTAG area) appears in the address range
0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF3F FFFF. The dseg segment thereby appears in the kseg part of the
compatibility segment, and access to kseg is possible with the dseg segment provided as described in Section 2.2.2.1
on page 37 and Section 2.2.2.2 on page 38. Coprocessor loads and stores to the dseg segment are not allowed, as
described in Section 2.2.1 on page 34.

The dseg segment is implemented only if the Debug Control Register (DCR) is included in the implementation. Refer
to Chapter 3, “Debug Control Register” on page 79 for more on the DCR. The implementation-dependent value of
the NoDCR bit in the Debug register (see Section 2.7.1 on page 59) indicates the presence of the dseg segment as
shown in Table 2.1. If the dseg segment is not present, then all transactions from the processor in Debug Mode go to
the Kernel Mode address space. Debug software must check the DebugNoDCR bit before trying to access the dseg seg-
ment.

Conditions for accesses to the dseg segment are described in Section 2.2.2.2 on page 38 and Section 2.2.2.1 on
page 37. Figure 2.1 shows the layout of the virtual address space.

Table 2.1 Presence of the dseg Segment

NoDCR bit in Debug Register dseg Presence

0 dseg Present

1 No dseg

 EJTAG Processor Core Extensions

36 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 2.1 Virtual Address Spaces with Debug Mode Segments

0x4000 0000 0000 0000

0x8000 0000 0000 0000

64-bit Virtual Memory 32-bit Compatibility

0xFFFF FFFF FFFF FFFF

0xFFFF FFFF E000 00000

0xFFFF FFFF C000 0000

0xFFFF FFFF A000 0000

0xFFFF FFFF 8000 0000

0x0000 0000 7FFF FFFF

0x0000 0000 0000 0000

0xC000 0000 0000 0000

xkseg

xkphys

xsseg

xuseg

useg

kseg0

kseg1

sseg

kseg3

Kernel
Unmapped

Kernel
Mapped

Supervisor
Mapped

Kernel
Unmapped
Uncached

User
Mapped

Kernel
Mapped

Supervisor
Mapped

Kernel
Unmapped

User
Mapped

231-byte Compatibility Segment

231-byte Compatibility Segment

User
Mapped

Kernel
Unmapped

Kernel
Mapped

Supervisor
Mapped

Kernel
Unmapped
Uncached

Debug
Unmapped
Uncached

0xFFFF FFFF FF3F FFFF

dseg

0xFFFF FFFF FF20 0000

Debug Mode Segment

The dseg appears at an address
range also used for access to kseg.
However, kseg is still available
when in Debug Mode.

2.2 Debug Mode Execution

MIPS® EJTAG Specification, Revision 6.10 37

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The dseg segment is subdivided into dmseg (EJTAG memory) segment and the drseg (EJTAG registers) segment. The
dmseg segment is used when the probe services the memory segment. The drseg segment is used when the mem-
ory-mapped debug registers are accessed. Table 2.2 shows the subdivision and attributes for the segments.

The SYNC instruction, followed by appropriate spacing (as described in Section 2.2.3.7 on page 40 and Section 2.2.4
on page 41) must be executed to ensure that an access to the dseg segment is committed (for example, after writing to
the dseg segment and before leaving Debug Mode). This procedure ensures that locations in the dseg segment are
fully updated for Non-Debug Mode; otherwise, behavior of the processor is UNDEFINED.

2.2.2.1 Access to dmseg (EJTAG memory) Address Range

Table 2.3 shows the behavior of processor accesses in Debug Mode to the dmseg segment from
0xFFFF FFFF FF20 0000 to 0xFFFF FFFF FF2F FFFF.

From Table 2.3, when ProbEn equals 0 for dmseg segment accesses, debug software accessed the dmseg segment
when the ProbEn bit was 0, indicating that there is no probe available to service the request. Debug software must
read the state of the ProbEn bit in the DCR register before attempting to reference the dmseg segment. However,
accessing the dmseg segment while ProbEn is 0 can occur because there is an inherent race between the debug soft-
ware sampling the ProbEn bit as 1 and the probe clearing it to 0. The probe can therefore not assume that a reference

Table 2.2 Physical Address and Cache Attribute for dseg, dmseg and drseg

Segment
Name

Subsegment
Name Virtual Address Reference Address

Cache
Attribute

dseg dmseg 0xFFFF FFFF FF20 0000
to

0xFFFF FFFF FF2F FFFF

Because the dseg segment is serviced
exclusively by the EJTAG features, there
are no physical addresses per se. Instead,
the lower 21 bits of the virtual address
select the appropriate reference in either
EJTAG memory or registers.
References are not mapped through the
TLB, nor do the accesses appear on the
external system memory interface.

Uncached

drseg 0xFFFF FFFF FF30 0000
to

0xFFFF FFFF FF3F FFFF

Table 2.3 Access to dmseg Segment Address Range

NoDCR bit in
Debug Register Transaction

ProbEn bit in
DCR register

LSNM bit in
Debug Register Access

1 x (Not present) 0 (read-only) Kernel Mode address space

0 Fetch 1 x dmseg

0 x See comments below regarding behavior
when ProbEn is 0

Load/Store 1 0 dmseg

1 Kernel Mode address space

0 1 Kernel Mode address space

0 See comments below regarding behavior
when ProbEn is 0

‘x’ denotes don’t care

 EJTAG Processor Core Extensions

38 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

to the dmseg segment never occurs if the ProbEn bit is dynamically cleared to 0. If debug software references the
dmseg segment when ProbEn is 0, the reference hangs until it is satisfied by the probe.

There are no timing requirements with respect to transactions to the dmseg segment, which the probe services. There-
fore, a system watchdog must be disabled during dseg segment transactions, so that accesses can take any amount of
time without being terminated.

The protocol for accesses to the dmseg segment does not allow a transaction to be aborted after it has started, except
by a reset or soft reset.

Transactions of all sizes are allowed to the dmseg segment.

Merging is allowed for accesses to the dmseg segment, whereby, for example, two byte accesses can be merged to
one halfword access, and debug software is thus required to allow merging. However, merging must only occur for
accesses which can be combined into legal processor accesses, because processor access can only indicate accesses
which can occur due to a single load/store, thus not, for example, accesses to only first and last bytes of a word. The
SYNC instruction, followed by appropriate spacing (as described in Section 2.2.3.7 on page 40 and Section 2.2.4 on
page 41) can be executed to ensure that earlier accesses to the dmseg segment are committed and thus will not be
merged with later accesses.

The processor can do speculative fetching from the dmseg segment whereby it can fetch doublewords even if an
instruction that is not required in the execution flow is thereby fetched. For example, if the DERET instruction is
fetched as the first word of a doubleword, then the instruction in the second word is not executed. For details, refer to
the architecture description covering speculative fetching from uncached areas in general.

If the TAP is not present in the implementation, the operation of the processor is UNDEFINED when the dmseg seg-
ment is accessed.

2.2.2.2 Access to drseg (EJTAG Registers) Address Range

Table 2.4 shows the behavior of processor accesses in Debug Mode to the drseg segment from
0xFFFF FFFF FF30 0000 to 0xFFFF FFFF FF3F FFFF.

Instruction fetches from drseg are not allowed. The operation of the processor is UNDEFINED if the processor
attempts am instruction fetch from the drseg segment.

When the NoDCR bit is 0 in the Debug register, it indicates that the processor is allowed to access the entire drseg
segment, and therefore a response occurs to all transactions in the drseg segment.

The DCR register, at offset 0x0000 in the drseg segment, is always available if the dseg segment is present. Debug
software is expected to read the DCR register to determine what other memory-mapped registers exist in drseg. The

Table 2.4 Access to drseg Segment Address Range

NoDCR bit in
Debug Register Transaction

LSNM bit in
Debug Register Access

1 x 0 (read-only) Kernel Mode address space

0 Fetch x Operation of the processor is UNDEFINED at fetch

Load/Store 0 drseg segment (see comments below the table)

1 Kernel Mode address space

‘x’ denotes don’t care

2.2 Debug Mode Execution

MIPS® EJTAG Specification, Revision 6.10 39

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

value returned in response to a read of any unimplemented memory-mapped register is UNPREDICTABLE, and
writes are ignored to any unimplemented register in the drseg segment.

The allowed transaction size is limited for the drseg segment: only word-size transactions are allowed for 32-bit pro-
cessors, and only doubleword-size transactions are allowed for 64-bit processors. Operation of the processor is
UNDEFINED for other transaction sizes.

2.2.3 Debug Mode Handling of Processor Resources

Unless otherwise specified, the processor resources in Debug Mode are handled identically to those in Kernel Mode.
Some identical cases are described in the following subsections for emphasis. In addition, see the following related
sections for more information:

• Section 2.4 “Debug Mode Exceptions” covering exception handling in Debug Mode.

• Section 2.5 “Interrupts and NMIs” for handling in both Debug and Non-Debug Modes.

• Section 2.6 “Reset and Soft Reset of Processor” for handling in both Debug and Non-Debug Modes.

2.2.3.1 Coprocessors

A Debug Mode Coprocessor Unusable exception is raised under the same conditions as for a Coprocessor Unusable
exception in Kernel Mode (see Section 2.4.1 on page 54). Therefore Debug Mode software cannot reference Copro-
cessors 1 through 2 without first setting the respective enable in the Status register.

2.2.3.2 Random Register

For TLB-based MMU implementations, the Random register (CP0 register 1, select 0) can optionally be frozen in
Debug Mode, whereby execution with and without debug exceptions are identical with respect to TLB exception han-
dling.

If the values that the Random register provides cannot be identical in behavior to the case where debug exceptions do
not occur, then freezing the Random register has no effect, because execution with and without debug exceptions will
not be identical. Stalls when entering Debug Mode (for example, due to pending scheduled loads resolved when con-
text is saved in the debug handler) can make it impossible in some implementations to ensure that the Random regis-
ter will provide the same set of values when running with and without debug exceptions.

There is no bit to indicate or control if the Random register is frozen in Debug Mode, so the user must consult system
documentation.

2.2.3.3 Count Register

The Count register (CP0 register 9) operation in Debug Mode depends on the state of the CountDM bit in the Debug
register (see Section 2.7.1 on page 59). The Count Register has three possible configurations, depending on the
implementation:

• Count register runs the same in Debug Mode as in Non-Debug Mode

• Count register is stopped in Debug Mode but is running in Non-Debug Mode

• The CountDM bit controls the Count register behavior in Debug Mode, whereby it can be either running or
stopped

 EJTAG Processor Core Extensions

40 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Stopping of the Count register in Debug Mode is allowed in order to prevent the generation of an interrupt at every
return to Non-Debug Mode, for the case when the debug handler takes so long to execute that the Count/Compare
registers request an interrupt. In this case, system timing behavior might not be the same as if no debug exception
occurred.

2.2.3.4 WatchLo/WatchHi Registers

The WatchLo/WatchHi registers (CP0 Registers 18 and 19) are inhibited from matching any instruction executed in
Debug Mode.

2.2.3.5 CacheErr Register

The MIPS32 and MIPS64 architecture specifications state that operation of the CacheErr register is implementation-
dependent, which means that the CacheErr register handling described in the EJTAG Architecture is only a recom-
mendation. Therefore, debug software cannot always depend on the CacheErr register being implemented as recom-
mended below.

The recommendation is that a CacheErr shadow register captures information presented when a cache error is indi-
cated, and holds this information until a later update of the CacheErr register when a Cache Error exception occurs.
The CacheErr shadow register is updated when there is a cache error indication, and the program is in Non-Debug
Mode or in Debug Mode with the IEXI bit = 1. The CacheErr shadow register is not updated in Debug Mode when
the IEXI bit = 0, but in this case, a cache error only occurs due to an instruction executed in Debug Mode if proper
debug handler entry code is used. The CacheErr register is only updated at a Cache Error exception, and thus not at a
Debug Mode Cache Error exception.

If the CacheErr register value is to be correct for a cache error deferred through Debug Mode, then no cache errors
may occur when in Debug Mode and the IEXI bit is set. The debug handler must therefore ensure the entry and exit
code, executed with IEXI is set, cannot cause cache error; otherwise, the CacheErr register contents presented to
Non-Debug Mode are invalid.

2.2.3.6 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair

A DERET instruction does not clear the LLbit (see “DERET” on page 75), nor does the occurrence of a debug excep-
tion. Loads and stores to uncacheable locations that do not match the physical address of the previous LL instruction
do not affect the results of the SC instruction. The value of the LLbit is not directly visible by software.

2.2.3.7 SYNC and EHB Instruction Behavior

The SYNC instruction is used to request the hardware to commit certain operations before proceeding. For example,
a SYNC is required to remove memory hazards on reference to the dseg segment. The EHB instruction ensures that
status bits in the Debug register are fully updated before the debug handler accesses them and before Debug Mode is
exited. Similarly, the SYNC instruction ensures that the hardware breakpoint registers in drseg memory address space
are fully updated before the debug handler accesses them and before Debug Mode is exited. Cores implementing
Release 2 of the architecture can use the EHB instruction (or Release 1 implementations can use SSNOP instructions
combined with appropriate spacing), see Section 2.2.4 on page 41 to remove Coprocessor 0 (CP0) execution hazards.

2.2 Debug Mode Execution

MIPS® EJTAG Specification, Revision 6.10 41

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The SYNC and EHB instructions must provide the specific behavior described in Table 2.5.

The SYNC instruction must be executed before leaving Debug Mode in order to commit all accesses to the dseg seg-
ment, for example, to commit accesses to set up hardware breakpoints.

It may be required to remove hazards in relation to the SYNC instruction, as described in Section 2.2.4 on page 41.

Other requirements of the SYNC instruction are described in the MIPS32 and MIPS64 Architecture specifications.

2.2.4 CP0 and dseg Segment Hazards

Because resources controlled via Coprocessor 0 and EJTAG memory and registers in the dseg segment affect the
operation of various pipeline stages of the processor, manipulation of these resources may produce results that are not
detectable by subsequent instructions for some number of execution cycles. When no hardware interlock exists
between one instruction that causes an effect that is visible to a second instruction, a CP0 or dseg segment hazard
exists.

In Release 1 of the MIPS32 and MIPS64 Architectures, hazards were relegated to implementation-dependent
cycle-based solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that this is an
insufficient and error-prone practice that must be addressed with a firm compact between hardware and software. As
such, new instructions have been added to Release 2 of the Architecture which act as explicit barriers that eliminate
hazards. To the extent that it was possible to do so, the new instructions have been added in such a way that they are
backward-compatible with existing MIPS processors.

2.2.4.1 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below. In Table 2.6 below, the final column lists the “typical” spacing required in implementations of Release
1 of the Architecture to allow the consumer to eliminate the hazard. The “typical” value shown in these tables repre-
sent spacing that is in common use by operating systems today. An implementation of Release 1 of the Architecture
which requires less spacing to clear the hazard (including one which has full hardware interlocking) should operate
correctly with an operating system which uses this hazard table. An implementation of Release 1 of the Architecture
which requires more spacing to clear the hazard incurs the burden of validating kernel code against the new hazard
requirements.

Note that for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than one,
and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this reason
that MIPS Release 1 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar design.

Table 2.5 SYNC and EHB Instruction References

Behavior Section References

Commit accesses to the dseg segment See Section 2.2.2 on page 34

Update the DDBLImpr and DDBSImpr bits in the Debug register See Section 2.3.8 on page 49 and
Section 2.7.1 on page 59

Update the BS bits in the IBS and DBS registers in drseg See Section 5.4.2 on page 131

Update the IBusEP, DBusEP, CacheEP, and MCheckP bits in the Debug register See Section 2.4.2 on page 55 and
Section 2.7.1 on page 59

 EJTAG Processor Core Extensions

42 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 2.6 lists execution hazards related to EJTAG.

Dependencies from the SYNC instruction as producer take effect, since specific updates of the dseg segment and the
resolving of pending imprecise exception indications are triggered by the SYNC instruction. This is described in
Section 2.2.3.7 on page 40.

Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. There are no instruction hazards that are specific to EJTAG.

2.2.4.2 Hazard Clearing Instructions

Table 2.7 lists the instructions designed to eliminate hazards.

Table 2.6 Execution Hazards

Producer → Consumer Hazard On

“Typical”
Spacing
(Cycles)

SYNC → DERET dseg memory
locations

2

SYNC → Load / Store BS bits in the IBS
and DBS regis-
ters in drseg

2

SYNC → MFC0 Debug DebugDDBSImpr,

DebugDDBLImpr,

DebugIBusEP,

DebugDBusEP,

DebugCacheEP,

DebugMCheckP

2

MTC0 DEPC → DERET DEPC 2

MTC0 Debug → DERET Debug 2

MTC0
Debug[LSNM]

→ Load / Store in dseg Debug[LSNM] 3

MTC0
Debug[IEXI]

→ Instructions that can cause an impre-
cise exception

Debug[IEXI] 3

Table 2.7 Hazard Clearing Instructions

Mnemonic Function

EHB Clear execution hazard

JALR.HB Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards

SSNOP Superscalar No Operation

SYNCI Synchronize caches after instruction stream write

2.3 Debug Exceptions

MIPS® EJTAG Specification, Revision 6.10 43

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.2.4.3 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on pro-
cessors that don’t implement Release 2 can emulate the function using the CACHE instruction.

The SSNOP and EHB instructions are fully described in the MIPS32 and MIPS64 Architecture for Programmers,
Volume II.

2.3 Debug Exceptions

This section describes issues related to debug exceptions. Debug exceptions bring the processor from Non-Debug
Mode into Debug Mode. Implementations need only support those debug exceptions that are applicable to that imple-
mentation.

Exceptions can occur in Debug Mode, and these are denoted as debug mode exceptions. These exceptions are handled
differently from exceptions that occur in Non-Debug Mode, which are described in Section 2.4 on page 53.

2.3.1 Debug Exception Priorities

Table 2.8 lists the exceptions that can occur in Non-Debug Mode in order of priority, from highest to lowest. The
table also categorizes each exception with respect to type (debug or non-debug). Each debug exception has an associ-
ated status bit in the Debug register (indicated in the table in parentheses). Refer to Section 2.7.1 on page 59 for more
information.

Table 2.8 Priority of Non-Debug and Debug Exceptions

Priority Exception Type of Exception

Highest Reset Non-debug

Soft reset

Debug Single Step Debug

Debug Interrupt; by external signal (DINT), from EjtagBrk in TAP, or through use
of EJTAG Boot.

Debug Data Break Load/Store Imprecise (DDBLImpr/DDBSImpr)

Nonmaskable Interrupt (NMI) Non-debug

Machine Check

Interrupt

Deferred Watch

Debug Instruction Break Debug

 EJTAG Processor Core Extensions

44 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The specific implementation determines which exceptions can occur and the priority of asynchronous exceptions,
such as interrupts.

2.3.2 Debug Exception Vector Location

The same vector is used for all debug exceptions. The location of this vector can be changed by the processor and
through the optional Test Access Port (TAP). The vector location can be controlled from the TAP through the EJTAG
Control Register (ECR) ProbTrap bit.

Starting with EJTAG version 5.0, an additional method to relocate the debug exception vector is provided, using
optional drseg register DebugVectorAddr at offset 0x00020. The value in DebugVectorAddr is used when the ECR
ProbTrap bit is 0, and when relocation is enabled through the optional RDVec control bit in the Debug Control Regis-
ter (DCR). Bit 0 of DebugVectorAddr determines the ISA mode used to execute the handler.

Watch on instruction fetch Non-debug

Address error on instruction fetch

TLB refill on instruction Ifetch

TLB Invalid on instruction Ifetch

Cache error on instruction Ifetch

Bus error on instruction Ifetch

Debug Breakpoint; execution of SDBBP instruction Debug

Other execution-based exceptions Non-debug

Debug Data Break on Load/Store address match only
or Debug Data Break on Store address+data value match

Debug

Watch on data access Non-debug

Address error on data access

TLB Refill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Lowest Debug Data Break on Load address+data match Debug

Table 2.9 Debug Exception Vector Location

ECRProbEn ECRProbTrap DCRRDVec Debug Exception Vector Address

x 0 0 0xFFFF FFFF BFC0 0480

x 0 1 0xFFFF FFFF 0000 0000 +
(DebugVectorAddr31..1 || 0)

1 1 0 0xFFFF FFFF FF20 0200 in dmseg

1 1 1

Table 2.8 Priority of Non-Debug and Debug Exceptions (Continued)

Priority Exception Type of Exception

2.3 Debug Exceptions

MIPS® EJTAG Specification, Revision 6.10 45

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 2.2 shows the format of the DebugVectorAddr register for legacy fixed memory segmentation; Table 2.10
describes the DebugVectorAddr register fields for legacy fixed memory segments.

Figure 2.2 DebugVectorAddr Register Format when Config3SC=0

If the Config3SC register field is not set, bits 31..30 of the DebugVectorAddr register are fixed with the value
0b10,and the addition of the base address (0xFFFFFFFF00000000) and the exception offset is done inhibiting a
carry between bit 29 and bit 30 of the final exception address. The combination of these two restrictions forces the
final exception address to be in the kseg0 or kseg1 unmapped virtual address segments. For cache error exceptions, bit
29 is forced to a 1 in the ultimate exception base address so that this exception always runs in the kseg1 unmapped,
uncached virtual address segment.

When microMIPSTM is implemented, the power-up state of IM is set by bit 0 of the ISA field in Config3. When

MIPS16 is implemented, the power-up state of IM is zero. If the implementation does not include microMIPSTM or
MIPS16, the IM field is read-only, should be written with zero and will return 0 on a read.

If the TAP is not implemented, then the debug exception vector location is as if ProbTrap is 0.

With the addition of programmable memory segmentation (refer to Volume III of the MIPS® Architecture Reference
Manual, Enhanced Virtual Addressing and Segmentation Control sections), the DebugVectorAddr register is
extended to support programmable placement of the DebugVectorOffset field. Segmentation Control is denoted by
the setting of the Config3SC register field.

Figure 2.3 shows the format of the DebugVectorAddr register for Segmentation Control; Table 2.11 describes the
DebugVectorAddr register fields for Segmentation Control.

31 30 29 7 6 1 0

1 0 DebugVectorOffset 0 IM

Table 2.10 DebugVectorAddr Register Field Descriptions when Config3SC=0

Fields

Description Read / Write
Power-up

State ComplianceName Bits

1 31 Ignored on write; returns one on read. R 1 Required when
RDVec is

implemented

DebugVec-
torOffset

29:7 Programmable Debug Exception Vector Offset R/W Preset to
0x7F8009

Required when
RDVec imple-

mented

IM 0 ISA mode to be used for exception handler if
microMIPS

implemented:
R/W

Otherwise:
R

if microMIPS
implemented:

value from
Config3ISA[0]

Otherwise:
0

Required when
microMIPS is
implemented
and RDVec

implemented

0 30,6:1 Ignored on write; returns zero on read. R 0 Required when
RDVec isim-
plemented

 EJTAG Processor Core Extensions

46 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

In a Segmentation Control enabled implementation, DebugVectorOffset is no longer hardwired to kseg0, kseg1 seg-
ments. Therefore, bits 31..30 of the DebugVectorAddr register are added to the DebugVectorOffset field. These bits
are writeable, allowing redefinition of the final exception address segment.

Bit 29 is unmodified by exception type, for Cache type exceptions, the associated Segmentation Control SegCtl regis-
ter CFG.EU field should be set to 1, setting segment access to uncached. Care must be taken so that the DebugVector-
Offset field resulting addresses are set in an appropriately configured memory segment.

Figure 2.3 DebugVectorAddr Register Format when Config3SC=1

2.3.3 Debug Exception ISA mode

For devices that implement the microMIPSTM instruction set, there is a choice of which instruction set is used during
Debug Exception handling.

On each debug exception, the processor ISA mode is set to match the handler provided. When the handler is located
in EJTAG memory, as indicated by ECRProbEn=1 and ECRProbTrap=1, the ISA mode is set from ECRISAOnDebug.

If the exception handler is located in normal memory (ECRProbTrap=0) and the Debug Exception Vector is relocated
(DCRRDVec=1), the ISA mode is determined by bit 0 of the DebugVectorAddr register.

For all other cases, the ISA mode used is the same as would be used for a Reset, Soft Reset, or Non-Maskable Inter-

rupt (NMI). When MIPS16 is implemented, the value used is zero. When microMIPS TM is implemented, the ISA

31 7 6 5 1 0

DebugVectorOffset WG 0 IM

Table 2.11 DebugVectorAddr Register Field Descriptions when Config3SC=1

Fields

Description Read / Write
Power-up

State ComplianceName Bits

DebugVec-
torOffset

31:7 Programmable Debug Exception Vector Offset R/W Preset to
0x17F8009

Required when
RDVec and

Segmentation
Control imple-

mented

WG 6 Must be one to write bits 31:30 of DebugVector-
Offset

R/W 0 Required

0 5:1 Ignored on write; returns zero on read. R 0 Required

IM 0 ISA mode to be used for exception handler if
microMIPS

implemented:
R/W

Otherwise:
R

if microMIPS
implemented:

value from
Config3ISA[0]

Otherwise:
0

Required when
microMIPS is
implemented
and RDVec

implemented

2.3 Debug Exceptions

MIPS® EJTAG Specification, Revision 6.10 47

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

field of Config3 indicates the available instruction sets and the ISA value to be used for Reset, Soft Reset, NMI, and
Debug Exceptions .

Operation:

if ECRProbTrap = 1 then
ISAmode ← ECRISAOnDebug

else
if DCRRDVec = 1 then

ISAmode ← DebugVectorAddr0
else

if IsMIPS16Implemented() then
ISAmode ← 0

else
ISAmode ← Config3ISA[0]

endif
endif

endif

If the TAP is not implemented, then the debug exception ISA mode is as if ProbTrap is 0.

2.3.4 General Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the PC at which execution can be restarted, and the DBD bit is set to indicate
whether the last debug exception occurred in a branch delay slot. Bit 0 of DEPC is set to indicate the ISA mode
to be used when executions restart. The value loaded into the DEPC register is either the current PC (if the
instruction is not in the delay slot of a branch) or the PC of the branch or jump (if the instruction is in the delay
slot of a branch or jump).

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register are updated
appropriately depending on the debug exception.

• DExcCode field in the Debug register is UNPREDICTABLE.

• Halt and Doze bits in the Debug register are updated appropriately.

• IEXI bit is set to inhibit imprecise exceptions in the start of the debug handler.

• DM bit in the Debug register is set to 1.

• The ISA mode is set appropriately, as specified in Section 2.3.3 on page 46.

• The processor begins fetching instructions from the debug exception vector, specified in Section 2.3.2 on
page 44.

The value loaded into the DEPC register represents the restart address from the debug exception and does not need to
be modified by the debug exception handler software. Debug software need only look at the DBD bit in the Debug
register to identify the address of the instruction that actually caused a precise debug exception.

The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register indicate the
occurrence of distinct debug exceptions, except when a Debug Data Break Load/Store Imprecise exception occurs

 EJTAG Processor Core Extensions

48 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

(see Section 2.3.8 on page 49). Note that the occurrence of an exception while in Debug mode will clear these bits.
The handler can thereby determine whether a debug exception or an exception in Debug Mode occurred.

Also note that multiple cause bits may be set, but the priority of the debug exception or interrupt dictates the order in
which they are handled. For example, because DSS is the highest priority Debug exception, if it occurs, it will always
be taken first. Then, after it DERETS, other debug exceptions can be taken. For example, assume that the processor is
in single-step mode in a branch delay slot, and waiting to go past the delay slot to enter the DSS exception. At the
branch delay slot, it could get a DINT or other lower priority Debug exception. In this case, it would not take the
lower exception, but enter Debug Mode past the delay slot. The entry into Debug Mode will clear the DINT. It would
process the single-step exception and DERET to normal non-debug mode. Note that in practice, not many cores set
multiple cause bits in the Debug register since the highest priority debug exception is taken, and the others are cleared
on entry to Debug Mode as already specified.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

The overall exception processing flow happens in hardware before setting PC to point to the debug exception vector is
shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ← BranchInstructionPC
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DEPC0 ← ISAmode
DebugDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ← DebugExceptionType
DebugDExcCode ← UNPREDICTABLE
DebugHalt ← HaltStatusAtDebugException
DebugDoze ← DozeStatusAtDebugException
DebugIEXI ← 1
DebugDM ← 1
if ECRProbTrap = 1 then

PC ← 0xFFFF FFFF FF20 0200
ISAmode ← ECRISAOnDebug

else
if DCRRDVec = 1 then

PC ← 0xFFFF FFFF 0000 0000 + (DebugVectorAddr31..1 || 0)
ISAmode ← DebugVectorAddr0

else
PC ← 0xFFFF FFFF BFC0 0480
if IsMIPS16Implemented() then

ISAmode ← 0
else

ISAmode ← Config3ISA[0]
endif

endif
endif

2.3.5 Debug Breakpoint Exception

A Debug Breakpoint exception occurs when an SDBBP instruction is executed. The contents of the DEPC register
and the DBD bit in the Debug register indicate that the SDBBP instruction caused the debug exception.

2.3 Debug Exceptions

MIPS® EJTAG Specification, Revision 6.10 49

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Debug Register Debug Status Bit Set

DBp

Additional State Saved

None

Entry Vector Used

Debug exception vector

2.3.6 Debug Instruction Break Exception

A Debug Instruction Break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint match. This exception can only occur if instruction hardware breakpoints are implemented (see
Chapter 5, “Hardware Breakpoints” on page 117).

Debug Register Debug Status Bit Set

DIB

Additional State Saved

None

Entry Vector Used

Debug exception vector

2.3.7 Debug Data Break Load/Store Exception

A Debug Data Break Load/Store exception occurs when a data hardware breakpoint matches the load/store address of
an executed load/store instruction. The DEPC register and DBD bit in the Debug register indicate the load/store
instruction that caused the data hardware breakpoint to match, as this is a precise debug exception. The load/store
instruction that caused the debug exception has not completed (it has not updated the destination register or memory
location), and the instruction therefore is executed on return from the debug handler. This exception can only occur if
data hardware breakpoints with precise data breaks are implemented (see Chapter 5, “Hardware Breakpoints” on
page 117).

Debug Register Debug Status Bit Set

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved

None

Entry Vector Used

Debug exception vector

2.3.8 Debug Data Break Load/Store Imprecise Exception

A Debug Data Break Load/Store Imprecise exception occurs when a data hardware breakpoint matches a load/store
access of an executed load/store instruction, if it is not possible to take a precise debug exception on the instruction.
This case occurs when a data hardware breakpoint was set up with a value compare, and a load access did not return
data until after the load instruction had left the pipeline as for non-blocking loads. The DEPC register and the DBD

 EJTAG Processor Core Extensions

50 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

bit in the Debug register indicate an instruction later in the execution flow instead of the load/store instruction that
caused the data hardware breakpoint to match. The DDBLImpr/DDBSImpr bits in the Debug register indicate that a
Debug Data Break Load/Store Imprecise exception occurred. The instruction that caused the Debug Data Break
Load/Store Imprecise exception will have completed. It updates its destination register, and is not executed on return
from the debug handler. This exception can only occur if data hardware breakpoints with imprecise data breakpoints
are implemented (see Chapter 5, “Hardware Breakpoints” on page 117).

Imprecise debug exceptions from data hardware breakpoints are indicated together with another debug exception if
the load/store transaction that made the data hardware breakpoint match did not complete until after another debug
exception occurred. In this case, the other debug exception was the cause of entering Debug Mode, so the DEPC reg-
ister and the DBD bit in Debug register point to this instruction. DDBLImpr/DDBSImpr are set concurrently with the
status bit for that debug exception.

The SYNC followed by appropriate spacing and the EHB instruction, (as described in Section 2.2.3.7 on page 40 and
Section 2.2.4 on page 41) must be executed in Debug Mode before the DDBLImpr and DDBSImpr bits in the Debug
register and the BS bits for the data hardware breakpoint are respectively read in order to ensure that all imprecise
breaks are resolved and the bits are fully updated. A match of the data hardware breakpoint is indicated in
DDBLImpr/DDBSImpr so the debug handler can handle this together with the debug exception.

This scheme ensures that all breakpoints matching due to code executed before the debug exception are indicated by
the DDBLImpr, DDBSImpr, and BS bits for the following debug handler. Matches are neither queued nor do they
cause debug exceptions at a later point. A debug exception occurring later than the debug exception handler is there-
fore caused by code executed in Non-Debug Mode after the debug exception handler.

Debug Register Debug Status Bit Set

DDBLImpr for a load instruction or DDBSImpr for a store instruction

Additional State Saved

None

Entry Vector Used

Debug exception vector

2.3.9 Debug Single Step Exception

When single-step mode is enabled, a Debug Single Step exception occurs each time the processor has taken a single
execution step in Non-Debug Mode. An execution step is a single instruction, or an instruction pair consisting of a
jump/branch instruction and the instruction in the associated delay slot. The SSt bit in the Debug register enables
Debug Single Step exceptions. They are disabled on the first execution step after a DERET.

The DEPC register points to the instruction on which the Debug Single Step exception occurred, which is also the
next instruction to execute when returning from Debug Mode. The debug software can examine the system state
before this instruction is executed. Thus the DEPC will not point to the instruction(s) that have just executed in the
execution step, but rather the instruction following the execution step. The Debug Single Step exception never occurs
on an instruction in a jump/branch delay slot, because the jump/branch and the instruction in the delay slot are always
executed in one execution step; thus the DBD bit in the Debug register is never set for a Debug Single Step exception.

Exceptions occurring on the instruction(s) in the execution step are taken regardless, so if a non-debug exception
occurs (other than reset or soft reset), a Debug Single Step exception is taken on the first instruction in the non-debug
exception handler. The non-debug exception occurs during the execution step, and the instruction(s) that received a
non-debug exception counts as the execution step.

2.3 Debug Exceptions

MIPS® EJTAG Specification, Revision 6.10 51

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Debug exceptions are unaffected by single-step mode; returning to an SDBBP instruction with single step enabled
causes a Debug Breakpoint exception with the DEPC register pointing to the SDBBP instruction. Also, returning to
an instruction (not jump/branch) just before the SDBBP instruction causes a Debug Single Step exception with the
DEPC register pointing to the SDBBP instruction.

To ensure proper functionality of single-step execution, the Debug Single Step exception has priority over all excep-
tions, except resets and soft resets.

Debug Single Step exception is only possible when the NoSSt bit in the Debug register is 0 (see Section 2.7.1 on
page 59).

In an core that implements the MIPS MT Module, the SSt bit is instantiated per TC. If the SSt bit of the TC is set, a
Debug exception will be taken by that TC after any non-Debug mode instruction is executed. Other TCs with SSt
cleared are scheduled and issue instructions normally according to the scheduling policy in force. Global single-step
operation of a VPE can be achieved by setting SSt for all TCs for the specified VPE.

When the single-step exception bit is set for multiple TCs, then the preferred behavior applies it to each TC indepen-
dently and independent of the scheduling policy. This has implications for the software observable instruction execu-
tion completion order. Three examples are shown in Figure 2.4, Figure 2.5, and Figure 2.6. In Figure 2.4 there are two
threads TC0 and TC1, and thread TC0 has its SSt bit set but thread TC1 does not have its SSt bit set. In Figure 2.5,
there are two threads and both their SSt bits are set. In Figure 2.6, there are four threads, and two threads have their
SSt bits set and the other two do not. The figures show the observed instruction completion order for each of the cases.
The notation used is TC#.Instn#.

Debug Register Debug Status Bit Set

DSS

Additional State Saved

None

Entry Vector Used

Debug exception vector

Figure 2.4 Example 1: Single-stepping One Thread TC0 with Non-single-Stepping Thread TC1

0.0 - DSS
0.x - dexc
0.x - DERET
1.0 - completes

0.1 - DSS
0.x - dexc
0.x - DERET
1.1 - completes
0.1 - completes

0.0 - completes

...

 EJTAG Processor Core Extensions

52 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 2.5 Example 2: Single-stepping Two Threads TC0 and TC1

Figure 2.6 Example 3: Single-stepping Two Threads TC0 and TC1 with Other Threads TC2 and TC3

2.3.10 Debug Interrupt Exception

The Debug Interrupt exception is an asynchronous debug exception that is taken as soon as possible, but with no spe-
cific relation to the executed instructions. The DEPC register and the DBD bit in the Debug register reference the
instruction at which execution can be resumed after Debug Interrupt exception service.

Debug interrupt requests are ignored when the processor is in Debug Mode, and pending requests are cleared when
the processor takes any debug exception, including debug exceptions other than Debug Interrupt exceptions.

A debug interrupt restarts the pipeline if stopped by a WAIT instruction and the processor clock is restarted if it was
stopped due to a low-power mode.

Debug Register Debug Status Bit Set

DINT

0.0 - DSS
0.x - dexc handler
0.x - DERET
1.0 - DSS
1.x - dexc handler
1.x - DERET
0.0 - completes
1.0 - completes
0.1 - DSS
0.x - dexc handler
0.x - DERET
...

0.0 - DSS
0.x - dexc handler
0.x - DERET
1.0 - completes
2.0 - DSS
2.x - dexc handler
2.x - DERET
3.0 - completes
0.0 - completes
1.1 - completes
2.0 - completes
3.1 - completes
0.1 - DSS
0.x - dexc handler
0.x - DERET
1.2 - completes
...

2.4 Debug Mode Exceptions

MIPS® EJTAG Specification, Revision 6.10 53

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Additional State Saved

None

Entry Vector Used

Debug exception vector

The possible sources for debug interrupts depend on the implementation. The following sources can cause Debug
Interrupt exceptions:

• The DINT signal from the probe

The optional DINT signal from the probe can request a debug interrupt on a low (0) to high (1) transition. The
DINTsup bit in the Implementation register in the Test Access Port (TAP) indicates whether the DINT signal
from the probe to the target processor is implemented (see Section 4.5.2 on page 96). The timing requirements
for the DINT signal are shown in Section 11.2.2 on page 194.

The DINT signal can be synchronized to the processor clock domain before edge detection while still observing
the required timing of the DINT signal. If the CPU clock speed or clocking scheme is such that the required tim-
ing does not leave enough time for synchronization or clock wake-up, then the DINT pulse is extended by the tar-
get system in the processor.

The EjtagBrk bit in the EJTAG Control register provides similar functionality similar to DINT from the probe,
but with higher latency.

• The EjtagBrk Bit in the EJTAG Control Register

The EjtagBrk bit in the EJTAG Control register requests a Debug Interrupt exception when set (see Section 4.5.5
on page 102).

• A debug boot by EJTAGBOOT

The EJTAGBOOT feature causes code to be fetched from the debug interrupt vector immediately after a reset or
soft reset has occurred (see Section 2.6.1 on page 57 and Section 4.4.2 on page 93).

• An implementation-specific debug interrupt signal to the processor

Through the availability of an optional debug interrupt request signal to the processor system, an external device
can request a Debug Interrupt exception, for example, when a signal goes from deasserted to asserted.

2.4 Debug Mode Exceptions

The handling of exceptions generated in Debug Mode, other than through resets and soft resets, differs from those
exceptions generated in Non-Debug Mode in that only the Debug and DEPC registers are updated. All other CP0 reg-
isters are unchanged by an exception taken in Debug Mode. The exception vector is equal to the debug exception vec-
tor (see Section 2.3.2 on page 44), and the processor stays in Debug Mode.

Reset and soft reset are handled as when occurring in Non-Debug Mode (see Section 2.6 on page 57).

 EJTAG Processor Core Extensions

54 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.4.1 Exceptions Taken in Debug Mode

Only some Non-Debug Mode exception events cause exceptions in Debug Mode. Remaining events are blocked.
Exceptions occurring in Debug Mode have the same relative priorities as the Non-Debug Mode exceptions for the
same exception event. These exceptions are called Debug Mode <Non-Debug Mode exception name>. For example,
a Debug Mode Breakpoint exception is caused by execution of a BREAK instruction in Debug Mode, and a Debug
Mode Address Error exception is caused by an address error due to an instruction executed in Debug Mode.

Table 2.12 lists all the Debug Mode exceptions with their corresponding non-debug exception event names, priorities,
and handling.

Table 2.12 Exception Handling in Debug Mode

Priority Event in Debug Mode Debug Mode Handling

Highest Reset Reset and soft reset handled as for
Non-Debug Mode, see Section 2.6 on
page 57.

Soft reset

Debug Single Step Blocked

Debug Interrupt

Debug Data Break Load/Store Imprecise

NMI

Machine Check Re-enter Debug Mode

Interrupt Blocked

Deferred Watch

Debug Instruction Break, DIB

Watch on instruction fetch

Address error on instruction fetch Re-enter Debug Mode

TLB refill on instruction Ifetch

TLB Invalid on instruction Ifetch

Cache error on instruction Ifetch

Bus error on instruction Ifetch

Debug Breakpoint; execution of SDBBP instruction Re-enter Debug Mode as for execution of
the BREAK instruction

Other execution-based exceptions Re-enter Debug Mode

Debug Data Break Load/Store address match only or
Debug Data Break Store address+data value match

Blocked

Watch on data access

Address error on data access Re-enter Debug Mode

TLB Refill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Lowest Debug Data Break on Load address+data match Blocked

2.4 Debug Mode Exceptions

MIPS® EJTAG Specification, Revision 6.10 55

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The specific implementation determines which exceptions can occur. Exceptions that are blocked in Debug Mode are
simply ignored, not causing updates in any state.

Handling of the exceptions causing Debug Mode re-enter are described below.

2.4.2 Exceptions on Imprecise Errors

Exceptions on imprecise errors are possible in Debug Mode due to a bus error on an instruction fetch or data access,
cache error, or machine check.

The IEXI bit in the Debug register blocks imprecise error exceptions on entry or re-entry into Debug Mode. They can
be re-enabled by the debug exception handler after sufficient context has been saved to allow a safe re-entry into
Debug Mode and the debug handler.

Pending exceptions due to instruction fetch bus errors, data access bus errors, cache errors, and machine checks are
indicated and controlled by the IBusEP, DBusEP, CacheEP and MCheckP bit in the Debug register.

The SYNC instruction, followed by appropriate spacing and the EHB instruction, (as described in Section 2.2.3.7 on
page 40 and Section 2.2.4 on page 41) must be executed in Debug Mode before the IBusEP, DBusEP, CacheEP, and
MCheckP bits are read in order to ensure that all pending causes for imprecise errors are resolved and all bits are fully
updated.

Those bits required to handle the possible imprecise errors in an implementation are implemented as R/W; otherwise,
they are read only.

2.4.3 Debug Mode Exception Processing

All exceptions that are allowed in Debug Mode (except for reset and soft reset) have the same basic processing flow:

• The DEPC register is loaded with the PC at which execution can be restarted, and the DBD bit is set to indicate
whether the last debug exception occurred in a branch delay slot. If the multiple ISAs are supported, Bit 0 of
DEPC is set to indicate the ISA mode to be used when executions restart. The value loaded into the DEPC regis-
ter is either the current PC (if the instruction is not in the delay slot of a branch) or the PC of the branch or jump
(if the instruction is in the delay slot of a branch or jump).

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register are all
cleared to differentiate from debug exceptions where at least one of the bits are set.

• The DExcCode field in the Debug register is updated to indicate the type of exception that occurred.

• The Halt and Doze bits in the Debug register are UNPREDICTABLE.

• The IEXI bit is set to inhibit imprecise exceptions at the start of the debug handler.

• The DM bit in the Debug register is unchanged, leaving the processor in Debug Mode.

• The ISA mode is set appropriately, as specified in Section 2.3.3 on page 46.

• The processor is started at the debug exception vector, specified in Section 2.3.2 on page 44.

The value loaded into the DEPC register represents the restart address for the exception; typically debug software
does not need to modify this value at the location of the debug exception. Debug software need not look at the DBD

 EJTAG Processor Core Extensions

56 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

bit in the Debug register unless it wishes to identify the address of the instruction that actually caused the exception in
Debug Mode.

It is the responsibility of the debug handler to save the contents of the Debug, DEPC, and DESAVE registers before
nested entries into the handler at the debug exception vector can occur. The handler returns to the debug exception
handler by a jump instruction, not a DERET, in order to keep the processor in Debug Mode.

The cause of the exception in Debug Mode is indicated through the DExcCode field in the Debug register, and the
same codes are used for the exceptions as those for the ExcCode field in the Cause register when the exceptions with
the same names occur in Non-Debug Mode, with addition of the code 30 (decimal) with the mnemonic CacheErr for
cache errors.

No other CP0 registers or fields are changed due to the exception in Debug Mode. For example, if the implementation
supports setting of the TS bit in the CP0 Status register on the detection of a match on multiple TLB entries before a
machine check exception, then the write of this TS bit should be suppressed when the machine check exception
occurs in Debug mode.

The overall processing flow for exceptions in Debug Mode is shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ← BranchInstructionPC
DebugDBD ← 1

else
DEPC ← PC
DebugDBD ← 0

endif
DEPC0 ← ISAmode
DebugDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ← 0
DebugDExcCode ← DebugExceptionType
DebugHalt ← UNPREDICTABLE
DebugDoze ← UNPREDICTABLE
DebugIEXI ← 1
if ECRProbTrap = 1 then

PC ← 0xFFFF FFFF FF20 0200
ISAmode ← ECRISAOnDebug

else
if DCRRDVec = 1 then

PC ← 0xFFFF FFFF 0000 0000 + (DebugVectorAddr31..1 || 0)
ISAmode ← DebugVectorAddr0

else
PC ← 0xFFFF FFFF BFC0 0480
if IsMIPS16Implemented() then

ISAmode ← 0
else

ISAmode ← Config3ISA[0]
endif

endif
endif

2.5 Interrupts and NMIs

Interrupts and NMIs are handled for EJTAG-compliant processors as described in the following subsections.

2.6 Reset and Soft Reset of Processor

MIPS® EJTAG Specification, Revision 6.10 57

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.5.1 Interrupts

Interrupts are requested through either asserted external hardware signals or internal software-controllable bits. Inter-
rupt exceptions are disabled when any of the following conditions are true:

• The processor is operating in Debug Mode

• The Interrupt Enable (IntE) bit in the Debug Control Register (DCR) is cleared (see Section Table 3.1 “DCR
Register Field Descriptions”)

• A non-EJTAG related mechanism disables the interrupt exception

A pending interrupt is indicated through the Cause register, even if Interrupt exceptions are disabled.

2.5.2 NMIs

An NMI is requested on the asserting edge of the NMI signal to the processor, and an internal indicator holds the NMI
request until the NMI exception is actually taken.

NMI exceptions are disabled when either of the following is true:

• The Processor is operating in Debug Mode

• The NMI Enable (NMIE) bit in the Debug Control Register (DCR) is cleared, see Section Table 3.1 “DCR
Register Field Descriptions”

If an asserting edge on the NMI signal to the processor is detected while NMI exception is disabled, then the NMI
request is held pending and is deferred until NMI exceptions are no longer disabled.

A pending NMI is indicated in the NMIpend bit in the DCR even if NMI exceptions are disabled.

2.6 Reset and Soft Reset of Processor

This section covers the handling of issues with respect to resets and soft resets. For EJTAG features, there are no dif-
ference between a reset and a soft reset occurring to the processor; they behave identically in both Debug Mode and
Non-Debug Mode. References to reset in the following therefore refers to both reset (hard reset) and soft reset.

2.6.1 EJTAGBOOT Feature

The EJTAGBOOT feature causes code to be fetched from the debug interrupt vector as a result of a reset instead of
the code from regular reset exception vector.

The EJTAGBOOT feature only affects the address value which is loaded into the PC after the reset event. All of the
other effects of a reset event - such as the clearing of RP, BEV, TS, SR, NMI and ERL fields within the Status register
and the updating of the ErrorEPC register still occur due to the reset event.

The location of the debug exception handler is controlled by the ProbTrap bit in the TAP Control register. When this
bit is set, the instructions for the debug exception handler are provided by the probe through the dmseg segment, tak-
ing care of a situation where the normal memory system does not work properly.

 EJTAG Processor Core Extensions

58 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Control and details of EJTAGBOOT are described in Section 4.4.2 on page 93 and Table 4.9 describes the ProbTrap
bit in the EJTAG Control register.

2.6.2 Reset from Probe

While asserted, the RST* signal from the probe is required to generate a reset or soft reset to the system. The SRstE
bit in the Debug Control Register does not mask this source. See Section 11.1.3 on page 191 for more information.

2.6.3 Processor Reset by Probe through Test Access Port

The PrRst bit in the EJTAG Control register can optionally cause a reset depending on the implementation. If a reset
occurs, then all parts of the system are reset, because partial resets are not allowed.

2.6.4 Reset Occurred Indication through Test Access Port

The Rocc bit in the EJTAG Control register is set at both reset and soft reset in order to indicate the event to the probe.

Refer to Section 4.5.5 on page 102 for more information on the EJTAG Control Register.

2.6.5 Soft Reset Enable

The optional Soft Reset Enable (SRstE) bit in the Debug Control Register (DCR) can mask the soft reset signal out-
side the processor. Because SRstE masks the soft reset signal before it arrives at the processor, there is no masking of
soft reset within the processor itself.

2.6.6 Reset of Other Debug Features

The operation of processor resets and soft resets also apply to resets of the following:

• Debug Control Register (DCR), see Chapter 3, “Debug Control Register” on page 79

• Hardware Breakpoint, see Chapter 5, “Hardware Breakpoints” on page 117

• Test Access Port (TAP) EJTAG Control Register, see Chapter 4, “EJTAG Test Access Port” on page 87

2.7 EJTAG Coprocessor 0 Registers

The Coprocessor 0 registers for EJTAG are shown in Table 2.13. Each register is described in more detail in the fol-
lowing subsections.

Table 2.13 Coprocessor 0 Registers for EJTAG

Register
Number Sel

Register
Name Function Reference

Compliance
Level

23 0 Debug Debug indications and controls for the processor. See Section 2.7.1
on page 59

Required

23 6 Debug2 Complex breakpoint status See Section
2.7.2 on page 68

Required
(EJTAG 4.00
and higher)

2.7 EJTAG Coprocessor 0 Registers

MIPS® EJTAG Specification, Revision 6.10 59

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The CP0 instructions MTC0, MFC0, DMTC0, and DMFC0 work with the three EJTAG CP0 registers as per the
MIPS32 and MIPS64 Architecture specifications.

Operation of the processor is UNDEFINED if the Debug, DEPC, or DESAVE registers are written from Non-Debug
Mode. The value of the Debug, DEPC, or DESAVE registers is UNPREDICTABLE when read from Non-Debug
Mode, unless otherwise explicitly stated in the individual register description. However, for test purposes, the imple-
mentations can allow writes to and reads from the registers from Non-Debug Mode.

To avoid pipeline hazards, there must be an appropriate spacing, refer to Section 2.2.4 on page 41, between the update
of the Debug and DEPC registers by MTC0/DMTC0 and use of the new value. This applies for example to modifica-
tion of the LSNM bit of the Debug register and a load/store affected by that bit.

In a processor implementing the MIPS MT Module, each of the Coprocessor 0 EJTAG registers described above is
instantiated per VPE. The exception is the SSt and OffLine bits in the Debug register which is instantiated per-TC.

2.7.1 Debug Register (CP0 Register 23, Select 0)

Compliance Level: Required for EJTAG debug support.

The Debug register contains the cause of the most recent debug exception and exception in Debug Mode. It also con-
trols single stepping. This register indicates low-power and clock states on debug exceptions, debug resources, and
other internal states.

Only the DM bit and the EJTAGver field are valid when read from the Debug register in Non-Debug Mode; the value
of all other bits and fields is UNPREDICTABLE.

The following bits and fields are only updated on debug exceptions and/or exceptions in Debug Mode:

• DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and DDBSImpr are updated on both debug
exceptions and on exceptions in Debug Modes

• DExcCode is updated on exceptions in Debug Mode, and is undefined after a debug exception

• Halt and Doze are updated on a debug exception, and are undefined after an exception in Debug Mode. In the sit-
uation where the processor is awakened from sleep or doze state by a hardware interrupt or other external event,
and a debug exception is taken instead (for example, if single-stepping a WAIT instruction), the state of the Halt
and Doze bits should be as if the hardware interrupt had not occurred. That is, these bits should indicate that the
state of the processor was in Halt or Doze respectively before the exception, ignoring that the interrupt time
might be between halt/doze and the debug exception.

• DBD is updated on both debug and on exceptions in Debug Modes

24 0 DEPC Program counter at last debug exception or
exception in Debug Mode.

See Section 2.7.3
on page 69

Required

31 0 DESAVE Debug exception save register. See Section 2.7.4
on page 70

Required

Table 2.13 Coprocessor 0 Registers for EJTAG (Continued)

Register
Number Sel

Register
Name Function Reference

Compliance
Level

 EJTAG Processor Core Extensions

60 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The SYNC instruction, followed by appropriate spacing and the EHB instruction, (as described in Section 2.2.3.7 on
page 40 and Section 2.2.4 on page 41) must be executed to ensure that the DDBLImpr, DDBSImpr, IBusEP, DBusEP,
CacheEP, and MCheckP bits are fully updated. This instruction sequence must be used both in the beginning of the
debug handler before pending imprecise errors are detected from Non-Debug Mode, and at the end of the debug han-
dler before pending imprecise errors are detected from Debug Mode. The IEXI bit controls enable/disable of impre-
cise error exceptions.

Figure 2.7 shows the format of the Debug register; Table 2.14 describes the Debug register fields.

Figure 2.7 Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

32/64-bit Proces-
sor

DBD DM
No

DCR
LSNM Doze Halt

Count
DM

IBus
EP

M
CheckP

Cach
eEP

DBus
EP

IEXI
DDB

S
Impr

DDB
L

Impr

EJTAGver
[2:1]

15 14 10 9 8 7 6 5 4 3 2 1 0

EJTA
Gver
[0]

DExcCode NoSSt SSt OffLine
DIBI
mpr

DINT DIB
DDB

S
DDB

L
DBp DSS

Table 2.14 Debug Register Field Descriptions

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

DBD 31 Indicates whether the last debug exception or exception
in Debug Mode occurred in a branch or jump delay slot:

R Undefined Required

DM 30 Indicates that the processor is operating in Debug Mode: R 0 Required

NoDCR 29 Indicates whether the dseg segment is present: R Preset Required

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 Processor is operating in Non-Debug
Mode

1 Processor is operating in Debug Mode

Encoding Meaning

0 dseg segment is present

1 dseg present is not present

2.7 EJTAG Coprocessor 0 Registers

MIPS® EJTAG Specification, Revision 6.10 61

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

LSNM 28 Controls access of loads/stores between the dseg seg-
ment and remaining memory when the dseg segment is
present:

Further description in Section 2.2.2 on page 34.
If DCR is not implemented, this bit is read-only (R) and
reads as zero.

R/W 0 Required if the
dseg segment is
present; other-
wise not imple-

mented.
See bit 29,
NoDCR.

Doze 27 Indicates that the processor was in a low-power mode
when a debug exception occurred:

See the introduction above for corner cases in setting the
state of this bit. The Doze bit indicates Reduced Power
(RP) and WAIT, and other implementation-dependent
low-power modes.
If the implementation does not support low-power
modes, then this bit always reads as 0.

R Undefined Required

Halt 26 Indicates that the internal processor system bus clock
was stopped when the debug exception occurred:

See the introduction above for corner cases in setting the
state of this bit. Halt indicates WAIT, and other imple-
mentation-dependent events that stop the system bus
clock.
If the implementation does not support a halt state, then
the bit always reads as 0.

R Undefined Required

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 Loads/stores in the dseg segment
address range go to the dseg segment

1 Loads/stores in dseg segment address
range go to system memory

Encoding Meaning

0 Processor not in low-power mode
when debug exception occurred

1 Processor in low-power mode when
debug exception occurred

Encoding Meaning

0 Internal system bus clock running

1 Internal system bus clock stopped

 EJTAG Processor Core Extensions

62 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

CountDM 25 Controls or indicates the Count register behavior in
Debug Mode. Implementations can have fixed behavior,
in which case this bit is read-only (R), or the implemen-
tation can allow this bit to control the behavior, in which
case this bit is read/write (R/W).
The reset value of this bit indicates the behavior after
reset, and depends on the implementation.
Encoding of the bit is:

If not implemented, this bit is read-only (R) and reads as
zero.

R
or

R/W

Preset Required

IBusEP 24 Indicates if a Bus Error exception is pending from an
instruction fetch. Set when an instruction fetch bus error
event occurs or a 1 is written to the bit by software.
Cleared when a Bus Error exception on an instruction
fetch is taken by the processor. If IBusEP is set when
IEXI is cleared, a Bus Error exception on an instruction
fetch is taken by the processor, and IBusEP is cleared.
In Debug Mode, a Bus Error exception applies to a
Debug Mode Bus Error exception.
If not implemented, this bit is read-only (R) and reads as
zero.

R/W1 0 Required if
imprecise bus

error can occur
on instruction

fetch; otherwise
optional.

MCheckP 23 Indicates if a Machine Check exception is pending. Set
when a machine check event occurs or a 1 is written to
the bit by software. Cleared when a Machine Check
exception is taken by the processor. If MCheckP is set
when IEXI is cleared, a Machine Check exception is
taken by the processor, and MCheckP is cleared.
In Debug Mode, a Machine Check exception applies to a
Debug Mode Machine Check exception.
Note that machine checks due to duplicate TLB entries
must be reported asynchronous with respect to the
instruction that causes them, and these would be priori-
tized as “Other execution-based exception” in Table 2.8.
In this case this bit would not be set.
Any asynchronous implementation-dependent machine
check should be reported using EJTAG priority in Table
2.8.
If not implemented, this bit is read-only (R) and reads as
zero.

R/W1 0 Required if
imprecise

machine check
error can occur;

otherwise
optional.

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 Count register stopped in Debug Mode

1 Count register is running in Debug
Mode

2.7 EJTAG Coprocessor 0 Registers

MIPS® EJTAG Specification, Revision 6.10 63

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

CacheEP 22 Indicates if a Cache Error is pending. Set when a cache
error event occurs or a 1 is written to the bit by software.
Cleared when a Cache Error exception is taken by the
processor. If CacheEP is set when IEXI is cleared, a
Cache Error exception is taken by the processor, and
CacheEP is cleared.
In Debug Mode, a Cache Error exception applies to a
Debug Mode Cache Error exception.
If not implemented, this bit is read-only (R) and reads as
zero.

R/W1 0 Required if
imprecise cache
error can occur;

otherwise
optional.

DBusEP 21 Indicates if a Data Access Bus Error exception is pend-
ing. Set when a data access bus error event occurs or a 1
is written to the bit by software. Cleared when a Bus
Error exception on data access is taken by the processor.
If DBusEP is set when IEXI is cleared, a Bus Error
exception on data access is taken by the processor, and
DBusEP is cleared.
In Debug Mode, a Bus Error exception applies to a
Debug Mode Bus Error exception.
If not implemented, this bit is read-only (R) and reads as
zero.

R/W1 0 Required if
imprecise bus

error can occur
on data access;

otherwise
optional.

IEXI 20 An Imprecise Error eXception Inhibit (IEXI) controls
exceptions taken due to imprecise error indications. Set
when the processor takes a debug exception or an excep-
tion in Debug Mode occurs. Cleared by execution of the
DERET instruction. Otherwise modifiable by Debug
Mode software.
When IEXI is set, then the imprecise error exceptions
from bus errors on instruction fetches or data accesses,
cache errors, or machine checks are inhibited and
deferred until the bit is cleared.
If not implemented, this bit is read-only (R) and reads as
zero.

R/W 0 Required if any
imprecise error

covered by
MCheckP,
CacheEP,
IBusEP or

DBusEP, can
occur; otherwise

optional.

DDBSImpr 19 Indicates that a Debug Data Break Store Imprecise
exception due to a store was the cause of the debug
exception, or that an imprecise data hardware break due
to a store was indicated after another debug exception
occurred. Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
Debug Data

Break on Store
Imprecise excep-
tion can occur;

otherwise
optional.

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 No match of an imprecise data hard-
ware breakpoint on store

1 Match of imprecise data hardware
breakpoint on store

 EJTAG Processor Core Extensions

64 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

DDBLImpr 18 Indicates that a Debug Data Break Load Imprecise
exception due to a load was the cause of the debug
exception, or that an imprecise data hardware break due
to a load was indicated after another debug exception
occurred. Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
Debug Data

Break on Load
Imprecise excep-
tion can occur;

otherwise
optional.

EJTAGver 17:15 Provides the EJTAG version. Note that each new version
number is used to indicate the addition of a significant
new modification or addition to the architecture. For
example, Version 3.1 (value of 3) indicates the EJTAG
upgrade that includes PC sampling. Similarly, Version
4.0 (value 4) includes the addition of Complex Break
and Trigger (CBT) feature. Version 5.0 additions include
the Fast Debug Channel and a relocatable debug excep-
tion vector. A processor or core that implements PC
sampling should indicate a version number of at least 3.
Intermediate revisions of the specification only include
typographical edits and address minor issues in the spec-
ification itself without adding any new features. It is rec-
ommended that an implementation use the latest version
of the specification, because features like PC sampling
and CBT are optional.

R Preset Required

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 No match of an imprecise data hard-
ware breakpoint on load

1 Match of imprecise data hardware
breakpoint on load

Encoding Meaning

0 Version 1 and 2.0

1 Version 2.5

2 Version 2.6

3 Version 3.1

4 Version 4.0

5 Version 5.0

6-7 Reserved

2.7 EJTAG Coprocessor 0 Registers

MIPS® EJTAG Specification, Revision 6.10 65

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

DExcCode 14:10 Indicates the cause of the latest exception in Debug
Mode.
The field is encoded as the ExcCode field in the Cause
register for those exceptions that can occur in Debug
Mode (the encoding is shown in MIPS32 and MIPS64
specifications), with addition of code 30 with the mne-
monic CacheErr for cache errors and the use of code 9
with mnemonic Bp for the SDBBP instruction.
This value is undefined after a debug exception.

R Undefined Required

NoSSt 9 Indicates whether the single-step feature controllable by
the SSt bit is available in this implementation:

A minimum number of hardware instruction breakpoints
must be available if no single-step feature is imple-
mented in hardware. Refer to Section 5.8.1 on page 152
for more information.

R Preset Required

SSt 8 Controls whether single-step feature is enabled:

If not implemented due to no single-step feature (NoSSt
is 1), this bit is read-only (R) and reads as zero.
If implemented, then in a processor with MIPS MT, this
bit is instantiated on a per-TC basis.

R/W 0 Required if sin-
gle-step features

are available;
otherwise not
implemented.

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 Single-step feature available

1 No single-step feature available

Encoding Meaning

0 No enable of single-step feature

1 Single-step feature enabled

 EJTAG Processor Core Extensions

66 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

OffLine 7 In MIPS MT processors, this bit is instantiated on a
per-TC basis and allows a hardware thread context (TC)
to be taken off-line for debug.

In non-MT processors, the OffLine bit, if implemented,
inhibits the fetch and issue of instructions by the proces-
sor as a whole, unless it is in Debug mode. This allows
isolation of processors in a multi-processor or multi-core
system.
Following a DERET with the OffLine bit set, a MIPS
MT processor can be taken out of the off-line state by a
MTTR instruction targeting the off-line TC’s Debug reg-
ister, by a DINT Debug exception handler, or a hardware
reset.
Following a DERET with the OffLine bit set, a non-MT
processor can only be taken out of the off-line state by a
DINT Debug exception handler clearing the OffLine bit,
or a hardware reset.
If not implemented, this bit is read-only (R) and reads as
zero.

R/W 0 Required for pro-
cessors imple-

menting EJTAG
and MIPS MT
Module. Other-
wise optional.

DIBImpr 6 Indicates that a Debug Instruction Break Imprecise
exception occurred. Cleared on exception in Debug
Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
Debug Instruc-

tion Break Impre-
cise exception

can occur; other-
wise optional

DINT 5 Indicates that a Debug Interrupt exception occurred.
Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
Debug Interrupt
exception can

occur; otherwise
not implemented.

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 TC may fetch and issue according to
the rules of MIPS MT

1 TC may only fetch and execute in
Debug mode.

Encoding Meaning

0 No Debug Instruction Break Imprecise
exception

1 Debug Instruction Break Imprecise
exception

Encoding Meaning

0 No Debug Interrupt exception

1 Debug Interrupt exception

2.7 EJTAG Coprocessor 0 Registers

MIPS® EJTAG Specification, Revision 6.10 67

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

DIB 4 Indicates that a Debug Instruction Break exception
occurred. Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
Debug Instruc-

tion Break excep-
tion can occur;
otherwise not
implemented.

DDBS 3 Indicates that a Debug Data Break Store exception
occurred on a store due to a precise data hardware break.
Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
Debug Data
Break Store

exception can
occur; otherwise
not implemented.

DDBL 2 Indicates that a Debug Data Break Load exception
occurred on a load due to a precise data hardware break.
Cleared on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
Debug Data
Break Load

exception can
occur; otherwise
not implemented.

DBp 1 Indicates that a Debug Breakpoint exception occurred.
Cleared on exception in Debug Mode.

R Undefined Required

DSS 0 Indicates that a Debug Single Step exception occurred.
Cleared on exception in Debug Mode.

This bit is read-only (R) and reads as zero if not imple-
mented.
On a processor implementing the MIPS MT, this bit is
implemented per-VPE.

R Undefined Required if
Debug

Single Step
exception can

occur; otherwise
not implemented.

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 No Debug Instruction Break exception

1 Debug Instruction Break exception

Encoding Meaning

0 No Debug Data Break Store Exception

1 Debug Data Break Store Exception

Encoding Meaning

0 No Debug Data Break Load Exception

1 Debug Data Break Load Exception

Encoding Meaning

0 No Debug Breakpoint exception

1 Debug Breakpoint exception

Encoding Meaning

0 No debug single-step exception

1 Debug single-step exception

 EJTAG Processor Core Extensions

68 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.7.2 Debug2 Register (CP0 Register 23, Select 6)

Compliance Level: Required for EJTAG debug support for EJTAG specification 4.00 and higher.

The Debug2 register is a read/write register that is used to indicate the cause of debug exceptions due to complex
breakpoints if implemented. The size of this register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

Figure 2.8 shows the format of the Debug2 register; Table 2.15 describes the Debug2 register fields.

Figure 2.8 Debug2 Register Format

31 4 3 2 1 0

32-bit Processor 0 Prm DQ Tup PaCo

63 4 3 2 1 0

64-bit Processor 0 Prm DQ Tup PaCo

Table 2.15 Debug2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Prm 3 This bit indicates that the break exception happened due
to a primed complex break match. Cleared on exception
in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
primed break
is supported
CBTCPP=1

DQ 2 This bit indicates that the break exception happened due
to a data qualified complex break match. Cleared on
exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
data qualified
break is sup-

ported
CBTCDQP=1

Tup 1 This bit indicates that the break exception happened due
to a tuple complex break match. Cleared on exception in
Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
tuple break is

supported
CBTCTP=1

Encoding Meaning

0 No Debug Primed Break exception

1 Debug Primed Break exception

Encoding Meaning

0 No Debug Data Qualified Break
exception

1 Debug Data Qualified Break exception

Encoding Meaning

0 No Debug Tuple Break exception

1 Debug Tuple Break exception

2.7 EJTAG Coprocessor 0 Registers

MIPS® EJTAG Specification, Revision 6.10 69

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.7.3 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

Compliance Level: Required for EJTAG debug support.

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after the exception has been serviced. The size of this register is 32 bits for 32-bit processors and
64 bits for 64-bit processors, even with only 32-bit virtual addressing enabled. All bits of the DEPC register are sig-
nificant and writable. A DMFC0 from the DEPC register returns the full 64-bit DEPC on 64-bit processors.

Hardware updates this register on debug exceptions and exceptions in Debug Mode.

For precise debug exceptions and precise exceptions in Debug Mode, the DEPC register contains either:

• the virtual address of the instruction that was the direct cause of the exception, or

• the virtual address of the immediately preceding branch or jump instruction, when the exception-causing instruc-
tion is in a branch delay slot, and the Debug Branch Delay (BDB) bit in the Debug register is set.

For imprecise debug exceptions and imprecise exceptions in Debug Mode, the DEPC register contains the address at
which execution is resumed when returning to Non-Debug Mode.

On debug exceptions and exceptions in debug mode, bit 0 of DEPC is set by hardware to indicate the ISA mode to be
used when execution restarts. Processors without MIPS16 set bit 0 to zero.

Figure 2.9 shows the format of the DEPC register; Table 2.16 describes the DEPC register field.

PaCo 0 This bit indicates that the break exception happened
when a pass counter in the complex break unit reached a
zero count (this overrides other settings on the break-
point, such as data qualifier or prime condition). Cleared
on exception in Debug Mode.

If not implemented, this bit reads as zero.

R Undefined Required if
pass counter
is supported
CBTCPCP=1

0 MSB:4 Must be written as zeros return zeros on reads. 0 0 Reserved

Table 2.15 Debug2 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No Debug Instruction, Data, or Tuple
Break on pass counter exception

1 Debug Instruction, Data, or Tuple
Break on pass counter exception

 EJTAG Processor Core Extensions

70 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 2.9 DEPC Register Format

2.7.4 Debug Exception Save Register (CP0 Register 31, Select 0)

Compliance Level: Required for EJTAG debug support.

The Debug Exception Save (DESAVE) register is a read/write register that functions as a simple scratchpad register.
The size of this register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

The debug exception handler uses this to save one of the GPRs, which is then used to save the rest of the context to a
pre-determined memory area, for example, in the dmseg segment. This register allows the safe debugging of excep-
tion handlers and other types of code where the existence of a valid stack for context saving cannot be assumed.

Figure 2.10 shows the format of the DESAVE register; Table 2.17 describes the DESAVE register field.

Figure 2.10 DESAVE Register Format

2.8 EJTAG Instructions

The SDBBP and DERET instructions are added to the processor’s instruction set as part of the required EJTAG fea-
tures. These instructions are described on the next two pages.

31 1 0

32-bit Processor DEPC IM

63 1 0

64-bit Processor DEPC IM

Table 2.16 DEPC Register Field Description

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

DEPC MSB:1 Debug Exception Program Counter R/W Undefined Required

IM 0 Debug Exception ISA mode R/W Undefined Required

31 0

32-bit Processor DESAVE

63 0

64-bit Processor DESAVE

Table 2.17 DESAVE Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

DESAVE MSB:0 Debug Exception Save contents R/W Undefined Required

2.8 EJTAG Instructions

MIPS® EJTAG Specification, Revision 6.10 71

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Software Debug Breakpoint SDBBP

72 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Format: SDBBP code EJTAG

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the DebugDExcCode field to the value 0x9 (Bp). The code field can be used for passing information to the debug excep-
tion handler, and is retrieved by the debug exception handler only by loading the contents of the memory word con-
taining the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

A Reserved Instruction Exception is signaled if EJTAG is not implemented.

Operation:

If DebugDM = 0 then
SignalDebugBreakpointException() /* See Section 2.3.4 on page 47 */

else
SignalDebugModeBreakpointException() /* See Section 2.4.3 on page 55 */

endif

Exceptions:

Debug Breakpoint exception
Debug Mode Breakpoint exception

31 26 25 6 5 0

SPECIAL2
011100

code
SDBBP
111111

6 20 6

15 11 10 5 4 0

RR
11101

code
SDBBP
00001

MIPS16e
Format

5 6 5

Software Debug Breakpoint SDBBP

MIPS® EJTAG Specification, Revision 6.10 73

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

SDBBP

74 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Format: SDBBP code EJTAG + microMIPS

See MIPS version on the previous page for the description.

31 26 25 16 15 6 5 0

POOL32A
000000

code
SDBBP

1101101101
POOL32Axf

111100

6 10 10 6

15 10 9 4 3 0

POOL16C
010001

SDBBP16
101100

code

6 6 4

Debug Exception Return DERET

MIPS® EJTAG Specification, Revision 6.10 75

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Format: DERET EJTAG+ MIPS

Purpose: Debug Exception Return

To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e., it has
no delay slot).

Restrictions:

A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTC0 or a DMTC0 instruction, a
CP0 hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode, the operation of the processor is UNDE-
FINED otherwise.

The operation of the processor is UNDEFINED if a DERET is executed in the delay slot of a branch or jump instruc-
tion.

Operation:

if DebugDM = 1 then
DebugDM ← 0
DebugIEXI ← 0
if (IsMIPS16Implemented()|Config3ISA>1) then

PC ← DEPCPCWIDTH-1..1 || 0
ISAMode ← DEPC0

else
PC ← DEPC

endif
else

UNDEFINED
endif
ClearHazards()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

31 26 25 24 6 5 0

COP0
010000

CO
1

0
000 0000 0000 0000 0000

DERET
011111

6 1 19 6

Debug Exception Return DERET

76 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

DERET

MIPS® EJTAG Specification, Revision 6.10 77

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Format: DERET EJTAG+ microMIPS

See MIPS version on the previous page for the description.

31 26 25 24 16 15 6 5 0

POOL32A
000000

0000000000
DERET

1110001101
POOL32Axf

111100

6 10 10 6

DERET

78 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 3

MIPS® EJTAG Specification, Revision 6.10 79

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Debug Control Register

Compliance Level: Optional, but requires EJTAG processor core extensions. If this register is not implemented then
other features that depend on bits in this register behave as if these bits are present and have the reset value.

The Debug Control Register (DCR) controls and provides information about debug issues. The width of the register is
32 bits for 32-bit processors, and 64 bits for 64-bit processors. The DCR is located in the drseg segment at offset
0x0000.

The Debug Control Register (DCR) provides the following key features:

• Interrupt and NMI control when in Non-Debug Mode

• NMI pending indication

• Availability indicator of instruction and data hardware breakpoints

• Availability and control of of the PC sample feature and its sample period

• Availability of the Fast Debug Channel (FDC) feature

For EJTAG features, there are no differences between a reset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug Mode. Therefore all references to reset in this chapter refer to both
reset (hard reset) and soft reset.

The DataBrk and InstBrk bits within the DCR indicate the types of hardware breakpoints implemented. Debug soft-
ware is expected to read hardware breakpoint registers for additional information on the number of implemented
breakpoints. Refer to Chapter 5, “Hardware Breakpoints” on page 117 for descriptions of the hardware breakpoint
registers.

Hardware and software interrupts can be disabled in Non-Debug Mode using the DCR’s IntE bit. This bit is a global
interrupt enable used along with several other interrupt enables that enable specific mechanisms. The NMI interrupt
can be disabled in Non-Debug Mode using the DCR’s NMIE bit; a pending NMI is indicated through the NMIpend
bit. Pending interrupts are indicated in the Cause register, and pending NMIs are indicated in the DCR register NMI-
pend bit, even when disabled. Hardware and software interrupts and NMIs are always disabled in Debug Mode. See
Section 2.5 on page 56 for more information.

The optional SRstE bit allows masking of soft resets. A soft reset can be applied to the system based on different
events, referred to as sources. It is implementation-dependent which soft reset sources in a system can be masked by
the SRstE bit. Soft reset masking can be applied to a soft reset source only if that source can be efficiently masked in
the system. The result is no reset at all for any part of the system, if masked. If only a partial soft reset is possible, then
that soft reset source is not to be masked, because a “half” soft reset might cause the system to fail or hang without
warning. There is no automatic indication of whether the SRstE bit is effective, so the user must consult system docu-
mentation.

 Debug Control Register

80 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The ProbEn bit reflects the state of the ProbEn bit from the EJTAG Control register (ECR). Through this bit, the
probe can indicate to the debug software running on the CPU if it expects to service dmseg segment accesses. See
Section 4.5.5 on page 102 for more information.

Figure 3.1 shows the format of the DCR register; Table 3.1 describes the DCR register fields. The reset values in
Table 3.1 take effect on both hard resets and soft resets.

Figure 3.1 DCR Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

32-bit
Processor

EJTAG
Brk
Over-
ride

0 ENM
PCnoG

ID
PCnoT

CID
PCIM

PCno
ASID

DASQ DASe DAS 0
FDC
Impl

Data
Brk

Inst
Brk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVM DVM 0
RD
Vec

CBT PCS PCR PCSe IntE NMIE
NMI
pend

SRstE
Prob
En

63 32

64-bit
Processor

0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

EJTAG
Brk
Over-
ride

0 ENM
PCnoG

ID
PCnoT

CID
PCIM

PCno
ASID

DASQ DASe DAS 0
FDC
Impl

Data
Brk

Inst
Brk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVM DVM 0
RD
Vec

CBT PCS PCR PCSe IntE NMIE
NMI
pend

SRstE
Prob
En

MIPS® EJTAG Specification, Revision 6.10 81

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 3.1 DCR Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

EJTAG_Br
k_Override

31 Override EjtagBrk and DINT disable. Please refer to
Secure Debug Chapter.

Re-enable EjtagBrk and DINT signal during boot.

Allows EjtagBrk to be asserted by a EJTAG probe (or
assertion of DINT signal) , resulting in a request for a
Debug Interrupt exception from the processor. This pro-
vides a means of recovering the cpu from crash, hang,
loop or low-power mode.
This feature can allow a Debug Executive to communi-
cate with the probe over the Fast Debug Channel (FDC)
and provides a host-based debugger the ability to query
the target processor via Debug Executive commands,
useful for determining cause of hang.

Software can write this bit and read back to determine if
the Secure Debug feature is implemented.

R/W

If not
imple-

mented,
must be
written

as zeros;
return

zeros on
reads.

0 Optional

ENM 29 Endianess in which the processor is running in kernel
and Debug Mode:

R Preset Required

PCnoGID 28 Controls whether PC Sampling includes or omits the
GuestID when the VZE module is implemented:

Read
required,

write
optional

Undefined Required
when

GuestCtl1Gue

stID is imple-

mented

PCnoTCID 27 Controls whether PC Sampling includes or omits the TC
identity field when the MT Module is implemented:

Read
required,

write
optional

Undefined Required
when MT
Module is

implemented

Encoding Meaning

0 Little endian

1 Big endian

Encoding Meaning

0 GuestID included in PCSAMPLE scan

1 GuestID omitted from PCSAMPLE
scan

Encoding Meaning

0 TC field included in PCSAMPLE scan

1 TC field omitted from PCSAMPLE
scan

 Debug Control Register

82 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

PCIM 26 Configures PC Sampling to capture all executed
addresses or only those that miss in the instruction
cache:

Read
required,

write
optional

Undefined Optional if
PC Sampling

is imple-
mented; oth-
erwise not

implemented

PCnoASID 25 Controls whether the PCSAMPLE scan chain includes
or omits the ASID field:

Read
required,

write
optional

Undefined Optional if
PC Sampling

is imple-
mented; oth-
erwise not

implemented

DASQ 24 Qualifies Data Address Sampling using a data break-
point:

R/W 0 Required if
Data Address
Sampling is
implemented

DASe 23 Enables Data Address Sampling: R/W 0 Required if
Data Address
Sampling is
implemented

DAS 22 Indicates if the Data Address Sampling feature is imple-
mented:

R Preset Required

FDCImpl 18 Indicates if the fast debug channel is implemented: R Preset Required

Table 3.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 All PC’s captured

1 Captures only PC’s that miss in
instruction cache

Encoding Meaning

0 ASID included in PCSAMPLE scan

1 ASID omitted from PCSAMPLE scan

Encoding Meaning

0 All data addresses are sampled

1 Sample matches of data breakpoint 0

Encoding Meaning

0 Data Address sampling disabled.

1 Data Address sampling enabled.

Encoding Meaning

0 No DA Sampling implemented

1 DA Sampling implemented

Encoding Meaning

0 No fast debug channel implemented

1 Fast debug channel implemented

MIPS® EJTAG Specification, Revision 6.10 83

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

DataBrk 17 Indicates if data hardware breakpoint is implemented: R Preset Required

InstBrk 16 Indicates if instruction hardware breakpoint is imple-
mented:

R Preset Required

IVM 15 Indicates if inverted data value match on data hardware
breakpoints is implemented:

R Preset Required

DVM 14 Indicates if a data value store on a data value breakpoint
match is implemented:

R Preset Required

RDVec 11 Enables relocation of the debug exception vector. The
value in the DebugVectorAddr register is used for
EJTAG exceptions when ProbTrap=0 and RDVec=1.

R/W 0 Optional

CBT 10 Indicates if complex breakpoint block is implemented: R Preset Required

Table 3.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No data hardware breakpoint imple-
mented

1 Data hardware breakpoint imple-
mented

Encoding Meaning

0 No instruction hardware breakpoint
implemented

1 Instruction hardware breakpoint
implemented

Encoding Meaning

0 No inverted data value match on data
hardware breakpoints implemented

1 Inverted data value match on data
hardware breakpoints implemented

Encoding Meaning

0 No data value store on a data value
breakpoint match implemented

1 Data value store on a data value break-
point match implemented

Encoding Meaning

0 No complex breakpoint block imple-
mented

1 Complex breakpoint block imple-
mented

 Debug Control Register

84 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

PCS 9 Indicates if the PC Sampling feature is implemented.: R Preset Required

PCR 8:6 PC Sampling rate. Values 0 to 7 map to values 25 to 212

cycles, respectively. That is, a PC sample is written out
every 32, 64, 128, 256, 512, 1024, 2048, or 4096 cycles
respectively. The external probe or software is allowed to
set this value to the desired sample rate.

Read
required,

Write
optional

Undefined Required if
PCS is 1

PCSe 5 If the PC sampling feature is implemented, then indi-
cates whether PC sampling is initiated or not. That is, a
value of 0 indicates that PC sampling is not enabled, and
a bit value of 1 indicates PC sampling is enabled and the
counters are operational.

R/W 0 Required if
PCS is 1

IntE 4 Hardware and software interrupt enable for Non-Debug
Mode, in conjunction with other disable mechanisms:

R/W 1 Required

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug
Mode:

R/W 1 Required

NMIpend 2 Indication for pending NMI: R 0 Required

SRstE 1 Controls soft reset enable:

Bit is read-only (R) and reads as zero if not imple-
mented.

R/W 1 Optional

Table 3.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No PC Sampling implemented

1 PC Sampling implemented

Encoding Meaning

0 Interrupt disabled

1 Interrupt enabled depending on other
enabling mechanisms

Encoding Meaning

0 NMI disabled

1 NMI enabled

Encoding Meaning

0 No NMI pending

1 NMI pending

Encoding Meaning

0 Soft reset masked for soft reset sources
dependent on implementation

1 Soft reset is fully enabled

MIPS® EJTAG Specification, Revision 6.10 85

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

ProbEn 0 Indicates value of the ProbEn value in the DCR register:

Bit is read-only (R) and reads as zero if not imple-
mented.

R Same value
as ProbEn

in ECR

Required if
EJTAG TAP
is present;

otherwise not
implemented

0 63:32
(64:bit),

30, 28:27,
21:19,
13:12

Must be written as zeros; return zeros on reads. 0 0 Reserved

Table 3.1 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No access should occur to the dmseg
segment

1 Probe services accesses to the dmseg
segment

 Debug Control Register

86 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 4

MIPS® EJTAG Specification, Revision 6.10 87

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

This chapter describes the EJTAG features provided when the optional EJTAG Test Access Port (TAP) is included in
the implementation. The TAP is an optional part of EJTAG, but if it is implemented, the DCR must also be imple-
mented, and all the features in the TAP described below are required, except for those features explicitly described as
optional.

This chapter contains the following sections:

• Section 4.1 “TAP Overview”

• Section 4.2 “TAP Signals”

• Section 4.3 “TAP Controller”

• Section 4.4 “Instruction Register and Special Instructions”

• Section 4.5 “TAP Data Registers”

• Section 4.6 “Examples of Use”

4.1 TAP Overview

The overall features of the EJTAG Test Access Port (TAP) are:

• Identification of device and EJTAG debug features accessed through the TAP

• dmseg segment memory “emulation” (mapping dmseg segment processor accesses into probe transactions)

• Reset handling allows debug exception immediately after reset

• Debug interrupt request from probe

• Low-power mode indications

• Implementation-dependent processor and peripheral reset

If the TAP is not implemented, other features depending on register values and indications from the TAP should
behave as if these register values and indications have the power-up and reset values.

Figure 4.1 shows an overview of the elements in the TAP.

 EJTAG Test Access Port

88 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.1 Test Access Port (TAP) Overview

The TAP consists of the following signals: Test Clock (TCK), Test Mode (TMS), Test Data In (TDI), Test Data Out
(TDO), and the optional Test Reset (TRST*). TCK and TMS control the state of the TAP controller, which controls
access to the Instruction or selected data register(s). The Instruction register controls selection of data registers.
Access to the Instruction and data register(s) occurs serially through TDI and TDO. The optional TRST* is an asyn-
chronous reset signal to the TAP.

Access through the TAP does not interfere with the operation of the processor, unless features specifically described
to do so are used.

The description of the EJTAG TAP in this chapter is intended only to cover EJTAG issues related to use of a TAP.
Consult the IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture for detailed
information about the use of a TAP for other purposes, for example, integration with JTAG boundary scan.

For EJTAG features, there are no difference between a reset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug Mode. References to reset in the following therefore refers to both
reset (hard reset) and soft reset.

4.2 TAP Signals

The signals TCK, TMS, TDI, TDO, and the optional TRST* make up the interface for the TAP. These signals are
described in detail below. Refer to Chapter 10, “On-Chip Interfaces” on page 187 for the connection of the signals to
chip pins.

4.2.1 Test Clock Input (TCK)

TCK is the clock that controls the updating of the TAP controller and the shifting of data through the Instruction or
selected data register(s).

TCK is independent of the processor clock, with respect to both frequency and phase.

4.2.2 Test Mode Select Input (TMS)

TMS is the control signal for the TAP controller. This signal is sampled on the rising edge of TCK.

Instruction Register

Selected Data Register(s)

TDI

TDO

E
JT

A
G

 T
A

P
in

te
rf

ac
e

TCK

TMS

TRST* (optional)

TAP controller

4.3 TAP Controller

MIPS® EJTAG Specification, Revision 6.10 89

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.2.3 Test Data Input (TDI)

TDI is the test data input to the Instruction or selected data register(s). This signal is sampled on the rising edge of
TCK for some TAP controller states.

4.2.4 Test Data Output (TDO)

TDO is the test data output from the Instruction or data register(s). This signal changes on the falling edge of TCK, or
becomes 3-stated asynchronously when TRST* is driven low.

The off-chip TDO is only driven when data is shifted out; otherwise, the off-chip TDO is 3-stated.

The 3-state notation indicates that the TDO off-chip signal is undriven.

4.2.5 Test Reset Input (TRST*)

TRST* is the optional test reset input that asynchronously resets the TAP, with the following immediate effects:

• The TAP controller is put into the Test-Logic-Reset state

• The Instruction register is loaded with the IDCODE instruction

• Any EJTAGBOOT indication is cleared

• The TDO output is 3-stated

TRST* does not reset another part of the TAP or processor. Thus this type of reset does not affect the processor, and
the processor reset is not allowed to have any effect on the above parts of the TAP.

Even though TRST* is an optional signal, the TRST* signal is referred to in the following discussions. If TRST* is
not implemented, then a power-up reset of the TAP must provide the reset functionality similar to a low value on
TRST* during power-up.

4.3 TAP Controller

The TAP controller is a state machine whose active state controls TAP reset and access to Instruction and data regis-
ters.

The state transitions in the TAP controller occur on the rising edge of TCK or when TRST* goes low. The TMS sig-
nal determines the transition at the rising edge of TCK. Figure 4.2 shows the state diagram for the TAP controller.

 EJTAG Test Access Port

90 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.2 TAP Controller State Diagram

The behavior of the functional states shown in the figure is described below. The non-functional states are intermedi-
ate states in which no registers in the TAP change, and are not described here.

Events in the following subsections are described with relation to the rising and falling edge of TCK. The described
events take place when the TAP controller is in the corresponding state when the clock changes.

The TAP controller is forced into the Test-Logic-Reset state at power-up either by a low value on TRST* or by a
power-up reset circuit.

4.3.1 Test-Logic-Reset State

When the Test-Logic-Reset state is entered, the Instruction register is loaded with the IDCODE instruction, and any
EJTAGBOOT indication is cleared. This state ensures that the TAP does not interfere with the normal operation of the
CPU core.

The TAP controller always reaches this state after five rising edges on TCK when TMS is set to 1.

A low value on TRST* immediately places the TAP controller in this state asynchronous to TCK.

4.3.2 Capture-IR State

In the Capture-IR state, the two LSBs of the Instruction register are loaded with the value 012, and the upper MSBs
are loaded with implementation-dependent values. Both values are loaded on the rising edge of TCK.

4.3.3 Shift-IR State

In the Shift-IR state, the LSB of the Instruction register is output on TDO on the falling edge of TCK. The Instruction
register is shifted one position from MSB to LSB on the rising edge of TCK, with the MSB shifted in from TDI. The
value in the Instruction register does not take effect until the Update-IR state. Figure 4.3 shows the shifting direction
for the Instruction register.

Test-Logic-Reset
TMS=1

Run-Test / Idle

0

Select-DR-Scan10

Capture-DR

0

0

Shift-DR

1

Exit1-DR

0

Pause-DR

1

Exit2-DR

1

Update-DR

0

0

01

1

0

1

Select-IR-Scan

Capture-IR

0

0

Shift-IR

1

Exit1-IR

0

Pause-IR

1

Exit2-IR

1

Update-IR

0

0

01

1

0

1

1
1

4.4 Instruction Register and Special Instructions

MIPS® EJTAG Specification, Revision 6.10 91

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.3 TDI to TDO Path when in Shift-IR State

The length of the Instruction register is specified in Section 4.4 on page 91.

The value loaded in the Capture-IR state is used as the initial value for the Instruction register when shifting starts;
thus it is not possible to read out the previous value of the Instruction register.

4.3.4 Update-IR State

In the Update-IR state, the value in the Instruction register takes effect on the rising or falling edge of TCK.

4.3.5 Capture-DR State

In the Capture-DR state, the value of the selected data register(s) is captured on the rising edge of TCK for shifting
out in the Shift-DR state. The Capture-DR state reads the data, in order to output this read value in the Shift-DR state.

The Instruction register controls the selection of the following data register(s): Bypass, Device ID, Implementation,
EJTAG Control, Address, and Data register(s).

4.3.6 Shift-DR State

In the Shift-DR state, the LSB of the selected data register(s) is output on TDO on the falling edge of TCK. The
selected data register(s) is shifted one position from MSB to LSB on the rising edge of TCK, with TDI shifted in at
the MSB. The value(s) shifted into the register(s) does not take effect until the Update-DR state. Figure 4.4 shows the
shifting direction for the selected data register.

Figure 4.4 TDI to TDO Path for Selected Data Register(s) when in Shift-DR State

The length of the shift path depends on the selected data register(s).

4.3.7 Update-DR State

In the Update-DR state, the update of the selected data register(s) with the value from the Shift-DR state occurs on the
falling or rising edge of TCK. This update writes the selected register(s).

4.4 Instruction Register and Special Instructions

The Instruction register controls selection of accessed data register(s), and controls the setting and clearing of the
EJTAGBOOT indication.

TDI
Instruction Register

MSB 0 / LSB

TDO

MSB 0 / LSB

TDI TDO
Selected Data Register(s)

 EJTAG Test Access Port

92 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The Instruction register is five or more bits wide when used with EJTAG. Table 4.1 shows the allocation of the TAP
instruction.

The instructions IDCODE, IMPCODE, ADDRESS, DATA, CONTROL, and BYPASS select a single data register, as
indicated in the table. The unused instructions reserved for EJTAG select the Bypass register. The ALL, EJTAG-
BOOT, NORMALBOOT, and FASTDATA instructions are described in the following subsections. The instructions
that are related to trace registers in the trace control block (TCB) are described in the Trace Control Block Specifica-
tion document.

Any EJTAGBOOT indication is cleared at power-up either by a low value on the TRST* or by a power-up reset cir-
cuit, and the Instruction register is loaded with the IDCODE instruction.

4.4.1 ALL Instruction

The Address, Data and EJTAG Control data registers are selected at once with the ALL instruction, as shown in
Figure 4.5.

Table 4.1 TAP Instruction Overview

Code Instruction Function

All 0’s (Free for other use) Free for other use, such as JTAG boundary scan

0x01 IDCODE Selects Device Identification (ID) register

0x02 (Free for other use) Free for other use, such as JTAG boundary scan

0x03 IMPCODE Selects Implementation register

0x04 - 0x07 (Free for other use) Free for other use, such as JTAG boundary scan

0x08 ADDRESS Selects Address register

0x09 DATA Selects Data register

0x0A CONTROL Selects EJTAG Control register

0x0B ALL Selects the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Makes the processor fetch code from the debug exception vector after reset

0x0D NORMALBOOT Makes the processor execute the reset handler after reset

0x0E FASTDATA Selects the Data and Fastdata registers

0x0F (EJTAG reserved) Reserved for future EJTAG use

0x10 TCBCONTROLA Selects the control register TCBTraceControl in the Trace Control Block

0x11 TCBCONTROLB Selects another trace control block register

0x12 TCBDATA Used to access the registers specified by the TCBCONTROLBREG field and

transfers data between the TAP and the TCB control register

0x13 TCBCONTROLC Selects another trace control block register

0x14 PCSAMPLE Selects the PCsample register

0x15 TCBCONTROLD Selects another trace control block register

0x16 TCBCONTROLE Selects another trace control block register

0x17 FDC Selects Fast Debug Channel.

0x18 - 0x1B (EJTAG reserved) Reserved for future EJTAG use

0x1C - All 1’s (Free for other use) Free for other use, such as JTAG boundary scan

All 1’s BYPASS Select Bypass register

4.4 Instruction Register and Special Instructions

MIPS® EJTAG Specification, Revision 6.10 93

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.5 TDI to TDO Path when in Shift-DR State and ALL Instruction is Selected

4.4.2 EJTAGBOOT and NORMALBOOT Instructions

The EJTAGBOOT and NORMALBOOT instructions control whether instructions are fetched from the debug excep-
tion vector as a result of a reset. If EJTAGBOOT is indicated then instead of fetching instructions from the reset
exception vector, instructions are fetched from the debug exception vector.

The location of the debug exception vector is controlled by the ProbTrap bit in the EJTAG Control register (see Table
4.9 on page 103). If the ProbTrap bit is set, the debug exception handler is in this case fetched from the probe through
the dmseg segment. It is possible to take the debug exception and execute the debug handler from the probe even if no
instructions can be fetched from the reset handler. This condition guarantees that the system will not hang at reset
when the EJTAGBOOT feature is used, even if the normal memory system does not work properly.

An internal EJTAGBOOT indication holds information on the action to take at a processor reset, and this is set when
the EJTAGBOOT instruction takes effect in the Update-IR state. The indication is cleared when the NORMALBOOT
instruction takes effect in the Update-IR state, or when the Test-Logic-Reset state is entered, for example, when
TRST* is asserted low. The requirement of clearing the internal EJTAGBOOT indication when the Test-Logic-Reset
state is entered, and not on a TCK clock when in the state, ensures that the indication can be cleared with five clocks
on TCK when TMS is high.

The internal EJTAGBOOT indication is cleared at power-up either by a low value on the TRST* or by a power-up
reset circuit. Thus the processor executes the reset handler after power-up unless the EJTAGBOOT instruction is
given through the TAP.

The Bypass register is selected when the EJTAGBOOT or NORMALBOOT instruction is given.

The EjtagBrk, ProbEn, and ProbTrap bits in the EJTAG Control register follow the internal EJTAGBOOT indication.
They are all set at processor reset if a Debug Interrupt exception is to be generated, with execution of the debug han-
dler from the probe.

4.4.3 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 4.6. The use of the FASTDATA instruction
is described in more detail in Section 4.5.6 “Fastdata Register (TAP Instruction FASTDATA)”.

Figure 4.6 TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

4.4.4 FDC Instruction

This selects the Fast Debug Channel. The use of the FDC is described in more detail in Chapter 8.

TDI
Address register EJTAG Control registerData register

TDO

MSB 0 / LSBMSB 0 / LSB MSB 0 / LSB

TDI Fastdata registerData register TDO

MSB 0 / LSB 0

 EJTAG Test Access Port

94 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers

Table 4.2 summarizes the data registers in the TAP. Complete descriptions of these registers are located in the follow-
ing subsections.

Table 4.2 EJTAG TAP Data Registers

Instruction Used to
Access Register

Register
Name Function Reference

Compliance
Level

IDCODE Device ID Identifies device and accessed proces-
sor in the device.

See Section 4.5.1 on
page 95

Required

IMPCODE Implementation Identifies main debug features imple-
mented and accessible through the
TAP.

See Section 4.5.2 on
page 96

Required

DATA, ALL, or FAST-
DATA

Data Data register for processor access. See Section 4.5.3 on
page 98

Required

ADDRESS or ALL Address Address register for processor access. See Section 4.5.4 on
page 101

Required

CONTROL or ALL EJTAG Control Control register for most EJTAG fea-
tures used through the TAP.

See Section 4.5.5 on
page 102

Required

BYPASS,
EJTAGBOOT,
NORMALBOOT, or
unused EJTAG instruc-
tions

Bypass Provides a one bit shift path through
the TAP.

See Section 4.5.8 on
page 110

Required

FASTDATA Fastdata Provides a one bit register whose value
is tagged to the front of the Data regis-
ter to capture the value of the processor
access pending (PrAcc) bit in the
EJTAG Control register

See Section 4.4.3 on
page 93

Required with
EJTAG version

02.60 and
higher

TCBCONTROLA TCBControlA Implemented and used in the Trace
Control Block (TCB). Used by external
probe (debugger) software to control
tracing output from the core

See the TCB docu-
mentation

Required with
EJTAG version

02.60 and
higher if trace
logic is imple-

mented

TCBCONTROLB TCBControlB Implemented and used in the Trace
Control Block (TCB). Controls tracing
configuration options

See the TCB docu-
mentation

Required with
EJTAG version

02.60 and
higher if trace
logic is imple-

mented

TCBDATA TCBData Implemented and used in the TCB. See the TCB docu-
mentation

Required with
EJTAG version

02.60 and
higher if trace
logic is imple-

mented

4.5 TAP Data Registers

MIPS® EJTAG Specification, Revision 6.10 95

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

A read of a data register corresponds only to the Capture-DR state of the TAP controller, and a write of the data regis-
ter corresponds to the Update-DR state only.

The initial states of these registers are specified with either a reset state or a power-up state. If a reset state is speci-
fied, then the indicated value is applied to the register when a processor reset is applied. If a power-up state is speci-
fied, then the indicated value is applied at power-up reset.

TCK does not have to be running in order for a processor reset to reset the registers.

4.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)

Compliance Level: Required with EJTAG TAP feature.

The Device ID register is a 32-bit read-only register that identifies the specific device implementing EJTAG. This reg-
ister is also defined in IEEE 1149.1. The Device ID register holds a unique number among different devices with
EJTAG compliant processors implemented. It is recommended that the register is also unique amongst different
EJTAG compliant processors in the same device.

Figure 4.7 shows the format of the Device ID register; Table 4.3 describes the Device ID register fields.

Figure 4.7 Device ID Register Format

TCBCONTROLC TCBControlC Implemented and used in the Trace
Control Block (TCB). Controls tracing
configuration options

See the TCB docu-
mentation

Required with
EJTAG version
3.10 and higher
if trace logic is
implemented

PCSAMPLE PCsample Implemented and used by the PC Sam-
pling logic

See Chapter 7, “PC
Sampling” on
page 173.

Optional fea-
ture (defined
EJTAG 3.10)

TCBCONTROLD TCBControlD Implemented and used in the Trace
Control Block (TCB). Controls tracing
configuration options

See the TCB docu-
mentation

Required with
EJTAG version
4.10 and higher
if trace logic is
implemented

TCBCONTROLE TCBControlE Implemented and used in the Trace
Control Block (TCB). Controls tracing
configuration options

See the TCB docu-
mentation

Required with
EJTAG version
4.10 and higher
if trace logic is
implemented

31 28 27 12 11 1 0

32/64-bit Pro-
cessor

Version PartNumber ManufID 1

Table 4.2 EJTAG TAP Data Registers (Continued)

Instruction Used to
Access Register

Register
Name Function Reference

Compliance
Level

 EJTAG Test Access Port

96 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5.2 Implementation Register (TAP Instruction IMPCODE)

Compliance Level: Required with EJTAG TAP feature.

The Implementation register is a 32-bit read-only register that identifies features implemented in this EJTAG compli-
ant processor, mainly those accessible from the TAP.

Figure 4.8 shows the format of the Implementation register; Table 4.4 describes the Implementation register fields.

Table 4.3 Device ID Register Field Descriptions

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

Version 31:28 Identifies the version of a specific device.
The value in this field must be unique for particular values
of Manufacturer ID and Part Number values. The value
identifies a specific revision of the design (such as a
sequence of bug fixes within the same major design). The
value is assigned by the design house.

R Preset Required

Part-
Number

27:12 Identifies the part number of a specific device.
The value in this field must be unique for a particular
Manufacturer ID value.
Design houses which wish to use the MIPS Technologies,
Inc. Manufacturer ID may request assignment of a group
of Part Numbers which are then managed by that design
house. Assignment of Part Numbers within another Manu-
facturer ID value is done by the owner of that Manufac-
turer ID.

R Preset Required

ManufID 11:1 Identifies the manufacturer identity code of a specific
device, which identifies the design house implementing
the processor.
According to IEEE 1149.1-1990 section 11.2, the manu-
facturer identity code is a compressed form of a JEDEC
standard manufacturer’s identification code in the JEDEC
Publications 106, which can be found at:
http://www.jedec.org/
ManufID[6:0] are derived from the last byte of the JEDEC
code with the parity bit discarded. ManufID[10:7] provide
a binary count of the number of bytes in the JEDEC code
that contain the continuation character (0x7F). When the
number of continuations characters exceeds 15, these four
bits contain the modulo-16 count of the number of contin-
uation characters.
If the design house does not have a JEDEC Standard Man-
ufacturer's Identification Code, which is encoded for use
in this field, the design house can request use of the MIPS
Technologies, Inc. assigned number, or use the number
assigned to the core provider. Use of the MIPS Technolo-
gies, Inc. number requires prior approval of the Director,
MIPS Architecture.
The MIPS Technologies, Inc. Standard Manufacturer's
Identification Code is 0x127.

R Preset Required

1 0 Ignored on write; returns one on read. R 1 Required

4.5 TAP Data Registers

MIPS® EJTAG Specification, Revision 6.10 97

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.8 Implementation Register Format

31 29 28 27 25 24 23 22 21 20 17 16 15 14 13 11 10 1 0

32/64-bit
Processor

EJTAGver
R4k/
R3k

0
DINT
sup

0
ASID
size

0
MIPS

16
0

No
DMA

Type TypeInfo
MIPS
32/64

Table 4.4 Implementation Register Field Descriptions

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

EJTAGver 31:29 Indicates the EJTAG version: R Preset Required

R4k/R3k 28 Indicates R4000 or R3000 privileged environment: R Preset Required

DINTsup 24 Indicates support for DINT signal from probe: R Preset Required

ASIDsize 22:21 Indicates size of the ASID field: R Preset Required

MIPS16e 16 Indicates MIPS16e™ ASE support in the processor: R Preset Required

Encoding Meaning

0 Version 1 and 2.0

1 Version 2.5

2 Version 2.6

3 Version 3.1

4 Version 4.0

5 Version 5.0

6-7 Reserved

Encoding Meaning

0 R4000 privileged environment

1 R3000 privileged environment

Encoding Meaning

0 DINT signal from the probe is not sup-
ported by this processor

1 Probe can use DINT signal to make
debug interrupt on this processor

Encoding Meaning

0 No ASID in implementation

1 6-bit ASID

2 8-bit ASID

3 Reserved

Encoding Meaning

0 No MIPS16e support

1 MIPS16e is supported

 EJTAG Test Access Port

98 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA)

Compliance Level: Required with EJTAG TAP feature.

NoDMA 14 Indicates no EJTAG DMA support: R 1 Required

Type 13:11 Indicates what type of entity is associated with this TAP
and whether the TypeInfo field exists.

R Preset Required

TypeInfo 10:1 Identifier information specific to the type of entity associ-
ated with this TAP. The attached entity is specified by the
Type field.

R Preset Required

MIPS32/64 0 Indicates 32-bit or 64-bit processor:

See the R4000/R3000 bit for indication of privileged envi-
ronment.

R Preset Required

0 27:25, 23,
20:17, 15

Ignored on writes; return zeros on reads. R 0 Required

Table 4.4 Implementation Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

Encoding Meaning

0 Reserved

1 No EJTAG DMA support

Encoding Meaning

0 Legacy value - probably attached to a
CPU. TypeInfo field not implemented.

1 This TAP is attached to a CPU and the
TypeInfo field reflects
EBaseCPUNUM.

2 This TAP is attached to a Trace-Master
and the TypeInfo field is not used.

Others Reserved

Attached
Entity Meaning

CPU Reflects EBaseCPUNUM of the asso-

ciated CPU

Others Reserved

Encoding Meaning

0 32-bit processor

1 64-bit processor

4.5 TAP Data Registers

MIPS® EJTAG Specification, Revision 6.10 99

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The read/write Data register is used for opcode and data transfers during processor accesses. The width of the Data
register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

The value read in the Data register is valid only if a processor access for a write is pending, in which case the data reg-
ister holds the store value. The value written to the Data register is only used if a processor access for a pending read
is finished afterwards, in which case the data value written is the value for the fetch or load. This behavior implies that
the Data register is not a memory location where a previously written value can be read afterwards.

Figure 4.9 shows the format of the Data register; Table 4.5 describes the Data register field.

Figure 4.9 Data Register Format

The contents of the Data register are not aligned but hold data as it is seen on a data bus for an external memory sys-
tem. Thus the bytes are positioned in the Data register based on access size, address, and endianess.

The bytes not accessed for a processor access write are undefined, and the bytes not accessed for a processor access
read can be written with any value by the probe shifting the value into the Data register.

Table 4.6 and Table 4.7 show the position of bytes in the Data register for all possible accesses. This positioning
depends on the Psz field from the EJTAG Control register, the two or three LSBs from the Address register, and the
endianess.

The endianness for Debug Mode, used in the following, is indicated through the ENM bit in the Debug Control Reg-
ister (DCR), see Chapter 3, “Debug Control Register” on page 79.

31 0

32-bit
Processor

Data

63 0

64-bit
Processor

Data

Table 4.5 Data Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Data MSB:0 Data used by processor access. R/W Undefined Required

 EJTAG Test Access Port

100 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 4.6 shows the byte positioning for a 32-bit processor (MIPS32/64 = 0), in which case the two LSBs of the
Address register are used. Byte 0 refers to bits 7:0, byte 1 refers to bits 15:8, byte 2 refers to bits 23:16, and byte 3
refers to bits 31:24, independent of endianess.

Table 4.6 Data Register Contents for 32-bit Processors

Psz
from
ECR Size Address[1:0]

Little Endian Big Endian

3 2 1 0 3 2 1 0

0 Byte 002

012

102

112

1 Halfword 002

102

2 Word 002

3 Triple 002

012

Reserved n.a. n.a.

4.5 TAP Data Registers

MIPS® EJTAG Specification, Revision 6.10 101

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 4.7 shows the byte positioning for a 64-bit processor (MIPS32/64 = 1), in which case the three LSBs of the
Address register are used. Byte 0 refers to bits 7:0, byte 1 refers to bits 15:8, and so on up to byte 7 which refers to
bits 63:56, independent of endianess.

4.5.4 Address Register (TAP Instruction ADDRESS or ALL)

Compliance Level: Required with EJTAG TAP feature.

Table 4.7 Data Register Contents for 64-bit Processors

Psz
from
ECR Size Address[2:0]

Little Endian Big Endian

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

0 Byte 0002

0012

0102

0112

1002

1012

1102

1112

1 Halfword 0002

0102

1002

1102

2 Word 0002

5-byte/Quinti 0012

6-byte/Sexti 0102

7-byte/Septi 0112

Word 1002

5-byte/Quinti 1012

6-byte/Sexti 1102

7-byte/Septi 1112

3 Triple 0002

0102

1002

1102

Doubleword 1112

Reserved n.a. n.a.

 EJTAG Test Access Port

102 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The read-only Address register provides the address for a processor access. The width of the register corresponds to
the size of the physical address in the processor implementation (from 32 to 64 bits). The specific length is deter-
mined by shifting through the Address register, because the length is not indicated elsewhere.

The value read in the register is valid if a processor access is pending; otherwise, the value is undefined.

The two or three LSBs of the register are used with the Psz field from the EJTAG Control register to indicate the size
and data position of the pending processor access transfer. These bits are not taken directly from the address refer-
enced by the load/store. See Section 4.5.3 on page 98 for more details.

Figure 4.10 shows the format of the Address register; Table 4.8 describes the Address register field.

Figure 4.10 Address Register Format

4.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)

Compliance Level: Required with EJTAG TAP feature.

The 32-bit EJTAG Control Register (ECR) handles processor reset and soft reset indication, Debug Mode indication,
access start, finish, and size and read/write indication. The ECR also:

• controls debug vector location and indication of serviced processor accesses,

• allows a debug interrupt request,

• indicates processor low-power mode, and

• allows implementation-dependent processor and peripheral resets.

The EJTAG Control register is not updated/written in the Update-DR state unless the Reset occurred; that is Rocc (bit
31) is either already 0 or is written to 0 at the same time. This condition ensures proper handling of processor accesses
after a reset.

Reset of the processor can be indicated through the Rocc bit in the TCK domain a number of TCK cycles after it is
removed in the processor clock domain in order to allow for proper synchronization between the two clock domains.

Bits that are R/W in the register return their written value on a subsequent read, unless other behavior is defined.
Internal synchronization ensures that a written value is updated for reading immediately afterwards, even when the
TAP controller takes the shortest path from the Update-DR to Capture-DR state.

Figure 4.11 shows the format of the EJTAG Control register; Table 4.9 describes the EJTAG Control register fields.

MSB 0

32/64-bit
Processor

Address

Table 4.8 Address Register Field Descriptions

Fields

Description
Read/
Write

Reset
State ComplianceName Bits

Address MSB:0 Address used by processor access. R Undefined Required

4.5 TAP Data Registers

MIPS® EJTAG Specification, Revision 6.10 103

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.11 EJTAG Control Register Format

31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0

32/64-bit
Processor

Rocc Psz 0 VPED Doze Halt
Per
Rst

PRn
W

Pr
Acc

0
Pr
Rst

Prob
En

Prob
Trap

ISAOn
Debug

Ejtag
Brk

0 DM 0

Table 4.9 EJTAG Control Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

Rocc 31 Indicates if a processor reset or soft reset has occurred
since the bit was cleared:

The Rocc bit stays set as long as reset is applied.
This bit must be cleared to acknowledge that the reset
was detected. The EJTAG Control register is not updated
in the Update-DR state unless Rocc is 0 or written to 0 at
the same time. This is in order to ensure correct handling
of the processor access after reset. Refer to Section 4.6.3
on page 112 for more information on Rocc.

R/W0 1 Required

Psz 30:29 Indicates the size of a pending processor access, in com-
bination with the Address register:

A full description is located in Section 4.5.3 on page 98,
including reserved combinations with Address register
bits.
This field is valid only when a processor access is pend-
ing; otherwise, the read value is undefined.

R Undefined Required

VPED 23 For processors with MIPS MT Module, this bit is a sta-
tus bit that indicates whether the VPE is currently dis-
abled. A value of 1 indicates that the VPE is disabled
and the rest of the EJTAG state is not valid. If this bit is
0, the processor is either not an MT core or it is an MT
core that is currently enabled. Hence, a non-MT core
must implement this bit and tie it to zero.

R 0 for non-MT
cores and 1

for MT cores

Required for
EJTAG ver-

sion 3.10 and
higher.

Encoding Meaning

0 No reset occurred

1 Reset occurred

Encoding

32-bit
Processor

MIPS32/64=0

64-bit
Processor

MIPS32/64=1

0 Byte Byte

1 Halfword Halfword

2 Word Word, 5-7 bytes

3 Triple Triple, Double-
word

 EJTAG Test Access Port

104 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Doze 22 Indicates if the processor is in low-power mode:

Doze indicates Reduced Power (RP), WAIT, and other
implementation-dependent low-power modes.
If the implementation does not support low-power
modes, then this bit always reads as 0.

R 0 Required

Halt 21 Indicates if the internal system bus clock is running:

Halt indicates WAIT, and other implementation-depen-
dent events that stop the system bus clock.
If the implementation does not support a halt state, this
bit always reads as 0.

R 0 Required

PerRst 20 Controls the peripheral reset with implementa-
tion-dependent behavior:

This bit PerRst might not have any effect. There is no
inherent indication of whether the PerRst is effective, so
the user must consult system documentation.
When this bit is changed, then it is only guaranteed that
the new value has taken effect when it can be read back
here. This handshake mechanism ensures that the setting
from the TCK clock domain takes effect in the processor
clock domain and in peripherals.
This bit is read-only (R) and reads as zero if not imple-
mented.

R/W 0 Optional

PRnW 19 Indicates read or write of a pending processor access:

This value is defined only when a processor access is
pending.

R Undefined Required

Table 4.9 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 Processor is not in low-power mode

1 Processor is in low-power mode

Encoding Meaning

0 Internal system bus clock is running

1 Internal system bus clock is stopped

Encoding Meaning

0 No peripheral reset applied

1 Peripheral reset applied

Encoding Meaning

0 Read processor access, for a fetch/load
access

1 Write processor access, for a store
access

4.5 TAP Data Registers

MIPS® EJTAG Specification, Revision 6.10 105

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

PrAcc 18 Indicates a pending processor access and controls finish-
ing of a pending processor access. When read:

A write of 0 finishes a processor access if pending; oth-
erwise operation of the processor is UNDEFINED if the
bit is written to 0 when no processor access is pending.
A write of 1 is ignored.
A successful FASTDATA access will clear this bit. See
Table 4.11 for details.

R/W0 0 Required

PrRst 16 Controls the processor reset with implementation-depen-
dent behavior:

The PrRst bit might not have any effect. There is no
inherent indication of an effective PrRst, so the user
must consult system documentation.
If a reset occurs on PrRst, then all parts of the system are
reset. It is not allowed for only some device to be reset.
When this bit is changed then it is guaranteed that the
new value has taken effect when it can be read back here.
This handshake mechanism ensures that the setting from
the TCK clock domain takes effect in the processor
clock domain and in peripherals.
However, because a processor reset clears this bit, then
the effect of setting it can be that the bit is cleared when
the reset takes effect. In this case, the Rocc bit should be
observed to detect that the reset took effect.
This bit is read-only (R) and reads as zero if not imple-
mented.

R/W 0 Optional

Table 4.9 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 No pending processor access

1 Pending processor access

Encoding Meaning

0 No processor reset applied

1 Processor reset applied

 EJTAG Test Access Port

106 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

ProbEn 15 Controls whether the probe handles accesses to the
dmseg segment through servicing of processors
accesses:

The ProbEn bit is reflected in a read-only bit in the
Debug Control Register (DCR) bit 0, see Chapter 3,
“Debug Control Register” on page 79.
When this bit is changed, then it is guaranteed that the
new value has taken effect in the DCR when it can be
read back here. This handshake mechanism ensures that
the setting from the TCK clock domain takes effect in
the processor clock domain.
However, a change of the ProbEn prior to setting the
EjtagBrk bit will be effective for the debug handler.
Not all combinations of ProbEn and ProbTrap are
allowed, see section 4.5.5.2 .

R/W See Section
4.5.5.1 on
page 107

Required

ProbTrap 14 Controls location of the debug exception vector:

When ProbTrap=1, the debug exception vector is relo-
cated to probe-controlled EJTAG memory, at the fixed
location 0xFFFF FFFF FF20 0200.
When this bit is changed, it is guaranteed that the new
value is indicated to the processor when it can be read
back here. This handshake mechanism ensures that the
setting from the TCK clock domain takes effect in the
processor clock domain.
However, a change of the ProbTrap prior to setting the
EjtagBrk bit will be effective at the debug exception.
Not all combinations of ProbEn and ProbTrap are
allowed, see Section 4.5.5.2 on page 108.

R/W See Section
4.5.5.1 on
page 107

Required

Table 4.9 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 Probe will not serve processor
accesses

1 Probe will service processor accesses

Encoding Meaning

0 See Section 2.3.2 “Debug Exception
Vector Location”

1 0xFFFF FFFF FF20 0200

4.5 TAP Data Registers

MIPS® EJTAG Specification, Revision 6.10 107

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5.5.1 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap and ProbEn

The reset value of the EjtagBrk, ProbTrap, and ProbEn bits follows the setting of the internal EJTAGBOOT indica-
tion. If the EJTAGBOOT instruction has been given, and the internal EJTAGBOOT indication is active, then the reset
value of the three bits is set (1); otherwise, the reset value is clear (0).

The results of setting these bits are:

ISAOnDe-
bug

13 Determines the Instruction Set Architecture to be used
on a debug exception when ProbTrap=1:

This bit is read-only and returns 0 if microMIPS is not
implemented. This is bit read-only and returns 1 if only
microMIPS is implemented.

R/W Bit 0 of
Config3 ISA

field - 1 if
only micro-

MIPS imple-
mented;

otherwise 0.

Required

EjtagBrk 12 Requests a Debug Interrupt exception to the processor
when this bit is written as 1. The debug exception
request is ignored if the processor is already in debug
mode at the time of the request. A write of 0 is ignored.
The debug request restarts the processor clock if the pro-
cessor was in a low-power mode.
The read value indicates a pending Debug Interrupt
exception requested through this bit:

The read value can, but is not required to, indicate other
pending DINT debug requests (for example, through the
DINT signal).
This bit is cleared by hardware when the processor
enters Debug Mode.

R/W1 See Section
4.5.5.1 on
page 107

Required

DM 3 Indicates if the processor is in Debug Mode: R 0 Required

0 28:24,
17, 13,
11:4,
2:0

Must be written as zeros; return zeros on reads. 0 0 Reserved

Table 4.9 EJTAG Control Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset State ComplianceName Bits

Encoding Meaning

0 Use MIPS32/MIPS64 ISA

1 Use microMIPS ISA

Encoding Meaning

0 No pending Debug Interrupt excep-
tion requested through this bit

1 Pending Debug Interrupt exception

Encoding Meaning

0 Processor is not in Debug Mode

1 Processor is in Debug Mode

 EJTAG Test Access Port

108 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• Setting the EjtagBrk causes a Debug Interrupt exception to be requested right after the processor reset from the
EJTAGBOOT instruction

• The debug handler is executed from the EJTAG memory because ProbTrap is set to indicate debug vector in
EJTAG memory at 0xFFFF FFFF FF20 0200

• Service of the processor access is indicated because ProbEn is set

Thus it is possible to execute the debug handler right after a processor reset from the EJTAGBOOT instruction, with-
out executing any instructions from the normal reset handler.

4.5.5.2 Combinations of ProbTrap and ProbEn

Use of ProbTrap and ProbEn allows independent specification of the debug exception vector location and availability
of EJTAG memory. Behavior for the different combinations is shown in Table 4.10. Note that not all combinations
are allowed. The second combination shown in the table, that is ProbTrap is 0 and ProbEn is 1, puts the debug handler
in normal memory, but also makes the probe’s EJTAG memory available. This combination can be useful, because
debug handler execution benefits from the speed of normal memory, but the probe’s EJTAG memory can still be
accessed, for example to save/restore data values and for probe/handler communications.

4.5.6 Fastdata Register (TAP Instruction FASTDATA)

Compliance Level: Required with EJTAG TAP feature for EJTAG version 02.60 and higher.

The width of the Fastdata register is 1 bit. During a Fastdata access, the Fastdata register is written and read, i.e., a bit
is shifted in and a bit is shifted out. (See Section 4.4.3 on page 93 for how the Data + Fastdata registers are selected by
the FASTDATA instruction.) During a Fastdata access, the Fastdata register value shifted in specifies whether the
Fastdata access should be completed or not. The value shifted out is a flag that indicates whether the Fastdata access
was successful or not (if completion was requested).

Figure 4.12 Fastdata Register Format

Table 4.10 Combinations of ProbTrap and ProbEn

ProbTrap ProbEn Debug Exception Vector
Processor Accesses to
EJTAG memory region

0 0 Normal memory, Section 2.3.2 “Debug Exception
Vector Location”

Not serviced by probe

0 1 Serviced by probe

1 0 If these two bits are changed to this state, the operation of the processor is UNDEFINED,
indicating that the debug exception vector is in EJTAG memory, but the probe will not ser-
vice processor accesses.

1 1 EJTAG memory at 0xFFFF FFFF FF20 0200 Serviced by probe

0

32/64-bit
Processor

SPrA
cc

4.5 TAP Data Registers

MIPS® EJTAG Specification, Revision 6.10 109

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The FASTDATA access is used for efficient block transfers between the dmseg segment (on the probe) and target
memory (on the processor). An “upload” is defined as a sequence of processor loads from target memory and stores
to the dmseg segment. A “download” is a sequence of processor loads from the dmseg segment and stores to target
memory. The “Fastdata area” is a special range of dmseg segment addresses (0xF..F20.0000 - 0xF..F20.000F) that
must be used for Fastdata uploads and downloads. The Data + Fastdata registers (selected with the FASTDATA
instruction) allow efficient completion of pending Fastdata area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to complete the access. Both upload and download
accesses by the probe are attempted by shifting in a zero SPrAcc value (to request access completion) and shifting out
SPrAcc to see if the attempt will be successful (i.e., there was an access pending and a legal Fastdata area address was
used). Downloads will also shift in the data to be used to satisfy the load from the dmseg segment Fastdata area, while
uploads will shift out the data being stored to the dmseg segment Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:

• PrAcc must be 1, i.e., there must be a pending processor access.

• The Fastdata operation must use a valid Fastdata area address in the dmseg segment (0xF..F20.0000 to
0xF..F20.000F).

Table 4.11 Fastdata Register Field Description

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

SPrAcc 0 Shifting in a zero value requests completion of the Fast-
data access. The PrAcc bit in the EJTAG Control register
is overwritten with zero when the access succeeds. (The
access succeeds if PrAcc is one and the operation
address is in the legal dmseg segment Fastdata area.)
When successful, a one is shifted out. Shifting out a zero
indicates a Fastdata access failure.
Shifting in a one does not complete the Fastdata access
and the PrAcc bit is unchanged. Shifting out a one indi-
cates that the access would have been successful if
allowed to complete and a zero indicates the access
would not have successfully completed.

R/W Undefined Required

 EJTAG Test Access Port

110 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 4.12 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

There is no restriction on the contents of the Data register. It is expected that the transfer size is negotiated between
the download/upload transfer code that initiates the Fastdata access on the core and the probe software. To download
a series of data words, the transfer code on the processor side would execute a loop of loads from the Fastdata mem-
ory area, and stores to target memory (accompanied by address increments). Note that the most efficient transfer sizes
are word and double-word for 32-bit and 64-bit processors respectively.

The Rocc bit of the Control register is not used for the FASTDATA operation.

4.5.7 PCsample Register (PCSAMPLE Instruction)

Compliance Level: Required if PC Sampling feature is implemented in EJTAG (PC Sampling was introduced in
EJTAG revision 3.xx.)

The PCSAMPLE instruction selects the PCsample register. The width of the register depends on whether or not the
processor implements the MIPS MT Module. If MIPS MT is not implemented, the length is 41 bits. If MIPS MT is
implemented, then the PCsample register length is 49 bits.

Please refer to Chapter 7, “PC Sampling” on page 173 for a description of this feature and the PCsample register,

4.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)

Compliance Level: Required with EJTAG TAP.

The Bypass register is a one-bit read-only register, which provides a minimum shift path through the TAP. This regis-
ter is also defined in IEEE 1149.1.

Figure 4.13 shows the format of the Bypass register; Table 4.13 describes the Bypass register field.

Table 4.12 Operation of the FASTDATA access

Probe
Operation

Address
Match
check

PrAcc in
the

Control
Register

LSB
(SPrAcc)
shifted in

Action in the
Data Register

PrAcc
changes

to

LSB
shifted

out
Data shifted

out

Download
using FAST-
DATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data

0 x none unchanged 0 invalid

Upload using
FASTDATA

Fails x x none unchanged 0 invalid

Passes 1 1 none unchanged 1 invalid

1 0 read data 0 (SPrAcc) 1 valid data

0 x none unchanged 0 invalid

4.6 Examples of Use

MIPS® EJTAG Specification, Revision 6.10 111

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.13 Bypass Register Format

4.6 Examples of Use

This section provides several examples that use the TAP.

4.6.1 TAP Operation

An example for operation of the TAP is shown in Figure 4.14. TRST* is assumed deasserted high.

Figure 4.14 TAP Operation Example

The five-bit Instruction register is initially loaded with 000012. The first bit shifted out of the Instruction register is a
1 followed by four 0’s. IR0 to IR4 indicate the new value for the Instruction register. IR0, the new LSB, is shifted in
first, because it will be at the LSB position when all five bits have been shifted in.

This example is similar for the selected data register.

0

32/64-bit
Processor

0

Table 4.13 Bypass Register Field Description

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

0 0 Ignored on writes; returns zero on reads. R 0 Required

R
un

-T
es

t/I
dl

e

TCK

Se
le

ct
-D

R
-S

ca
n

C
ap

tu
re

-I
R

Sh
if

t-
IR

E
xi

t1
-I

R

U
pd

at
e-

IR

Se
le

ct
-D

R
-S

ca
n

C
ap

tu
re

-D
R

Sh
if

t-
D

R

Se
le

ct
-I

R
-S

ca
n

TMS

TDI

TDO

TAP
controller

IR0 IR1 IR2 IR3 IR4 DR0 DR1 DR2

 EJTAG Test Access Port

112 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.6.2 ManufID Value

Table 4.14 shows the values of the ManufID field in the Device ID register as defined by the manufacturers. The
Device ID register is described in Section 4.5.1 on page 95.

4.6.3 Rocc Bit Usage

The R/W0 Rocc bit in the EJTAG Control register acknowledges that the probe has seen a processor reset, and further
accesses take this reset into account. This bit is set at reset. The probe must clear it as an acknowledge of the reset.

All other writes to the EJTAG Control register, except for the reset acknowledge, should write 1 to this bit in order to
not acknowledge any resets occurring between reads and writes of the EJTAG Control register.

Correct use of the Rocc bit ensures safe handling of processor access even across reset. An example is the following
scenario:

1. A processor access is pending and the PrAcc is read with value 1 (Rocc has been cleared previously).

2. The Address and Data registers are accessed and set up to handle the processor access.

3. The EJTAG Control register is accessed to finish the processor access. The register is read in the Capture-DR
state. Shifting in of the value to write begins.

4. A reset of the processor occurs, the Rocc bit is set, and the PrAcc bit is cleared.

5. A new processor access occurs, because EJTAGBOOT was indicated.

6. A write of the EJTAG Control register is attempted with PrAcc equal to 0 and Rocc equal to 1, but the write does
not occur because the Rocc bit is set. The new processor access that was not seen is not finished.

7. Polling of the EJTAG Control register continues. The probe detects that the Rocc bit is set.

8. The probe writes the EJTAG Control register with Rocc equal to 0 to acknowledge that the probe has seen the
reset.

9. The new processor access is serviced as usual.

Inhibiting writes to the EJTAG Control register because of the Rocc bit ensures that the new processor access is not
finished by mistake due to detection of a pending processor access before the reset occurred.

Table 4.14 ManufID Field Value Examples

Company JEDEC Code Continuations
Last byte without

Carry ManufID Value

Philips 0x15 0 0x15 0x015

LSI Logic 0xB6 0 0x36 0x036

IDT 0xB3 0 0x33 0x033

Toshiba 0x98 0 0x18 0x018

MIPS Technologies, Inc. 0x7F 7F A7 2 0x27 0x127

4.6 Examples of Use

MIPS® EJTAG Specification, Revision 6.10 113

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.6.4 EJTAG Memory Access Through Processor Access

The processor access feature makes it possible for the probe to handle accesses from the processors to the specific
EJTAG memory area (dmseg). Thus the processor can execute a debug handler from EJTAG memory, whereby appli-
cations that are not prepared with EJTAG code in the system memory still can be debugged.

The probe can get information about the access through the TAP as shown in Table 4.15.

The servicing of processor accesses works with a polling scheme, where the PrAcc bit is polled until a pending pro-
cessor access is indicated by PrAcc equal to 1. Then the Address register is read to get the address of the transaction,
and the Data register is accessed to get the write data or provide the read data. Finally the PrAcc bit is cleared, in
order to finish the access from the processor.

In addition, the ProbTrap and ProbEn bits control the debug exception vector location and the indication to the pro-
cessor that the probe will service accesses to the EJTAG memory through processor accesses.

Handling of processor access in relation to reset requires specific handling. A pending processor access is cleared at
reset. At the same time, the Rocc bit is set, thereby inhibiting any processor accesses to be finished until Rocc is
cleared. Thus the probe will have to acknowledge that a reset occurred, and will thereby not accidentally finish a pro-
cessor access due to a processor access that occurred before the reset.

A pending processor access can only finish if the probe clears PrAcc or a processor reset occurs.

The width of the Address register is from 32 to 64 bits. The specific length is determined by shifting a known bit pat-
tern through the register.

The following subsections show examples of servicing read and write processor accesses.

4.6.4.1 Write Processor Access

Figure 4.15 shows a possible flow for servicing a write processor access. The example implements a 32-bit processor
with 32-bit Address register, running in little-endian mode. A halfword store is performed to address 0xFF20 1232 of
value 0x5678.

Table 4.15 Information Provided to Probe at Processor Access

Information Field and Register

Pending processor access PrAcc field in the EJTAG Control register

Read or write access PRnW field in the EJTAG Control register

Size and data location Psz field in EJTAG Control register, and two or three LSBs in the Address register

Address Address register

Data Data register

 EJTAG Test Access Port

114 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.15 Write Processor Access Example

The different probe actions shown on the figure are described below:

1. The EJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is attempted to
be written to 1 when polling, in order to prevent a processor access from finishing before being serviced. The val-
ues of PRnW and Psz are saved when PrAcc indicates a pending processor access.

2. The Address register is read. It contains the address of the store resulting in the write processor access.

3. The Data register is read, which contains the data from the store resulting in the write processor access.

4. The PrAcc bit is written to 0, in order to finish the processor access.

The probe must update the appropriate bytes in its internal memory used for EJTAG memory with the value of the
write.

Notice that the two lower bytes of the Data register are undefined, and that the two lower bytes of the saved register
are shifted up on the two high bytes in the Data register as on a data bus for an external memory system. The Address
register in this case contains the address from the store; however, for some accesses, this is not the case because the
two LSBs (32-bit processor) are modified for some accesses depending on size and address.

4.6.4.2 Read Processor Access

Figure 4.16 shows a possible flow for servicing a read processor access. The example implements a 64-bit processor
with 36-bit Address register. A doubleword load/fetch from address 0xFFFF FFFF FF20 3450 is shown in the figure.

PrAcc

Probe
action

PRnW

Psz

Address

Data

1 1

Data = = 0x5678 XXXX

Address = = 0xFF20 1232

Size = 1

2 3 41 1

4.6 Examples of Use

MIPS® EJTAG Specification, Revision 6.10 115

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 4.16 Read Processor Access Example

The different probe actions shown in the figure are described below:

1. The EJTAG Control register is polled for the indication of a pending PrAcc bit. The PrAcc bit is attempted to be
written to 1 when polling, in order to prevent a processor access from finishing before being serviced. The values
of PRnW and Psz are saved when PrAcc indicates a pending processor access.

2. The Address register is read. It contains the address of the load/fetch resulting in the write processor access, with
the three LSBs (64-bit processor) modified to allow size indication together with the Psz.

3. The Data register is written with the data to return for the load/fetch, resulting in the read processor access.

4. The PrAcc bit is cleared, in order to finish the processor access.

The probe must provide data for the read processor access from the internal EJTAG memory.

Notice that the Address register does not contain the direct address from the access, because the three LSBs (64-bit
processor) are modified to indicate the size in conjunction with Psz. Also notice that in this case, there is no shifting
of the data returned for the processor access by writing to the Data register, because a doubleword is provided. For
other accesses, the Data register must be written with a shifted value depending on the specific access.

PrAcc

Probe
action

PRnW

Psz

Address

Data

1 1

Data =

Address = = 0xF FF20 3457

Size = 3

2 3 41 1

0x0..0 0..0 0..0 BEEF

 EJTAG Test Access Port

116 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 5

MIPS® EJTAG Specification, Revision 6.10 117

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

This chapter describes the optional instruction and data hardware breakpoints. It contains the following sections:

• Section 5.1 “Introduction”

• Section 5.2 “Overview of Instruction and Data Breakpoint Registers”

• Section 5.3 “Conditions for Matching Breakpoints”

• Section 5.4 “Debug Exceptions from Breakpoints”

• Section 5.5 “Breakpoints Used as Triggerpoints”

• Section 5.6 “Instruction Breakpoint Registers”

• Section 5.7 “Data Breakpoint Registers”

• Section 5.8 “Recommendations for Implementing Hardware Breakpoints”

• Section 5.9 “Breakpoint Examples”

The general description in this chapter covers processors with R4000 privileged environments. Differences for pro-
cessors with R3000 privileged environments are described in Appendix A, “Differences for R3000 Privileged
Environments” on page 201.

5.1 Introduction

Hardware breakpoints compare addresses and data of executed instructions, including data load/store accesses.
Instruction breakpoints can be set even on addresses in ROM areas, and data breakpoints can cause debug exceptions
on specific data accesses. Instruction and data hardware breakpoints are alike in many aspects, and are described in
parallel in the following sections. When the term “breakpoint” is used in this chapter, then the reference is to a “hard-
ware breakpoint”, unless otherwise explicitly noted.

The breakpoints provide the following key features:

• From zero to 15 instruction breakpoints can be implemented to cause debug exceptions on executed instructions,
both in ROM and RAM. Bit masking is provided for virtual address compares, and masking of compares with
ASID (optional) is also provided.

• From zero to 15 data breakpoints can be implemented to cause debug exceptions on data accesses. Bit masking is
provided for virtual address compares, masking of compares with ASID (optional) is provided, optional data
value compares allows masking at byte level, and qualification on byte access and access type is possible.

• Optionally provide for equality and masking breakpoints for inclusive and exclusive address range matching.

 Hardware Breakpoints

118 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• Registers for setup and control are memory mapped in the drseg segment, accessible in Debug Mode only.

• Breakpoints have several implementation options to ease integration with various microarchitectures.

Hardware breakpoints require the implementation of the Debug Control Register (DCR).

Several additional options are possible for breakpoints, as described in the following subsections.

For EJTAG features, there are no difference between a reset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug Mode. References to reset in the following therefore refers to both
reset (hard reset) and soft reset.

5.1.1 Instruction Breakpoint Features

Figure 5.2 shows an overview of the instruction breakpoint feature. The feature compares the virtual address (PC) and
the ASID of the executed instructions with each instruction breakpoint, applying masking on address and ASID.
When an enabled instruction breakpoint matches the PC and ASID, a debug exception and/or a trigger is generated,
and an internal bit in an instruction breakpoint register is set to indicate that a match occurred. If the processor imple-
ments the MIPS MT Module, then a match for the TC (Thread Context Id) may also be enabled and required.

Figure 5.1 Instruction Breakpoint Overview

5.1.2 Data Breakpoint Features

Figure 5.2 shows an overview of the data breakpoint feature. The feature compares the load or store access type
(TYPE), the virtual address of the access (ADDR), the ASID, the accessed bytes (BYTELANE), and data value
(DATA) with each data breakpoint, applying masks and/or qualifications on the access properties. If the processor
implements the MIPS MT Module, then a match for the TC (Thread Context Id) may also be enabled and required.

Figure 5.2 Data Breakpoint Overview

When an enabled data breakpoint matches, a debug exception and/or a trigger is generated, and an internal bit in a
data breakpoint register is set to indicate that a match occurred. The match is either precise (the debug exception or
trigger occurs on the instruction that caused the breakpoint to match) or imprecise (the debug exception or trigger
occurs later in the program flow).

Instruction
Hardware
Breakpoint

Debug Exception

Trigger Indication

ASID
PC

TC (for MIPS MT)

GuestID (for VZ)

Data
Hardware
Breakpoint

TYPE

ASID Debug Exception

Trigger Indication

ADDR

DATA

BYTELANE

TC (for MIPS MT)

GuestID (for VZ)

5.2 Overview of Instruction and Data Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 119

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.2 Overview of Instruction and Data Breakpoint Registers

From zero to 15 instruction and data breakpoints can be implemented independently. Implementation of any break-
point implies that the Debug Control Register (DCR) is implemented.

The InstBrk and DataBrk bits in the DCR register indicate whether there are zero or 1 to 15 implementations of a
breakpoint type. If no breakpoints of a specific type are implemented, then none of the registers associated with this
breakpoint type are implemented.

If any (1 to 15) breakpoints of a specific type are implemented, then the breakpoint status register associated with that
breakpoint type is implemented. The instruction and data break status registers indicate the number of breakpoints for
each corresponding type. The number of additional registers depends on the number of implemented breakpoints for
the respective breakpoint type.

Registers for ASID compares are only implemented if indicated in the corresponding breakpoint status register.

5.2.1 “Overview of Instruction Breakpoint Registers” and 5.2.2 “Overview of Data Breakpoint Registers” provide
overviews of the instruction and data breakpoint registers, respectively. All registers are memory mapped in the drseg
segment. All registers are 32 bits wide for 32-bit processors and 64 bits wide for 64-bit processors.

5.2.1 Overview of Instruction Breakpoint Registers

Table 5.1 lists the Instruction Breakpoint registers. The Instruction Breakpoint Status register provides implementa-
tion indication and status for instruction breakpoints in general. The 1 to 15 implemented breakpoints are numbered 0
to 14, respectively, for registers and breakpoints. The specific breakpoint number is indicated by “n”.

Register addresses are shown in Section 5.6 on page 134.

5.2.2 Overview of Data Breakpoint Registers

Table 5.2 lists the Data Breakpoint Registers. The Data Breakpoint Status register provides implementation indica-
tion and status for data breakpoints in general. The 1 to 15 implemented breakpoints are numbered 0 to 14, respec-
tively, for registers and breakpoints. The specific breakpoint number is indicated by “n”. The registers for data value

Table 5.1 Instruction Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference Compliance Level

IBS Instruction Breakpoint Status See Section 5.6.1 on
page 135

Required if any instruction breakpoints
are implemented, optional otherwise.

IBAn Instruction Breakpoint Address n See Section 5.6.2 on
page 136

Required with instruction breakpoint n,
optional otherwise.

IBMn Instruction Breakpoint Address Mask n See Section 5.6.3 on
page 137

IBASIDn Instruction Breakpoint ASID n See Section 5.6.4 on
page 137

Required with instruction breakpoint n,
optional otherwise. Not implemented if
ASIDsup bit in IBS is 0 (zero).

IBCn Instruction Breakpoint Control n See Section 5.6.5 on
page 140

Required with instruction breakpoint n,
optional otherwise.

 Hardware Breakpoints

120 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

compares are only implemented if the value compares for the data breakpoints are implemented, which occurs when
either the NoLVmatch bit or the NoSVmatch bit in the DBS is 0.

Register addresses are shown in Section 5.7 on page 142.

5.3 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data
access. These conditions are described in the following subsections. A breakpoint only matches for instructions exe-
cuted in Non-Debug Mode, never due to instructions executed in Debug Mode.

The match of an enabled breakpoint generates a debug exception as described in Section 5.4 on page 131 and/or a
trigger indication as described in Section 5.5 on page 133. The BE and/or TE bits in the IBCn or DBCn registers
enable the breakpoints for breaks and triggers, respectively.

It is implementation-dependent whether or not a breakpoint stalls the processor in order to evaluate the match expres-
sion; for example, if required for timing reasons or in order to wait on a scheduled load to return for evaluation of a
data breakpoint with a data value compare. In some cases, stalling is avoided with imprecise data breakpoints, as
described in Section 5.4.2 on page 131.

5.3.1 Conditions for Equality and Mask Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with the instruction
boundary address (the lowest address of a byte in the instruction) of every executed instruction. The instruction
breakpoint is also evaluated on addresses usually causing an Address Error exception, a TLB exception, or other
exceptions. It is thereby possible to cause a Debug Instruction Break exception on the destination address of a jump,
even if a jump to that address would cause an Address Error exception. The breakpoint is not evaluated on instruc-
tions from speculative fetches or execution.

Table 5.2 Data Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference Compliance Level

DBS Data Breakpoint Status See Section 5.7.1 on
page 142

Required if any data breakpoints are
implemented, optional otherwise.

DBAn Data Breakpoint Address n See Section 5.7.2 on
page 144

Required with data breakpoint n,
optional otherwise.

DBMn Data Breakpoint Address Mask n See Section 5.7.3 on
page 145

DBASIDn Data Breakpoint ASID n See Section 5.7.4 on
page 145

Required with data breakpoint n,
optional otherwise. Not implemented if
ASIDsup bit in DBS is 0 (zero).

DBCn Data Breakpoint Control n See Section on
page 148

Required with data breakpoint n,
optional otherwise.

DBVn Data Breakpoint Value n See Section 5.7.6 on
page 151

Required with data breakpoint n,
optional otherwise. Only implemented
with value compares, shown in DBS.

5.3 Conditions for Matching Breakpoints

MIPS® EJTAG Specification, Revision 6.10 121

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

A match of an instruction breakpoint depends on a number of parameters, shown in Table 5.3. The fields in the
instruction breakpoint registers are in the form REGFIELD.

The PC, IBAnIBA, and IBMnIBM fields are 32 bits wide for 32-bit processors and 64 bits wide for 64-bit processors.

The equation that determines the match is shown below with “C”-like operators. In the equation, 0 means all bits are
0’s, and ~0 means all bits are 1’s. The widths are similar to the widths of the parameters. The match equation is
IB_match, and is dependent on whether MIPS16e is supported or not.

Table 5.3 Instruction Breakpoint Condition Parameters

Parameter Description Width

ASID ASID field in EntryHi CP0 register. 8 bits

IBCnASIDuse Use ASID value in compare for instruction breakpoint n: 1 bit

IBASIDnASID Conditional Instruction breakpoint n ASID value for comparing. 8 bits

PC Virtual address of instruction boundary or target for jump/branch. 32 / 64 bits

ISAmode Used only when MIPS16e ISA support is implemented. It indicates the ISA mode for the
executed instruction or the mode at the target of a jump/branch:

1 bit

IBAnIBA Instruction breakpoint n address for compare with conditions. 32 / 64 bits

IBMnIBM Instruction breakpoint n address mask condition: 32 / 64 bits

IBCnTCuse Thread Context (TC) value used in compare for instruction breakpoint n: 1 bit

IBCnTC TC id value 8 bits max

GuestID ID field in GuestCtl CP0 register. 8 bits

IBASIDnUGID Use GuestID value in compare for instruction breakpoint n: 1 bit

IBASIDnGuestID Conditional Instruction breakpoint n GuestID value for comparing. 8 bits

Encoding Meaning

0 Do not use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 32-bit MIPS instruction

1 MIPS16e instruction

Encoding Meaning

0 Corresponding address bit compared

1 Corresponding address bit masked

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

Encoding Meaning

0 Do not use GuestID value in compare

1 Use GuestID value in compare

 Hardware Breakpoints

122 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

If there is no support for MIPS16e then the IB_match equation is:

IB_match =
(!IBCnTCuse || (TC == IBCnTC)) &&
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(! IBASIDnUGID || (GuestID == IBASIDnGuestID)) &&
((IBMnIBM | ~ (PC ^ IBAnIBA)) == ~0)

If MIPS16e is supported then the IB_match equation is shown below, in which case the ISAmode bit is compared
with bit 0 of IBAnIBA instead of a compare with bit 0 in PC:

IB_match =
(!IBCnTCuse || (TC == IBCnTC)) &&
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(! IBASIDnUGID || (GuestID == IBASIDnGuestID)) &&
((IBMnIBM | ~ (((PC[MSB:1] << 1) + ISAmode) ^ IBAnIBA)) == ~0)

The IB_match equation also applies to 64-bit processors running in 32-bit addressing mode, in which case all 64 bits
are compared between the PC and the IBAnIBA register.

The match indication for instruction breakpoints is always precise; that is, it is indicated on the instruction causing the
IB_match to be true.

It is implementation-dependent for an instruction breakpoint to match when the memory system does not ever
respond to the fetch or generates a bus error from a system watchdog. If no match occurs, then the processor hangs
without the instruction breakpoint generating either a debug exception or a trigger.

It is implementation specific whether an instruction breakpoint will match a microMIPS instruction for the case
where the first halfword is within the match range while the second halfword is not.

5.3.2 Conditions for Equality and Mask Matching Data Breakpoints

When a data breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with both the access address of
every data access due to load/store instructions (including loads/stores of coprocessor registers) and the address caus-
ing address errors upon data access. Data breakpoints are not evaluated with addresses from PREF (prefetch) or
CACHE instructions. It is implementation-dependent whether an SC or SCD instruction causes a data breakpoint if
all conditions would cause a match, but the SC or SCD instruction would fail because the LLbit is 0.

The concept “data bus” is used in the following to denote the bytes accessed and the data value transferred in a
load/store operation. In this notation data bus refers to the naturally-aligned memory word (for 32-bit processors) or
doubleword (for 64-bit processors) containing the accessed address referred to as ADDR. This notation is indepen-
dent of the actual width of the processor bus, e.g., the “data bus” width of a 64-bit processor is 64, even if that proces-
sor has a 32-bit processor bus.

A match of the data breakpoint depends on a number of parameters, shown in Table 5.4. The fields in the data break-
point registers are in the form REGFIELD.

Table 5.4 Data Breakpoint Condition Parameters

Reference Description Width

TYPE Data access type is either load or store. (no width)

5.3 Conditions for Matching Breakpoints

MIPS® EJTAG Specification, Revision 6.10 123

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

DBCnNoSB Controls whether condition for data breakpoint is fulfilled on a store access: 1 bit

DBCnNoLB Controls whether condition for data breakpoint is fulfilled on a load access: 1 bit

ASID ASID field in EntryHi CP0 register. 8 bits

DBCnASIDuse ASID value used in compare for data breakpoint n: 1 bit

DBASIDnASID Conditional Data breakpoint n ASID value for comparison. 8 bits

ADDR With one exception, virtual address of data access, effective address. The exception is
the LUXC1 and SUXC1 instructions in which the lower three bits of the effective
address are ignored (forced to zero for the operation). In this case, ADDR is the effective
address with bits 2:0 forced to zero.

32 / 64 bits

DBAnDBA Data breakpoint n address for compare with conditions. 32 / 64 bits

DBMnDBM Conditional Data breakpoint n address mask: 32 / 64 bits

BYTELANE Byte lane access indication, where BYTELANE[0] is 1 only if the byte at bits [7:0] of
the data bus is accessed, BYTELANE[1] is 1 only if the byte at bits [15:8] of the data
bus is accessed, etc.

4 / 8 bits

DBCnBAI Determines whether access is ignored to specific bytes. BAI[0] controls ignore of access
to the byte at bits [7:0] of the data bus, BAI[1] ignores access to byte at bits [15:8] of the
data bus, etc.:

4 / 8 bits

DATA Data value from the data bus. 32 / 64 bits

DBVnDBV Conditional Data breakpoint n data value for compare. 32 / 64 bits

Table 5.4 Data Breakpoint Condition Parameters (Continued)

Reference Description Width

Encoding Meaning

0 Condition can be fulfilled on store access

1 Condition is never fulfilled on store access

Encoding Meaning

0 Condition can be fulfilled on load access

1 Condition is never fulfilled on load access

Encoding Meaning

0 Do not use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 Corresponding address bit compared

1 Corresponding address bit masked

Encoding Meaning

0 Condition depends on access to corresponding byte

1 Access for corresponding byte is ignored

 Hardware Breakpoints

124 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The ADDR, DBAnDBA, DBMnDBM, DATA, and DBVnDBV fields are 32 bits wide for 32-bit processors and 64 bits
wide for 64-bit processors. The BYTELANE, DBCnBLM, and DBCnBAI fields are four bits wide for 32-bit proces-
sors and eight bits wide for 64-bit processors. The width is indicated as “N” in the equations below.

The match equations are shown below with “C”-like operators. In the equation, 0 means all bits are 0’s, and ~0 means
all bits are 1’s. The bit widths are similar to the widths of the parameters.

DB_match is the overall match equation (the DB_addr_match, DB_no_value_compare, and DB_value_match equa-
tions in the DB_match equation are defined below):

DB_match =
(!DBCnTCuse || (TC == DBCnTC)) &&
(((TYPE == load) && ! DBCnNoLB) || ((TYPE == store) && ! DBCnNoSB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

DB_addr_match is defined as:

DB_addr_match =
(! DBCnASIDuse || (ASID == DBASIDnASID)) &&
(! DBASIDnUGID || (GuestID == DBASIDnGuestID)) &&
((DBMnDBM | ~ (ADDR ^ DBAnDBA)) == ~0) &&
((~ DBCnBAI & BYTELANE) != 0)

DBCnBLM Conditional Byte lane mask for value compare on data breakpoint. BLM[0] masks byte
at bits [7:0] of the data bus, BLM[1] masks byte at bits [15:8], etc.:

4 / 8 bits

DBCnTCuse Thread Context (TC) value used in compare for data breakpoint n: 1 bit

DBCnTC TC id value 8 bits max

DBCnIVM Indicates whether or not to invert the data value match 1 bit

GuestID ID field in GuestCtl CP0 register. 8 bits

DBASIDnUGID Use GuestID value in compare for data breakpoint n: 1 bit

DBASIDnGuestID Conditional Instruction breakpoint n GuestID value for comparing. 8 bits

Table 5.4 Data Breakpoint Condition Parameters (Continued)

Reference Description Width

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

Encoding Meaning

0 Do not use GuestID value in compare

1 Use GuestID value in compare

5.3 Conditions for Matching Breakpoints

MIPS® EJTAG Specification, Revision 6.10 125

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The DB_addr_match equation also applies to 64-bit processors running in 32-bit addressing mode, in which case all
64 bits are compared between the ADDR and the DBAnDBA field. Please note the special case used for ADDR for the
LUXC1 and SUXC1 instructions as described in Table 5.4.

DB_no_value_compare is defined as:

DB_no_value_compare =
((DBCnBLM | DBCnBAI | ~ BYTELANE) == ~0)

If a data value compare is indicated on a breakpoint, then DB_no_value_compare is false, and if there is no data value
compare then DB_no_value_compare is true. Note that a data value compare is a run-time property of the breakpoint
if (DBCnBLM | DBCnBAI) is not ~0, because DB_no_value_compare then depends on BYTELANE provided by the
load/store instructions. The DBCIVM bit inverts the sense of the match. If set, the value match term will be high if the
data value is not the same as the data in the DBVn register.

If a data value compare is required, then the data value from the data bus is compared and masked with the registers
for the data breakpoint, as shown in the DB_value_match equation:

DB_value_match =
DBCnIVM ^
((DATA[7:0] == DBVnDBV[7:0]) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
((DATA[15:8] == DBVnDBV[15:8]) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
......
((DATA[8*N-1:8*N-8] == DBVnDBV[8*N-1:8*N-8]) ||

! BYTELANE[N-1] || DBCnBLM[N-1] || DBCnBAI[N-1])

Data breakpoints depend on endianess, because values on the byte lanes are used in the equations. Thus it is required
that the debug software programs the breakpoints accordingly to endianess.

It is implementation-dependent for a data breakpoint to match when the memory system does not ever respond to the
data access or generates a bus error from a system watchdog. If no match occurs, then the processor hangs without the
data breakpoint generating a debug exception or trigger.

5.3.2.1 Inverting the Data Value Match Condition

EJTAG specification 4.00 and above introduces the concept of inverting the sense of the data value match. This is an
optional feature whose presence is indicated by bit 15 in the Debug Control Register (DCRIVM). When present, bit 1
in the Data Break Control register DBCIVM indicates whether the match sense should be inverted during execution.

5.3.2.2 Data Breakpoints in case of Unaligned Address

Unaligned addresses can result from explicit halfword, word, and doubleword accesses (for example, if an effective
address of 0x01 is used as source of a Load Halfword (LH) instruction). The ADDR used in the comparison is the

 Hardware Breakpoints

126 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

effective address. The BYTELANE value is defined according to Table 5.5 for a 32-bit processor and to Table 5.6 for
a 64-bit processor.

With the above well-defined values of BYTELANE, the behavior is well-defined for data breakpoints without value
compares on operations with unaligned addresses. The BLM field in the DBCn register can be used to avoid value
compares if all BLM bits are set to 1.

If the data breakpoint depends on a value compare, then loads will cause an Address Error exception, and for stores
the data value (DATA) is UNPREDICTABLE. This UNPREDICTABLE data can cause match of a data breakpoint
on a store, but an implementation can choose never to indicate a match on data breakpoints depending on value com-
pare if having unaligned address.

If a debug exception is taken on the store then the debug handler can investigate the processor state and thereby deter-
mine if the address was unaligned and UNPREDICTABLE store data for the memory access thereby caused the
debug exception. If a debug exception is not taken for the store, then an Address Error exception is taken. So, in both
cases it is possible for debug software to detect the bug. The BLM field in the DBCn register can be used to avoid
compare on UNPREDICTABLE data, in case all of the BLM bits are set to 1.

If the data breakpoint is used as a triggerpoint (see Section 5.5 on page 133) then a Break Status (BS) bit might be set
after a compare with UNPREDICTABLE data; however, an Address Error exception occurs in this case thereby mak-
ing it possible to detect the bug.

Table 5.5 BYTELANE at Unaligned Address for 32-bit Processors

Size

ADDR BYTELANE[3:0]

[2] [1] [0] Little Endian Big Endian

Halfword x 0 x 00112 11002

x 1 x 11002 00112

Word x x x 11112

‘x’ denotes don’t care

Table 5.6 BYTELANE at Unaligned Address for 64-bit Processors

Size

ADDR BYTELANE[7:0]

[2] [1] [0] Little Endian Big Endian

Halfword 0 0 x 000000112 110000002

0 1 x 000011002 001100002

1 0 x 001100002 000011002

1 1 x 110000002 000000112

Word 0 x x 000011112 111100002

1 x x 111100002 000011112

Doubleword x x x 111111112

‘x’ denotes don’t care

5.3 Conditions for Matching Breakpoints

MIPS® EJTAG Specification, Revision 6.10 127

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.3.2.3 Match for Data Breakpoint with Value Compare on Bus or Cache Error

If a data value compare is required to evaluate a data breakpoint, the DB_no_value_compare equation is false (see
Section 5.3.2 on page 122). However, if a bus or cache error occurs on the load, then there is no valid data to use in
the compare. This case has two possibilities:

• The match will fail.

• The match will compare on invalid data, and then indicate a pending bus or cache error through the DBusEP or
CacheEP bits in the Debug register, if a debug exception is taken. This occurrence might cause a trigger indica-
tion to be set on the compare with invalid data.

A bus or cache error on a store does not affect the data breakpoint compare.

Refer to Section 5.8.3 on page 152 for recommendations on implementing data breakpoint compares on invalid data.

5.3.2.4 Precise Match for Data Breakpoints

A precise match for a data breakpoint occurs when the match equation can be fully evaluated at the time the
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the
DB_match equation to be true.

Matches on data breakpoints without data value compares are always precise. Accesses using data value compares
are either imprecise or precise depending on the implementation and specific access.

5.3.2.5 Imprecise Match for Data Breakpoints

An imprecise match for a data breakpoint occurs when the match equation cannot be fully evaluated at the time the
load/store instruction is executed. This case occurs when the processor is not stalled on a scheduled load and a data
breakpoint must compare on the data value returned by the load. If the breakpoint matches, then the DB_match equa-
tion is true later in the execution flow rather than at the same time as load/store instruction that caused the load/store
access to match.

Only data breakpoints with value compares can be imprecise, in which case the breakpoints can be imprecise for all
or some of those accesses depending on the implementation.

5.3.3 Precise Exceptions on Data Value Match Breaks

When the EJTAG hardware implements data value match breaks to be taken precisely, the core EJTAG hardware on
obtaining the data value will match the value and cause an exception to be taken on the load instruction. In this situa-
tion, the data value is already read out from its source location and brought to the processor. When the exception han-
dler has taken the exception, the DEPC points to the load instruction (because the exception is taken precisely), and
the load instruction re-executes on a return from exception. If the load value was being read from regular memory,
then this is usually not an issue. But in a situation where the load data was coming from a special FIFO or I/O regis-
ter, this instruction cannot be re-executed without altering the state of the peripheral or special memory. To handle
this type of situation, when the EJTAG hardware implements precise data value exceptions, it is also expected to keep
the load data value in a drseg register. This allows the debug exception handler to re-execute this instruction in soft-
ware using this data value. The debug handler must also re-calculate the new DEPC value and update it before exe-
cuting the DERET instruction. This Load Data Value register is at drseg address 0x2FF0.

This is an optional feature of regular EJTAG introduced in revision 4.00 and above, and the presence of this feature is
indicated by bit 14 (DVM) of the DCR register.

 Hardware Breakpoints

128 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.3.4 Address Range Triggered Instruction Breakpoints

Implementations may optionally support the address range triggered data breakpoints. When this feature is supported,
the following data breakpoint registers are redefined as the following:

IBAn : represents the upper limit of a address range boundary

IBMn : represents the lower limit of the address range boundary

For this feature, the following register bits must be implemented:

IBCn[10] - HWARTS field : a preset value of 1 represents the address range triggered data breakpoint feature is
supported for this particular data breakpoint channel. This bit is read-only.

IBCn[9] - EXCL field : a value of 0 represents the breakpoint will match for addresses inclusive (within) the
range defined by IBMn and IBAn. A value of 1 represents the breakpoint will match for addresses exclusive
(outside) to the range defined by IBMn and IBAn. This bit is writeable.

IBCn[8] - HWART field : a value of 0 respresents the breakpoint will match using the equality-mask equation as
found in Section 5.3.1 “Conditions for Equality and Mask Matching Instruction Breakpoints”. A value of 1 rep-
resents the breakpoint will match using address ranges using the equation below:

5.3 Conditions for Matching Breakpoints

MIPS® EJTAG Specification, Revision 6.10 129

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The match equations are defined to the following:

IB_match =

(!IBCnTCuse || (TC == IBCnTC)) &&

(! IBCnASIDuse || (ASID == IBASIDnASID)) &&

(! IBASIDnUGID || (GuestID == IBASIDnGuestID)) &&

(((~IBCnhwarts || ~IBCnhwart) &&

((IBMnIBM | ~ (PC ^ IBAnIBA)) == ~0) ||

((IBCnhwarts && IBCnhwart) &&

((~IBCnexcl && (IBM <= PC <= IBA)) ||

(IBCnexcl && (IBM > PC || PC > IBA)

)

If either microMIPS or MIPS16e is used, the match equations are defined as the following:

IB_match =

(!IBCnTCuse || (TC == IBCnTC)) &&

(! IBCnASIDuse || (ASID == IBASIDnASID)) &&

(! IBASIDnUGID || (GuestID == IBASIDnGuestID)) &&

(((~IBCnhwarts || ~IBCnhwart) &&

((IBMnIBM | ~ (((PC[MSB:1] << 1) + ISAmode) ^ IBAnIBA)) == ~0) ||

((IBCnhwarts && IBCnhwart) &&

(IBMnIBM[0] | ~ (ISAmode ^ IBAnIBA[0])) == ~0) &&

((~IBCnexcl && (IBM[MSB:1] <= PC[MSB:1] <= IBA[MSB:1])) ||

(IBCnexcl && (IBM[MSB:1] > PC[MSB:1] || PC[MSB:1] > IBA[MSB:1])

)

Also note that addresses that overlap a boundary is considered for both exclusive and inclusive breakpoint matches.

 Hardware Breakpoints

130 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

It is implementation specific whether an instruction breakpoint will match a microMIPS instruction for the case
where the first halfword is within the match range while the second halfword is not.

5.3.5 Address Range Triggered Data Breakpoints

Implementations may optionally support the address range triggered data breakpoints.

When this feature is supported, the following data breakpoint registers are redefined:

DBAn : represents the upper limit of a address range boundary

DBMn : represents the lower limit of the address range boundary

In addition, the following register bits must be implemented:

DBCn[10] - hwarts field: a preset value of 1 represents the address range triggered data breakpoint feature is sup-
ported for this particular data breakpoint channel. This bit is read-only.

DBCn[9] - excl field: a value of 0 represents the breakpoint will match for addresses inclusive (within) the range
defined by DBMn and DBAn. A value of 1 represents the breakpoint will match for addresses exclusive (out-
side) to the range defined by DBMn and DBAn. This bit is writeable.

DBCn[8] - hwart field: a value of 0 respresents the breakpoint will match using the equality-mask equation as
found in Section 5.3.2 “Conditions for Equality and Mask Matching Data Breakpoints”..A value of 1 represents
the breakpoint will match using address ranges using the equation below:

The match equations are redefined to the following:

DB_match =

(!DBCnTCuse || (TC == DBCnTC)) &&

(((TYPE == load) && ! DBCnNoLB) || ((TYPE == store) && ! DBCnNoSB)) &&

DB_addr_range_match && (DB_no_value_compare || DB_value_match)

DB_addr_range_match =

(! DBCnASIDuse || (ASID == DBASIDnASID)) &&

(! DBCnUGID || (GuestID == DBASIDnGuestID)) &&

(((~DBCnhwarts || ~DBCnhwart) &&

((DBMnDBM | ~ (ADDR ^ DBAnDBA)) == ~0) ||

((DBCnhwarts && DBCnhwart) &&

((~DBCnexcl && (DBMn <= ADDR <= DBAn)) ||

5.4 Debug Exceptions from Breakpoints

MIPS® EJTAG Specification, Revision 6.10 131

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

(DBCnexcl && (DBMn > ADDR || ADDR > DBAn)

)

When address range triggered data breakpoints is enabled, DBCn.BLM[3:0] must be set to 4’b1111 because value
matching is not supported with this feature. Addresses that overlap a boundary is considered for both exclusive and
inclusive breakpoint matches.

5.4 Debug Exceptions from Breakpoints

This section describes how to set up instruction and data breakpoints to generate debug exceptions when the match
conditions are true.

5.4.1 Debug Exception Caused by Instruction Breakpoint

The BE bit in the IBCn register must be set for an instruction breakpoint to be enabled. A Debug Instruction Break
exception occurs when the IB_match equation is true (see Section 5.3.1 on page 120). The corresponding Break Sta-
tus (BS) bit in the IBS register is set when the breakpoint generates the debug exception. Note that the BE bit alone
enables the breakpoint exception, whether or not the TE bit is set (see Section 5.5 on page 133).

The Debug Instruction Break exception is precise, so the DEPC register and DBD bit in the Debug register (see
Section 2.7 on page 58) point to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception only updates the debug related registers. That instruction will not cause
any loads/stores to occur. Thus a debug exception from a data breakpoint cannot occur at the same time an instruction
receives a Debug Instruction Break exception.

The debug handler usually returns to the instruction causing the Debug Instruction Break exception, whereby the
instruction is executed. Debug software must disable the breakpoint when returning to the instruction; otherwise, the
Debug Instruction Break exception will reoccur. An alternative is for debug software to emulate the instruction(s) in
software and change the DEPC accordingly.

5.4.2 Debug Exception by Data Breakpoint

The BE bit in the DBCn register must be set for a data breakpoint to be enabled. A debug exception occurs when the
DB_match condition is true (see Section 5.3.2 on page 122). A matching data breakpoint generates either a precise or
an imprecise debug exception. Note that the BE bit alone enables the breakpoint exception, whether or not the TE bit
is set (see Section 5.5 “Breakpoints Used as Triggerpoints”).

Refer to Section 5.8.4 on page 152 for additional information on precise and imprecise debug exceptions.

5.4.2.1 Debug Data Break Load/Store Exception as a Precise Debug Exception

A Debug Data Break Load/Store exception occurs when a data breakpoint indicates a precise match. In this case, the
DEPC register and DBD bit in the Debug register point to the load/store instruction that caused the DB_match equa-

 Hardware Breakpoints

132 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

tion to be true (see Section 5.3.2 on page 122), and the corresponding BS bit in the DBS register is set. Details of the
behavior of the instruction causing the debug exception are shown in Table 5.7.

In the case of a data breakpoint where a data value compare is set up on a load instruction, the load does occur from
the external memory, since the data value is required to evaluate the match condition, but the destination register is
not updated, so the loaded value is simply discarded.

The rules shown in Table 5.8 describe the update of the BS bits when several data breakpoints match the same access
and generate a debug exception.

Any BS bit set prior to the match and debug exception remains set, because only debug software can clear the BS
bits.

The debug handler usually returns to the instruction that caused the Debug Data Break Load/Store exception,
whereby the instruction is re-executed. This re-execution results in a repeated load from system memory after a data
breakpoint with a data value compare on a load, because the load occurred previously in order to allow evaluation of
the breakpoint as described above. Memory-mapped devices with side effects on loads must allow such reloads, or
debug software should alternatively avoid setting data breakpoints with data value compares on the address of such
devices. Debug software must disable breakpoints when returning to the instruction; otherwise, the Debug Data
Break Load/Store exception will reoccur. An alternative is for debug software to emulate the instruction in software
and change the DEPC accordingly.

Table 5.7 Behavior on Precise Exceptions from Data Breakpoints

Instruction and
Data Breakpoint

Load/Store Instruction
Execution

 Destination
Register External Memory System Access

Store wo/w value match Not completed Not updated1

1. This applies to the Store Conditional Word/Doubleword (SC/SCD) instructions

Store to memory is not committed

Load without value match Not updated2

2. This includes side effects like for the Load Linked Word/Doubleword (LL/LLD) instructions

Load from memory does not occur

Load with value match Load from memory does occur

Table 5.8 Rules for Update of Break Status (BS) Bits on Precise Exceptions from Data Breakpoints

Instruction

Breakpoints That Matches... Update of BS Bits for Matching Data Breakpoints

Without Value
Compare

With Value
Compare Without Value Compare With Value Compare

Load / Store One or more None BS bits set for all No matching breakpoints

Load One or more One or more BS bits set for all Unchanged BS bits because
load of data value does not
occur, so match of the break-
point can’t be determined.

Load None One or more (No matching breakpoints) BS bits set for all.

Store One or more One or more BS bits set for all Optional to either set BS bits for
all, or change none of the BS
bits.

Store None One or more (No matching breakpoints) BS bits set for all.

5.5 Breakpoints Used as Triggerpoints

MIPS® EJTAG Specification, Revision 6.10 133

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.4.2.2 Debug Data Break Load/Store Exception as an Imprecise Debug Exception

A Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an imprecise match. In
this case, the DEPC register and DBD bit in the Debug register point to an instruction later in the execution flow
rather than at the load/store instruction that caused the DB_match equation to be true.

The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always updates the destina-
tion register and completes the access to the external memory system. Therefore this load/store instruction is not
re-executed on return from the debug handler, because the DEPC register and DBD bit do not point to that instruc-
tion.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break Load/Store Imprecise
exception is generated only for the first one matching. Both the first and succeeding matches cause corresponding BS
bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated for succeeding matches because the
processor is already in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first
match (for example, due to a precise debug exception), then all matches cause the corresponding BS bits and
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is already in Debug
Mode.

The SYNC and EHB instructions, followed by appropriate spacing, (as described in Section 2.2.3.7 on page 40 and
Section 2.2.4 on page 41) must be executed before the BS bits and DDBLImpr/DDBSImpr bits are respectively
accessed for read or write. This delay ensures that these bits are fully updated.

Any BS bit set prior to the match and debug exception are kept set, because only debug software can clear the BS
bits.

5.5 Breakpoints Used as Triggerpoints

Software can set up both instruction and data breakpoints such that a matching breakpoint does not generate a debug
exception, but sends an indication through the BS bit only. But note that if the BE bit is set, then a debug exception
will be generated, even if the TE bit is set. The TE bit in the IBCn or DBCn register controls whether an instruction or
data breakpoint, respectively, is used as a triggerpoint. Triggerpoints are evaluated for matches under the same crite-
ria as breakpoints.

The BS bit in the IBS or DBS register is set for a triggerpoint when the respective IB_match condition (see Section
5.3.1 on page 120) or DB_match condition (see Section 5.3.2 on page 122) is true.

For the BS bit to be set for an instruction triggerpoint, either the instruction must be fully executed or an exception
must occur on the instruction.

Table 5.9 Actions Resulting from an Instruction/Data Match for Specified BE and TE Bit Values

TE BE Breakpoint Exception BS bit is set in IBS/DBS

0 0 Not taken No

0 1 Taken Yes

1 0 Not taken Yes

1 1 Taken Yes

 Hardware Breakpoints

134 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The BS bit for a data triggerpoint can only be set if no exception with higher priority than the Debug Data Break
Load/Store exception with address match only occurred on the load/store instruction. For exceptions with equal or
lower priority than the Debug Data Break Load/Store exception with address match only, the BS bits are still set for a
matching triggerpoint. For example, the BS bit is set even if a TLB or Bus Error exception occurred on the load/store
instruction. Data triggerpoints with value compares require the data value to be valid for the BS bit to be set, which is
not the case if, for example, a TLB or Bus Error exception occurs on a load instruction. However, for stores, the trig-
ger may compare on UNPREDICTABLE data as described in Section 5.3.2.2 on page 125.

The rules for update of the BS bits are shown in Table 5.10.

Data breakpoints with imprecise matches generate imprecise triggers when enabled by the TE bit.

Note that trigger indications by BS may be set based on compare with UNPREDICTABLE data, as described in (see
Section 5.3.2.2 on page 125).

A triggerpoint match can be indicated on an optional internal signal or chip pin.

5.6 Instruction Breakpoint Registers

This section describes the instruction breakpoint registers for MIPS32 and MIPS64 processors, and other R4000 priv-
ileged environment implementations of 32-bit and 64-bit processors. These registers provide status and control for
the instruction breakpoints. All registers are in the drseg segment. The 1 to 15 implemented breakpoints are numbered
0 to 14, respectively, for registers and breakpoints. The specific breakpoint number is indicated by “n” in the range 0
to 15 depending on the implemented number of instruction breakpoints. The registers and their respective addresses
offsets are shown in Table 5.11. For a description of the two registers IBCC and IBPC used for complex breakpoints,
see Section 6.3.2 on page 160 and Section 6.3.4 on page 162 respectively.

Table 5.10 Rules for Update of Break Status (BS) Bits on Data Triggerpoints

Instruction Without/With Value Compare BS Bits Update for Triggerpoint

Load / Store Without value compare BS bit set if no exception with higher priority than the Debug
Data Break Load/Store exception, with address match only,
occurred on the instruction.

Load With value compare BS bit set if no exception with higher priority than the Debug
Data Break Load exception, with address and data value match,
occurred on the instruction.

Store With value compare BS bit is set if no exception occurred on the instruction, and is
optional to be set if an exception with equal or lower priority than
the Debug Data Break Store exception, with address match only,
occurred on the instruction, with the requirement that either all the
relevant BS bits are set, or none are changed.

Table 5.11 Instruction Breakpoint Register Mapping

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + 0x100 * n IBAn Instruction Breakpoint Address n

0x1108 + 0x100 * n IBMn Instruction Breakpoint Address Mask n

0x1110 + 0x100 * n IBASIDn Instruction Breakpoint ASID n

5.6 Instruction Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 135

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.6.1 Instruction Breakpoint Status (IBS) Register

Compliance Level: Required if any instruction breakpoints are implemented, optional otherwise.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints. It is located at drseg segment offset 0x1000. The ASIDsup bit applies to all instruction breakpoints.

Figure 5.3 shows the format of the IBS register; Table 5.12 describes the IBS register fields.

Figure 5.3 IBS Register Format

0x1118 + 0x100 * n IBCn Instruction Breakpoint Control n

0x1120 + 0x100 * n IBCCn Instruction Breakpoint Complex Control n

0x1128 + 0x100 * n IBPCn Instruction Breakpoint Pass Counter n

31 30 29 28 27 24 23 16 15 14 0

32-bit Processor 0
ASI
Dsu

p
0 BCN 0

IBP
shar

e
BS[14:0]

63 31 30 29 28 27 24 23 16 15 14 0

64-bit Processor 0
ASI
Dsu

p
0 BCN 0

IBP
Tsh
are

BS[14:0]

Table 5.12 IBS Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ASIDsup 30 Indicates if ASID compare is supported in instruction
breakpoints:

ASID support indication does not guarantee a TLB-type
MMU, because the same breakpoint implementation can
be used with processors having all different types of
MMUs.

R Preset Required

BCN 27:24 Number of instruction breakpoints implemented: R Preset Required

Table 5.11 Instruction Breakpoint Register Mapping (Continued)

Offset in drseg
Register

Mnemonic Register Name and Description

Encoding Meaning

0 No ASID compare

1 ASID compare (IBASIDn register
implemented)

Encoding Meaning

0 Reserved

1-15 Number of instructions breakpoints

 Hardware Breakpoints

136 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.6.2 Instruction Breakpoint Address n (IBAn) Register

Compliance Level: Required with instruction breakpoint n, optional otherwise.

If IBCn.hwart register field is zero, then the Instruction Breakpoint Address n (IBAn) register has the virtual address
used in the condition for instruction breakpoint n.

If IBCn.hwart register field is one, then the Instruction BreakPoint Address n (IBAn) register holds the upper limit of
the address range to match. The lower limit is held in the IBMn register.

It is located at drseg segment offset 0x1100 + 0x100 * n.

Figure 5.4 shows the format of the IBAn register; Table 5.13 describes the IBAn register field.

Figure 5.4 IBAn Register Format

IBPshare 15 Determines whether the Instruction breakpoints are shared
across the different VPEs of the processor, or are imple-
mented per-VPE.

R Preset Required in
MIPS MT is
implemented.

Otherwise
Reserved.

BS[14:0] 14:0 Break Status (BS) bit for breakpoint n is at BS[n], where n
is 0 to 14. A bit is set to 1 when the condition for its corre-
sponding breakpoint has matched.
The number of BS bits implemented corresponds to the
number of breakpoints indicated by the BCN field.
Debug software is expected to clear the bits before use,
because reset does not clear these bits.
Bits not implemented are read-only (R) and read as zeros.

R/W0 Undefined Required for
bits at imple-
mented break-

points,
other bits not
implemented

0 MSB:31,
29:28, 23:16

Must be written as zeros; return zeros on read. 0 0 Reserved

31 0

32-bit Processor IBAn

63 0

64-bit Processor IBAn

Table 5.12 IBS Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Not shared

1 Shared across VPEs

5.6 Instruction Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 137

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.6.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance Level: Required with instruction breakpoint n, optional otherwise.

If IBCn.hwart register field is zero, then the Instruction Breakpoint Address Mask n (IBMn) register has the address
compare mask used in the condition for instruction breakpoint n. The address that is masked is in the IBAn register.

If IBCn.hwart register field is one, then the Instruction BreakPoint Address Mask n (IBMn) register holds the lower
limit of the address range to match. The upper limit is held in the IBAn register.

The IBMn register is located at drseg segment offset 0x1108 + 0x100 * n.

Figure 5.5 shows the format of the IBMn register; Table 5.14 describes the IBMn register field.

Figure 5.5 IBMn Register Format

5.6.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance Level: Required with instruction breakpoint n if the ASIDsup bit in the IBS register is 1, optional other-
wise.

The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for instruction break-
point n. It is located at drseg segment offset 0x1110 + 0x100 * n.

Figure 5.6 shows the format of the IBASIDn register; Table 5.15 describes the IBASIDn register fields. The width of
the ASID field for the compare is 8 bits. If the wider 10-bit ASID is implemented within the TLB, the EASID field is

Table 5.13 IBAn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

IBA MSB:0 Instruction breakpoint virtual address for condition. R/W Undefined Required

31 0

32-bit Processor IBMn

63 0

64-bit Processor IBMn

Table 5.14 IBMn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

IBM MSB:0 Instruction breakpoint address mask for condition: R/W Undefined Required

Encoding Meaning

0 Corresponding address bit compared

1 Corresponding address bit masked

 Hardware Breakpoints

138 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

also used. The number of compared ASID bits is identical to the width of the ASID field in the EntryHi register used
with the TLB-type MMU.

Figure 5.6 IBASIDn Register Format

31 24 23 22 21 20 19 12 11 8 7 0

32-bit Processor GuestID UGID EASID MGPA 0 VPE ASID

63 32 31 24 23 22 21 20 12 11 8 7 0

64-bit Proces-
sor

0 GuestID UGID EASID MGPA 0 VPE ASID

Table 5.15 IBASIDn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ASID 7:0 Instruction breakpoint ASID value for compare. R/W Undefined Required

VPE 11:8 This field indicates the value of the VPE id to use for com-
parison and is used only if VPEuse in IBCn register is 1
and the breakpoints are shared across VPEs. If the break-
points are not shared, then these bits read zero, and writes
are ignored.

R/W Undefined Required if
MIPS MT is
implemented.

Otherwise
Reserved.

MGPA 20 Match on Guest Physical Address.

If this bit is clear, then this breakpoint matches on Guest
Virtual Address (or Root Virtual Address for non-virtual-
ized accesses).

If this bit is set, then this breakpoint matches only on
Guest Physical Address.

If this bit is set and the UGID bit is set, the match happens
only for Guest Physical Address when the GuestId field
matches the GuestID of the executed instruction.

This bit is allowed to be hardwired to zero when the fea-
ture is not implemented. This bit is not allowed to be hard-
wired to one as the preferred behavior is to match on
Virtual Addresses if there is no choice between virtual and
physical addresses.
Probe Software can determine if this feature is software
configurable by writing and reading back this bit.

R/W or R Undefined Optional if
MIPS VZ mod-

ule is imple-
mented

(Config3VZ=1).

Otherwise
Reserved.

EASID 22:21 Extended ASID
If Config4AE is set, then the extended bits of the ASID

value are held here.

R/W Undefined Required if
Config4AE is

set. Otherwise
Reserved.

5.6 Instruction Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 139

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The following table shows how the UGID/GuestID and MGPA fields are used to control what type of addresses are
matched in a system supporting the VZ Module. In this table, the term “match” just refers to the comparision for

UGID 23 Use GuestID field.

If this bit is set, match only happens when GuestID field
within this register matches the GuestID of the memory
request and device is executing in GuestMode
(GuestCtl0GM=1 and Root.StatusEXL=0 and Root.Statu-

sERL=0 and Root.DebugDM=0).

If this bit ic clear, the GuestID field is not used for match
calculation.

If this bit is set, the GuestID field is used for the match
calculation regardless of the setting of the MGVA field.

This bit is allowed to be hardwired to zero when the fea-
ture is not implemented. This bit is allowed to be hard-
wired to one when the implementation always uses the
GuestID field for the match comparisions.
Probe Software can determine if this feature is software
configurable by writing and reading back this bit.

R/W or R Undefined Optional if
MIPS VZ mod-

ule is imple-
mented

(Config3VZ=1)

; Otherwise
Reserved.

GuestID 31:24 GuestID value used for match comparison.

If GuestCtl0G1=1, then the active width of this register

field matches the number of writeable bits of GuestCtl1ID.

If GuestCtl0G1=0, then only the right-most bit of this reg-

ister field is writeable and the rest of the bits in this field
are read-only as zero.

A value of zero is used to select Root-mode execution.

If this feature is not implemented (UGID field read-only
as zero), then the GuestID field is also read-only as zero.

Please refer to Section 7.2 on page 173 to see how Root
and Guest Modes are represented in this field.

R/W or R Undefined Optional if
MIPS VZ mod-

ule is imple-
mented

(Config3VZ=1);

Otherwise
Reserved.

0 63:32, 1912 Must be written as zeros; return zeros on read. 0 0 Reserved

Address Type

UGID=0 or UGID not
implemented,

MGPA=0 or MGPA
not implemented

UGID=0 or UGID not
implemented,

MGPA=1

UGID=1,
MGPA=0 or MGPA
not implemented

UGID=1,
MGPA=1

Guest Virtual Address Always Match No Match Match on Specified
non-zero GuestID value

No Match

Guest Physical Address No Match Always Match No Match Match on specified
non-zero GuestID value

Table 5.15 IBASIDn Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

 Hardware Breakpoints

140 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

these fields, it does not mean the final match condition - which needs to also compare against the address, load/store
type and optionally the ASID, TCID and VPE fields.

5.6.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Required with instruction breakpoint n, optional otherwise.

The Instruction Breakpoint Control n (IBCn) register determines what constitutes instruction breakpoint n: trigger-
point, breakpoint, ASID value inclusion. This register is located at drseg segment offset 0x1118 + 0x100 * n.

Figure 5.7 shows the format of the IBCn register; Table 5.15 describes the IBCn register fields.

Figure 5.7 IBCn Register Format

Root Virtual Address from
non-virtualized Access

Always Match No Match Match when GuestID=0 Match when GuestID=0

31 24 23 22 21 7 6 5 4 3 2 1 0

32-bit Processor TC
ASID
use

TC
use

0
HW

ARTS
EX
CL

HW
ART

VPE
use

TE 0 BE

63 32 31 24 23 22 21 7 6 5 4 3 2 1 0

64-bit Processor 0 TC
ASID
use

TC
use

0
HW

ARTS
EX
CL

HW
ART

VPE
use

TE 0 BE

Table 5.16 IBCn Register Field Descriptions

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

TC 31:24 The value of TC (thread context) to match in the compari-
son to determine if the instruction break is to be taken.
This comparison is effective only if the TCuse bit is set to
1. Otherwise this TC value is ignored.

R/W Undefined Required if
MIPS MT is
implemented.

Otherwise
Reserved.

ASIDuse 23 Use ASID value in compare for instruction breakpoint n:

Debug software should only set the ASIDuse if a TLB in
the implementation is used by the application software.
This bit is read-only and reads as zero, if not implemented.

R/W Undefined Required if
ASIDsup in IBS

register is 1;
otherwise not
implemented

Address Type

UGID=0 or UGID not
implemented,

MGPA=0 or MGPA
not implemented

UGID=0 or UGID not
implemented,

MGPA=1

UGID=1,
MGPA=0 or MGPA
not implemented

UGID=1,
MGPA=1

Encoding Meaning

0 Do not use ASID value in compare

1 Use ASID value in compare

5.6 Instruction Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 141

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

TCuse 22 Use TC value in comparison for instruction breakpoint n.
If TC is not used in the comparison, then the comparison
is restricted to the match all TCs in the current VPE if the
breakpoints are not shared. If the breakpoints are shared,
then they can match all TCs in the processor unless
VPEuse is set.

R/W Undefined Required if
MIPS MT is
implemented.

Otherwise
Reserved.

HWART 6 Indicates whether Address Range Match Mode is imple-
mented or not for this Breakpoint.

R Preset Required if
Address Range
BreakPoints are
implemented.

Otherwise
Reserved

EXCL 5 If Address Range Matching Mode is chosen, indicates
whether the range is exclusive or inclusive:

R/W 0 Required if
Address Range
BreakPoints are
implemented.

Otherwise
Reserved

HWART 4 BreakPoint MatchMode: R/W 0 Required if
Address Range
BreakPoints are
implemented.

Otherwise
Reserved

VPEuse 3 Use VPE value in comparison for instruction breakpoint n.
This field is used only if the breakpoints are shared across
the VPEs of a MT core, that is, the IBPshare bit is set in
register IBP.
If the breakpoints are not shared, then these bits read zero,
and writes are ignored.

R/W Undefined Required if
MIPS MT is
implemented.

Otherwise
Reserved.

Table 5.16 IBCn Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

Encoding Meaning

0 Address Range Match Mode not Imple-
mented.

1 Address Range Match Mode Imple-
mented.

Encoding Meaning

0 Inclusive - match will occur for addresses
inside range defined by IBMn and IBAn

1 Exclusive - match will occur for
addresses outside range defined by IBMn
and IBAn.

Encoding Meaning

0 Equality & Mask matching
(non-Range)

1 Address Range matching

 Hardware Breakpoints

142 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.7 Data Breakpoint Registers

This section describes the data breakpoint registers for MIPS32 and MIPS64 processors, and other R4000 privileged
environment implementations of 32-bit and 64-bit processors. These registers provide status and control for the data
breakpoints. All registers are in the drseg segment. The 1 to 15 implemented breakpoints are numbered 0 to 14,
respectively, for registers and breakpoints. The specific breakpoint number is indicated by “n” in the range 0 to 15
depending on the implemented number of data breakpoints. The registers and their respective addresses offsets are
shown in Table 5.17. For a description of the two registers DBCC and DBPC used for complex breakpoints, see
Section 6.3.4 on page 162 and Section 6.3.5 on page 163 respectively.

5.7.1 Data Breakpoint Status (DBS) Register

Compliance Level: Required if any data breakpoints are implemented, optional otherwise.

TE 2 Use instruction breakpoint n as triggerpoint: R/W 0 Required

BE 0 Use instruction breakpoint n as breakpoint: R/W 0 Required

0 21:4, 1 Must be written as zeros; return zeros on read. 0 0 Reserved

Table 5.17 Data Breakpoint Register Mapping

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n

0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n

Table 5.16 IBCn Register Field Descriptions (Continued)

Fields

Description
Read/W

rite
Reset
State ComplianceName Bits

Encoding Meaning

0 Do not use it as triggerpoint

1 Use it as triggerpoint

Encoding Meaning

0 Do not use it as breakpoint

1 Use it as breakpoint

5.7 Data Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 143

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.
It is located at drseg segment offset 0x2000. The ASIDsup, NoSVmatch, and NoLVmatch fields apply to all data
breakpoints.

Figure 5.8 shows the format of the DBS register; Table 5.18 describes the DBS register fields.

Figure 5.8 DBS Register Format

31 30 29 28 27 24 23 16 15 14 0

32-bit Processor 0
ASI
D

sup

NoSV
match

NoL
Vmat

ch
BCN 0

DB
Psh
are

BS[14:0]

63 31 30 29 28 27 24 23 16 15 14 0

64-bit Processor 0
ASI
D

sup

NoSV
match

NoL
Vmat

ch
BCN 0

DB
Psh
are

BS[14:0]

Table 5.18 DBS Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ASIDsup 30 Indicates if ASID compare is supported in data break-
points:

ASID support indication does not guarantee a TLB-type
MMU, because the same breakpoint implementation can
be used with processors having all different types of
MMUs.

R Preset Required

NoSVmatch 29 Indicates if a value compare on a store is supported in data
breakpoints:

R Preset Required

NoLVmatch 28 Indicates if a value compare on a load is supported in data
breakpoints:

R Preset Required

Encoding Meaning

0 No ASID compare

1 ASID compare (DBASIDn register
implemented)

Encoding Meaning

0 Data value and address in condition on
store

1 Address compare only in condition on
store

Encoding Meaning

0 Data value and address in condition on
load

1 Address compare only in condition on
load

 Hardware Breakpoints

144 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.7.2 Data Breakpoint Address n (DBAn) Register

Compliance Level: Required with data breakpoint n, optional otherwise.

If DBCn.hwart register field is zero, then the Data Breakpoint Address n (DBAn) register has the virtual address used
in the condition for data breakpoint n.

If DBCn.hwart register field is one, then the Data BreakPoint Address n (DBAn) register holds the upper limit of the
address range to match. The lower limit is held in the DBMn register.

This register is located at drseg segment offset 0x2100 + 0x100 * n.

Figure 5.9 shows the format of the DBAn register; Table 5.19 describes the DBAn register field.

Figure 5.9 DBAn Register Format

BCN 27:24 Number of data breakpoints implemented: R Preset Required

DBPshare 15 Determines whether the Data breakpoints are shared
across the different VPEs of the processor, or are imple-
mented per-VPE.

R Preset Required if
MIPS MT is
implemented;

otherwise
Reserved.

BS[14:0] 14:0 Break Status (BS) bit for breakpoint n is at BS[n], where n
is 0 to 14. The bit is set to 1 when the condition for its cor-
responding breakpoint has matched.
The number of BS bits implemented corresponds to the
number of breakpoints indicated by the BCN bit.
Debug software is expected to clear the bits before use,
since they are not cleared by reset.
Bits not implemented are read-only (R) and read as zeros.

R/W0 Undefined Required for
bits at imple-
mented break-

points,
other bits not
implemented

0 MSB:31,
23:16

Must be written as zeros; return zeros on read. 0 0 Reserved

31 0

32-bit Processor DBAn

63 0

64-bit Processor DBAn

Table 5.18 DBS Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Reserved

1-15 Number of data breakpoints

Encoding Meaning

0 Not shared

1 Shared across VPEs

5.7 Data Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 145

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.7.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance Level: Required with data breakpoint n, optional otherwise.

If DBCn.hwart register field is zero, then the Data Breakpoint Address Mask n (DBMn) register has the address com-
pare mask used in the condition for data breakpoint n. The address that is masked is in the DBAn register.

If DBCn.hwart register field is one, then the Data BreakPoint Address Mask in (DBMn) register holds the lower limit
of the address range to match. The upper limit is held in the DBAn register.

The DBMn register is located at drseg segment offset 0x2108 + 0x100 * n.

Figure 5.10 shows the format of the DBMn register; Table 5.20 describes the DBMn register field.

Figure 5.10 DBMn Register Format

5.7.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance Level: Required with data breakpoint n if the ASIDsup bit in the DBS register is 1, optional otherwise.

The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data breakpoint n. It is
located at drseg segment offset 0x2110 + 0x100 * n.

Figure 5.11 shows the format of the DBASIDn register; Table 5.21 describes the DBASIDn register fields. The width
of the ASID field for the compare is 8 bits. If the wider 10-bit ASID is implemented within the TLB, the EASID field

Table 5.19 DBAn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

DBA MSB:0 Data breakpoint virtual address for condition R/W Undefined Required

31 0

32-bit Processor DBMn

63 0

64-bit Processor DBMn

Table 5.20 DBMn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

DBMn MSB:0 Data breakpoint address mask for condition: R/W Undefined Required

Encoding Meaning

0 Corresponding address bit compared

1 Corresponding address bit masked

 Hardware Breakpoints

146 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

is also used. The number of compared ASID bits is identical to the width of the ASID field in the EntryHi register
used with the TLB-type MMU.

Figure 5.11 DBASIDn Register Format

31 24 23 22 21 20 19 16 15 8 7 0

32-bit Processor GuestID
UG
ID

EASID MGPA VPE TCval ASID

63 32 31 24 23 22 21 20 19 16 15 8 7 0

64-bit Proces-
sor

0 GuestID
UG
ID

EASID MGPA VPE TCval ASID

Table 5.21 DBASIDn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

GuestID 31:24 GuestID value used for match comparison.

If GuestCtl0G1=1, then the active width of this register

field matches the number of writeable bits of GuestCtl1ID.

If GuestCtl0G1=0, then only the right-most bit of this reg-

ister field is writeable and the rest of the bits in this field
are read-only as zero.

A value of zero is used to select Root-mode execution.

If this feature is not implemented (UGID field read-only
as zero), then the GuestID field is also read-only as zero.

Please refer to Section 7.2 on page 173 to see how Root
and Guest Modes are represented in this field.

R/W or R Undefined Optional if if MIPS
VZE is implemented

(Config3VZ=1);

Otherwise Reserved.

UGID 23 Use GuestID field.
If this bit is set, match only happens when GuestID field
within this register matches the GuestID of the memory
request and device is executing in GuestMode
(GuestCtl0GM=1 and Root.StatusEXL=0 and Root.Statu-

sERL=0 and Root.DebugDM=0).

If this bit ic clear, the GuestID field is not used for match
calculation.

If this bit is set, the GuestID field is used for the match
calculation regardless of the setting of the MGVA field.

This bit is allowed to be hardwired to zero when the fea-
ture is not implemented. This bit is allowed to be hard-
wired to one when the implementation always uses the
GuestID field for matchcomparisions.
Probe Software can determine if this feature is software
configurable by writing and reading back this bit.

R/W or R Undefined Optional if MIPS
VZE is imple-

mented.
(Config3VZ=1);

Otherwise Reserved.

5.7 Data Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 147

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The following table shows how the UGID/GuestID and MGPA fields are used to control what type of addresses are
matched in a system supporting the VZ Module. In this table, the term “Match” just refers to the comparisions for

EASID 22:21 Extended ASID
If Config4AE is set, then the extended bits of the ASID

value are held here.

R/W Undefined Required if
Config4AE is set.

Otherwise Reserved.

MGPA 20 Match on Guest Physical Address.

If this bit is clear, then this breakpoint matches on Guest
Virtual Address (or Root Virtual Address for non-virtual-
ized accesses).

If this bit is set, then this breakpoint matches on only
Guest Physical Address.

If this bit is set and the UGID bit is setl, the match hap-
pens only for Guest Physical Address when the GuestId
field matches the GuestID of the executed instruction.

This bit is allowed to be hardwired to zero when the fea-
ture is not implemented. This bit is not allowed to be hard-
wired to one as the preferred behavior is to match on
Virtual Addresses if there is no choice between virtual and
physical addresses. Probe Software can determine if this
feature is software configurable by writing and reading
back this bit.

R/W or R Undefined Optional if MIPS
VZE is imple-

mented.
(Config3VZ=1);

Otherwise Reserved.

VPE 19:16 Value of the VPE id to use for comparison and is used
only if VPEuse in DBCn register is 1 and the breakpoints
are shared across VPEs. If the breakpoints are not shared,
then these bits read zero, and writes are ignored.

R/W Undefined Required if MIPS
MT is implemented;
otherwise Reserved.

TCval 15:8 Value of the thread context that caused the Data Break-
point. Because data breaks are imprecise, software can
examine these bits to determine which thread context actu-
ally caused the data break.

R/W Undefined Required if MIPS
MT is implemented;
otherwise Reserved.

ASID 7:0 Data Breakpoint ASID value for compare. R/W Undefined Required

0 MSB:23, 20 Must be written as zeros; return zeros on read. 0 0 Reserved

Address Type

UGID=0 or UGID not
implemented,

MGPA=0 or MGPA
not implemented

UGID=0 or UGID not
implemented,

MGPA=1

UGID=1,
MGPA=0 or MGPA
not implemented

UGID=1,
MGPA=1

Guest Virtual Address Always Match No Match Match on Specified
non-zero GuestID value

No Match

Guest Physical Address No Match Always Match No Match Match on specified
non-zero GuestID value

Root Virtual Address from
non-virtualized Access

Always Match No Match Match when GuestID=0 Match when GuestID=0

Table 5.21 DBASIDn Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

 Hardware Breakpoints

148 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

these fields, it does not mean the final match condition - which needs to also compare against the address, load/store
type and optionally the ASID, TCID and VPE numbers.

5.7.5 Data Breakpoint Control n (DBCn) Register

Compliance Level: Required with data breakpoint n, optional otherwise.

The Data Breakpoint Control n (DBCn) register what constitutes data breakpoint n: triggerpoint, breakpoint, ASID
value inclusion, load/store access fulfillment, ignore byte access, byte lane mask. This register is located at drseg seg-
ment offset 0x2118 + 0x100 * n.

For description of “data bus” notation see Section 5.3.2 on page 122.

Figure 5.12 shows the format of the DBCn register; Table 5.22 describes the DBCn register fields.

Figure 5.12 DBCn Register Format

31 24 23 22 21 18 17 14 13 12 11 10 9 8 7 4 3 2 1 0

32-bit Processor TC
ASID
use

TC
use

0 BAI[3:0]
No
SB

No
LB

0
HW

ARTS
EX
CL

HW
ART

BLM[3:0]
VPE
use

TE
IV
M

BE

63 32 31 24 23 22 21 14 13 12 11 4 3 2 1 0

64-bit Processor 0 TC
ASID
use

TC
use

BAI[7:0]
No
SB

No
LB

BLM[7:0]
VPE
use

TE
IV
M

BE

Table 5.22 DBCn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

TC 31:24 The value of TC (thread context) to match in the compari-
son to determine if the data break is to be taken. This com-
parison is effective only if the TCuse bit is set to 1.
Otherwise this TC value is ignored.

R/W Undefined Required if MIPS MT
is implemented; other-

wise Reserved.

ASIDuse 23 Use ASID value in compare for data breakpoint n:

Debug software should only set the ASIDuse if a TLB in
the implementation is used by the application software.
This bit is read-only and reads as zero, if not implemented.

R/W Undefined Required if ASIDsup
in DBS register is 1;
otherwise not imple-

mented.

TCuse 22 Use TC value in comparison for data breakpoint n. R/W Undefined Required if ASIDsup
in DBS reg. is 1; oth-

erwise not imple-
mented.

Encoding Meaning

0 Do not use ASID value in compare

1 Use ASID value in compare

Encoding Meaning

0 Do not use TC value in compare

1 Use TC value in compare

5.7 Data Breakpoint Registers

MIPS® EJTAG Specification, Revision 6.10 149

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

BAI[:0] 21:14 Byte access ignore. Each bit of this field determines
whether a match occurs on an access to a specific byte of
the database (BAI[0] controls matching for data bus bits
7:0; BAI[1] controls matching for data bus bits 15:8, etc.).,
with the polarity of each bit, as follows:

A match depends on a reference accessing one or more of
the non-ignored bytes. No matches will occur if all bytes
are ignored.
Debug software must adjust for endianess when program-
ming this field.

R/W Undefined Required for byte
lanes in implementa-
tion; otherwise not

implemented.

NoSB 13 Controls whether condition for data breakpoint is ever ful-
filled on a store access:

R/W Undefined Required

NoLB 12 Controls whether condition for data breakpoint is ever ful-
filled on a load access:

R/W Undefined Required

HWART 10 Indicates whether Address Range Match Mode is imple-
mented or not for this Breakpoint.

R Preset Required if Address
Range BreakPoints

are implemented. Oth-
erwise Reserved

Table 5.22 DBCn Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Condition depends on access to corre-
sponding byte

1 Access for corresponding byte is
ignored

Encoding Meaning

0 Condition can be fulfilled on store
access

1 Condition is never fulfilled on store
access

Encoding Meaning

0 Condition can be fulfilled on load
access

1 Condition is never fulfilled on load
access

Encoding Meaning

0 Address Range Match Mode not Imple-
mented.

1 Address Range Match Mode Imple-
mented.

 Hardware Breakpoints

150 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EXCL 9 If Address Range Matching Mode is chosen, indicates
whether the range is exclusive or inclusive:

R/W 0 Required if Address
Range BreakPoints

are implemented. Oth-
erwise Reserved

HWART 8 BreakPoint Match Mode: R/W 0 Required if Address
Range BreakPoints

are implemented. Oth-
erwise Reserved

BLM[:0] :4 Byte lane mask for value compare on data breakpoint.
BLM[0] masks byte at bits [7:0] of the data bus, BLM[1]
masks byte at bits [15:8], etc.:

Debug software must adjust for endianess when program-
ming this field.
 BLM[:0] are unimplemented if value compare is not
implemented, which is the case when NoSVmatch and
NoLVmatch bits in DBS are both 1. Bits are read-only (R)
and read as zeros if not implemented.

R/W Undefined Required for byte
lanes in implementa-
tion and if value com-

pare; otherwise not
implemented.

VPEuse 3 Use VPE value in comparison for instruction breakpoint n.
This field is used only if the breakpoints are shared across
the VPEs of a MT core, that is, the DBPshare bit is set in
register DBP.
If the breakpoints are not shared, this bit reads zero and
writes are ignored.

R/W Undefined Required if MIPS MT
is implemented. Oth-

erwise Reserved.

TE 2 Use data breakpoint n as triggerpoint: R/W 0 Required

Table 5.22 DBCn Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Inclusive - match will occur for addresses
inside range defined by IBMn and IBAn

1 Exclusive - match will occur for
addresses outside range defined by IBMn
and IBAn.

Encoding Meaning

0 Equality & Mask matching
(non-Range)

1 Address Range matching

Encoding Meaning

0 Compare corresponding byte lane

1 Mask corresponding byte lane

Encoding Meaning

0 Do not use it as triggerpoint

1 Use it as triggerpoint

5.8 Recommendations for Implementing Hardware Breakpoints

MIPS® EJTAG Specification, Revision 6.10 151

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.7.6 Data Breakpoint Value n (DBVn) Register

Compliance Level: Required with data breakpoint n if data value compare is supported (indicated by either NoSV-
match or NoLVmatch bits in DBS being 0), optional otherwise.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. It is located
at drseg segment offset 0x2120 + 0x100 * n.

Figure 5.13 shows the format of the DBVn register; Table 5.23 describes the DBVn register field.

Figure 5.13 DBVn Register Format

5.8 Recommendations for Implementing Hardware Breakpoints

This section provides useful information for implementing instruction and data breakpoints.

IVM 1 Used to indicate that the data value match should be
inverted.

R/W Undefined Required if DCRIVM

is 1; otherwise not
implemented. Revi-
sion 4.00 and above.

BE 0 Use data breakpoint n as breakpoint: R/W 0 Required

0 3 Must be written as zeros; return zeros on read. 0 0 Reserved

31 0

32-bit Processor DBVn

63 0

64-bit Processor DBVn

Table 5.23 DBVn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

DBV MSB:0 Data breakpoint data value for condition.
Debug software must adjust for endianess when program-
ming this field.

R/W Undefined Required

Table 5.22 DBCn Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Do not use it as breakpoint

1 Use it as breakpoint

 Hardware Breakpoints

152 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.8.1 Number of Instruction Breakpoints Without Single Stepping

If hardware single stepping is not implemented, then at least two instruction breakpoints are required. Four instruc-
tion hardware breakpoints are recommended.

5.8.2 Data Breakpoints with Data Value Compares

Data breakpoints should be implemented with data value compares. Also, data value compares should be imple-
mented even if it is not possible to break on loads with precise data value compares. Refer to Section 5.8.4 on
page 152 for more information on precise exceptions.

5.8.3 Data Breakpoint Compare on Invalid Data

Data breakpoints should only compare on valid data, so that debug exceptions are only generated on valid data. For
example, no debug exception should be generated for a bus error on a load that has a pending data compare break-
point on the data returned by the load. This also applies to compares on store data for a store to an unaligned address.

However, in some cases, the indication of invalid data is late relative to the data, for example, for a cache error as a
result of a complex error detection. In this case, data breakpoints can indicate a debug exception because the data was
believed to be valid at the time of the compare, and the pending error is then indicated to the debug handler through
the DBusEP or CacheEP bit in the Debug register, because the error occurred after the debug exception. However, for
bus errors due to external events, the bus error indication is usually available when the compare in the data breakpoint
takes place. Thus it is possible to avoid a debug exception.

5.8.4 Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value
Compares

When possible in an implementation, it is recommended that data breakpoints generate precise debug exceptions, so
that the DEPC register and DBD bit in the Debug register point to the load/store that caused the debug exception to
occur. This instruction can then be re-executed when execution resumes after the exception has been handled. How-
ever, data breakpoints are allowed to cause imprecise debug exceptions when the breakpoint is set up with data value
compares; for example, when data breakpoints with load data compares cannot be made precise due to a non-block-
ing load. In this case, the DEPC register and DBD bit point to an instruction in the execution flow following the
load/store that caused the imprecise debug exception. The Break Status (BS) bit can be updated when the match is
detected, even though a debug exception is not taken until later due to internal stalls (for example, a nulled instruction
in the pipeline at the time the match is detected). It is implementation-specific as to cases in which a data breakpoint
can cause an imprecise debug exception, but it is recommended that data breakpoints cause imprecise matches in as
few cases as possible.

In a processor implementing the MIPS MT Module, imprecise data breakpoints are especially bothersome, since
instructions from multiple thread contexts may be interleaved in the pipeline, and the thread taking the breakpoint
exception may not be the thread that caused the breakpoint. For this reason, it is required that in a processor imple-
menting MIPS MT, the hardware must write the value of the TC that caused the breakpoint in the TCval bits of the
corresponding DBASIDn register. For a consistent software implementation, this must be done whether the data
breakpoint exception is implemented as a precise or an imprecise debug exception,

Implementations can require imprecise debug exceptions from data breakpoints on loads with value compares in a
specific address range, if re-execution of a load in this range is not acceptable. This case is possible if the load has
side effects such as removing an entry on a queue. Imprecise debug exceptions for value compares ensure that the
destination register is properly updated with the loaded value, whereby re-execution of the load is avoided.

5.9 Breakpoint Examples

MIPS® EJTAG Specification, Revision 6.10 153

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.9 Breakpoint Examples

This section provides several examples of instruction and data breakpoint uses.

5.9.1 Instruction Breakpoint Examples

This section provides examples that illustrate using an instruction break.

5.9.1.1 Instruction Break in Small Range of Instructions with ASID

This example shows how to set up an instruction breakpoint to break on the fetch of any one of the four instructions
in the virtual address range shown below:

0x0000 0010 J L1 // ASID = 0x5
0x0000 0014 NOP
0x0000 0018 J L2
0x0000 001C NOP

The break registers must be set up as follows:

• IBA0 = 0x0000 0010

• IBM0 = 0x0000 000C

• IBC0: BE=1, ASIDuse=1, ASID = 0x5, other bits zero

Note that IBA0 has the starting address, and IBM0 has the address mask.

5.9.1.2 Instruction Break on 32-bit MIPS16e™ Instruction

In this example, instruction breakpoint 0 needs to be set up to break on the range 0x0000 0030 to 0x0000 0036, which
starts with the second part of an extended MIPS16e instruction:

0x0000 002e EXT // (1st part of MIPS16e inst.)
0x0000 0030 ADD // (2nd part)
0x0000 0032 SUB
0x0000 0034 SUB
0x0000 0036 SUB

The break registers must be set up as follows:

• IBA0 = 0x0000 0031

• IBM0 = 0x0000 0006

• IBC0: BE = 1, ASIDuse = 0, other bits zero

The CPU does not take a debug exception when fetching the second part of the ADD instruction, because it does not
constitute a whole instruction. The first break is on the SUB instruction at 0x0000 0032.

5.9.2 Data Breakpoint

This section provides three examples of data breakpoints.

 Hardware Breakpoints

154 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.9.2.1 Data Break on Load Access with ASID

This example shows how to perform a break on data breakpoint 0 when the CPU loads data 0xAAAA 0000 from
memory location 0x0000 0100 in ASID=0x7:

LW $2, 0x100($0) // ASID = 0x7

The break registers must be set up as follows:

• DBA0 = 0x0000 0100

• DBM0 = 0x0

• DBV0 = 0xAAAA 0000

• DBC0: BE = 1, NoLB = 0, NoSB = 1, BLM = 0, BAI = 0, ASIDuse = 1, ASID = 0x7, other bits zero

In this example, DBA0 contains the breakpoint address; DBM0 has the address mask; DBV0 has the data value; and
DBC0 indicates a breakpoint condition might be fulfilled on a load but not on a store, there is a value compare for a
corresponding byte, and an ASID is used.

5.9.2.2 Data Break on Store(s) to Halfword in Memory

This example shows a break on data breakpoint 0 when the CPU stores data in a specific halfword in memory. Stores
to the other halfword at the same address can be ignored. The data word is illustrated in Figure 5.14; the halfword for
bits 31:16 is shaded. The store instructions shown in Figure 5.14 alter the shaded halfword and cause a break if the
breakpoint registers are set up as shown below.

Figure 5.14 Data Break on Store with Value Compare

In this example, the data breakpoint registers are set up as follows:

• DBA0 = 0x0000 0200

• DBM0 = 0

• DBC0: BE = 1, NoLB = 1, NoSB = 0, BLM = 11112, BAI = 00112, ASIDuse = 0, other bits zero

5.9.2.3 Data Break on Store(s) to Halfword Range in Memory with Certain Value

In this example, the most significant halfword in a given memory range is altered, and the most significant part of the
halfword is written a certain value. The data word is illustrated below; the halfword for bits 31:16 is shaded. The store
instructions shown in Figure 5.15 alter the shaded halfword and cause a break if the breakpoint registers are set up as
shown below.

3 2

Break on Memory Address 0x0000 0200 bit 31:16, Little Endian

31 0

SW $2, 0x0000 0200 bytes_valid = 11112
SH $2, 0x0000 0202 bytes_valid = 11002
SB $2, 0x0000 0202 bytes_valid = 01002
SB $2, 0x0000 0203 bytes_valid = 10002

5.9 Breakpoint Examples

MIPS® EJTAG Specification, Revision 6.10 155

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 5.15 Data Break on Store with Value Compare

In this example, the data breakpoint registers are set up as follows:

• DBA0 = 0x0000 0200

• DBM0 = 0x0000 00FC

• DBV0 = 0xAA00 0000

• DBC0: BE = 1, NoLB = 1, NoSB = 0, BLM = 01112, BAI = 00112, ASIDuse = 0, other bits zero

Break on Memory Address range 0x0000 0200 - 0x0000 02FC
 Write to bits 31:16, bits 31:24 with value 0xAA, Little Endian

SW $2, 0x0000 0220 $2=0xAAXX XXXX bytes_valid = 11112
SH $2, 0x0000 0242 $2=0xXXXX AAXX bytes_valid = 11002
SB $2, 0x0000 0282 $2=0xXXXX XXXX bytes_valid = 01002
SB $2, 0x0000 02F3 $2=0xXXXX XXAA bytes_valid = 10002
‘X’ denotes undefined value.

3 2
31 0

 Hardware Breakpoints

156 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 6

MIPS® EJTAG Specification, Revision 6.10 157

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

The complex break and trigger (CBT) block is part of the EJTAG breakpoint block and is therefore integrated into the
core logic when implemented. The CBT block is optional and defined in the EJTAG Specification 4.00 and above.
The CBT bit (bit 10) in the EJTAG Debug Control Register indicates the presence of the CBT block.

The CBT block provides enhanced breakpoint and trace control capability based on the standard instruction and data
breakpoints. It implements complex breakpoint matching conditions that includes matches primed by a previous
breakpoint match, qualified by a previous data break match, matched using pass-counters, matches enabled by the
AND of two other break matches, and more.

6.1 Complex Trigger Features/Capabilities

The complex trigger unit is typically integrated with the EJTAG simple break unit. All of the previous simple break
features are preserved. This section describes the enhancements in the complex trigger block.

Note: the term breakpoints in this section refers to either actual breakpoints that take a debug exception or trigger
points that only record the status and send this signal to the trace block.

• Pass Counters - each break channel has a counter associated with it that enables a breakpoint to only be taken
after the address/value condition has been met a certain number of times.

• Data Qualified breakpoints - these can be enabled and disabled based on the state of a data breakpoint condition
which can be used to only match on instructions executed in a certain process.

• Primed breakpoints - these are only enabled when another breakpoint has occurred, which allows breaking on a
simple sequences of events.

• Stopwatch timer - a counter that can be configured to start or stop based on specific instruction breakpoints.

• Ability to support ‘tuples’ - breakpoints that only fire when both instruction and data conditions match on a sin-
gle instruction.

6.2 General Complex Break Behavior

There is some general complex break behavior that is common to all the features. This behavior is described below:

• Resets to a disabled state when the core is reset. The complex break functionality will be disabled, and debug
software that is not aware of complex break should continue to function normally.

• Complex break state is not updated on exceptional instructions.

 Complex Break and Trigger Block

158 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• Complex breakpoints should be implemented such that there is no hazard between enabling and enabled events.
When an instruction causes an enabling event, the following instruction sees the enabled state and reacts accord-
ingly.

• It is implementation specific on whether Complex breakpoint state is set when both the complex breakpoint is
triggered and another simple break point is also triggered by the same address or data value.

6.3 Registers in the Complex Break and Trigger Block

The CBTC (complex break and trigger control) register indicates the specific implementation choices made from the
architecture specification. The complex break and trigger block also adds new control registers for the complex con-

trol for Instruction and Data breaks. These registers are IBCCn and DBCCn, where n is the number of implemented
instruction or data breaks, to a maximum possible value of 15. The drseg addresses for all these registers are shown in
Table 6.1.

6.3.1 Complex Break and Trigger Control (CBTC) Register (0x8000)

Compliance Level: Implemented only if complex breakpoints are implemented.

The CBTC register contains configuration bits that indicate which features of complex break are implemented as well
as a control bit for the stopwatch timer. It is possible for an implementation to implement complex breaks and imple-
ment any non-zero subset of these features. Figure 6.1 shows the format of the CBTC register; Table 6.2 describes the
CBTC register fields.

Figure 6.1 CBTC Register Format

Table 6.1 Registers in the Complex Break and Trigger Block and Their drseg Memory Addresses

Register
Mnemonic drseg Address Offset Description

CBTC 0x8000 Complex Break and Trigger Control (see Figure 6.1)

IBCCn 0x1120 + 0x100 * n Instruction Breakpoint Complex Control n (see Figure 6.2)

IBPCn 0x1128 + 0x100 * n Instruction Breakpoint Pass Counter n (see Figure 6.3)

DBCCn 0x2128 + 0x100 * n Data Breakpoint Complex Control n (see Figure 6.4)

DBPCn 0x2130 + 0x100 * n Data Breakpoint Pass Counter n (see Figure 6.5)

PrCndAIn 0x8300 + 0x20*n Prime Condition Register A for Instruction breakpoint n (see Figure 6.6)

PrCndADn 0x84E0 + 0x20*n Prime Condition Register A for Data breakpoint n (see Figure 6.6)

STCtl 0x8900 Stopwatch Timer Control (see Figure 6.7)

STCnt 0x8908 Stopwatch Timer Count (see Figure 6.8)

31 9 8 7 5 4 3 2 1 0

32-bit Processor 0 STMode 0 STP PP
DQ
P

TP PCP

63 9 8 7 5 4 3 2 1 0

64-bit Processor 0 STMode 0 STP PP
DQ
P

TP PCP

6.3 Registers in the Complex Break and Trigger Block

MIPS® EJTAG Specification, Revision 6.10 159

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Each instruction and data breakpoint now have two additional registers as shown in Table 6.1.

Table 6.2 CBTC Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

STMode 8 Indicates the current operating mode of the stopwatch
timer, provided this is present as indicated by bit STP:

R/W 1 Required if
complex break

is present
(DCRCBT = 1)

STP 4 Indicates if the stopwatch timer is implemented. This is
optional if complex breaks feature is present:

R Preset Required if
complex break

is present
(DCRCBT = 1)

PP 3 Indicates if primed breakpoints are implemented This is
optional if complex breaks feature is present:

R Preset Required if
complex break

is present
(DCRCBT = 1)

DQP 2 Indicates if data qualified breakpoints are implemented
This is optional if complex breaks feature is present:

R Preset Required if
complex break

is present
(DCRCBT = 1)

TP 1 Indicates if tuple breakpoints are implemented This is
optional if complex breaks feature is present:

R Preset Required if
complex break

is present
(DCRCBT = 1)

PCP 0 Indicates if the pass counter feature is implemented This is
optional if complex breaks feature is present:

R Preset Required if
complex break

is present
(DCRCBT = 1)

0 MSB:9, 7:5 Must be written as zeros; return zeros on read. R 0 Reserved

Encodin
g Meaning

0 Is in free-running mode

1 Is activated by specified break pairs

Encodin
g Meaning

0 No stopwatch timer present

1 Stopwatch timer is present

Encodin
g Meaning

0 No primed breaks are present

1 Primed breaks are present

Encoding Meaning

0 No data qualified breaks present

1 Data qualified breaks are present

Encodin
g Meaning

0 No tuples breaks present

1 Tuple breaks are present

Encodin
g Meaning

0 Do not use it as triggerpoint

1 Use it as triggerpoint

 Complex Break and Trigger Block

160 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3.2 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n * 0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented instruction
breakpoints.

The Instruction Breakpoint Complex Control n (IBCCn) register controls the complex break conditions for instruc-
tion breakpoint n. Figure 6.2 shows the format of the IBCCn register; Table 6.3 describes the IBCCn register field.

Figure 6.2 IBCCn Register Format

31 24 23 20 19 14 13 10 9 8 5 4 3 2 1 0

32-bit Processor 0 UnPrCnd 0 PrCnd CBE DBrkNum Q 0

63 24 23 20 19 14 13 10 9 8 5 4 3 2 1 0

64-bit Processor 0 UnPrCnd 0 PrCnd CBE DBrkNum Q 0

Table 6.3 IBCCn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

UnPrCnd 23:20 Specifies the unpriming condition for I breakpoint n. This
field simply points to one of the 16 architecturally defined
priming conditions. This condition is then considered to
unprime this I breakpoint. The 0000 value specifies the
default bypass mode of no unpriming condition, and an
implementation may choose to tie this field to a zero value
and make this field not writeable and hence disallow soft-
ware to specify an unpriming condition. The remaining 15
unpriming condition values are specified in up to 4 prim-
ing condition registers per breakpoint (A/B/C/D). See
Section 6.3.6 on page 164.

R/W
or
R

0 Required if
primed breaks

are present
(CBTCPP = 1)

PrCnd 13:10 Specifies the priming condition for I breakpoint n. The
architecture allows for up to 16 priming conditions to
choose from, where the 0000 value specifies the default
bypass mode of no priming condition. An implementation
can choose to define from no priming condition (default
bypass mode) to up to 15 other possible priming condi-
tions. These 15 priming condition values are specified in
up to 4 priming condition registers per breakpoint
(A/B/C/D). See Section 6.3.6 on page 164.

R/W
or
R

0 Required if
primed breaks

are present
(CBTCPP = 1)

CBE 9 Complex break enable bit is used to indicate that this
breakpoint may be used in a complex sequence which
includes: as a priming condition for another breakpoint, to
start or stop the stopwatch timer, or as part of a tuple
breakpoint.

R/W 0 Required

DBrkNum 8:5 Indicates which data breakpoint channel is used to qualify
this instruction breakpoint
This field will be read-only if data qualified data break-
points are not supported or if an implementation has a
fixed pairing of qualifier and qualified breakpoints.

R/W
or
R

Preset Required if
data qualified

breaks are
present

(CBTCDQP =

1)

6.3 Registers in the Complex Break and Trigger Block

MIPS® EJTAG Specification, Revision 6.10 161

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3.3 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented instruction
breakpoints.

The Instruction Breakpoint Pass Counter n (IBPCn) register controls the pass counter associated with instruction
breakpoint n. The width of the actual counter is implementation-dependent. To determine the width software can
write a value of -1 to the register and read back the value to note the bits that were set on the write. Figure 6.3 shows
the format of the IBPCn register; Table 6.4 describes the IBPCn register field.

Figure 6.3 IBPCn Register Format

Q 4 Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum:

R/W 0 Required if
data qualified

breaks are
present

(CBTCDQP =

1)

0 MSB:14, 3:0 Must be written as zeros; return zeros on read. R 0 Reserved

31 n+1 n 0

32-bit Processor 0 PassCnt

63 n+1 n 0

64-bit Processor 0 PassCnt

Table 6.4 IBPCn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PassCnt n:0 For the breakpoint associated with this pass counter, each
time the matching condition is seen, this value will be dec-
remented by 1. When the value reaches 0, or was origi-
nally set to 0, subsequent matches will cause a break or
trigger as requested and the counter will stay at 0.
Note that when the pass counter value is greater than 0, a
break/trigger action will never be taken even on a match-
ing condition. The only action taken would be to decre-
ment the pass counter by 1.
The instruction pass counter should not be set on instruc-
tion breakpoints that are being used as part of a tuple
breakpoint.

R/W 0 Required if
pass counters

are present
(CBTCPCP = 1)

0 MSB:n+1 Must be written as zeros; return zeros on read. R 0 Reserved

Table 6.3 IBCCn Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encodin
g Meaning

0 Not dependent on qualification

1 Breakpoint must be qualified to be
t k

 Complex Break and Trigger Block

162 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3.4 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n * 0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented data
breakpoints.

The Data Breakpoint Complex Control n (DBCCn) register controls the complex break conditions for data breakpoint
n. Figure 6.4 shows the format of the DBCCn register; Table 6.5 describes the DBCCn register field.

Figure 6.4 DBCCn Register Format

31 24 23 20 19 16 15 14 13 10 9 8 5 4 3 2 1 0

32-bit Processor 0 UnPrCnd TIBrkNum
TU
P

0 PrCnd
CB
E

DBrkNum Q 0

63 24 23 20 19 16 15 14 13 10 9 8 5 4 3 2 1 0

64-bit Processor 0 UnPrCnd TIBrkNum
TU
P

0 PrCnd
CB
E

DBrkNum Q 0

Table 6.5 DBCCn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

UnPrCnd 23:20 Specifies the unpriming condition for D breakpoint n. This
field simply points to one of the 16 architecturally defined
priming conditions. This condition is then considered to
unprime this D breakpoint. The 0000 value specifies the
default bypass mode of no unpriming condition, and an
implementation may choose to tie this field to a zero value
and make this field not writeable and hence disallow soft-
ware to specify an unpriming condition. The remaining 15
unpriming condition values are specified in up to 4 prim-
ing condition registers per breakpoint (A/B/C/D). See
Section 6.3.6 on page 164.

R/W
or
R

0 Required if
primed breaks

are present
(CBTCPP = 1)

TIBrkNum 19:16 Tuple Instruction Break Channel Number. This field con-
trols which instruction break channel is paired with this
data break channel to form a tuple breakpoint.
This field will be read-only if tuple breakpoints are not
supported or if an implementation has a fixed tuple pairing
of I and D breakpoints

R/W
or
R

Preset Required if
tuple breaks are

present
(CBTCTP = 1)

TUP 15 Enables the tuple breakpoint. This data breakpoint will
only fire if the data conditions are met and the instruction
breakpoint in the TIBrkNum field also matched on the
fetch of the same instruction.

R/W 0 Required if
tuple breaks are

present
(CBTCTP = 1)

6.3 Registers in the Complex Break and Trigger Block

MIPS® EJTAG Specification, Revision 6.10 163

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3.5 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)

Compliance Level: Implemented only if complex breakpoints are implemented and only for implemented data
breakpoints.

The Data Breakpoint Pass Counter n (DBPCn) register controls the pass counter associated with data breakpoint n.
The width of the actual counter is implementation-dependent. To determine the width software can write a value of -1
to the register and read back the value to note the bits that were set on the write. Figure 6.5 shows the format of the
DBPCn register; Table 6.6 describes the DBPCn register field.

Figure 6.5 DBPCn Register Format

PrCnd 13:10 Specifies the priming condition for D breakpoint n. The
architecture allows for up to 16 priming conditions to
choose from, where the 0000 value specifies the default
bypass mode of no priming condition. An implementation
can choose to define from no priming condition (default
bypass mode) to up to 15 other possible priming condi-
tion. These 15 priming condition values are specified in up
to 4 priming condition registers per breakpoint (A/B/C/D).
See Section 6.3.6 on page 164.

R/W 0 Required if
primed breaks

are present
(CBTCPP = 1)

CBE 9 Complex break enable bit is used to indicate that this
breakpoint may be used in a complex sequence which
includes: as a priming or qualifying condition for another
breakpoint, or to start or stop the stopwatch timer.

R/W 0 Required

DBrkNum 8:5 Indicates which data breakpoint channel is used to qualify
this data breakpoint.
This field will be read-only if data qualified data break-
points are not supported or if an implementation has a
fixed pairing of qualifier and qualified breakpoints.

R/W
or
R

Preset Required if
data qualified

breaks are
present

(CBTCDQP =

1)

Q 4 Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum:

R/W 0 Required if
data qualified

breaks are
present

(CBTCDQP =

1)

0 MSB:24, 14,
3:0

Must be written as zeros; return zeros on read. R 0 Reserved

31 n+1 n 0

32-bit Processor 0 PassCnt

63 n+1 n 0

64-bit Processor 0 PassCnt

Table 6.5 DBCCn Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encodin
g Meaning

0 Not dependent on qualification

1 Breakpoint must be qualified to be
taken

 Complex Break and Trigger Block

164 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3.6 Priming Condition A I/D n (PrCndA/B/C/DI/Dn) Registers

Compliance Level: Implemented if complex breakpoints are implemented.

The Priming Condition Registers hold implementation-specific information about which trigger points are used for
the priming and unpriming conditions for each breakpoint register. These priming conditions are predetermined by an
implementation and cannot be changed dynamically by software; hence these registers are read-only.

The architecture allows up to 16 priming conditions per breakpoint, and there can be up to 4 priming condition regis-
ters per breakpoint (A/B/C/D) that contains the necessary information for all 16 priming conditions. An implementa-
tion only needs to implement as many priming condition registers as needed to support the number of implemented
priming conditions. Each register contains the information for four priming conditions.

Figure 6.5 shows the format of the PrCndA register; Table 6.6 describes the PrCndA register fields. This register is
identical for both Instruction and Data and defines the first four priming conditions. The other three registers—
PrCndB, PrCndC, and PrCndD—are similar and implement the remaining 12 possible conditions. Each condition
CondN in the register specifies which trigger point is connected to priming condition 0 through 15 for the current
breakpoint. Note that condition 0 is always Bypass and will read the 8 priming condition bits as 8’b0.

Figure 6.6 PrCndA Register Format

Table 6.6 DBPCn Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

PassCnt n:0 For the breakpoint associated with this pass counter, each
time the matching condition is seen, this value will be dec-
remented by 1. When the value reaches 0, or was origi-
nally set to 0, subsequent matches will cause a break or
trigger as requested and the counter will stay at 0.
Note that when the pass counter value is greater than 0, a
break/trigger action will never be taken even on a match-
ing condition. The only action taken would be to decre-
ment the pass counter by 1.
The data pass counters are re-used for a tuple breakpoint
that may be currently associated with the data break.

R/W 0 Required if
pass counters

are present
(CBTCPCP = 1)

0 MSB:n+1 Must be written as zeros; return zeros on read. R 0 Reserved

31 24 23 16 15 8 7 0

32-bit Processor Cond3 Cond2 Cond1 Cond0

6.3 Registers in the Complex Break and Trigger Block

MIPS® EJTAG Specification, Revision 6.10 165

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3.7 Stopwatch Timer Control (STCtl) Register (0x8900)

Compliance Level: Implemented if stopwatch timer is implemented.

The Stopwatch Timer Control register contains configuration information about how the stopwatch timer register is
controlled. Figure 6.7 shows the format of the STCtl register; Table 6.8 describes the STCtl register fields.

Figure 6.7 STCtl Register Format

Table 6.7 PrCndA Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

CondN 31:30
23:22
15:14
7:6

Reserved R 0 Required if
priming condi-

tions are
present

(CBTCPP = 1)29:28
21:20
13:12
5:4

Trigger type
00 - Special/Bypass
01 - Instruction
10 - Data
11 - Reserved

R Preset

27:24
19:16
11:8
3:0

Break Number, 0-14 R Preset

31 22 21 20 19 18 17 14 13 10 9 8 5 4 1 0

32-bit Processor 0
BTSto

p1
BTStar

t1
BTSto

p0
BTStar

t0
StopChan1 StartChan1 En1 StopChan0 StartChan0 En0

63 22 21 20 19 18 17 14 13 10 9 8 5 4 1 0

64-bit Processor 0
BTSto

p1
BTStar

t1
BTSto

p0
BTStar

t0
StopChan1 StartChan1 En1 StopChan0 StartChan0 En0

Table 6.8 STCtl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

BTStop1 21 Break type for Stop Channel 1. A value of 0 implies
instruction and 1 implies data (this could be a tuple if the
data is currently part of a tuple). An implementation that
ties the start and stop channels to predefined breakpoints
will also tie this value to a predefined value.

R/W x

BTStart1 20 Break type for Start Channel 1. A value of 0 implies
instruction and 1 implies data (this could be a tuple if the
data is currently part of a tuple). An implementation that
ties the start and stop channels to predefined breakpoints
will also tie this value to a predefined value.

R/W x

 Complex Break and Trigger Block

166 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3.8 Stopwatch Timer Count (STCnt) Register (0x8908)

Compliance Level: Implemented if stopwatch timer is implemented.

The Stopwatch Timer Count register is the count value for the stopwatch timer. Figure 6.8 shows the format of the
STCnt register; Table 6.9 describes the STCnt register field.

BTStop0 19 Break type for Stop Channel 0. A value of 0 implies
instruction and 1 implies data (this could be a tuple if the
data is currently part of a tuple). An implementation that
ties the start and stop channels to predefined breakpoints
will also tie this value to a predefined value.

R/W x

BTStart0 18 Break type for Start Channel 0. A value of 0 implies
instruction and 1 implies data (this could be a tuple if the
data is currently part of a tuple). An implementation that
ties the start and stop channels to predefined breakpoints
will also tie this value to a predefined value.

R/W x

StopChan1 17:14 Indicates the breakpoint channel for the second pair that
will stop the counter if the timer is under breakpoint con-
trol. An implementation can choose to tie this to a pre-
defined breakpoint. But it is possible for implementation
to allow this field to be writable by software, so that the
pair of start and start channels is dynamically selectable.

R/W x Optional

StartChan1 13:10 Indicates the breakpoint channel for the second pair that
will start the counter if the timer is under breakpoint con-
trol. An implementation can choose to tie this to a pre-
defined breakpoint. But it is possible for implementation
to allow this field to be writable by software so that the
pair of start and start channels is dynamically selectable.

R/W x

En1 9 Enable the second pair of breakpoint registers to control
the timer under breakpoint control.

R/W x

StopChan0 8:5 Indicates the breakpoint channel that will stop the counter
if the timer is under breakpoint control. An implementa-
tion can choose to tie this to a predefined breakpoint. But
it is possible for implementation to allow this field to be
writable by software so that the pair of start and start chan-
nels is dynamically selectable.

R/W x Required if
stopwatch

timer is present
(CBTCSTP = 1)

StartChan0 4:1 Indicates the breakpoint channel that will start the counter
if the timer is under breakpoint control. An implementa-
tion can choose to tie this to a predefined breakpoint. But
it is possible for implementation to allow this field to be
writable by software so that the pair of start and start chan-
nels is dynamically selectable.

R/W x

En0 0 Enable the first pair of breakpoint registers to control the
timer under breakpoint control.

R/W x

0 MSB:22 Must be written as zero; returns zero on read. R 0 Reserved

Table 6.8 STCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

6.4 Tuple Breakpoints

MIPS® EJTAG Specification, Revision 6.10 167

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 6.8 STCnt Register Format

6.4 Tuple Breakpoints

A tuple breakpoint is the logical AND of a data breakpoint and an instruction breakpoint. Whether or not this feature
is present is indicated by CBTCTP. Tuple breakpoints are specified as a condition on a data breakpoint. In the data
breakpoint complex control register, if the TUP bit is set (DBCCnTUP), the data breakpoint will not match unless the
corresponding instruction breakpoint (specified by DBCCnTIBrkNum) is set up for a tuple and the matching conditions
are also met. The instruction breakpoint must be set up as follows to be considered part of a tuple breakpoint:

• IBCCnCBE = 1

• IBCCnPrCnd = IBCCnDQ = IBCnTE = IBCnBE = IBPCn = 0

Note that if the instruction breakpoint has BreakEnable set, the instruction will take a simple instruction breakpoint,
and if it is precise, the instruction will not be executed and the data side of the tuple will not even be evaluated.

A tuple uses the data breakpoint resources to specify the break action, break status, pass counter, data qualifier, and
priming conditions.

6.5 Pass Counters

Pass counters are used to specify that the breakpoint conditions must match N times before the breakpoint action will
be enabled, where N is the value written by software to a pass counter register. Whether or not this feature is present
is indicated by CBTCPCP. The pass counter registers are drseg memory-mapped and added for each instruction and
data break channel, as described in Section 6.3.3 “Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128
+ n*0x100)” and Section 6.3.5 “Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)”. The data
breakpoint pass counter registers are reused for tuple breakpoints. Pass counter usage is specified below.

• The architecture allows an implementation to implement pass counters on a subset of the implemented instruc-
tion and data breakpoints.

• The width of the counter is also implementation-dependent. Software can determine the width and presence of a
counter by writing a value of -1 to the register and reading back to see which bits are set. When no bits are set,

31 0

32-bit Processor Count

63 32 31 31 0

64-bit Processor 0 Count

Table 6.9 STCnt Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Count 31:0 Current counter value R/W 0 Required if
stopwatch

timer is present
(CBTCSTP = 1)

 Complex Break and Trigger Block

168 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

this implies that this breakpoint does not implement a pass counter. The recommended counter size is 8 bits for
instruction breakpoints and 16 bits for data breakpoints.

• Writing a non-zero value to this register will enable the pass counters. When enabled, each time the breakpoint
conditions match, the counter will be decremented by 1. When the counter value reaches 0, the breakpoint action
(breakpoint exception, trigger, or complex break enable) will occur on any subsequent matches, and the counter
will not decrement further.

• If the breakpoint also has priming conditions and/or data qualifier specified, the pass counter will only decrement
when the priming and/or data qualifier conditions have been met. A breakpoint condition can be changed from
being qualified to unqualified or primed to unprimed without any affect on the counter state.

• If a data breakpoint is configured to be a tuple breakpoint, the data pass counter will only decrement on instruc-
tions where both the instruction and data break conditions match. The pass counter for the instruction break
involved in a tuple should not be enabled if the tuple is enabled.

• Writing a value of 0 to the counter will disable the pass counter and enable the breakpoint to fire whenever the
conditions are met. The counter is reset to 0 to preserve compatibility with legacy software.

• The counter register will be updated as matches are detected, and the current value can be read from the register
while operating in debug mode. It is not a requirement, but an architectural recommendation that the current
count value be reflected in the drseg register that represents the counter.

• In some implementations, a simple instruction breakpoint may be taken precisely, while a complex breakpoint,
like the one that uses pass counters, may be taken imprecisely. In this situation, when a complex condition like
pass counters is disabled during execution, the breakpoint exceptions will continue to be taken imprecisely until
the complex condition is cleared, for example, when the pass counter is actually written with the zero value.

6.6 Data Qualified Breakpoints

Each of the breakpoints, instruction, data, or tuple can be data qualified. Whether or not this feature is present is indi-
cated by CBTCDQ. In qualified mode, a breakpoint will recognize its conditions only after the specified data break-
point matches both address and data. If the qualifying data breakpoint matches the address but has a mismatch on the
data value, the breakpoint with the qualifier will be disqualified and will not match until a subsequent qualifying
match.

The pairing of which data break qualifies a breakpoint is specified in IBCCnDBrkNum and DBCCnDBrkNum. These
fields will be read-only if an implementation has a fixed pairing of qualifying and qualified breakpoints and will be
writable if dynamic pairing is supported. The IBCCnQ and DBCCQ bits are used by software to decide when an
instruction or data breakpoint respectively should be actively considered to be data qualified. See Section
6.3.2 “Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n * 0x100)” and Section 6.3.4 “Data
Breakpoint Complex Control n (DBCCn) Register (0x2128 + n * 0x100)”. The tuple breakpoint reuses the bits in the
corresponding DBCCn register of the data breakpoint that forms the tuple.

This feature can be used similarly to the ASID qualification that is available on cores with TLBs. If an RTOS loads a
process ID for the current process, that load can be used as the qualifying breakpoint. When a matching process ID is
loaded (entering the desired RTOS process), qualified instruction breakpoints will be enabled. When a different pro-
cess IS is loaded (leaving the desired RTOS process), the qualified instruction breakpoints are disabled. Alternatively,
with the InvertValueMatch feature of the data breakpoint, the instruction breakpoints could be enabled on a any pro-
cess ID other than the specified one.

Enabling the data qualifier requires the following to be true:

6.7 Primed Breakpoints

MIPS® EJTAG Specification, Revision 6.10 169

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• Qualifier (data break) must have DBCnTE or DBCCnCBE set.

• Qualifier should have data comparison enabled (via settings of DBCnBLM and DBCnBAI).

• Qualifier should not have pass counters, priming conditions, data qualification, or tuples enabled.

• Qualifier can be either a load or store instruction (as enabled by DBCnNoLB/NoSB)

6.7 Primed Breakpoints

Priming conditions provide a way for one breakpoint to be enabled or disabled by another one. Whether or not this
feature is present is indicated by CBTCPP. Prior to the priming condition being satisfied, any breakpoint matches are
ignored. It is possible for a primed breakpoint to get unprimed. Once unprimed, the breakpoint must be primed again
before a matching condition will enable the breakpoint to take a break or trigger action. The details of this feature are:

• Each breakpoint has a choice of up to a maximum of 16 possible priming conditions. An implementation may
limit this to a smaller number and will list the specific priming conditions for each of its breakpoints for refer-
ence. The priming conditions vary from breakpoint to breakpoint (since it makes no sense for a breakpoint to
prime itself).

• Each Prime condition is the comparator output after it has been qualified by its own Prime condition and pass
counter. Using this, several stages of Priming are possible (e.g. data cycle D followed by instruction A followed
by instruction B followed by instruction C).

• One of the conditions is a bypass mode in which the priming condition is always met. This bypass condition is
the default state of a breakpoint and initialized on reset to be backwards compatible to the simple instruction and
data breakpoints.

• The priming breakpoint must have IBCnTE or IBCCnCBE set if it is an instruction breakpoint, or it must have
DBCnTE or DBCCnCBE set if it is a data (or tuple) breakpoint.

• The IBCCnUnPrCnd and DBCCnUnPrCnd are used to specify a condition used to unprime the instruction or data
breakpoint respectively. This is optional since an implementation can tie this field to 0 and disallowing software
to write to this field. This implies that the unprime feature is a bypass and it is not possible to unprime a break-
point once it is primed. A breakpoint is considered to start in the unprimed condition until it matches a priming
condition. Encountering an unprime condition match will take the breakpoint to the unprime state if it was
primed, or leave it unprimed if it was already in the unprimed state.

Section 6.3.6 “Priming Condition A I/D n (PrCndA/B/C/DI/Dn) Registers” shows the registers used to indicate the
prime or unprime condition. The full list of all the PrCnd Registers and their drseg addresses is shown in Table 6.10.

Table 6.10 Addresses for PrCnd[A-D][I/D]N Registers in drseg Memory

Register drseg Address Reset value

PrCndAI0 0x8300 Preset

PrCndBI0 0x8308 Preset

PrCndCI0 0x8310 Preset

PrCndDI0 0x8318 Preset

PrCndAI1 0x8320 Preset

 Complex Break and Trigger Block

170 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The architecture does not restrict implementation as to when the primed, qualified, or tuple breakpoints are recog-
nized and hence also when the pass counter update occurs. In the current EJTAG specification, simple instruction
breaks are expected to be precise, that is, recognized early in the pipe, and later fetches are squashed as soon as possi-
ble. (Nevertheless, note that the actual break exception is taken only after the instruction passes the point of other pos-
sible exceptions in the pipe). Data breaks, on the other hand, may be precise or imprecise. If imprecise, then they are
not recognized until later in the pipe and hence early squashing of fetches is not possible. In the presence of complex
breaks which may be recognized late in the pipe (later than simple instruction breaks), an instruction break of a later
instruction may be primed by a data break from an earlier instruction in the execution sequence, because of the differ-
ent pipeline stages when these breaks may be recognized. This causes a hazard condition. Although it may not be
possible to entirely remove this hazard with complex breaks, its effect on implementation complexity may be reduced
by allowing all complex breaks to be recognized later in the pipe and the pass counter updated later in the pipe. This
reduces the need for speculative updates of the pass counter and roll backs of state when the instruction may be
squashed for other reasons. Given this type of complex interaction in the pipeline, it is recommended that the recogni-
tion of simple instruction breaks be retained at the early pipe stages, while all complex break recognition be delayed
to the stage where the data breaks are recognized.

6.8 Stopwatch Timer

The stopwatch timer is a count register that is memory-mapped to drseg so that it can be read and reset by software
(see Section 6.3.8 “Stopwatch Timer Count (STCnt) Register (0x8908)”). The presence of this feature is indicated by
bit CBTCSTP. A stopwatch control register is used to control its operation (see Section 6.3.7 “Stopwatch Timer
Control (STCtl) Register (0x8900)”). The stopwatch timer works as follows:

... Block of 3 addresses Preset

PrCndAI2 0x8340 Preset

... Block of 3 addresses Preset

PrCndAI3 0x8360 Preset

... Block of 3 addresses Preset

PrCndAI4 0x8380 Preset

... Block of 3 addresses Preset

PrCndAI5 0x83A0 Preset

... Block of addresses Preset

PrCndIA14 0x84C0 Preset

... Block of 3 addresses Preset

PrCndAD0 0x84E0 Preset

PrCndBD0 0x84E8 Preset

PrCndCD0 0x84F0 Preset

PrCndDD0 0x84F8 Preset

PrCndAD1 0x8500 Preset

... Block of addresses Preset

PrCndAD14 0x86A0 Preset

... Block of 3 addresses Preset

Table 6.10 Addresses for PrCnd[A-D][I/D]N Registers in drseg Memory (Continued)

Register drseg Address Reset value

6.9 Reporting of the Complex Breakpoints in the Debug Register

MIPS® EJTAG Specification, Revision 6.10 171

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• Count value is reset to 0.

• The timer can be configured to be in a free running mode or controlled to start and stop by specific breakpoints
using CBTCSTMode.

• The ability to start and stop the timer using breakpoints can be a useful feature. For example, by using instruction
breaks to start and stop the timer, it would be possible to measure the amount of time spent in a particular body of
code by setting the start break channel to point to the entry point and the stop break channel to point to the exit
point.

• The architecture allows up to two pairs of start/stop break channels. An implementation can choose to implement
only one pair. If the stopwatch timer feature is implemented, then at least one pair of start/stop breakpoints must
be implemented.

• Reset state has counter stopped and under breakpoint control, so that the counter is not running when the core is
not being actively debugged.

• The counter stops counting on entry into debug mode.

• When controlled by breakpoints, the controlling breakpoints should have the corresponding IBCnTE or IBC-
CnCBE bit set for instructions breaks and the bit set for data (or tuple) breaks.

• The architecture allows software to program the start and stop hardware breakpoints, but an implementation can
choose to predetermine these breakpoints, only allowing software the ability to enable one pair or the other. Soft-
ware must write -1 to the STCtl register and read back the value to determine whether or not an implementation
has provided software with the ability to program the start/stop breaks and how many pairs are implemented.

• Note that if two pairs are implemented, then enabling both will cause the hardware to use pair 0 as the controlling
pair.

6.9 Reporting of the Complex Breakpoints in the Debug Register

Described here are the changes to the Debug register (number 23, select 0) and a new CP0 register Debug2 (number
23, select 6) which are used to report the cause of debug breaks when the cause arises from a complex breakpoint.

6.9.1 Debug Register (23, select 0) Changes for Complex Breakpoints

The Debug register now defines the DIBImpr field, which indicates if a Debug Instruction Break exception occurred
on an instruction due to an imprecise instruction hardware break.

6.9.2 Debug2 Register (23, select 6)

Debug2 is a new CP0 register specifically for use by the EJTAG block. The currently defined bits in this new register
are described in Section 2.7.2 “Debug2 Register (CP0 Register 23, Select 6)”.

 Complex Break and Trigger Block

172 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The bits expected to be set on a complex break implementation, where all the complex breaks are taken imprecisely,
are shown in Table 6.11 below. Note that this does not imply anything about simple breaks—simple breaks can be
taken precisely or imprecisely, as per the implementation methodology.

Table 6.11 Debug Break Indicator Bits Set for Simple and Complex Breaks

Breakpoint Type Debug Register Bits Set Debug2 Register Bits Set

Simple Precise Ibreak DIB -

Simple Precise Dbreak DDBL or DDBS -

Simple Imprecise Ibreak DIBImpr -

Simple Imprecise Dbreak DDBLImpr or DDBSImpr -

Complex Tuple Break Imprecise DIBImpr and (DDBLImpr or
DDBSImpr)

Tup

Complex Data Qualified Ibreak
Imprecise

DIBImpr DQ

Complex Data Qualified Dbreak
Imprecise

DDBLImpr or DDBSImpr DQ

Complex Data Qualified Tuple
Break Imprecise

DIBImpr and (DDBLImpr or
DDBSImpr)

DQ and Tup

Complex Primed Ibreak Imprecise DIBImpr Prm

Complex Primed Dbreak Impre-
cise

DDBLImpr or DDBSImpr Prm

Complex Primed Tuple break
Imprecise

DIBImpr and (DDBLImpr or
DDBSImpr)

Tup and Prm

Complex Ibreak with Pass
Counter Imprecise

DIBImpr PaCo

Complex Dbreak with Pass
Counter Imprecise

DDBLImpr or DDBSImpr PaCo

Complex Tuple Break with Pass
Counter Imprecise

DIBImpr and (DDBLImpr or
DDBSImpr)

Tup and PaCo

Complex Data Qualified Ibreak
with Pass Counter Imprecise

DIBImpr DQ and PaCo

Complex Data Qualified Dbreak
with Pass Counter Imprecise

DDBLImpr or DDBSImpr DQ and PaCo

Complex Data Qualified Tuple
Break with Pass Counter Impre-

cise

DIBImpr and (DDBLImpr or
DDBSImpr)

DQ and Tup and PaCo

Complex Primed Ibreak with Pass
Counter Imprecise

DIBImpr Prm and PaCo

Complex Primed Dbreak with
Pass Counter Imprecise

DDBLImpr or DDBSImpr Prm and PaCo

Complex Primed Tuple Break
with Pass Counter Imprecise

DIBImpr and (DDBLImpr or
DDBSImpr)

Prm and Tup and PaCo

Chapter 7

MIPS® EJTAG Specification, Revision 6.10 173

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

PC Sampling

This chapter describes the optional PC Sampling feature of EJTAG that was introduced in Version 3.1 of the EJTAG
Specification and extended to include Data Address Sampling in version 5.0. It contains the following sections:

• Section 7.1 “Introduction”

• Section 7.2 “PC and Data Address Sampling”

7.1 Introduction

It is often useful for program profiling and analysis to periodically sample the value of the PC. This information can
be used for statistical profiling akin to gprof, and is also very useful for detecting hot-spots in the code. In a
multi-threaded environment, this information can be used to understand thread behavior, and to verify thread schedul-
ing mechanisms in the absence of a full-fledged tracing facility like PDtrace.

The PC sampling feature is optional within EJTAG, but EJTAG and the TAP controller must be implemented if PC
Sampling is required. When implemented, PC sampling can be turned on or off using an enable bit; when the feature
is enabled, the PC value is continually sampled.

7.2 PC and Data Address Sampling

The presence or absence of the PC Sampling feature is indicated by the PCS (PC Sample) bit in the Debug Control
register. If PC sampling is implemented, and the PCSe (PC Sample Enable) bit in the Debug Control Register is also
set to one, then the PC values are constantly sampled at the defined rate (DCRPCR) and written to a TAP register. The
old value in the TAP register is overwritten by the new value, even if this register has not been read out by the debug
probe.

The presence or absence of Data Address Sampling is indicated by the DAS (Data Address Sample) bit in the Debug
Control Register and enabled by the DASe (Data Address Sampling Enable) bit in the Debug Control Register.

The sample rate is specified by the 3-bit PCR (PC Sample Rate) field (bits 8:6) in the Debug Control register (DCR).

These three bits encode a value 25 to 212 in a manner similar to the specification of SyncPeriod. When the implemen-
tation allows these bits to be written, the internal PC sample counter will be reset by each write, so that counting for
the requested sample rate is immediately restarted.

The sample format includes a New data bit, the sampled value, the ASID of the sampled value (if not disabled by
PCnoASID, bit 25 in DCR) as well as the Thread Context ID if the processor implements MIPS MT (if not disabled
by PCnoTCID, bit 27 in DCR). Figure 7.1 and Figure 7.2 show the format of the sampled values in the PCSAMPLE
TAP register for MIPS32 and MIPS64 respectively. The New data bit is used by the probe to determine if the sampled
data just read out is new or has already been read and must be discarded. The K bit is used to differentiate between
Kernel-space addresses vs. User-space addresses when the EVA opcodes are available. The K bit is set while execut-
ing in kernel-mode.

 PC Sampling

174 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 7.1 PCSAMPLE TAP Register Format (MIPS32)

Figure 7.2 PCSAMPLE TAP Register Format (MIPS64)

0 - 8 bits 0 or 8 bits 0 or 1 bit 0 or 8 or 10 bits 32 bits 1 bit

GuestID (if
enabled for MIPS

VZ processors
only)

TC (if enabled, for
MIPS MT proces-

sors only)

K
(if EVA
feature

is
imple-

mented)

ASID (if enabled) PC or Data Address New

0 - 8 bits 0 or 8 bits 0 or 1 bit 0 or 8 or 10 bits 64 bits 1 bit

GuestID (if
enabled for for

MIPS VZ proces-
sors only)

TC (if enabled, for
MIPS MT proces-

sors only)

K
(if EVA
feature

is
imple-

mented)

ASID (if enabled) PC or Data Address New

Table 7.1 PCsample Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName

Num of
Bits

GuestID 1-8 bits if
Root.Confi

g3VZ=1

and
Root.Guest
Ctl0G1 =1;

1 bit if
Root.Confi

g3VZ=1

and
Root.Guest
Ctl0G1 =0

GuestID of the sampled PC.

The value of this field reflects the effective GuestID dur-
ing the execution of the instruction which is sampled.
The value of this field does not have to match the value
of Root.GuestCtl1ID. If executing in one of the Root

modes, the value of this field is zero. If executing in one
of the Guest modes, the value of this field is non-zero.
See below for how the values for this field is calculated.

Width of this field matches the width of the
Root.GuestCt1ID field if Root.Config3VZ=1 and

Root.GuestCtl0G1 =1.

This field only exists if DCRPCnoGID=0 bit.

R Undefined Required if
VZE is

implemented
(Root.Config

3VZ=1)

TC 8 bits Thread Context Id of the sampled PC.

This field only exists if DCRPCnoTCID=0 bit.

R Undefined Required if
MIPS MT is
implemented

K 1 bit Kernel execution.
If K=1, then the instruction was executed while in ker-
nel-mode.
If K=0, then the instruction was executed while in
non-kernel-mode.

R Undefined Required if
EVA feature

is imple-
mented

ASID 8 or 10 bits Address Space Id of the sampled PC

This field only exists if DCRPCnoASID=0 bit.

R Undefined Required

7.2 PC and Data Address Sampling

MIPS® EJTAG Specification, Revision 6.10 175

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

The GuestID field is calculated in the following manner:

if (GuestCtl0GM = 1) and ((Root.StatusERL = 0) and (Root.StatusEXL = 0)
and (Root.DebugDM = 0)) {// in Guest Mode

if (GuestCtl0G1 = 1) {

GuestID ← GuestCtl1ID

}

else {

GuestID ← 1’b1

}

}

else { // in Root Mode

GuestID ← 0 // 1 bit if GuestCtl0G1 = 0

}

Note that some of the smaller sample periods can be shorter than the time needed to read out the sampled value. That
is, it might take 60 (TCK) clock ticks to read a MIPS32 sample, while the smallest sample period is 32 (processor)
clocks. While the sample is being read out, multiple samples may be taken and discarded, needlessly wasting power.
To reduce unnecessary overhead, the TAP register includes only those fields that are enabled. If both PC Sampling
and Data Sampling are enabled, then both samples are included in the PCSample scan register. PC Sample is in the
least significant bits followed by a Data Address Sample. If either PC Sampling or Data Address Sampling is dis-
abled, then the TAP register does not include that sample. The total scan length for MIPS32 is 60 * 2 = 120 bits if all
fields are present and enabled, and 92 * 2 = 184 bits for MIPS64.

The figures above show the maximum length of the register format if all fields are implemented. The register length is
reduced if some of the features are not implemented.

PC 32 bits for
MIPS32;
64 bits for
MIPS64

Program Counter value R Undefined Required

New 1 bit Processor writes a 1 to this field whenever a new sample
is written into this register. The probe replaces with a
zero when it reads out the sample value. Used to detect a
duplicate sample read on the probe side.

R/W0 Undefined Required

Table 7.1 PCsample Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName

Num of
Bits

 PC Sampling

176 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

7.2.1 PC Sampling in Wait State

Note that the processor samples PC even when it is asleep, that is, in a WAIT state. This permits an analysis of the
amount of time spent by a processor in WAIT state which may be used for example to revert to a low power mode
during the non-execution phase of a real-time application. But counting cycles to update the PC sample value is a
waste of power. Hence, when in a WAIT state, the processor must simply switch the New bit to 1 each time it is set to
0 by the probe hardware. Hence, the external agent or probe reading the PC value will detect a WAIT instruction for
as long as the processor remains in the WAIT state. When the processor leaves the WAIT state, then counting is
resumed as before.

7.2.2 PC Sampling a MT Processor

In a multi-VPE implementation of a processor with MIPS MT, each VPE has its own TAP controller and will inde-
pendently sample the PC of the instructions executing in that VPE of the processor. In the context of a VPE, PC sam-
pling cannot be enabled for a VPE until that VPE is enabled. If there are no active TCs on a given VPE, no new PC
samples at available at the TAP controller PCsample register, even if PCSe bit is 1. In general, in a processor with
MT, it makes sense to leave the PCSe bit disabled until the system has booted and all VPEs are enabled and up and
running before setting PCSe bit to 1. Otherwise, the PC sampling counter will continue to run and consume power
even if there is nothing happening on a VPE and is it disabled in one way or another.

7.2.3 Cache Miss PC Sampling

EJTAG revision 5.0 adds a new optional mechanism for triggering PC sampling when an instruction fetch misses in
the I-cache. When PCIM (bit 26 in DCR) is 1, PC addresses that hit the cache are not sampled. When the PCSR
counter triggers, the most recent instruction whose fetch missed the cache is stored and available for EJTAG to shift
out through PCSAMPLE. Over time, this collection mode results in an overall picture of the instruction cache behav-
ior and can be used to increase performance by re-arranging code to minimize cache thrashing.

7.2.4 Data Address Sampling

EJTAG revision 5.0 extends the PC sampling mechanism to allow sampling of data (load and store) addresses. This
feature is enabled with DASe, bit 23 in the Debug Control register. When enabled, the PCSAMPLE scan register
includes a data address sample. All load and store addresses can be captured, or they can be qualified using a data
breakpoint trigger. DASQ=1 configures data sampling to record a data address only when it triggers data breakpoint
0. To be used for Data Address Sampling qualification, data breakpoint 0 must be enabled using its TE (trigger
enable) bit.

PCSR controls how often data addresses are sampled. When the PCSR counter triggers, the most recent load/store
address generated is accepted and made available to shift out through PCSAMPLE.

Chapter 8

MIPS® EJTAG Specification, Revision 6.10 177

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Fast Debug Channel

EJTAG version 5.0 adds an optional Fast Debug Channel (FDC) mechanism for higher bandwidth data transfers
between a debug host/probe and a target. The existing FASTDATA mechanism was designed to make data transfers
more efficient in terms of TAP bandwidth utilization. However, the FASTDATA mechanism causes the target CPU to
block on every fastdata memory access, preventing it from executing non-debug instructions and making the data
transfer intrusive to the program under debug. The FDC mechanism allows the user to set up a data transfer, and then
resume normal operation. The data transfer occurs in the background, and the target CPU can either choose to check
the status of the transfer periodically, or it can choose to be interrupted at the end of the transfer. The FDC mechanism
adds several architectural components to EJTAG state. The rest of this chapter describes these components and the
usage of FDC in more detail.

8.1 Overview

The FDC mechanism adds two First In First Out (FIFO) structures that are mapped to the target CPU’s physical
address map. The probe uses the new FDC TAP instruction to access these FIFOs, while the CPU accesses them using
memory accesses. To transfer data out of the core, the CPU writes one or more pieces of data to the transmit FIFO. At
this time, the CPU can resume doing other work. An external probe would examine the status of the transmit FIFO
periodically, and if there is data to be read, the probe starts to receive data from the FIFO, one entry at a time. When
all data from the FIFO has been drained, the probe goes back to waiting for the CPU to write more data. The CPU can
either choose to be informed of the empty transmit FIFO via an interrupt, or it can choose to periodically check the
status. Receiving data works in a similar manner, that is, the probe writes to the receive FIFO. At that time, the CPU
is either interrupted, or learns of the event by polling a status bit. The CPU can then do load accesses to the receive
FIFO and receive data being sent to it by the probe.

The primary advantage of FDC is that it does not require the CPU to be blocked when the probe is reading or writing
the data transfer FIFOs. This significantly reduces the CPU overhead, and makes the data transfer far less intrusive to
the code executing on the CPU.

8.2 FDC Features

The FDC memory-mapped registers are located in the common device memory map (CDMM) region. FDC has a
device ID of 0xFD.

8.2.1 Fast Debug Interrupt

The FDC block can generate an interrupt to signal the CPU that data is available to receive or that space is available to
send data, If interrupts are enabled, they will be generated based on the occupancy of the receive and transmit FIFOs.
Enabling the receive interrupt also enables the generation of an interrupt from the probe using a special data value.
Note that this is a regular interrupt, not a debug interrupt.

The FDC Configuration Register (see Section 8.3.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”) includes
fields for enabling and setting the threshold for generating each interrupt. These can be set to match the desired
behavior as follows:

 Fast Debug Channel

178 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

• Interrupts Disabled: this is the default setting.

• Minimum CPU Overhead: This setting minimizes the CPU overhead by not generating an interrupt until the
receive FIFO is completely full or the transmit FIFO is completely empty.

• Minimum latency: To have the CPU take data as soon as it is available, the receive interrupt can be fired when-
ever the receive FIFO is not empty.

• Maximum bandwidth: When configured for minimum CPU overhead, bandwidth between the probe and CPU
can be wasted if the CPU does not service the interrupt before the next transfer occurs. To reduce the chances of
this happening, the interrupt thresholds can be set lower so that interrupts are generated when the receive FIFO is
almost full or the transmit FIFO is almost empty. The definition of almost full/empty is implementation-depen-
dent, but is recommended to be 1 entry away from full/empty.

The FDC Interrupt should be handled similarly to the timer and performance counter interrupts in the processor.
These can be combined with one of the interrupt signals internally or externally to the core, or can be sent to an inter-
rupt controller to generate a core interrupt. Fields have been added to the Cause and IntCtl Coprocessor0 register to
allow software to identify that an interrupt is from the FDC. These registers are described in MIPS64® Architecture
Reference Manual Volume III: The MIPS64® Privileged Resource Architecture, but the new field descriptions are
excerpted here.

Table 8.1 Cause Register FDC Field Description

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

FDCI 21 Fast Debug Channel Interrupt. This bit denotes whether
an FDC interrupt is pending :

If EJTAG FDC is not implemented, this field returns 0
on a read.

R Undefined Optional
(EJTAG Fast
Debug Channel
Implemented)Encoding Meaning

0 No FDC interrupt is pending

1 FDC interrupt is pending

8.2 FDC Features

MIPS® EJTAG Specification, Revision 6.10 179

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

8.2.2 FDC TAP Instruction

The FDC TAP instruction performs a 38-bit bidirectional transfer of data as shown in Figure 8.1. On scan out, the
probe receives a Data Out valid bit, a Receive Buffer Full status bit, a 4-bit channel identifier and 32 bits of data. On
scan in, the probe sends status as to whether the data out in the current scan-out will be accepted by the probe, a valid
bit for data from the probe, 4 channel bits, and 32 bits of data. The probe can cause an interrupt to be sent to the pro-
cessor core by sending in a special value with 0xD in the channel bits and a zero value in the Data In Valid bit. This
mechanism can be used by the probe to interrupt the core in cases where a probe to core transfer completes without
filling the receive FIFO. If receive interrupts are not enabled, this special value has no effect on the core. Figure 8.1
shows a block diagram of the FDC mechanism.

Table 8.2 IntCtl Register FDC Field Description

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

IPFDC 25..23 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Fast Debug Channel Interrupt request is merged, and
allows software to determine whether to consider
CauseFDC for a potential interrupt.

The value of this field is UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.
If EJTAG FDC is not implemented, this field returns
zero on read.

R Preset or
Externally
Set

Optional
(EJTAG Fast
Debug Chan-
nel Imple-
mented)

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

 Fast Debug Channel

180 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 8.1 FDC Block Diagram and TDI to TDO Path

8.3 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU access to FDC is via loads and stores to the FDC
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration
and status information, and access to the transmit and receive FIFOs. The registers and their respective offsets are
shown in Table 8.3

8.3.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

This is the general CDMM Access Control and Status register which defines the device type and size and controls
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself is only acces-
sible in kernel mode. Figure 8.1 has the format of an Access Control and Status register (shown as a 64-bit register),
and Table 8.4 describes the register fields.

Figure 8.2 FDC Access Control and Status Register

Table 8.3 Instruction Breakpoint Register Mapping

Offset in CDMM
device block

Register
Mnemonic Register Name and Description

0x0 FDACSR FDC Access Control and Status Register

0x8 FDCFG FDC Configuration Register

0x10 FDSTAT FDC Status Register

0x18 FDRX FDC Receive Register

0x20 + 0x8* n FDTXn FDC Transmit Register n (0 ≤ n ≤ 15)

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0

0 DevID 0 DevSize DevRev 0 Uw Ur Sw Sr

Transmit FIFO

Receive FIFO

To/From Probe

TDI TDO
Status(2) + Channel(4)+ Data (32)

0/LSBMSB

CDMM

Configuration Register
Status Register
Receive Register
Transmit Register

Status(0): Data In Valid
Status(1): Probe Data Accept

Status(0): Data Out Valid
Status(1): Receive Buffer Full

8.3 Fast Debug Channel Registers

MIPS® EJTAG Specification, Revision 6.10 181

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

8.3.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 8.3 shows the format of the FDC Configuration register, and Table 8.5 describes the register fields.

Figure 8.3 FDC Configuration Register

Table 8.4 FDC Access Control and Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

DevType 31:24 This field specifies the type of device. R 0xfd Required

DevSize 21:16 This field specifies the number of extra 64-byte blocks
allocated to this device. The value 0x2 indicates that this
device uses 2 extra, or 3 total blocks.

R 0x2 Required

DevRev 15:12 This field specifies the revision number of the device.
The value 0x0 indicates that this is the initial version of
FDC

R 0x0 Required

Uw 3 This bit indicates if user-mode write access to this device
is enabled. A value of 1 indicates that access is enabled.
A value of 0 indicates that access is disabled. An attempt
to write to the device while in user mode with access dis-
abled is ignored.

R/W 0 Required

Ur 2 This bit indicates if user-mode read access to this device
is enabled. A value of 1 indicates that access is enabled.
A value of 0 indicates that access is disabled. An attempt
to read from the device while in user mode with access
disabled will return 0 and not change any state.

R/W 0 Required

Sw 1 This bit indicates if supervisor-mode write access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled.
An attempt to write to the device while in supervisor
mode with access disabled is ignored.

R/W 0 Required

Sr 0 This bit indicates if supervisor-mode read access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled.
An attempt to read from the device while in supervisor
mode with access disabled will return 0 and not change
any state..

R/W 0 Required

0 63:32, 11:4 Reserved for future use. Ignored on write; returns zero
on read.

R 0 Required

31 20 19 18 17 16 15 8 7 0

0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize

 Fast Debug Channel

182 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

8.3.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 8.4 has the format of the
FDC Status register, and Table 8.6 describes the register fields.

Figure 8.4 FDC Status Register

Table 8.5 FDC Configuration Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:20 Reserved for future use. Read as zeros, must be written
as zeros.

R 0 Required

TxInt-
Thresh

19:18 Controls whether transmit interrupts are enabled and the
state of the TxFIFO needed to generate an interrupt.

R/W 0 Required

RxInt-
Thresh

17:16 Controls whether receive interrupts are enabled and the
state of the RxFIFO needed to generate an interrupt.

R/W 0 Required

TxFIFOS-
ize

15:8 This field holds the total number of entries in the trans-
mit FIFO.

R Preset Required

RxFIFOS-
ize

7:0 This field holds the total number of entries in the receive
FIFO.

R Preset Required

31 24 23 16 15 8 7 4 3 2 1 0

Tx_Count Rx_Count 0 RxChan RxE RxF TxE TxF

Encoding Meaning

0 Transmit Interrupt Disabled

1 Empty

2 Not Full

3 Reserved for Implementations. It is
recommended that this entry be used
for “almost empty” conditions - i.e..
one entry in use

Encoding Meaning

0 Receive Interrupt Disabled

1 Full

2 Not empty

3 Reserved for Implementations. It is
recommended that this entry be used
for “almost full” conditions - i.e.. one
entry available

8.3 Fast Debug Channel Registers

MIPS® EJTAG Specification, Revision 6.10 183

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

8.3.4 FDC Receive (FDRX) Register (Offset 0x18)

This register contains the top entry in the receive FIFO. A read from this register removes the item from the FIFO.
The result of a write to this register is UNDEFINED. The result of a read when the FIFO is empty is also UNDE-
FINED, so software should check the FIFO empty flag prior to reading this register. Figure 8.5 shows the format of
the FDC Receive register, and Table 8.7 describes the register fields.

Figure 8.5 FDC Receive Register

8.3.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers access the bottom entries in the transmit FIFO. The different addresses are used to generate a
4-bit channel identifier that is attached to the data value. This allows software to track different event types without

Table 8.6 FDC Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Tx_Count 31:24 This field holds the number of currently occupied entries
in the transmit FIFO.

R 0 Optional

Rx_Count 23:16 This field holds the number of currently occupied entries
in the receive FIFO.

R 0 Optional

0 15:8 Reserved for future use. Must be written as zeros and
read as zeros.

R 0 Required

RxChan 7:4 This field indicates the channel number used by the top
item in the receive FIFO. This field is only valid if
RxE=0.

R Undefined Required

RxE 3 If RxE is set, the receive FIFO is empty. If RxE is not
set, the FIFO is not empty.

R 1 Required

RxF 2 If RxF is set, the receive FIFO is full. If RxF is not set,
the FIFO is not full.

R 0 Required

TxE 1 If TxE is set, the transmit FIFO is empty. If TxE is not
set, the FIFO is not empty.

R 1 Required

TxF 0 If TxF is set, the transmit FIFO is full. If TxF is not set,
the FIFO is not full.

R 0 Required

31 0

RxData

Table 8.7 FDC Receive Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

RxData 31:0 This register holds the top entry in the receive FIFO R Undefined Required

 Fast Debug Channel

184 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

needing to reserve a portion of the 32-bit data as a tag. A write to one of these registers results in a write to the trans-
mit FIFO of the data value and channel ID corresponding to the register being written. Reads from these registers are
UNDEFINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software
running on the core must check the FIFO full flag to ensure that there is space for the write. Figure 8.6 shows the for-
mat of the FDC Transmit register, and Table 8.8 describes the register fields.

Figure 8.6 FDC Transmit Register

31 0

TxData

Table 8.8 FDC Transmit Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

TxData 31:0 This register holds the bottom entry in the transmit FIFO W
Undefined
value on

read

Undefined Required

Chapter 9

MIPS® EJTAG Specification, Revision 6.10 185

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

SecureDebug

This chapter defines the features used to secure EJTAG access to the target system chip. The SecureDebug debug fea-
ture is optional. This chapter contains the following sections:

• Section 9.1 “Disabling EJTAG debugging”

• Section 9.2 “EJTAG Features unmodified by SecureDebug”

The SecureDebug feature provides a controllable method to disable EJTAG access so that an EJTAG probe cannot be
used to control a target processor, place it into debug mode, insert instructions, access memory, breakpoint or single
step.

This feature assumes that the boot firmware (entry point located at 0xBFC0.0000) is trusted. If the feature is enabled,
debug is controlled by trusted software (named the Debug Executive for the rest of the document), whose entry point
resides at the Debug exception vector of 0xBFC0.0400. The Debug Executive is assumed to be part of the trusted
boot firmware.

Note that cJTAG is implemented by converting the EJTAG signals to 2 cJTAG signals. If the SecureDebug feature is
implemented, cJTAG is similarly secured.

9.1 Disabling EJTAG debugging

9.1.1 EJ_DisableProbeDebug Signal

An input signal to the core is defined, EJ_DisableProbeDebug, which when asserted, forces ProbEn=0 and Prob-
Trap=0. EJ_DisableProbeDebug overrides any other ProbEn or ProbTrap settings.

Suggested implementation of the EJ_DisableProbeDebug signal is for a microcontroller to provide a bit within
non-volatile memory (outside the core) that is pre-programmed to set or clear this control signal.

Table 9.1 EJ_DisableProbeDebug Signal Overview

Signal Description Direction Compliance

EJ_DisablePro
beDebug

When asserted:
• ProbEn = 0
• ProbTrap = 0

• EjtagBrk is disabled1.
• EJTAGBOOT is disabled.
• PC Sampling is disabled.

• DINT signal is ignored.1

1. An EjtagBrk disable and DINT signal Override is provided.

Input Required for
Secure Debug

 SecureDebug

186 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

9.1.2 Override for EjtagBrk and DINT disable

An override for the EjtagBrk and DINT disable caused by the EJ_DisableProbeDebug signal is provided by the regis-
ter field EjtagBrk_Override within the DCR register.

The override is assertable by the CPU during the trusted boot process. Its purpose is to allow a probe to assert Ejtag-
Brk (or assertion of the DINT signal) which requests a Debug Interrupt exception be raised by the processor. This
provides a means of recovering the CPU from a crash or hang. This feature can allow the Debug Executive, if one is
provided in target firmware, to communicate with the probe over the Fast Debug Channel (FDC) in order to get atten-
tion of the target by causing a debug exception. It allows a host-based debugger to query the target via Debug Execu-
tive commands, especially to determine the cause of the hang.

9.2 EJTAG Features unmodified by SecureDebug

• FDC (Fast Debug Channel) over EJTAG is required to work. This provides a path for an EJTAG probe to
send/receive messages to the Debug Executive when one is included in the target code. This means that the phys-
ical EJTAG serial connection, pins, and protocol must still work. Also, cJTAG (2-wire) must also work for
FDC.

• RST* This is the hardware signal on the EJTAG connector that connects to the target system reset circuit. It can
be asserted by an EJTAG probe.

Chapter 10

MIPS® EJTAG Specification, Revision 6.10 187

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

On-Chip Interfaces

This chapter covers issues regarding implementation of a processor on a chip with respect to hook-up of the EJTAG
TAP and DINT interfaces. It contains the following sections:

• Section 10.1 “Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals”

• Section 10.2 “Optional TRST* Pin”

• Section 10.3 “Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins”

• Section 10.4 “Connecting Multi-Core Test Access Port (TAP) Controllers”

10.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Sig-
nals

If the EJTAG capabilities provided through the Test Access Port (TAP) and Debug Interrupt (DINT) signals on a pro-
cessor core are unused when the processor core is implemented on a chip, then TRST* is tied to low (if TRST* is
present on the core) and the remaining input signals TCK, TMS, TDI, and DINT must be tied to a constant value,
either high or low. The output signal TDO should be left unconnected.

10.2 Optional TRST* Pin

The TRST* signal to the TAP is optional, and need not be provided as a pin on the chip for a processor implementing
the EJTAG TAP.

If a TRST* chip pin is not provided, then a TAP reset like the one provided when TRST* is asserted (low) must be
applied to the TAP at power-up, for example, through a power-up reset circuit on the chip. This power-up TAP reset
must be finished after the time TVIOrise (see Section 11.2.4 on page 195).

If a TRST* chip pin is provided, then the power-up TAP reset is applied by a pull-down resistor, because the probe
will not drive TRST* at power-up.

10.3 Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins

If an input buffer with an integrated pull-up resistor is used for the TRST* chip pin, then its resistor value must be
sufficiently large that it is overruled by the external pull-down resistor on the PCB, so a well-defined logical level is
present on the TRST* pin (see Section 11.5.1 on page 197 for more information).

Observe the additional rules described in the IEEE Std. 1149.1 specification, if the same TAP is used for JTAG
boundary scan also.

 On-Chip Interfaces

188 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The output driver for the TDO chip pin must be capable of supplying the IOL and IOH current required for the probe
(see Section 11.3 on page 195).

10.4 Connecting Multi-Core Test Access Port (TAP) Controllers

This section is concerned with building a multi-core system where each core has its own TAP controller, but share one
set of external EJTAG TAP controller pins. Note that this section does not attempt to address the full issue of
multi-core debug, which involves resolving debugger issues and other hardware issues such as debug signalling
among multiple cores, and handling breakpoints across multiple cores, etc.

Figure 10.1 shows the recommended daisy-chain connection for a multi-core configuration, where the TCK, TMS
and optional TRST* signals of all the TAP controllers are connected together. The TDI and TDO signals are daisy
chained together so that the information flow between the selected register of all the TAP controllers is a continuous
sequence.

Figure 10.1 Daisy-chaining of Multi-core EJTAG TAP Controllers

The simplest usage model for this multi-core connection, under most circumstance, only uses one “active” device.
This is accomplished by including BYPASS TAP instruction for “non-active” devices in every TAP command chain
sent by the debugger. “Non-active” devices only get attention when made “active”. Note that it is not necessary that
only one device be “active” at a time, it depends entirely on how the debugger and the end-user want to control the
multiple on-chip TAP controllers.

It is recommended that the EJTAG TAPs are connected in a single daisy-chain without any non-EJTAG TAPs in that
chain, since this provide the fastest access to the EJTAG TAPs and it allows the most debug software packages to
operate the EJTAG TAPs. Special care must be taken by the system designer if both EJTAG TAPs and non-EJTAG
TAPs are connected in the same chain. In this case the system designer must ensure that both the EJTAG debug hard-
ware and software, and the external device using the non-EJTAG TAPs can apply the BYPASS TAP instruction when
the TAPs unrelated to the current operation are to be made “non-active”.

Probe

TCK
TMS

TDO
TDI

TRST*

Connector
TCK
TMS

TDO
TDI

TRST*

EJTAG TAP 1

(TRST* is optional)

TCK
TMS

TDO
TDI

TRST*

EJTAG TAP n

(TRST* is optional)

Several EJTAG TAPs possible

Chapter 11

MIPS® EJTAG Specification, Revision 6.10 189

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Off-Chip and Probe Interfaces

This chapter outlines the requirements for the target system chip and probe interfaces to make them compatible. This
chapter contains the following sections:

• Section 11.1 “Logical Signals”

• Section 11.2 “AC Timing Characteristics”

• Section 11.3 “DC Electrical Characteristics”

• Section 11.4 “Mechanical Connector”

• Section 11.5 “Target System PCB Design”

• Section 11.6 “Probe Requirements and Recommendations”

The off-chip interface forms the connection from the chip over the target system PCB and to the probe connector,
thereby allowing the probe to connect to the target processor. The probe connection is optional in the target system.

The probe signals are described with respect to logical functionality, timing behavior, electrical characteristics, and
connector and PCB design. Comments are also added with respect to probe functionality.

The descriptions in this chapter only cover issues related to EJTAG use of the Test Access Port (TAP). Issues related
to reuse of the same TAP on a chip, for example, for JTAG boundary scan, are not covered.

11.1 Logical Signals

This section describes the EJTAG signals categorized according to functionality:

• Test Access Port: TCK, TMS, TDI, TDO, and TRST* (optional TRST*)

• Debug Interrupt: DINT (optional)

• System reset (reset or soft reset): RST*

• Return TCK: RTCK (optional)

• Voltage Sense for I/O: VIO

Figure 11.1 shows the signal flow between the chip, target system PCB, and Probe.

 Off-Chip and Probe Interfaces

190 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 11.1 Signal Flow Between Chip, Target System PCB, and Probe

11.1.1 Test Access Port Signals

The TCK, TMS, TDI, TDO, and TRST* signals make up the Test Access Port (TAP). For more details about the log-
ical functionality of these signals, refer to Chapter 4, “EJTAG Test Access Port” on page 87. The five signals are
listed in Table 11.1 with a short description.

The TRST* chip pin is optional. If TRST* is not provided, then the TAP controller must be reset by a power-up reset
circuit on-chip. Refer to Section 10.2 on page 187 for information on a power-up reset that is on-chip and Section
11.2.4 on page 195 for duration of this power-up reset.

Table 11.1 Test Access Port Signals Overview

Signal Description Direction Compliance

TCK Test Clock Input is the clock that controls the updates of the TAP controller and
the shifts through the Instruction or selected data register(s). Both the rising and
the falling edges of TCK are used.

Input Required with
probe connec-

tion

TMS Test Mode Select Input is the control signal for the TAP controller. This signal is
sampled at the rising edge of TCK.

Input

TDI Test Data Input has the data shifted into the Instruction or data register. This sig-
nal is sampled on the rising edge of TCK.

Input

TDO Test Data Output has the data shifted out from the Instruction or data register.
This signal is changed on the falling edge of TCK.

Output

TRST* Test Reset Input is used for the TAP reset of the TAP controller, Instruction reg-
ister, and EJTAGBOOT indication. TAP reset is applied asynchronously when
low.

Input Optional with
probe connec-

tion

Target System

Probe

TCK
TMS

TDO
TDI

TRST*

DINT

RST*

VIO

Connector
TCK
TMS

TDO
TDI

TRST*

DINT

Chip with EJTAG

Reset

Other reset sources

(TRST* is optional, see description)

Chip I/O
Voltage

(DINT is optional, see description)

Reset Circuit

Target System

11.1 Logical Signals

MIPS® EJTAG Specification, Revision 6.10 191

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

11.1.2 Debug Interrupt Signal

The Debug Interrupt (DINT) signal allows the probe to request the CPU to take a debug exception. Table 11.2 briefly
defines this signal.

The DINT signal from the probe is optional. The DINTsup bit indicates whether or not the DINT signal is imple-
mented. Refer to Section 4.5.2 on page 96 for more information on DINTsup. The debug interrupt request is
described in Section 2.3.10 on page 52.

11.1.3 System Reset Signal

The System Reset (RST*) signal from the probe is required to generate a reset of the target board. It is recommended
that assertion of RST* results in a (hard) reset of the processor, but it is allowed to generate a soft reset. Table 11.3
briefly describes the RST* signal.

The probe controls the RST* via an open-collector (OC) output. Thus RST* is actively driven low when asserted
(low), but is 3-stated when deasserted (high).

11.1.4 Return Test Clock Input

The Voltage sense for I/O (VIO) indicates target power is applied and voltage levels are present at the probe I/O con-
nections. Table 11.5 briefly describes the VIO signal.

This is useful when for example, a hardware emulator used with the target core wants to hook up an EJTAG probe for
debugging. The hardware emulator starts and stops its system clock and needs the debug probe to pause any JTAG
operations during that time. This can be achieved by the addition of a return TCK signal which is an output from the
target chip to the probe and is a mirror of the probe’s TCK input after clocking with the system clock. The probe can

Table 11.2 Debug Interrupt Signal Overview

Signal Description Direction Compliance

DINT A debug interrupt is requested when DINT goes from low to high. The CPU is
allowed to synchronize this signal to the CPU clock before detecting its rising
edge, if this is possible with respect to the minimum pulse width indicated in
Section 11.2.2 on page 194. The request is ignored if the CPU is already in
Debug Mode.

Input Optional with
EJTAG TAP

Table 11.3 System Reset Signal Overview

Signal Description Direction Compliance

RST* RST* is the system reset of the target board. When the probe asserts RST* low,
the result is either a reset (recommended) or soft reset of the processor.
No reset is applied when the RST* is undriven (3-stated from the probe).

Input Required with
probe connec-

tion

Table 11.4 Voltage Sense for I/O Signal Overview

Signal Description Direction Compliance

RTCK This return TCK signal to the JTAG connector allows the target chip under
debug to mirror the start and stop of its system clock to correspond to start and
stop of the debug probe.

Input Optional with
probe connec-

tion

 Off-Chip and Probe Interfaces

192 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

be configured in a mode where it will wait for RTCK to be equal to TCK before proceeding with the scan. This would
then allow the JTAG port to be throttled by the parget as needed.

11.1.5 Voltage Sense for I/O Signal

The Voltage sense for I/O (VIO) indicates target power is applied and voltage levels are present at the probe I/O con-
nections. Table 11.5 briefly describes the VIO signal.

With VIO, the probe can auto adjust the voltage level for the signals, and detect if power is lost at the target system.

11.2 AC Timing Characteristics

The timing relations and AC requirements for the signals are described in this section. The timing is measured at the
probe connector for the target system, and must be valid in the full operating range of the target board.

All setup and hold times are measured with respect to the 50% value between VIL / VIH for inputs, and VOL / VOH for
outputs.

All rise and fall times are measured at 20% and 80% of the values of VIL / VIH for inputs and VOL / VOH for outputs.

The capacitance of CTarget and CProbe is assumed to be as seen from the probe connector for the inputs and outputs.

11.2.1 Test Access Port Timing

Figure 11.2 shows the timing relationships of the five TAP signals, TCK, TMS, TDI, TDO, and TRST*. Table 11.6
shows the absolute times for the symbols in the figure.

Table 11.5 Voltage Sense for I/O Signal Overview

Signal Description Direction Compliance

VIO Voltage Sense for I/O indicates if target power is applied, and indicates the volt-
age level for the probe signals.

Output Required with
probe connec-

tion

11.2 AC Timing Characteristics

MIPS® EJTAG Specification, Revision 6.10 193

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 11.2 Test Access Port Signals Timing

TRST* is independent of the TCK signal, because TRST* is a truly asynchronous signal. Note the IEEE 1149.1 rec-
ommendation in 3.6.1 (d): “To ensure deterministic operation of the test logic, TMS should be held at 1 while the sig-
nal applied at TRST* changes from 0 to 1.” A race might otherwise occur if TRST* is deasserted (going from low to
high) on a rising edge of TCK when TMS is low, because the TAP controller might go either to Run-Test/Idle state or
stay in the Test-Logic-Reset state.

Table 11.6 Test Access Port Signals Timing Values

Symbol Description Min Max Unit

TTCKcyc TCK cycle time 25 ns

TTCKhigh TCK high time 10 ns

TTCKlow TCK low time 10 ns

TTsetup TAP signals setup time before rising TCK 5 ns

TThold TAP signals hold time after rising TCK 3 ns

TTDOout TDO output delay time from falling TCK 5 ns

TTDOzstate TDO 3-state delay time from falling TCK 5 ns

TTRST*low TRST* low time 25 ns

Trf TAP signals rise / fall time, all input and output 3 ns

TCK

TTCKcyc

TTCKhigh TTCKlow

TRST*

TTRST*low

TMS
TDI

TTDOout

TThold

TTDOzstate

TDO

TTsetup

UndefinedDefined

Trf

Trf

Trf

Trf

Trf

 Off-Chip and Probe Interfaces

194 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

11.2.2 Debug Interrupt Timing

Figure 11.3 shows the timing for the DINT signal from the probe. Table 11.7 shows the absolute times for the sym-
bols in the figure.

Figure 11.3 Debug Interrupt Signal Timing

The probe should guarantee that the TDINThigh and TDINTlow pulse widths meet the specifications, in order to leave
enough time for the CPU to synchronize the DINT signal to the internal CPU clock domain.

If the CPU clock speed or clocking scheme is such that TDINThigh and TDINTlow do not leave enough time for syn-
chronization or, for example, PLL walk-up, then the target system is responsible for extending the DINT pulse in the
processor.

11.2.3 System Reset Timing

Figure 11.4 shows the timing for the RST* signal from the probe. Table 11.8 shows the absolute times for the sym-
bols in the figure. The target system is responsible for extending the RST* pulse if required.

Figure 11.4 System Reset Signal Timing

Table 11.7 Debug Interrupt Signal Timing Values

Symbol Description Min Max Unit

TDINThigh DINT high time 1 µs

TDINTlow DINT low time 1 µs

Trf DINT signal rise / fall times 3 ns

Table 11.8 System Reset Signal Timing Value

Symbol Description Min Max Unit

TRST*low RST* low time 1 ms

DINT

TDINThigh TDINTlow
Trf

TrfDebug interrupt request

RST*

TRST*low

Driven low
Undriven
3-stated

11.3 DC Electrical Characteristics

MIPS® EJTAG Specification, Revision 6.10 195

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

11.2.4 Voltage Sense for I/O (VIO) Timing

Figure 11.5 shows the timing for the VIO signal. Table 11.9 shows the absolute time for the symbol in the figure. VIO
must rise to the stable level within a specific time TVIOrise after the probe detects VIO to be above a certain limit
VVIOactive.

Figure 11.5 Voltage Sense for I/O Signal Timing

The target system must ensure that TVIOrise is obeyed after the VVIOactive value is reached, so the probe can use this
value to determine when the target has powered-up. The probe is allowed to measure the TVIOrise time from a higher
value than VVIOactive (but lower than VVIO minimum) because the stable indication in this case comes later than the
time when target power is guaranteed to be stable.

If TRST* is asserted by a pulse at power-up, either on-chip or on PCB, then this reset must be completed after
TVIOrise. If TRST* is asserted by a pull-down resistor, then the probe will control TRST*.

At power-down no power is indicated to the probe when VIO drops under the VVIOactive value, which the probe uses
to stop driving the input signals, except for RST*.

11.3 DC Electrical Characteristics

Table 11.10 describes the DC electrical characteristics for voltage and current measured at the probe connector. Cur-
rent measures positive in direction from the probe to the target system, and negative in the other direction. The char-
acteristics apply to the full operating range of the target system.

Table 11.9 Voltage Sense for I/O Signal Timing Value

Symbol Description Min Max Unit

TVIOrise VIO rise time from VVIOactive to stable VIO value 2 s

Table 11.10 DC Electrical Characteristics

Symbol Description Condition Min Typ Max Unit

VVIO VIO voltage When stable 1.5 5.0 V

VVIOactive VIO active indication 0.5 V

IVIO VIO output current 20 mA

VIO

TVIOrise

VVIOactive

 Off-Chip and Probe Interfaces

196 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

The IZstate specifies the current that a 3-stated (undriven) output driver and pull-up/down can provide. It sets a limit
for the drivers in the probe for TCK, TMS, TDI, TRST*, DINT, and RST*, and it sets a limit for the output driver
on-chip for TDO. This limit allows design of pull-up/down resistors that can keep a logical level when no driver is
controlling the signal.

CTarget and CProbe are the capacitances in the target system for inputs and the capacitances for the probe for outputs.
Additional capacitance in the target system must be added to CProbe when designing the output driver, and additional
capacitance for the probe driver is added to CTarget.

11.4 Mechanical Connector

Figure 11.6 shows the recommended EJTAG connector on a target system. The connector is a common pin strip with
dimensions 0.100” x 0.100”, for example, SAMTEC part number TSW-107-23-L-D or compatible. The socket on the
probe side must allow for an angled connector on the target system.

VIL Low-level input voltage 2.8 V ≤ VVIO - 0.3 0.8 V

VVIO < 2.8 V - 0.3 0.3 * VVIO V

VIH High-level input voltage 2.8 V ≤ VVIO 2.0 VVIO + 0.3 V

VVIO < 2.8 V 0.7 * VVIO VVIO + 0.3 V

VOL Low-level output voltage 2.8 V ≤ VVIO - 0.3 0.4 V

VVIO < 2.8 V - 0.3 0.15 * VVIO V

VOH High-level output voltage 2.8 V ≤ VVIO 2.4 VVIO + 0.3 V

VVIO < 2.8 V 0.85 * VVIO VVIO + 0.3 V

IIL Low-level input current, except
RST*

- 8.0 mA

IRST RST* low-level input current - 10 mA

IIH High-level input current 8.0 mA

IOL Low-level output current 8.0 mA

IOH High-level output current - 8.0 mA

IZstate 3-state input or output current 0 V ≤ Vsig ≤ VVIO - 50 50 µA

CTarget Capacitance for target system 25 pF

CProbe Capacitance for probe 25 pF

Table 11.10 DC Electrical Characteristics (Continued)

Symbol Description Condition Min Typ Max Unit

11.5 Target System PCB Design

MIPS® EJTAG Specification, Revision 6.10 197

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 11.6 EJTAG Connector Mechanical Dimensions

Table 11.11 shows the pin assignments for the connector.

With older EJTAG connectors, Pin 12 on the target system connector should be removed to provide keying and
thereby ensure correct connection of the probe to the target system. But with the enhancement with the RTCK signal,
generation of RTCK is indicated by the presence of pin 12 on the target connector.

The connector in Figure 11.6 does not provide PC trace signals. An additional connector, probably with 0.05” x 0.05”
spacing, will be defined later when the PC trace feature is redefined.

11.5 Target System PCB Design

This section provides guidelines for using the EJTAG connector on a target system.

11.5.1 Electrical Connection

Figure 11.7 shows the electrical connection of the target system connector. This subsection only covers the case
where the probe connects directly to a chip with an EJTAG compliant processor.

Table 11.11 EJTAG Connector Pinout

Pin Signal Direction Pin Signal Direction

1 TRST* - Test Reset Input Input 2 GND - Ground GND

3 TDI - Test Data Input Input 4 GND - Ground GND

5 TDO - Test Data Output Output 6 GND - Ground GND

7 TMS - Test Mode Select Input Input 8 GND - Ground GND

9 TCK - Test Clock Input Input 10 GND - Ground GND

11 RST* - System Reset Input 12 RTCK - Return Test Clock Input Input

13 DINT - Debug Interrupt Input 14 VIO - Voltage Sense for I/O Output

2.54 mm

Top view on PCB

2.54 mm

1 2

13 14
Pin 12 removed
to allow for key

0.64 mm

5.84 mm

Side view on PCB

GND

Signal Positions

1

GND

GND

GND

GND

key

VIO

TRST*

TDI

TDO

TMS

TCK

RST*

DINT

 Off-Chip and Probe Interfaces

198 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 11.7 Target System Electrical EJTAG Connection

In Figure 11.7, the pull-up resistors for TCK, TMS, TDI, DINT, and RST*, the pull-down resistor for TRST*, and the
series resistor for TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is
1.0 kΩ, because a low value reduces crosstalk on the cable to the connector, allowing higher TCK frequencies. Α typ-
ical value for the series resistor is 33 Ω. Recommended resistor values have 5% tolerance.

The IEEE 1149.1 specification requires that the TAP controller is reset at power-up, which can occur through a
pull-down resistor on TRST* if the probe is not connected. However, on-chip pull-up resistors can be implemented on
some chips due to an IEEE 1149.1 requirement. Having on-chip pull-up and external pull-down resistors for the
TRST* signal requires special care in the design to ensure that a valid logical level is provided to TRST*, for exam-
ple, using a small external TRST* pull-down resistor to ensure this level overrides the on-chip pull-up. An alternative
is to use an active power-up reset circuit for TRST*, which drives TRST* low only at power-up and then holds
TRST* high afterwards with a pull-up resistor.

It must be ensured that a valid logical level is provided on TRST*, because some chips have an on-chip pull-down
resistor on TRST* (even through this setup contradicts the IEEE 1149.1 standard), which might cause an undefined
signal value when other chips have on-chip pull-ups, and they all connect to TRST*.

The pull-up resistor on TDO must ensure that the TDO level is high when no probe is connected and the TDO output
is 3-stated. This requirement allows reliable connection of the probe if it is hooked-up when the power is already on
(hot plug). The value of the pull-up resistor depends on the 3-state current of the TDO output driver in the chip, but a
value around 47 kΩ usually is sufficient.

Optional diodes to protect against overshoot and undershoot voltage can be provided on the signals to the chip with
EJTAG.

The RST* signal must have a pull-up resistor because it is controlled by an open-collector (OC) driver in the probe,
and thus is actively pulled low only. The pull-up resistor is responsible for the high value when not driven by the
probe. The input on the target system reset circuit must be able to accept the rise time when the pull-up resistor
charges the CTarget and CProbe capacitance to a high logical level.

GND
1

GND

GND

GND

GND

TRST*

TDI

TDO

TMS

TCK

RST*

DINT

TRST*

TDI

TDO

TMS

TCK

GND

DINT

VDD

GND

VIO voltage
reference

Pu
ll-

up

Pu
ll-

up

Pu
ll-

do
w

n

Series-res.

Reset (soft/hard)

Target System
Reset Circuit

Pu
ll-

up

Other reset
sources

VIO

Pu
ll-

up

Pu
ll-

up

Pu
ll-

up

EJTAG-compliant
Processor On Chip

11.6 Probe Requirements and Recommendations

MIPS® EJTAG Specification, Revision 6.10 199

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

VIO must connect to a voltage reference that drops rapidly to below VVIOactive when the target system loses power,
even with the capacitive load of CProbe. The probe can thus detect the lost power condition.

The signals on the probe connection for the optional signals DINT and TRST* should be left unconnected in the tar-
get system, if unused.

11.5.2 Layout Considerations

Layout around the pin connector on the target system must provide for sufficient clearance for the probe to connect.
Figure 11.8 shows the recommended clearance. Place the connector at the edge of the PCB. Avoid tall components
around the connector to allow for easy access.

Figure 11.8 Target System Layout for EJTAG Connection

11.6 Probe Requirements and Recommendations

This section provides the probe requirements for different features.

11.6.1 Target System Power-Up with Probe Attached

A probe connected to the target system at power-up is not allowed to drive the inputs before VIO indicates a stable
voltage (see Section 11.2.4 on page 195). TRST* (if present) is then asserted by the target system pull-down resistor
at power-up, whereby a TAP reset is applied through TRST* for TAPs, depending on TRST*. This step implies that
inputs are not driven until the target system is powered up; otherwise the communication on the TAP might be unde-
fined or damage could occur.

Target System PCB

4.0 mm

4.0 mm

3.0 mm

3.0 mm
No components taller than the
base of the pin header should
be placed in the marked area

1

 Off-Chip and Probe Interfaces

200 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

At power-down the probe is not allowed to drive the inputs after VIO has dropped under a certain level (see Section
11.2.4 on page 195).

The RST* signal is an exception to the above description because it can be driven low by the probe during power-up.

11.6.2 Hot Plug in of Probe

The probe must not drive any inputs to the target system if it is connected while the system is running (hot plug).
Detection of a stable VIO from the target system is required before any input is allowed to be (see Section 11.2.4 on
page 195).

To avoid spikes or changes in the input voltage to the target system when the probe is connected, the level of the sig-
nal on the probe must be adjusted to the same level as the signals on the target system. This adjustment can be done
with large pull-up/down resistors (in the range of 150 kΩ) on the probe signals, so the level of these signals matches
the level on the target system shown in Figure 11.8. The specific implementation of this feature is dependent on the
probe, the driver type, etc. used in the probe.

11.6.3 TDO Level when 3-Stated

The probe must apply a pull-up resistor on TDO to have a well-defined logical level when TDO on the TAP is
3-stated. The pull-up on the target system ensures the level at hot plug. The size of the pull-up on the probe is
expected to be 1.0 kΩ or more. The resistor value must be chosen so IZstate is observed.

11.6.4 RST* Drive by Open Collector

Drive the RST* signal with an open-collector (OC) output driver to allow for easy connection of the RST* signal in
the target system.

11.6.5 Changing TMS and TDI

It is recommended that the TMS and TDI signals driven by the probe change in relation to the falling edge generated
on the TCK, because this ensures a high setup and hold time for the TMS and TDI in relation to the rising edge of
TCK, on which these signals are sampled by the target processor.

If the TCK clock speed can be adjusted by extending the high and low period time of the TCK clock, then the behav-
ior described above will also make the probe work even with a target processor not respecting setup and hold time,
simply by lowering the TCK frequency.

11.6.6 Mechanical Connector

The female connector from the probe must allow for an angled board connector.

Block Hole 12 on the probe connector in order to provide keying and ensure correct connection of the probe to the
target system. Connect the signal from the probe at line 12 to GND on the probe.

With the enhancement of the EJTAG connector with the input RTCK signal on pin 12, targets generating RTCK can
only be used with probes capable of accepting it. Generation of RTCK is indicated by the presence of pin 12 on the
target connector. Probe acceptance of RTCK is indicated by lack of a plug on pin 12 of the probe cable.

Appendix A

MIPS® EJTAG Specification, Revision 6.10 201

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Differences for R3000 Privileged Environments

This appendix describes the EJTAG feature differences necessary for integration with a 32-bit processor having an
R3000 privileged environment.

A.1 EJTAG Processor Core Extensions

This section covers differences between an R3000 environment and the description in Chapter 2, “EJTAG Processor
Core Extensions” on page 33.

A.1.1 SYNC Instruction

The SYNC instruction is not available for processors with R3000 privileged environment, but this instruction must be
available and have behavior as described in Section 2.2.3.7 on page 40.

A.1.2 Debug Exception Vector Location

Table A.1 shows the debug exception vector location in system memory for processors with R3000 privileged envi-
ronments.

The debug exception vector in dmseg (EJTAG memory) is the same for processors with R3000 and R4000 privileged
environments.

A.1.3 SYNC Instruction Substitute

In case the SYNC instruction is not provided (for example, on a processor with an R3000 privileged environment),
then an implementation-specific instruction sequence must be used to ensure full update of the Debug register status
bits and BSn bits for hardware breakpoints with respect to handling of imprecise data hardware breakpoints and
imprecise errors.

A.1.4 CP0 Register Numbers for Debug and DEPC Registers

The register numbers to use in processors with R3000 privileged environments for CP0 Debug and DEPC registers is
shown below:

• Debug register: 16

• DEPC register: 17

Table A.1 Debug Exception Vector Location for R3k Privileged Environment Processors

ProbTrap bit in
ECR register Debug Exception Vector Address

0 0xBFC0 0200

 Differences for R3000 Privileged Environments

202 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

A.2 Hardware Breakpoints

This section describes the differences between hardware breakpoints in an R3000 privileged environment and those
describes in Chapter 5, “Hardware Breakpoints” on page 117.

A.2.1 Instruction Breakpoint Registers

Table A.2 shows the address offsets in drseg for the Instruction Breakpoint registers. In the table, n is the breakpoint
number in the range 0 to 14.

A.2.2 Conditions for Matching Instruction Breakpoints

The width in bits of the ASID field for the compare is 6 bits, as is the size used in the TLB. The ASID and
IBASIDnASID references used in the equations in Section 5.3.1 on page 120 has this size.

A.2.3 ASID Field in IBCn Register

Compliance Level: Required with instruction breakpoints when the ASIDsup bit in the IBS register is 1, optional
otherwise.

The ASID field has the ASID value used in the compare for instruction breakpoint n; it is placed in the IBCn register,
not in a register of its own. Table A.3 shows the format of the ASID field.

A.2.4 Data Breakpoint Registers

Table A.4 shows the address offsets in drseg for the Data Breakpoint registers. In the table, n is the breakpoint num-
ber in the range 0 to 14.

Table A.2 Offsets for Instruction Breakpoint Registers for R3k Privileged Environment Processors

Offset in drseg
Register

Mnemonic Register Name and Description

0x0004 IBS Instruction Breakpoint Status

0x0100 + 0x010 * n IBAn Instruction Breakpoint Address n

0x0104 + 0x010 * n IBCn Instruction Breakpoint Control and ASID n

0x0108 + 0x010 * n IBMn Instruction Breakpoint Address Mask n

Table A.3 ASID Field in IBCn Register

Fields

Description
Read/
Write Reset StateName Bits

ASID 29:24 Instruction breakpoint ASID value for compare. R/W Undefined

Table A.4 Offsets for Data Breakpoint Registers for R3k Privileged Environment Processors

Offset in drseg
Register

Mnemonic Register Name and Description

0x0008 DBS Data Breakpoint Status

A.3 EJTAG Test Access Port

MIPS® EJTAG Specification, Revision 6.10 203

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

A.2.5 Conditions for Matching Data Breakpoints

The width in bits of the ASID field for the compare is 6 bits, as is the size used in the TLB. The ASID and
DBASIDnASID references used in the equations in Section 5.3.2 on page 122 has this size.

A.2.6 ASID Field in DBCn Register

Compliance Level: Required with instruction breakpoints when the ASIDsup bit in the DBS register is 1, optional
otherwise.

The ASID field has the ASID value used in the compare for data breakpoint n; it is placed in the DBCn register, not
in a register of its own. Table A.5 shows the format of the ASID field.

A.3 EJTAG Test Access Port

There are no differences for processors with R3000 privileged environment with respect to the EJTAG Test Access
Port. The R4000/R3000 bit in the Implementation register selects between R4000 and R3000 privileged environ-
ments (see Section 4.5.2 on page 96).

0x0200 + 0x010 * n DBAn Data Breakpoint Address n

0x0204 + 0x010 * n DBCn Data Breakpoint Control and ASID n

0x0208 + 0x010 * n DBMn Data Breakpoint Address Mask n

0x020C + 0x010 * n DBVn Data Breakpoint Value n

Table A.5 ASID Field in DBCn Register

Fields

Description
Read/
Write Reset StateName Bits

ASID 29:24 Data breakpoint ASID value for compare. R/W Undefined

Table A.4 Offsets for Data Breakpoint Registers for R3k Privileged Environment Processors (Continued)

Offset in drseg
Register

Mnemonic Register Name and Description

 Differences for R3000 Privileged Environments

204 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix B

MIPS® EJTAG Specification, Revision 6.10 205

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Terminology

This appendix defines several terms used throughout this document.

Term Definition

3-state Undriven output, thus output with high impedance

ASE Application Specific Extension.

CP0 Coprocessor 0 (zero)

Debug exception Exception bringing the processor from Non-Debug Mode to Debug Mode.

Debug Mode exception Exception occurring in Debug Mode, which causes the processor to re-enter
Debug Mode.

dmseg Memory-mapped area, accessible from the processor in Debug Mode only. It is
provided as emulated memory handled by the probe through processor accesses.

drseg Memory mapped area, accessible from the processor in Debug Mode only. It
contains registers for hardware breakpoint setup, for example.

dseg Memory mapped area, accessible from the processor in Debug Mode only. It
contains the combined dmseg and drseg areas.

EJTAG Enhanced JTAG.

EJTAG Area See dseg definition.

EJTAG Memory See dmseg definition.

EJTAG Registers See drseg definition.

GPR General-Purpose Registers r0 to r31.

IEEE 1149.1 IEEE standard describing the TAP and the boundary-scan architecture.

ISA Instruction Set Architecture.

JTAG Joint Test Action Group.

Hardware breakpoint Instruction or data breakpoints implemented in hardware.

LSB Least Significant Bit.

MMU Memory Management Unit. Translates virtual addresses to physical addresses.

MSB Most Significant Bit.

Naturally-aligned Alignment of a memory structure at an address corresponding to its size, so for
example a word is aligned to an word boundary thus where the two LSBs of the
address are 0.

Non-Debug Mode Any mode other than Debug Mode (User Mode, Supervisor Mode or Kernel
Mode).

PC Program Counter, the virtual address of the currently executed instruction.

Probe A hardware system controlling the target system through the TAP. The probe is
controlled through the debug host, a PC, or workstation.

Processor access Access from the processor to dmseg, which is handled by the probe through the
TAP.

 Terminology

206 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Software breakpoint SDBBP instruction, which can be inserted in the code being debugged, causing
a debug exception when executed.

TAP Test Access Port. The interface port defined in IEEE 1149.1 and used for access
to EJTAG from the probe. The interface is made up of the test clock (TCK), test
mode select (TMS), test data in (TDI), test data out (TDO), and optional TAP
reset (TRST*).

TLB Translation Lookaside Buffer. Provides programmable mapping of address
translations done by the MMU.

Triggerpoint Hardware breakpoint, which is set up to generate a trigger indication when it
matches.

Term Definition

Appendix C

MIPS® EJTAG Specification, Revision 6.10 207

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Functional Clarifications from Old EJTAG 2.5

The following items were clarified from the previous EJTAG rev. 2.5 Specification:

• Update of Instruction register in Update-IR state

Updating Instruction register in the Update-IR state is allowed either on the rising or the falling TCK edge. See
Section 4.3.4 on page 91 for more information.

• Update of selected Data register(s) in Update-DR state

Updating selected Data register(s) in the Update-IR state is allowed either on the rising or the falling TCK edge.
See Section 4.3.7 on page 91 for more information.

• Use of the Device ID register

The Device ID register is recommended to be unique among designs and among several processors on the same
chip. See Section 4.5.1 on page 95 for more information.

• Reset State or Power-up State

Either the reset state or the power-up state is indicated for the data registers. It is not possible to state only the
reset value, because a reset denotes a processor reset. For example, the Bypass register must be reset to 1 as soon
as the TAP can be operated, thus the processor should not be required to be reset first. See Section 4.5 on page 94
for more information.

• SRstE Changed to Optional

The SRstE bit described in Chapter 3, “Debug Control Register” on page 79 has been made optional, because not
every implementation needs it, and its behavior is defined as implementation-dependent.

• Bypass Register Initial Value as 0 (zero)

The initial value for the Bypass register (in Capture-DR state) is defined as 0 (see Section 4.5.8 on page 110),
since the JTAG Specification requires this in chapter 9 page 9-1.

 Functional Clarifications from Old EJTAG 2.5

208 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix D

MIPS® EJTAG Specification, Revision 6.10 209

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Multithreaded and Multi-Core Debug

Multicore debugging is not a required feature of EJTAG, but is provided here as a recommended method to imple-
ment debug for a multi-core or a multithreaded processor.

D.1 Introduction

This document serves as a guideline for designing a Multi-Core Breakpoint Unit (MCBU) for System-On-Chip
(SOC) devices that integrate multiple MIPS processor cores. The document is intended to be used by designers of
SOC devices and by software tool vendors who design debuggers capable of interacting with these SOC devices.

The MCBU is capable of requesting a debug interrupt from any number of cores in the SOC as a result of any core in
the system entering Debug Mode. In addition, the MCBU can be used to request a debug interrupt, soft reset, hard
reset, and non-maskable interrupt from any number of the cores under software control.

D.2 MCBU Register Map

The MCBU consists of registers that specify which of the processors in the multi-processor system should receive a
RESET, COLD RESET, NMI, and Debug Interrupt signal. There are also per-processor debug interrupt registers that
specify whether that processor causes a debug interrupt to be sent to other processors in the multi-processor system.
These registers are described below. These registers are memory-mapped for access by the debug probe hardware and
software. Refer to Table D.1 and Table D.2.

Table D.1 sMCBU Register Memory Map

Register Name Memory Map of the Register

Reset Base+0x000

Cold_Reset Base+0x010

NMI Base+0x020

Debug_Interrupt Base+0x030

Table D.2 MCBU Debug_Int Register Memory Map

Register Name Memory Map of the Register

Debug_Int_0 Base+0x200

Debug_Int_1 Base+0x210

Debug_Int_2 Base+0x220

... ...

 Multithreaded and Multi-Core Debug

210 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

SoC designers are advised to design the base address to be 0x1FFFC00. This is the end of kseg1 (ROM is at
0x1FC00000). If it is impossible to map the MCDU into this address, SoC designers are requested to map the base to
kseg1, and to notify the head of the Architecture Team at MIPS Technologies of the selected base address. Debugger
designers are advised to use the above-specified address as the default, but to enable configuring this address in the
debuggers for SoC devices that are using a different address. A default configuration file
(mips_mcbu_base.cfg) should be made available by the chip manufacturer to the debugger vendors.

Addresses Base through Base+0x1FFF should be reserved for future expansion of the MCBU. If no more than N
cores are implemented in the SoC (N < 32), only registers Debug_Int_0 through Debug_Int_N-1 need to be imple-
mented. Registers Debug_Int_N through Debug_Int_31 should remain reserved.

D.3 MCBU Registers

D.3.1 Debug_Int_i

There are a maximum of 64 such registers, but only as many as exist in the multiprocessor system need to be imple-
mented. The Debug_Int_i register is a 64-bit read/write register that contains a mask used to control which of the pro-
cessor cores in the SOC device should receive an EJ_DINT request on detection of an asserted EJ_DebugM in
processor core number i in the SOC. When Mask[j] is set, an asserted EJ_DebugM in processor core number i forces
the EJ_DINT in core number j to be asserted. When Mask[j] is clear, an asserted EJ_DebugM in processor core num-
ber i will have no effect on EJ_DINT in core number j.

If no more than N cores are implemented in the SOC (N < 64), bits N through 63 should remain reserved. Upon SOC
reset, the value of the Mask bits is undefined.

Figure D.1 Debug_Int_i Register Format

Debug_Int_i Base+0x200+(0x10*i16), (i expressed in hex)

... ...

Debug_Int_63 Base+0x5F0

63 k+1 k 1 0

0 Mask

Table D.3 Debug_Int_i Register Field Descriptions

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

Mask k:0 There are k+1 processors in the multi-processor system
under debug. For each processor, the corresponding mask
bit, that is, mask[j] for processor j, specifies whether or
not the current processor i will assert EJ_DINT for j when
i receives an EJ_DebugM.

R/W 0 Required if
MCBU is

implemented

0 63:k+1 Reserved R 0 Required if
MCBU is

implemented

Table D.2 MCBU Debug_Int Register Memory Map (Continued)

Register Name Memory Map of the Register

D.3 MCBU Registers

MIPS® EJTAG Specification, Revision 6.10 211

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

D.3.2 Reset

The Reset register is a 64-bit read/write register that contains a mask used to control which of the processor cores in
the SoC device should receive a SI_Reset request. When Mask[j] is set, the MCDU will force the SI_Reset input of
core j to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure D.2 Reset Register Format

D.3.2.1 Cold Reset

The Cold Reset register is a 64-bit read/write register that contains a mask used to control which of the processor
cores in the SoC device should receive a SI_ColdReset request. When Mask[j] is set, the MCDU will force the
SI_ColdReset input of core j to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure D.3 Cold Reset Register Format

63 k+1 k 1 0

0 Mask

Table D.4 Reset Register Field Descriptions

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

Mask k:0 There are k+1 processors in the multi-processor system
under debug. When the mask bit j is set, this forces a
SI_Reset signal to processor j.

R/W 0 Required if
MCBU is

implemented

0 63:k+1 Reserved R 0 Required if
MCBU is

implemented

63 k+1 k 1 0

0 Mask

Table D.5 Cold Reset Register Field Descriptions

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

Mask k:0 There are k+1 processors in the multi-processor system
under debug. When the mask bit j is set, this forces a
SI_ColdReset signal to processor j.

R/W 0 Required if
MCBU is

implemented

0 63:k+1 Reserved R 0 Required if
MCBU is

implemented

 Multithreaded and Multi-Core Debug

212 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

D.3.2.2 NMI

The NMI register is a 64-bit read/write register that contains a mask used to control which of the processor cores in
the SoC device should receive a SI_NMI request. When Mask[j] is set, the MCDU will force the SI_NMI input of
core j to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure D.4 NMI Register Format

D.3.3 Debug Interrupt

The Debug Interrupt register is a 64-bit read/write register that contains a mask used to control which of the processor
cores in the SoC device should receive a EJ_DINT request. When Mask[j] is set, the MCDU will force the EJ_DINT
input of core j to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure D.5 Debug Interrupt Register Format

63 k+1 k 1 0

0 Mask

Table D.6 NMI Register Field Descriptions

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

Mask k:0 There are k+1 processors in the multi-processor system
under debug. When the mask bit j is set, this forces a
SI_NMI signal to processor j.

R/W 0 Required if
MCBU is

implemented

0 63:k+1 Reserved R 0 Required if
MCBU is

implemented

63 k+1 k 1 0

0 Mask

Table D.7 Debug Interrupt Register Field Descriptions

Fields

Description
Read /
Write

Power-up
State ComplianceName Bits

Mask k:0 There are k+1 processors in the multi-processor system
under debug. When the mask bit j is set, this forces a
EJ_DINT signal to processor j.

R/W 0 Required if
MCBU is

implemented

0 63:k+1 Reserved R 0 Required if
MCBU is

implemented

D.4 Possible Implementation

MIPS® EJTAG Specification, Revision 6.10 213

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

D.4 Possible Implementation

The following diagram demonstrates a possible implementation of a circuit that generates EJ_DINT to processor j in
a system with 9 processors

Figure D.6 An Example Implementation

Debug_Int_0[j]

Debug_Int_1[j]

Debug_Int_8[j]

EJ_Debug0 EJ_Debug1 EJ_Debug8

Other
DINT
Sources

EJ_DINTj

Appendix E

MIPS® EJTAG Specification, Revision 6.10 214

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

DRSEG Memory Map

This appendix lists the various registers mapped into the debug register segment (drseg).

Table E.1 drseg Memory Map

Offset Register Section Reference

0x00000 Debug Control Register Chapter 3, “Debug Control Register” on page 79

0x00004 Instruction Breakpoint Status Register (Old) Section A.2.1 “Instruction Breakpoint Registers”

0x00008 Data Breakpoint Status Register (Old) Section A.2.4 “Data Breakpoint Registers”

0x00020 Debug Exception Vector Location Section 2.3.2 “Debug Exception Vector Location”

0x00100-0x001FF Instruction Breakpoint Control Registers (Old) Section A.2.1 “Instruction Breakpoint Registers”

0x00200-0x002FF Data Breakpoint Control Registers (Old) Section A.2.4 “Data Breakpoint Registers”

0x01000 Instruction Breakpoint Status Section 5.6.1 “Instruction Breakpoint Status (IBS)
Register”

0x01100-0x01FE0 Instruction Breakpoint Control (15 breakpoints) Section 5.6.2 “Instruction Breakpoint Address n
(IBAn) Register” - Section 5.6.5 “Instruction

Breakpoint Control n (IBCn) Register”

0x01FF8 TraceIBPC2 Register The PDtrace™ Interface and Trace Control Block
Specification (MD00439)

0x02000 Data Breakpoint Status (New) Section 5.7.1 “Data Breakpoint Status (DBS)
Register”

0x02100-0x02FE0 Data Breakpoint Control (15 breakpoints) Section 5.7.2 “Data Breakpoint Address n (DBAn)
Register” - Section “”

0x02FF0 Load Data Value Register Section 5.3.3 “Precise Exceptions on Data Value
Match Breaks”

MIPS® EJTAG Specification, Revision 6.10 215

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

0x02FF8 TraceDBPC2 Register

The PDtrace™ Interface and Trace Control Block
Specification (MD00439) Revision 6.00 (or newer)

0x3000 TCBControlA

0x3008 TCBControlB

0x3010 TCBControlC

0x3018 TCBControlD

0x3020 TCBControlE

0x3028 TCBConfig

0x03100 TCBTW

0x03108 TCBRDP

0x03110 TCBWRP

0x03118 TCBSTP

0x03120 BKUPRDP

0x03128 PKUPWRP

0x03130 BKUPSTP

0x3200-0x3238 TCBTrigX

0x03F80 ITCBTW Trace Word Register

The iFlowtrace™ Architecture Specification
(MD00526)

0x3F88 ITCBRDP Read Address Pointer Register

0x3F90 ITCBWRP Write Address Pointer Register

0x03FC0 iFlowTCB Control/Status Register

0x03FD0 ITrigiFlowTrcEn Register

0x03FD8 DTrigiFlowTrcEn Register

0x03FE0 iFlowTCB2 Control/Status Register

0x04000-0x07FFF On chip SRAM or Trace Memory (iFlowTrace)

0x08000 Complex Break and Trigger Control Register Section 6.3.1 “Complex Break and Trigger
Control (CBTC) Register (0x8000)”

0x08300-0x084DF PrCndAI[n], n=0..14
Section 6.7 “Primed Breakpoints”

0x084E0-0x086BF PrCndAD[n], n=0..14

0x08900 Stopwatch Timer Control Section 6.3.7 “Stopwatch Timer Control (STCtl)
Register (0x8900)”

0x08908 Stopwatch Timer Count Section 6.3.8 “Stopwatch Timer Count (STCnt)
Register (0x8908)”

Table E.1 drseg Memory Map (Continued)

Offset Register Section Reference

 DRSEG Memory Map

216 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix F

MIPS® EJTAG Specification, Revision 6.10 217

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Revision History

MIPS documents include change bars (vertical bars in the page margin) that mark significant changes to the docu-
ment since its last release. Change bars are removed for changes which are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture
document.

Revision Date Description

2.5 February 22, 2000 Release to users under NDA

2.5-1 June 6, 2000 Changes in this revision:
• Clarification describing possible speculative fetch from dmseg. See Section

2.2.2.1 on page 37.
• Clarification of SYNC instruction behavior in Section 2.2.3.7 on page 40.
• Added hazard description on DEBUG[LSNM] and DEBUG[IEXI] in Section

2.2.4 on page 41.
• Clarification for Doze and Halt bits in Debug register, see Section 2.7.1 on

page 59.
• Removed requirement that bytes of TAP Data Register which are not accessed

for a processor access read must be written with 0s by the probe. Thus, now
any value may be written to the not accessed bytes.

• Wording change in headline and beginning of Appendix C covering clarifica-
tion of changes since previous EJTAG revisions.

• Added cross references for clarification.
• Corrected typos.
• Declassify the document.

2.5-2 August 22, 2000 Removed old Section 6.2, and added Section 6.4 to discuss multi-core EJTAG,
i.e., MIPS recommended way to connect multiple TAP controllers to one set of
external EJTAG TAP pins.

02.53 January 8, 2001 Changes in this revision:
• Revision number changed to have format XX.YY, thus the next minor revision

after 2.5-2 is named 02.53.
• Clarification of data triggerpoint handling when exception occur on a

load/store instruction.
• Clarification of value of BYTELANE for hardware breakpoints when access

with unaligned address occurs.
• Elaborated description of fields in TAP Device ID register.
• Added recommendation for handling of CacheErr register in Debug Mode.
• Modified description of connecting multiple TAP controllers in daisy chain.
• Updates for clarifications in general.
• Corrected typos.

 Revision History

218 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

02.60 February 15, 2001 Changes in this revision:
• Updated the chapter on TAP controller to specify the FASTDATA instruction.
• Added the instructions needed for the trace control block register access.
• Updated the revision number to 02.60 and made a value of 2 in the EJTAGver

field correspond to this version.

02.61 September 30, 2002 Changes in this revision:
• Include the EJTAGver field encoding of 2, inadvertently left out of version

2.60.

02.62 May 7, 2003 Changes in this revision:
• Remove Appendix D, as this information in not appropriate to a specification

documenting the current state of the EJTAG architecture.
• Clarify the definition of EJTAGBOOT. If this condition is active, the first

instruction fetch after reset is to one of the EJTAG debug addresses, not to the
reset exception vector.

• Clarify the wording describing the BAI field of the Data Breakpoint Control
register.

• Clarify the definition of ADDR for the LUXC1 and SUXC1 instructions, when
used in the data breakpoint address match equation.

• Clarify the use of the DebugDExcCode field for SDBBP instructions in Debug

Mode.
• Add an introduction to EJTAG to the first chapter of the specification.
• Clarify the state of the Halt and Doze bits in the Debug register if a hardware

interrupt or other event awakens the processor, but a debug exception is taken
instead.

• Make it clear that it is implementation-dependent whether an SC/SCD, which
would fail because the LLbit is 0, will cause a debug exception due to a data
breakpoint match.

• Update with MIPS32 and MIPS64 Release 2 Architecture changes.

3.10 July 5, 2005 Changes in this revision:
• Added PC Sampling feature
• Added support for MIPS MT ASE
• EJTAG version 3 for specification revision 3.10 and up
• Inclusion of a possible proposal for implementing EJTAG support for multiple

processors or a multi-threaded configuration
• Miscellaneous cleanup

3.20 September 19, 2005 Changes in this revision:
• PC sampling clarifications for MT, add a PCSe bit to DCR
• Typo fixes

4.00 June 28, 2006 Changes in this revision:
• Add complex break and trigger chapter and the Debug2 register
• Add the ability to Invert a data value check
• Add the feature that saves a data value on a precise match
• Typo fixes and clarification.

4.10 July 3, 2006 Fix typographical errors, unresolved pointers, and clarification of existing fea-
tures. Add a new Return TCk (RTCK) signal to pin 12 of the EJTAG Connector.

4.11 May 18, 2007 Add EJTAGJver 4.0 to indicate the architecture upgrade to include the Complex
Break and Trigger feature.

4.12 July 15, 2008 Update copyrights and contact information.

Revision Date Description

MIPS® EJTAG Specification, Revision 6.10 219

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.13 August 01, 2008 • DBCCn Register figure was missing UnPRCnd field.
• Load Data Value address offset is 0x2FF0.
• Page 16, Table 1.1 and Page 138, 7.5.5.1 gave the wrong impression that

EJTAGBOOT and NORMALBoot commands cause reset themselves.

4.14 November 06, 2008 • Added new TAP instructions
• Added drseg map appendix

4.5 January 26, 2009 MIPS Technologies-only release for internal review:
• Added Fast Debug Channel control bits to DCR
• Added Fast Debug Channel Chapter
• Added information about relocatable debug vector
• Added Data Address Sampling and enhanced PC Sampling.
• Added TIBrkNum and TUP fields to DBCCn register description
• Moved UnPrCnd field in DBCCn registers to avoid overlap with above fields
• Added UnPrCnd field to IBCCn register

4.51 April 8, 2009 MIPS Technologies-only release for internal review:
• Changes to ISAOnDebug bit for reset state and microMIPS-only case.

4.52 April 20, 2009 MIPS Technologies-only release for internal review:
• Added MIPS64 definition for PCSAMPLE TAP register
• Updated sections relating to debug vector relocation
• Updated sections relating to ISA mode selection for debug exception handlers
• Clarified that FDC is optional, fixed typos in FDC chapter
• Updated list of memory mapped registers in Introduction and Appendix
• Added new version number for 4.5
• Clarified that PC sampling is available from version 3 onwards
• Updated description of DEPC to include ISA mode bit

4.53 April 24, 2009 MIPS Technologies-only release for internal review:
• microMIPS edits.

5.00 July 20, 2009 External release of all new features post revision 4.14:
• Corrected bitfield descriptions for DBASIDn.VPE, DBCn.VPEuse
• Changed DCR bit RDVec - now optional
• Changed DCR bits PCIM, PCnoASID, PCR - write optional
• Changed DebugVectorAddr - now optional, bit 7 is r/w
• Added DCR bit PCnoTCID

5.01 October 05,2009 • IMPCODE.EJTAGVer field - added missing identifier for revision 5.00.
• Additional text for DebugVectorAddr register - how vector is actually calcu-

lated for different exceptions. Some clean-up for that description.

5.02 November 16,2009 • Many of the embedded tables (tables within tables) in Chapter 8 were clipped
off at the bottom so you couldn’t see the last entry. These have been fixed.

• ISAMode bit only exists if microMIPS ISA is implemented.

5.03 November 18,2009 • Moved Core Extensions, DCR and TAP chapters ahead of chapters describing
optional features.

• Renamed a few chapters.

5.04 March 01, 2010 • Remove “Preliminary” Margin Note.

5.05 November 25, 2010 • Clarify EJTAGboot behavior - only affects instruction fetch, not exception
type.

5.06 March 05,2011 • Added CPUNum & Type field to IMPCODE register.

5.07 September 20, 2012 • Updated DebugVectorAddr register definition for implementations supporting
Segmentation Control.

• Added K bit in PC Sampling format for EVA opcode support.
• Added extended ASID fields for Break Channels .

Revision Date Description

 Revision History

220 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.00 December 18, 2012 • Added VZE Module features:
• Break Channels can match on specific GuestID (Root vs Guest)and GVA vs

GPA
• PC Sample includes GuestID
• R5 name changes - MT/DSP ASE -> MT/DSP Module

6.10 February 07, 2013 • Added Secure Debug Chapter.
• Added EJTAG_Brk_Override bit in DCR.

Revision Date Description

	MIPS® EJTAG Specification
	Table of Contents
	List of Figures
	List of Tables
	Overview of the EJTAG System
	1.1 Introduction to EJTAG
	1.2 Historical Perspective
	1.3 EJTAG Capabilities
	1.3.1 Debug Exception and Debug Mode
	1.3.2 Off-board EJTAG Memory
	1.3.3 Debug Breakpoint Instruction
	1.3.4 Hardware Breakpoints
	1.3.5 Single-Step Execution

	1.4 EJTAG Components and Options
	1.4.1 EJTAG Processor Core Extensions
	1.4.2 EJTAG Test Access Port
	1.4.3 Debug Control Register
	1.4.4 Hardware Breakpoint Unit
	1.4.5 Fast Debug Channel

	1.5 Complex Breakpoint and Trigger (CBT) Block
	1.6 EJTAG-Specific Coprocessor 0 Registers
	1.7 Memory-Mapped EJTAG Registers
	1.7.1 Debug Control Register
	1.7.2 Debug Exception Vector Location Register
	1.7.3 Load Data Value Register
	1.7.4 Instruction Hardware Breakpoint Registers
	1.7.5 Data Hardware Breakpoint Registers
	1.7.6 Complex Break and Trigger Registers

	1.8 Memory-Mapped EJTAG Memory Segment
	1.9 Memory-Mapped Fast Debug Channel Registers
	1.10 EJTAG Test Access Port Registers
	1.11 The Implications of Multiprocessing and Multithreading for EJTAG
	1.12 Related Documents
	1.13 Notations and Conventions
	1.13.1 Compliance
	1.13.2 UNPREDICTABLE and UNDEFINED Operations
	1.13.2.1 UNPREDICTABLE
	1.13.2.2 UNDEFINED

	1.13.3 Register Field Notations
	1.13.4 Value Notations
	1.13.5 Address Notations

	EJTAG Processor Core Extensions
	2.1 Overview
	2.2 Debug Mode Execution
	2.2.1 Debug Mode Instruction Set
	2.2.2 Debug Mode Address Space
	2.2.2.1 Access to dmseg (EJTAG memory) Address Range
	2.2.2.2 Access to drseg (EJTAG Registers) Address Range

	2.2.3 Debug Mode Handling of Processor Resources
	2.2.3.1 Coprocessors
	2.2.3.2 Random Register
	2.2.3.3 Count Register
	2.2.3.4 WatchLo/WatchHi Registers
	2.2.3.5 CacheErr Register
	2.2.3.6 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair
	2.2.3.7 SYNC and EHB Instruction Behavior

	2.2.4 CP0 and dseg Segment Hazards
	2.2.4.1 Types of Hazards
	2.2.4.2 Hazard Clearing Instructions
	2.2.4.3 Instruction Encoding

	2.3 Debug Exceptions
	2.3.1 Debug Exception Priorities
	2.3.2 Debug Exception Vector Location
	2.3.3 Debug Exception ISA mode
	2.3.4 General Debug Exception Processing
	2.3.5 Debug Breakpoint Exception
	2.3.6 Debug Instruction Break Exception
	2.3.7 Debug Data Break Load/Store Exception
	2.3.8 Debug Data Break Load/Store Imprecise Exception
	2.3.9 Debug Single Step Exception
	2.3.10 Debug Interrupt Exception

	2.4 Debug Mode Exceptions
	2.4.1 Exceptions Taken in Debug Mode
	2.4.2 Exceptions on Imprecise Errors
	2.4.3 Debug Mode Exception Processing

	2.5 Interrupts and NMIs
	2.5.1 Interrupts
	2.5.2 NMIs

	2.6 Reset and Soft Reset of Processor
	2.6.1 EJTAGBOOT Feature
	2.6.2 Reset from Probe
	2.6.3 Processor Reset by Probe through Test Access Port
	2.6.4 Reset Occurred Indication through Test Access Port
	2.6.5 Soft Reset Enable
	2.6.6 Reset of Other Debug Features

	2.7 EJTAG Coprocessor 0 Registers
	2.7.1 Debug Register (CP0 Register 23, Select 0)
	2.7.2 Debug2 Register (CP0 Register 23, Select 6)
	2.7.3 Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	2.7.4 Debug Exception Save Register (CP0 Register 31, Select 0)

	2.8 EJTAG Instructions
	Format: SDBBP
	Format: SDBBP
	Format: DERET
	Format: DERET

	Debug Control Register
	EJTAG Test Access Port
	4.1 TAP Overview
	4.2 TAP Signals
	4.2.1 Test Clock Input (TCK)
	4.2.2 Test Mode Select Input (TMS)
	4.2.3 Test Data Input (TDI)
	4.2.4 Test Data Output (TDO)
	4.2.5 Test Reset Input (TRST*)

	4.3 TAP Controller
	4.3.1 Test-Logic-Reset State
	4.3.2 Capture-IR State
	4.3.3 Shift-IR State
	4.3.4 Update-IR State
	4.3.5 Capture-DR State
	4.3.6 Shift-DR State
	4.3.7 Update-DR State

	4.4 Instruction Register and Special Instructions
	4.4.1 ALL Instruction
	4.4.2 EJTAGBOOT and NORMALBOOT Instructions
	4.4.3 FASTDATA Instruction
	4.4.4 FDC Instruction

	4.5 TAP Data Registers
	4.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)
	4.5.2 Implementation Register (TAP Instruction IMPCODE)
	4.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA)
	4.5.4 Address Register (TAP Instruction ADDRESS or ALL)
	4.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
	4.5.5.1 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap and ProbEn
	4.5.5.2 Combinations of ProbTrap and ProbEn

	4.5.6 Fastdata Register (TAP Instruction FASTDATA)
	4.5.7 PCsample Register (PCSAMPLE Instruction)
	4.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)

	4.6 Examples of Use
	4.6.1 TAP Operation
	4.6.2 ManufID Value
	4.6.3 Rocc Bit Usage
	4.6.4 EJTAG Memory Access Through Processor Access
	4.6.4.1 Write Processor Access
	4.6.4.2 Read Processor Access

	Hardware Breakpoints
	5.1 Introduction
	5.1.1 Instruction Breakpoint Features
	5.1.2 Data Breakpoint Features

	5.2 Overview of Instruction and Data Breakpoint Registers
	5.2.1 Overview of Instruction Breakpoint Registers
	5.2.2 Overview of Data Breakpoint Registers

	5.3 Conditions for Matching Breakpoints
	5.3.1 Conditions for Equality and Mask Matching Instruction Breakpoints
	5.3.2 Conditions for Equality and Mask Matching Data Breakpoints
	5.3.2.1 Inverting the Data Value Match Condition
	5.3.2.2 Data Breakpoints in case of Unaligned Address
	5.3.2.3 Match for Data Breakpoint with Value Compare on Bus or Cache Error
	5.3.2.4 Precise Match for Data Breakpoints
	5.3.2.5 Imprecise Match for Data Breakpoints

	5.3.3 Precise Exceptions on Data Value Match Breaks
	5.3.4 Address Range Triggered Instruction Breakpoints
	5.3.5 Address Range Triggered Data Breakpoints

	5.4 Debug Exceptions from Breakpoints
	5.4.1 Debug Exception Caused by Instruction Breakpoint
	5.4.2 Debug Exception by Data Breakpoint
	5.4.2.1 Debug Data Break Load/Store Exception as a Precise Debug Exception
	5.4.2.2 Debug Data Break Load/Store Exception as an Imprecise Debug Exception

	5.5 Breakpoints Used as Triggerpoints
	5.6 Instruction Breakpoint Registers
	5.6.1 Instruction Breakpoint Status (IBS) Register
	5.6.2 Instruction Breakpoint Address n (IBAn) Register
	5.6.3 Instruction Breakpoint Address Mask n (IBMn) Register
	5.6.4 Instruction Breakpoint ASID n (IBASIDn) Register
	5.6.5 Instruction Breakpoint Control n (IBCn) Register

	5.7 Data Breakpoint Registers
	5.7.1 Data Breakpoint Status (DBS) Register
	5.7.2 Data Breakpoint Address n (DBAn) Register
	5.7.3 Data Breakpoint Address Mask n (DBMn) Register
	5.7.4 Data Breakpoint ASID n (DBASIDn) Register
	5.7.5 Data Breakpoint Control n (DBCn) Register
	5.7.6 Data Breakpoint Value n (DBVn) Register

	5.8 Recommendations for Implementing Hardware Breakpoints
	5.8.1 Number of Instruction Breakpoints Without Single Stepping
	5.8.2 Data Breakpoints with Data Value Compares
	5.8.3 Data Breakpoint Compare on Invalid Data
	5.8.4 Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares

	5.9 Breakpoint Examples
	5.9.1 Instruction Breakpoint Examples
	5.9.1.1 Instruction Break in Small Range of Instructions with ASID
	5.9.1.2 Instruction Break on 32-bit MIPS16e™ Instruction

	5.9.2 Data Breakpoint
	5.9.2.1 Data Break on Load Access with ASID
	5.9.2.2 Data Break on Store(s) to Halfword in Memory
	5.9.2.3 Data Break on Store(s) to Halfword Range in Memory with Certain Value

	Complex Break and Trigger Block
	6.1 Complex Trigger Features/Capabilities
	6.2 General Complex Break Behavior
	6.3 Registers in the Complex Break and Trigger Block
	6.3.1 Complex Break and Trigger Control (CBTC) Register (0x8000)
	6.3.2 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n * 0x100)
	6.3.3 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)
	6.3.4 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n * 0x100)
	6.3.5 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)
	6.3.6 Priming Condition A I/D n (PrCndA/B/C/DI/Dn) Registers
	6.3.7 Stopwatch Timer Control (STCtl) Register (0x8900)
	6.3.8 Stopwatch Timer Count (STCnt) Register (0x8908)

	6.4 Tuple Breakpoints
	6.5 Pass Counters
	6.6 Data Qualified Breakpoints
	6.7 Primed Breakpoints
	6.8 Stopwatch Timer
	6.9 Reporting of the Complex Breakpoints in the Debug Register
	6.9.1 Debug Register (23, select 0) Changes for Complex Breakpoints
	6.9.2 Debug2 Register (23, select 6)

	PC Sampling
	7.1 Introduction
	7.2 PC and Data Address Sampling
	7.2.1 PC Sampling in Wait State
	7.2.2 PC Sampling a MT Processor
	7.2.3 Cache Miss PC Sampling
	7.2.4 Data Address Sampling

	Fast Debug Channel
	8.1 Overview
	8.2 FDC Features
	8.2.1 Fast Debug Interrupt
	8.2.2 FDC TAP Instruction

	8.3 Fast Debug Channel Registers
	8.3.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)
	8.3.2 FDC Configuration (FDCFG) Register (Offset 0x8)
	8.3.3 FDC Status (FDSTAT) Register (Offset 0x10)
	8.3.4 FDC Receive (FDRX) Register (Offset 0x18)
	8.3.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

	SecureDebug
	9.1 Disabling EJTAG debugging
	9.1.1 EJ_DisableProbeDebug Signal
	9.1.2 Override for EjtagBrk and DINT disable

	9.2 EJTAG Features unmodified by SecureDebug

	On-Chip Interfaces
	10.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals
	10.2 Optional TRST* Pin
	10.3 Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins
	10.4 Connecting Multi-Core Test Access Port (TAP) Controllers

	Off-Chip and Probe Interfaces
	11.1 Logical Signals
	11.1.1 Test Access Port Signals
	11.1.2 Debug Interrupt Signal
	11.1.3 System Reset Signal
	11.1.4 Return Test Clock Input
	11.1.5 Voltage Sense for I/O Signal

	11.2 AC Timing Characteristics
	11.2.1 Test Access Port Timing
	11.2.2 Debug Interrupt Timing
	11.2.3 System Reset Timing
	11.2.4 Voltage Sense for I/O (VIO) Timing

	11.3 DC Electrical Characteristics
	11.4 Mechanical Connector
	11.5 Target System PCB Design
	11.5.1 Electrical Connection
	11.5.2 Layout Considerations

	11.6 Probe Requirements and Recommendations
	11.6.1 Target System Power-Up with Probe Attached
	11.6.2 Hot Plug in of Probe
	11.6.3 TDO Level when 3-Stated
	11.6.4 RST* Drive by Open Collector
	11.6.5 Changing TMS and TDI
	11.6.6 Mechanical Connector

	Differences for R3000 Privileged Environments
	A.1 EJTAG Processor Core Extensions
	A.1.1 SYNC Instruction
	A.1.2 Debug Exception Vector Location
	A.1.3 SYNC Instruction Substitute
	A.1.4 CP0 Register Numbers for Debug and DEPC Registers

	A.2 Hardware Breakpoints
	A.2.1 Instruction Breakpoint Registers
	A.2.2 Conditions for Matching Instruction Breakpoints
	A.2.3 ASID Field in IBCn Register
	A.2.4 Data Breakpoint Registers
	A.2.5 Conditions for Matching Data Breakpoints
	A.2.6 ASID Field in DBCn Register

	A.3 EJTAG Test Access Port

	Terminology
	Functional Clarifications from Old EJTAG 2.5
	Multithreaded and Multi-Core Debug
	D.1 Introduction
	D.2 MCBU Register Map
	D.3 MCBU Registers
	D.3.1 Debug_Int_i
	D.3.2 Reset
	D.3.2.1 Cold Reset
	D.3.2.2 NMI

	D.3.3 Debug Interrupt

	D.4 Possible Implementation

	DRSEG Memory Map
	Revision History

