MIIFPS

MIPS® EJTAG Specification

Document Number: M D00047
Revision 6.10
February 07, 2013

MIPS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2000-2012 M1PS TechnologiesInc. All rightsreserved.

Copyright © 2000-2012 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of Americaand other countries.

This document containsinformation that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this
information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. M| PS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of thisinformation, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPS 1V, MIPSV, MIPSr3, MIPS32, MIPS64, microM1PS32, microM|PS64, MIPS-3D, MIPS16, MIPS16e, M| PS-Based,
MIPSsim, MIPSpro, MIPS Technologies|ogo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4K S, 4K Sc, 4K d,
M4K, M14K, 5K, 5Kc, 5Kf, 24K, 24K c, 24K f, 24K E, 24K Ec, 24K Ef, 34K, 34K c, 34Kf, 74K, 74K c, 74Kf, 1004K, 1004K c, 1004Kf, 1074K, 1074Kc, 1074Kf,
R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, CorExtend, CoreFPGA, CorelLV, EC,
FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED,
MGB, microMIPS, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered
trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table of Contents

Chapter 1: Overview of the EJTAG SYStEM ..o, 15
I T L oo BTt i o] I (o I = N I C PP U PR PPRTPPPP 15
1.2: HISTOMCAI PEISPECLIVE ...ttt oottt et e e e e e e e e e et e bttt e e eae e e e e e e e nnbbnbreeeaaaaens 16
1.3: EJTAG CAPADIIILIES ...eeeiiiieeeiii ittt ettt e e e e oottt ettt e e e e e e e s e e aabe bttt e e e e eeeeeeeaaannnbbnbseeeaaaaens 19

1.3.1: Debug Exception and DebUQG MOUEoeiiiiiiiiiiiiieee e e e e e e e e e 19
1.3.2: Off-DOAId EJTAG MEIMOIY ..ceeiiiiieiiiiiiittt ettt ettt et e e e e e e e e e e bbb e e et e e eaaaeaaeaa e nnbbsbeeeeaaaaeaaaaaanns 19
1.3.3: Debug Breakpoint INSIIUCTIONoiiiii ettt e e e e e e e e e et eeeeaaeaeeaaanas 19
1.3.4: Hardware BreakPOINtS. e ittt e e e e e e e e e et e e e e e e e e e e e e e e bbb beeeeaaaaeaeaaaanns 20
1.3.5: SINGIE-SEEP EXECULIONtteietiieee ettt ettt e e e e e e e e s e bbbt e et e e e e e e e e e e aa s nnabebeeeeaeaaeaeaaaanns 20
1.4: EJTAG Components and OPLIONScoeiiiiieaiiiiiiiiiee et e e e e e e e ettt e e e e e e e e e s s s aaabebbeeeeaaaaaeaaeaaaannsbsbreeeeaaaans 20
1.4.1: EJTAG Processor COre EXIENSIONScoiitiiiiiiiiiiieees ittt ettt e e et r e e e s n e e 21
1.4.2: EJTAG TESEACCESS POIT ...t e e e e et ettt ettt a e bbb a e e e e e e e e e e e e e aaeaeees 22
1.4.3: DEDUG CONIOI REGISTETeeiiiieiee ittt ettt e e e e e e e e e et e e e e e e e e e e e e e e s nbbbbeeeeaaaaeaasaaanns 22
1.4.4: Hardware Breakpoint UNIt...... ...ttt e e e e e e e e e s s e snbb et e e e e aaeaeaaaanns 22
1.4.5: Fast DEDUQG CRANNELe ittt e e e e e e e e e e e e bbb be e e e e aaaeaeeaaann 23
1.5: Complex Breakpoint and Trigger (CBT) BIOCKcuiiiiiiiiiiiiiee ettt e e e 23
1.6: EJTAG-Specific COProCeSSOr O REGISIEISttt e e e e e et eeaaaaeae e as 23
1.7: Memory-Mapped EJTAG REGISIEIS. ...ccii ittt e e e e e e e e e e bbb et e e e e e e e e e e s e e annnbsbreeeaaaaens 24
1.7.1: DEDUQG CONIOI REGISTETeeiiiiieee ittt e e e e e e e e e ettt e e e e e e e e e e e e s e snbbebeeeeaaaaeaaaaaanns 24
1.7.2: Debug Exception Vector LOCation REGISTENcooiiiiiiiiiiiiiieeie ettt ee e e e 25
1.7.3: Load Data Value REQISIENcii ittt e ettt e e e e e e e e e e e e bt ebe e e aaaaeaeeaaanns 25
1.7.4: Instruction Hardware Breakpoint REQISIEIS.coi ittt 25
1.7.5: Data Hardware BreakpOint REQISTEIS. ittt e et e e e e e e e e 26
1.7.6: Complex Break and Trigger REQISIEISuuiiiiiaa ittt ettt e e e e e e et e e e e e e e e e e as 26
1.8: Memory-Mapped EJTAG MEMOIY SEGIMENTuuuiiiiiiiiiaaa ettt ettt e e e e e e e e st e e e e aaaea e e e e e annbsbreeeeeaaeas 27
1.9: Memory-Mapped Fast Debug Channel REQISIEISccoiiiiiiiiiiiiii et a e 27
1.10: EJTAG TeSt ACCESS POIt REGISIEIS. ...ciii ittt e e ettt e e e e e e e e e e e e annbbs e eeeaeaaeas 28
1.11: The Implications of Multiprocessing and Multithreading for EJTAGccciiiiiiiiiiieieeiiieeeeeee e 29
1.12: RelAtEA DOCUMEINTSceeiiiitiiie ettt e ettt e e ekt ee e e ettt e e ek bt e e e oo e b et e e e ek et e e e nb b e e e e e e nb e e e e e e nnes 29
1.13: NOtatioNS @Nd CONVEINTIONScoiutiiiieiiitii ettt e et e e et e e e e et bt e e e e b b e e e e e et e e e e e e nbreeeeanees 30
I TR O o g o] = g (o = TP R TP PPPPPRPRR 30
1.13.2: UNPREDICTABLE and UNDEFINED OPEratiONscceiuieaiiiieeiieeeaieeeaieeesieeessieeessieeessineeesnnes 30
1.13.3: RegiSter FIeld NOTALIONS.......ciiiii ittt e e et e e e e e e e e e e e e e bbb beeeeaaaaeaeeaaann 31
L1.13.4: VAIUE NOTALIONSeeeeiittieie etttk e ettt e e ok et e e ek et e oo a bt e e e ek e e e e e st e e e e e e abbeeeee e 32
1.13.5: AQAreSS NOTATIONSuuetieeieeiiee ettt e e e oottt e e e e e e e e e s s bbb ba e e e e aeaaaeaesaaannbbsbeeeeaaaaeaasaaanns 32

Chapter 2: EJTAG Processor Core EXIENSIONS ...ciiiiiiiiiiiiiii et s e e e et e e e e e e e aaaaa e e e e 33
20 I @ YT V1= P 33
2.2: DEDUQY MOUE EXECULIONeeeitiiiie ettt ettt e ekt e e e ekttt e e e h b bt e e e ettt e e e e anbb e e e e e abbreeaeaas 34

2.2.1: Debug MOde INSIIUCTION SEL........eiiiiiiiiiiie ittt e st e et e e s aanne s 34

2.2.2: DEDUQ MOUE AQUIESS SPACEeeeiieiitiiiie ettt ettt ettt e et e e s n bt e e e et et e e st e e e s annneeas 34

2.2.3: Debug Mode Handling Of ProCESSOr RESOUICESuiiiiiiiiiiaiiiiiiee ettt 39

2.2.4: CPO and dseg SegMENt HAZAITS.uiiiiiiiiiie ettt e e senneeas 41

AR M B T o TN o = Cel=T o) (o] o - RO RPPOUPPRPOTPPPP 43
2.3.1: DebUQg EXCEPLION PriOMIESciitiieiieiiiie ettt ettt e st e s eas 43

2.3.2: Debug EXCeption VECIOr LOCALIONeviiiiiiiiiie ittt ettt ettt e s 44

2.3.3: Debug EXCEPLION ISA MOUEeiiiiiiiieii ettt ettt e sttt e s e e e eas 46

MIPS® EJTAG Specification, Revision 6.10 3

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.3.4: General Debug EXCEPLION PrOCESSINGcouuutiitiiiiiiieeee ettt e e e e e e e e et eeeeeas 47

2.3.5: Debug Breakpoint EXCEPLION.ciii ittt e et e e e e e e e e e s et b e e eeeeas 48
2.3.6: Debug INStruction Break EXCEPLIONoiiiiiiiiiieiie ettt e e e e e e 49
2.3.7: Debug Data Break LOad/StOre EXCEPLIONuuuiiiiiiiaiiiiiiiiiiie ettt e e 49
2.3.8: Debug Data Break Load/Store Imprecise EXCEPLION.cc.uuuiiiiiiiiieeeeee ittt 49
2.3.9: Debug SiNgle STEP EXCEPLIONcviiiiiieieieit ettt ettt e e et r e e e e e e e e e e e e e e eeeeas 50
2.3.10: Debug INTEITUPE EXCEPLIONveiiieiiieee ittt ettt et e e e e e e ettt e e e e e e e e e s e annbbeaeeeeeeas 52
2.4: DebUQ MOAE EXCEPLIONScoiiiiiiiiiitet ettt ettt ettt e e e e e e e e bbbttt e e e e e e e e e e bbbt b e e eeeeaeas 53
2.4.1: Exceptions Taken in DeDUG MOGE ..o 54
2.4.2: EXCeptions ON IMPIECISE EITOIS ...coiiiiiiiiiiiiee ettt e e e e e e eeeeas 55
2.4.3: Debug Mode EXCEPLION PrOCESSINGcoiiuitiiiiiiiiitee e e ettt e e e e ettt e e e e e e e e e e s e nebb e eeeeas 55
2.5 INTEITUPLS @NG NIMIS ...ttt oo oottt ettt e e e e e et et bbbttt e e e e e e e e e e s nnbbbbaeeeeeaaeas 56
A T B | 11T 4 (U] o] £ PO PPPTPPPPPPPPPRPRINS 57

B2 30 1Y SRR 57
2.6: Reset and SOft RESEL Of PrOCESSONiiiiiiiiaiiiit ettt e e e e e e e e e e s eeeeeas 57
2.6.1: EJTAGBOOT FEAIUIviiiiie ittt e sttt e ettt e e ettt e e e ekttt e e e e n bttt e e e e st e e e e e e st e e e e e ensbeeeeeanreeas 57
2.6.2: RESELTIOM PrODE ...ttt e ettt e e e e e e e et bba e e e eeeas 58
2.6.3: Processor Reset by Probe through Test ACCESS POIt...........ooiiiiiiiiiiiee et ae e, 58
2.6.4: Reset Occurred Indication through Test ACCESS POIt.........cooiiiiiiiiiieceee st 58
2.6.5: SOft RESEE ENADIE ...ttt e et e e e e e s e s 58
2.6.6: Reset of Other DeDUQ FEAIUIESveieiiicce ettt s e e e e e e e e e e e e e e e eaaeananes 58
2.7 EJTAG COProCESSOr 0 REGISTEISuitiiiiiiiieaeiei ittt e et e et e e e e e e s e e e bbb et e e e e e e e e e s e s anbbbeaeeeeaeas 58
2.7.1: Debug Register (CPO Register 23, SEIECE 0)cooieiiiii et e e e e e e e e e e e e anaees 59
2.7.2: Debug2 Register (CPO Register 23, SEIECE 6)cccceeeeieeeiiieiieeeeeeeee st e e e e e e e e e aeaens 68
2.7.3: Debug Exception Program Counter Register (CP0O Register 24, SeleCt 0)ccccceeeeiiiiiiiiiiiiieenen. 69
2.7.4: Debug Exception Save Register (CPO Register 31, Select 0)ccoeeeiiiiiiiiiiiiiiiiieiieeeeee e 70
2.8 EJTAG INSIIUCTIONStteeettteeee ettt et e e e o444 oo ekt e ettt et e e 2444 4o e b b bbbttt e e e e e e e e e e e annbbbbbneeeeaaeas 70
Chapter 3: Debug Control REQISIEI ... 79
Chapter 4: EJTAG TEST ACCESS PO ..ottt e e e e e e e e e aannes 87
I N @ =T o T OO P 87
A I S o | - £ PSSR 88
ot T =) A [Yo S 1 o UL A (I - SRR 88
4.2.2: Test Mode SeleCt INPUL (TIVIS) ...uuuiiiiiiiiieee e e e iis s e et e e e e e e s e s s e e e e e e e e e e s sasnnsnsaneaneeneeeeeesannnnnnnes 88
4.2.3: Test Data INPUL (TDI) .oviieeeeieiiicieiii et e et e e e e e e e s e s et e e e e e aeeeese s s nanabenaeraeeaeeeeanennnnsnnnnes 89
N =S B = - N @ W1 o 10 (5.1) SRR 89
T =TS B =T] o LU (I S T) RSN 89
R N ©o g1 (o [OO 89
4.3.1: TeSt-LOQIC-RESEE STALEccie it e e e e e e st e et e e e e s e s et e e e e e e e e e e s e s s sanbbeaeeeeaaaeaeeseannnnrnnnnes 90

G B O 101 [1 S - L= P RRSSS 90
G e M 111 ol |] = (= PRSPPI 90
B B o To F= L= |] = L= SRR 91
G T S OF= 1o 1L [l I] = = USRS 91
G I 111l B] = L= PSSP 91
Ty A B oo F= L 1= B - = SRR 91
4.4: Instruction Register and Special INSIIUCLIONSc.coiiiiiiiiiiiii e r e e e e e e e e ennrane 91
e A I [1= (U T 1o o PSRRI 92
4.4.2: EJTAGBOOT and NORMALBOOT INSLIUCHIONSvvvviieeiiiiiie ettt 93
A.4.3: FASTDATA INSIIUCTION ...ttt ettt e et e e e et e e e et e e e e et e e e e e nnbeeeeeennees 93
e e (O [1S3 1 0T 1o o PSRRI 93
T I e B = L = QLT 1] (= £ PSSR 94
4.5.1: Device Identification (ID) Register (TAP Instruction IDCODE)..........cuviiiiieiiiiiiiiiiiieieeeee e e e e e s essnennns 95

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5.2: Implementation Register (TAP Instruction IMPCODE)coociiiiiiiiiiieaeee e 96

4.5.3: Data Register (TAP Instruction DATA, ALL, Or FASTDATA) ..uuuutiiiiie et 98
4.5.4: Address Register (TAP Instruction ADDRESS OF ALL)......ovviiiiiiiiiiiiiiee i 101
4.5.5: EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL) ...coooveiiiiiiiiiieeeiiis 102
4.5.6: Fastdata Register (TAP INStruction FASTDATA)ooiiiiieeeeieeitere s s e e s e e e e e e e e e e e e e e e aeeeaeeeaeaaeanrnranns 108
4.5.7: PCsample Register (PCSAMPLE INSTIUCTION).uutitiiieaaiiiiiiiiiieiii et e e e 110
4.5.8: Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused) 110
4.6: EXAMPIES OF USE ...ttt et e oo oo oo o bbbttt e e e e e e e e e e bbb e e et e e e e e e e e e e aeana 111
T I S @] o1 =i [o] o [P PPRE TR PR 111
4.6.2: MANUTID VAIUE ...ttt e et e e e e e e e e enes 112
4.6.3: ROCC Bt USAJE .oceietrieieeiitee ettt etttk e et e e e ekt e e et e e e e s e e e e e re e e e e enes 112
4.6.4: EJTAG Memory AcCeSS TNrough ProCESSON ACCESS.......c.uuviieiiiiiieeeiiiiit ettt e e 113
Chapter 5: Hardware BreakpOints ..o 117
N 1 oo (U1t o o FO PP P PP PP PPUP PP TP 117
5.1.1: INStruction Breakpoint FEATUIESouiiiiiiiiiiii ettt 118
5.1.2: Data Breakpoint FEATUIESuiiiieiiiiii ittt e e e e 118
5.2: Overview of Instruction and Data Breakpoint REGISIEISocuuiiiiiiiiiiiiee et 119
5.2.1: Overview of Instruction Breakpoint REQISTENSuuiiiiiiiiiiii it 119
5.2.2: Overview of Data Breakpoint REQISTEISuuiiiiiiiiiiiee ittt 119
5.3: Conditions for Matching BreakpOiNtS............. it 120
5.3.1: Conditions for Equality and Mask Matching Instruction Breakpointsccccccevviiiiriiiniiineeeenn 120
5.3.2: Conditions for Equality and Mask Matching Data Breakpointscccceoriiiiieiiiiiiiee e 122
5.3.3: Precise Exceptions on Data Value MatCh Breaks...........cccocoiiiiiiiiiiiiiiic e 127
5.3.4: Address Range Triggered INStruction Breakpointseveoiiiiiieeiiiiiiee e 128
5.3.5: Address Range Triggered Data BreakpOintseeeieiiiiiiiioiiiiie et 130
5.4: Debug EXCeptions from Bre@kpPOINTSc...iiiiiiiiiiieeiieie ettt e e 131
5.4.1: Debug Exception Caused by INStruction Breakpoint.............cooiviiiiiiiiiiieiiiieeeeiee e 131
5.4.2: Debug Exception by Data BreakpPOintc..eiiiiiiiiiiieiiiie et 131
5.5: Breakpoints Used @S THYGEIPOINTSiiiiiuiiiiieiiiiiei ettt ettt e skt e ettt e et e e et e e e s annnne s 133
5.6: INStruction BreakpOiNt REGISTEISuiiiiiiiiii ettt ettt e e e as 134
5.6.1: Instruction Breakpoint Status (IBS) REGISTENccuriiiiiiiiiie it 135
5.6.2: Instruction Breakpoint Address N (IBAN) REGISIENcciiuiiiiiiiiiiiie et 136
5.6.3: Instruction Breakpoint Address Mask n (IBMN) REQISLENcoccuviiiiiiiiiiiieiiiiee e 137
5.6.4: Instruction Breakpoint ASID N (IBASIDN) REQISTENcoiuiiiiiiiiiiiie et 137
5.6.5: Instruction Breakpoint Control N (IBCN) REGISTENciiiiiiiiiiiiiiiie et 140
5.7: Data BreakpOint REGISIEIS.eiiiiiiiiiie ittt ettt et e e sttt et e e s s 142
5.7.1: Data Breakpoint Status (DBS) REGISTENuuiiiiiiiiiiiieeiiiee et 142
5.7.2: Data Breakpoint Address N (DBAN) REQISTENcuuuiiiiiiiiiiie ittt 144
5.7.3: Data Breakpoint Address Mask N (DBMN) REJISIENuuuiiiiiiiiiiieeiiieie et 145
5.7.4: Data Breakpoint ASID N (DBASIDN) REJISIENiuuiiiieiiiiiiie ettt 145
5.7.5: Data Breakpoint Control N (DBCN) REQISLENciiuuiiiieiiiiiiie ettt 148
5.7.6: Data Breakpoint Value n (DBVN) REJISIENoiiiiiiiiiieiiiiie ettt 151
5.8: Recommendations for Implementing Hardware BreakpOintscceoeoiiiiiieiiiiiiiciiee e 151
5.8.1: Number of Instruction Breakpoints Without Single StEPPINgccouriiiieiiiiiiecie e 152
5.8.2: Data Breakpoints with Data Value COMPAIES..........uuiiiiiiiiiieeiiiiie et 152
5.8.3: Data Breakpoint Compare on INValid Data............ccuevieiiiiiiiiiiiiiie e 152
5.8.4: Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares............. 152
5.9: Brea@KpPOiNt EXAMPIES.eeiiiiiiiiiie ettt ettt e e ekttt e e et e e sttt e e s 153
5.9.1: Instruction Breakpoint EXAMPIES. 153
5.9.2: DAta BIrEaKPOINTeeiiiiiiiiiit ettt ettt 153
Chapter 6: Complex Break and Trigger BIOCKcoooiiiiiiiiiiiiiii e 157
MIPS® EJTAG Specification, Revision 6.10 5

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.1: Complex Trigger FeatureS/Capabilii®soouiiiiiiiii e 157

6.2: General Complex Break BERNAVIOKeiiiiii it e e e 157
6.3: Registers in the Complex Break and Trigger BIOCKcoouiiiiiiiiiiiice e 158
6.3.1: Complex Break and Trigger Control (CBTC) Register (0X8000)...........ccuuririieiieeeeaeiiiiiiiiiieeeeeeenn 158

6.3.2: Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n * 0X100)............ceeeeenen.. 160

6.3.3: Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)..........ccccuvvvvreeeeennn. 161

6.3.4: Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n * 0X100)ccccuvvvvieeeeennnn. 162

6.3.5: Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + N*0X100)cceveeeerriiiiiiiiiiiieneennn. 163

6.3.6: Priming Condition A I/D n (PrCndA/B/C/DI/DN) REQISIEISvvvveieiiiiiiiiiie e e e e e eeeeee e 164

6.3.7: Stopwatch Timer Control (STCtl) Register (OX8900).........uuuuiiiiiiiieeaiiiiiiiiiie e 165

6.3.8: Stopwatch Timer Count (STCnt) Register (OX8908)uuuuiiiiiiiieiiiiiiiiiiei e 166

6.4 TUPIE BrEAKPOINTS ...ttt ettt et e e e e oo e okttt e et e e e e e e e e e s bbb bb et e e e e e e e e e e s e e annnbbeeee e 167
B.5: PASS COUNTEIS ...ttt et e oottt ettt ettt bbb oo 4 oo oo oo e e e e e e e et ettt e e e e e eebsbebb bbb s 167
6.6: Data Qualified Bre@kPOiNTSoiiieiiiiiieii ettt e e e e et e et e e e e e e e e e s bbb bt e e e e e e e e e e e e aannb e e 168
6.7 PrimMed BreaKPOINTSttt e e e e e e e ettt e e e e e e e e e e e bbbt e e et e e e e e e s aanbe e e 169

O SIS (o] o)1= 1 (od a T T 1 = TP OO PP UP TP PP 170
6.9: Reporting of the Complex Breakpoints in the Debug RegiSter ... 171
6.9.1: Debug Register (23, select 0) Changes for Complex Breakpoints............cceeveeiiiiiiiiiiiiiiiiiiiieeenn. 171

6.9.2: Debug2 ReQISter (23, SEIECE B)vuuuiiiiiiiiiiiiie i ettt e e e e e e e e e e e e e e e e e e a———————— 171
Chapter 7: PC SampPling ..o —— 173
A% I [o o T VTt 1o o O PETUP TR 173
7.2: PC and Data AJAress SAmMIPIINGueeeieiiiiiiie ettt e e et e e e s 173
7.2.1: PC Sampling iN WAL STALEuviiiiiiiiiiie ittt e e 176

7.2.2: PC SAMPIING @ MT PrOCESSONetieiiiiiite e ittt ettt et e et e e st e e e s e e e e nnes 176

7.2.3: CaChe MiSS PC SAMPIING ..eeiiiiiiiiiieiiit ettt e e e e e e e 176

7.2.4: Data ADAress SAMIPIINGeeiiiiiiiiiie ittt e e 176
Chapter 8: Fast DebUG ChaNNElooii i e e e 177
LS O 1YL 1= PP RPTTP 177
8.2: FDC FRAIUIES ...ttt ettt ettt e oo o4 oo 4kttt et e et e e e e e e e e e et e e e e e e s 177
S I = o D L= o T TN [1= (U]) P 177

8.2.2: FDC TAP INSIIUCTION ..eeeiteiiie ettt ettt e e et e e s ettt e e e e et e e e e e ntbe e e e e e nees 179

8.3: Fast Debug Channel REGISIEISuuuiiiiiiiiieie et e e e e s e e e e e e e e s s an bt reaeeeeeeesaeannsenenees 180
8.3.1: FDC Access Control and Status (FDACSR) Register (Offset OX0)ccccvvvrrirrrreeeeeeiieiiiinineeeeeeenn 180

8.3.2: FDC Configuration (FDCFG) Register (OffSEt OX8)cccuurriiriiiiiieeesie it e e e e e e s e snvreeeeeeee s 181

8.3.3: FDC Status (FDSTAT) Register (OffSet OXL0) ..uuviiiiieiiiiiiiiiiieee e ee e e e e s esiiiee e e e e e e e e s e snnrrneeeeeeees 182

8.3.4: FDC Receive (FDRX) Register (OffSEt OX18) ...vvviieeieiiiiiiiiiiieireeeee e s e s sseiesieereree e e e e e e s sssnnnannneeeeeeees 183

8.3.5: FDC Transmit n (FDTXn) Registers (Offset 0X20 + OX8*N)...vvvriiiieeereiiiiiiiiieiieireeee e e s eesnenrneeneeeeens 183
Chapter 9: SECUIEDEIDUD . .cviii ittt e e e et e e e e e e et e e e e e e e 185
9.1: Disabling EJTAG AEDUQGGING ..vuuuueiiiieie it e ettt eeeaeeeaeteseaaaens e e as 185
9.1.1: EJ_DisableProbeDebug SigNal............uuiiiiiiiiiei e e e 185

9.1.2: Override for EjtagBrk and DINT diS@DIE.........cccooiiiiiiiiiiieeeeeeee e e e e e 186

9.2: EJTAG Features unmodified by SECUIrEDEDUQooovviiiiiiiiiieie e 186
Chapter 10: ON-Chip INtEITACEScco o 187
10.1: Connecting Unused EJTAG Test Access Port and Debug Interrupt Signalscccveeeiiiiiiiiiiiiineeene 187
10.2: OPLONAT TRSTH PN ...ttt e ettt e e ek bt e e e e ot bt e e e e aa b bt e e e ab b e e e e e s abaneeeeaa 187
10.3: Input Buffers with Pull-Up/Down and Output Drivers for Chip PiNScooviiiiiiiiiiiiiiieee e 187
10.4: Connecting Multi-Core Test Access Port (TAP) CONIOIEISuvviiiiiiiiiieeiieee e 188

6 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 11: Off-Chip and Probe INterfaces ... 189

e oo [LIRS (o F= PR P PP TPPTPR 189
11.2.2: TeSt ACCESS POIT SIGNAIS ..ceiiiiiiiiiiiiie ettt e e e et e e e e e e e e e e e e s e e eaaaaeeas 190

11.1.2: DebUg INTEITUPL SIGN@Ueeeeiiiiieeei ettt e e e e e e e ettt e e e e e e e e e e e annnbeeneeeaaaaeens 191

11.1.3: SYSteM RESEE SIGN@L.eeeeeeiiiiie ettt e e ettt e e e e e e e e e e e annn b aneeeaaaaaeas 191

11.1.4: Return TeSt CIOCK INPULeeeiiiiie ettt ettt e e e e e e e e e s et n e eeaaaeeas 191

11.1.5: Voltage Sense fOr 1/O SIGNAL.......cooi it a e e e e e e e as 192

11.2: AC TimMiNG CRArCIEIISTICSeiteeeiiieeeie ettt e ettt e e e e e e s e e e bbb et e e e e e e e e e e e e nnnbbeaeeeaaaaaens 192
11.2.1: TESt ACCESS POI TIMING ..eeeeiiiiieieiiiiiiitee ettt e ettt e et e e e e e e e e aab bbb ettt e e e e e e e aeaaaannnbenneeeeaaaaens 192

11.2.2: DebUg INTEITUPE THMING «.eeteeeiiiiie ettt e ettt e et e e e e e e s e e nbbb bt e e et e e aa e e e e e s e annnbenneeeaaaaeeas 194

11.2.3: SYSLEM RESET TIMING -..tttttiieitetee ettt e e e e e ettt e e e e e e e e e s s aabb et e e et e e aaeeesesaaannnbbnneeeaaaaaens 194

11.2.4: Voltage Sense for 1/O (VIO) TIMING ..uuuutiieiiitiiaaeaee et e e e e e et e e e e e e e e e e s e annbbeeeeeaaaaeeas 195

11.3: DC EleCtriCal CharaCleriSTCSi.uviiiieiiiiie ettt e st e e et e e e e et e e e s e e e e 195
11.4: MECNANICAI CONNMECION ...ttt ettt etttk e ekt e o4k bt e e e ekt e e e e e aa b e e e e anb e e e e s aanneeeeeaa 196
11.5: Target SYSEM PCB DESIGNttt ittt e e e e ettt e e e e e e e e s e s s bbb beeereeaaeaeaesaaannbbsaeeeaaaaaens 197
11.5.1: EIECHIICAl CONMNECTIONeiiiiiiiiiie ettt ettt ettt e e e e e s et e e ab et e e s e s 197

11.5.2: LAYOUL CONSIARTALIONSveeeieiiieeeeaiaeiiitttte ettt e e e e e e e e e e e bbbt ettt e e e e e e e e e s e e nnabbs e e e e aeaaeeeae s e annnbbaneeeaaaaeens 199

11.6: Probe Requirements and ReCOMMENUALIONS........curiiiiiaiiiiiiiiiie et e e e e e e eeaeeeees 199
11.6.1: Target System Power-Up with Probe Attached...............eueiiiiiiiiiiii e 199

11.6.2: HOt PIUQ N OF PrODE ...ttt e e e e e e e e et eeaaaae s 200

11.6.3: TDO LeVel WhEN 3-SEALEA.........eiiiiiiiiiiie ittt ettt e e anbe e snbe e e 200

11.6.4: RST* Drive DY Open COIECION . ..ottt ettt e e e e e e e e e e e eeaaaaeeas 200

11.6.5: Changing TIMS @NA TDI ...ueiiiiiiieiiii ittt e e e e e e e e e et ettt e e e e e e e e e e e annnbbaneeeaaaaeens 200

11.6.6: MEChANICAI CONMNECIONeeiiiiiiiei ittt ettt ettt e et e e et e e e e e e s ee e s 200
Appendix A: Differences for R3000 Privileged ENVIFONMENTSccoiiiiiiiiiiiii e eeeeeeaeens 201
A.1: EJTAG ProCessor Core EXIENSIONSeiiiiiiiiiiie ittt ettt et e e e 201
AL L SYNC INSTIUCTION .ttt ettt e ettt e e ettt e e e s bttt e e e aabb et e e e e bbe e e e e s anbbeeeeeans 201

A.1.2: Debug EXCeption VECIOr LOCALIONciiiuiiiiieiiiiiii ettt e st e e 201

A.1.3: SYNC INSIIUCHON SUDSHEULEceiiiiiiiii ittt e et e et e e e e 201

A.1.4: CPO Register Numbers for Debug and DEPC REQISTEIScciiiiiiiiieiiiiiieee et 201

A2 HardWare BreaKPOiNTS.eeie ittt ettt e e e et e e e e 202
A.2.1: Instruction BreakpOint REGISTEISttt e e et e et e e e e 202

A.2.2: Conditions for Matching INStruction Breakpointsoooiiiiiiiiiiiiiiieec e 202

A.2.3: ASID Field iN IBCN REGISTETciiiitiiiie ittt ettt e et e e st e e e s bt e e e e s nnbneeeaeaas 202

A.2.4: Data BreakpOint REGISTEISc ittt e et e e e st e e e s abb e e e e s anbaeeeeeaas 202

A.2.5: Conditions for Matching Data Breakpointsoiiiiiiiiiiiiiiiiee et 203

A.2.6: ASID Field iN DBCN REGISIET ..ottt ittt e et e et e e e anbae e e e e 203

A3 EJTAG TESE ACCESS PO ...ttt e ettt e e e e e e e e e e e e e e e e e e 203
APPENAIX B: TEIMINOIOQY ..ttt e e e e e e e e e e e e et r e e e e e e e s e b rneeeeas 205
Appendix C: Functional Clarifications from Old EJTAG 2.5........uuiiiiiiiiiiiiiiiieiieeiiseeveeeveesveesveeseennnes 207
Appendix D: Multithreaded and Multi-Core DeBUQccooeciiiieiiiiii e 209
[200 S [011 oo [1 ox 1o o I PP RP P PPPPRRRTPPPPRTN 209
D.2: MCBU REGISTEN MBI ..ttt ettt ettt ettt a4ttt e e ookttt e e 4okttt e e o4kt e e e e ea bt et e e e anb b et e e e s anbaeeeeeaa 209
D.3: IMCBU REGISTEIS ...ttt ettt ettt ettt e ket e oottt e e o4kttt e oo 42 bbbt e e oo ek b bt e e e o4k bt e e e e e anbb et e e e anbbe e e e e e anbaeeaeean 210
(DR T I L= o 10 o [[| A PP RPT PP 210

D 3.2 RSB ..ttt oo e ettt e e e e et eae s 211

(DRI M L= o 10 o [9] (T (1]) SO PPT PRI 212

D.4: POSSIbIE IMPIEMENTALIONttt ettt e et e e e et b et e e e st e e e e e abaeeeeaaa 213
MIPS® EJTAG Specification, Revision 6.10 7

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

AppendixX E: DRSEG MEMOTY MEP ...uiiiiiiiiiiiiiiiieite ettt e et e e e e e s s bbb e e e e e e s s snbbaneeeeeeeeaans 214

APPENIX F: REVISION HISTO Y .uuuiiii it ee s e e s e e e e e e e e et s e e e e e e e esaaaea s e eeeaeeeeennnns 217

8 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

List of Figures

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10
Figure 3.1:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:

Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:

Figure 6.1:

Setup of Debug System WItHOUL EJTAGooiiiiiiiiitt ettt e e e e e e e e annnaees 16
Setup of Debug SYStEM WIth EJTAGeeiiiiiiiii ittt e e r e e e e e e e e e e annnanes 17
Test Access Port (TAP) to Internal CoONNECLIONSooiiiiiiiiiiiiiiie e e e 18
Simplified Block Diagram of EJTAG COMPONENTSuuuuitiiiiieaaiaiiiiiiitiiieeeeeeae e e s s aissbaseeeeeeaaee e s annnnnes 21
Virtual Address Spaces with Debug Mode SEgMENTSccciiiiiiiiiiiiie e 36
DebugVectorAddr Register Format when Config3SC=0cooiiiiiiiiiiiiicrr e a e 45
DebugVectorAddr Register Format when Config3SC=1cccoiiiiiiiiiiiires e ae e, 46
Example 1: Single-stepping One Thread TCO with Non-single-Stepping Thread TC1.............cceeeeeee. 51
Example 2: Single-stepping Two Threads TCO and TCL.......cccuuiiiiiiiieiiaae e 52
Example 3: Single-stepping Two Threads TCO and TC1 with Other Threads TC2 and TC3 52
(DY o]0 Lol T 1] (Y gl o] 4= | USRS 60
DebUQ2 REQISIEr FOIMMIALcccc i e e e e e e e e e e e e et e et e e e e et e st e s e e e e s e e aaeaeeaaeaeeeees 68
DEPC ReEQISIEN FOIMALt e e s e e e e e e e e e e e e e e e e et e e e et ee e e aa e st e e e e e e s e e e aeeeaaaeaeeeees 70
B RSy AN ol = To [ES (=T gl o] 1 4= | 70
DCR REQISIEI FOMMALiiiii e e e e e e e e e e e e e et et e et et e et r s e e e e s e e e aeaeaaaeaeeeees 80
TeSt ACCESS POIt (TAP) OVEIVIEWuuuiieieie i e et ee ettt e e s e e e e e e e e e e e aaeaeeeeeaeeeaeaerereannrnnnnas 88
TAP CoNtroller State DIAQIAIM i ieie e e e e e e et e s e e e e e e aeaaeaaaaeeeeeeeeresaessrenrssnnnnas 90
TDI to TDO Path when in Shift-1R STALEeiiiiiiiiii e 91
TDI to TDO Path for Selected Data Register(s) when in Shift-DR Stateccoevvvvevvviiiiiiiiiinnnn, 91
TDI to TDO Path when in Shift-DR State and ALL Instruction is Selectedccccoiiiiiiiiiiiiiiieennnnn. 93
TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected............ccccccceeeeennn. 93
DeVvice ID ReQISIEr FOIMMIALcccoiiiiiie et e e et e e e e e e e e e e et et et e e e ee e ee e b s e s e s e aeeaaaaaaaaaaaaeaaaees 95
Implementation REQISTEr FOIMIALcooiiiiiiii e e e e e e 97
Data REQISIEr FOIMIALo et e e e e e e e e e et e et et et e e e e e et s e e e e s e e e e e e eeaaeaeeeees 99
Yo [0 (o TS SR =T o Y (= g o 1 1 = | OO 102
EJTAG Control REgISIEr FOMMIALoovvieiiiiiiiiiiiiee e e e e e et e e e e e s e e e e e e e aeaeaeees 103
Fastdata RegiSter FOIMALooiiiiiiieee et a e e e e e e e e e e aeaeaeees 108
BYPASS REGISIEN FOIMAL ...ttt et e e e e e st e e e e e e e e e e e annneeeee s 111
TAP Operation EXAMPIE ettt e e e e e e e e s 111
Write Processor ACCESS EXAMPIE......cooi ittt e e 114
Read ProcesS0or ACCESS EXAMPIE.o it 115
INStruction BreakpOiNt OVEIVIEWcoiiiiiiiiiii ittt e e e e e e e e s eeeeaaeeas 118
Data BreakpOint OVEIVIEWc...uiiiiiiiiieeee ettt e e e e e et e e e e e e e e e e e s bbb b bt e e e e e e e e e e e s e e annnbebeees 118
1S R UeTo 1S3 = gl o] 1 = O 135
1Y AN I R LeTo IS (=l o] 1 0 = O 136
1= T R oo 1) (=] g o1 4= S 137
IBASIDN REQISTEI FOMMALuiiiiiii i e e e e e e e e e e e e e e e et e e e eeeeae et e e e e e as 138
11O g T =T RS (=T g o] 1 4= | S 140
DBS REQISIEI FOMMAL ...t e e e e e e e e e et et e et et e et s e e s e e e e e e aaeaeaaaeees 143
DBARN REQISTEI FOMMAL ... e e e e e e e et et e e e e e a e e s e e e e e e e aeaaaaaeees 144
DBMN REQISIEr FOMMALccii e e e e e e e e e et et e e et e e e e e e e b e e s e e e e e e e eaaeaeeaeeeees 145
DBASIDN REQISEI FOIMALccciiiiiiii i e e e e e ettt e e e e e e s e e e e e e aaaaeaeees 146
DBCN REQISIEN FOIMIALt e e e e e e e e e et et et et e e e e et e e e e s e e e e e e e eaaeaeaeees 148
DBVN REQISTEI FOMMALcccci e e e e e e e et et e et e e e e e e e e e e e e eaeeaeaeees 151
Data Break on Store With Value COMPAIEuuiiiiiiiiieaeie it 154
Data Break on Store With Value COMPAIEuuiiiiiiiiieaeie it 155
(01 = W O =T o [(=T g o] 1 4 F= | PRSPPSO 158

MIPS® EJTAG Specification, Revision 6.10 9

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 6.2: IBCCN REQISIEr FOIMMIALccci i s e e e e e e e e e e et et e et e e e e et t e et a bt a s e e e e e e e eaaeaeaaeaeees 160

Figure 6.3: IBPCN REQISEI FOIMALccoeiiiiiiiieee s e e e e e e e e e e et e et e e e et e e e s e e e e e e aeaaeaaaaeaeees 161
Figure 6.4: DBCCN REQISIEr FOIMMALcccoe e e e e e e e e e e e e e et e e et e e e e e et e e s e e e e e e e e aaeaaaaeaeees 162
Figure 6.5: DBPCN ReQISIEr FOMMALcccoiiiiiiiiiiie s s e s e e e e e e e e aaaaeaaeaeees 163
Figure 6.6: PrCNAA ReQISIEr FOMMIALccooiiiiiiiieieeeeeee s e e e e e e e e e e e e e et et e e e e e e e e et e et e s e e e e e e e eaeaaaaaeaeees 164
Figure 6.7: STCH ReQISIEr FOMMALccciii i e e e e e e e e e e e et et e et e e e e et e e e s e e e e e e e eaaeaaaaeaeees 165
Figure 6.8: STCNE REQISIEr FOIMMALccii i e e e e e e e e e et et et et e e et e s e e e e e e e eaaaaaaaeaeees 167
Figure 7.1: PCSAMPLE TAP Register Format (MIPS32)uuuuiiiiiii i e e e e e e 174
Figure 7.2: PCSAMPLE TAP Register FOrmat (MIPSB4)uiiiiiiiiii i a e e e 174
Figure 8.1: FDC Block Diagram and TDI t0 TDO Pathuuuiiiiiiiiii s 180
Figure 8.2: FDC Access Control and StatuS REQISTEIuuuuuiiiiii i a e e e e e e e aeaees 180
Figure 8.3: FDC Configuration REQISIEI..........ciiiiiiieeeeeeeee s e e e e e e et a e e e e e e e e aaaaaaaeaeees 181
FIQUIe 8.4: FDC StAtUS REOISIENttt e e e e e e e e e e e e e et e et et e e e e e et as et e s e e e e e e e eaaeaaaaeaeees 182
Figure 8.5: FDC RECEIVE REUISIEIcciii i i e e e e e e e e e e e e e e e e e et e et et ettt e et a s e e e e e e e eaaeaaaaeaeees 183
Figure 8.6: FDC TranSMIt REQISTEYcccii i e e e e e e e e e e e e e et et e et e et e e e et a bt e s e e e e e e e eaeeaaaaeaeees 184
Figure 10.1: Daisy-chaining of Multi-core EJTAG TAP CoNtrollers..........ccooiiiiiiiiiiiesis e 188
Figure 11.1: Signal Flow Between Chip, Target System PCB, and Probe............cccccccoiiiiiiiii 190
Figure 11.2: Test AcCeSS POrt SIgNAIS TIMINGcovviieiiiieiiiiiice e e e e e e e e e e e e et e e e e e a s e e e e e e e aaaaaeaeaeees 193
Figure 11.3: Debug INterrupt SIgNal TIMINGee et e e e e r e et e e e e e e s e annbeeeeees 194
Figure 11.4: System ResSet SignNal TIMING.........ooiiiiiiiieiieii s s e e e e e e e e e et e e e e e e e e e e e s s e e e e e e e e aaaaaaaeaeees 194
Figure 11.5: Voltage Sense for 1/O Signal TiMINGuueuuueieiiiiiae e e et s e e e e e e e e aaaaaeaeees 195
Figure 11.6: EJTAG Connector MechaniCal DIMENSIONSuuuuiiiiiii i eeee ettt a e e e e e e aaaaeaees 197
Figure 11.7: Target System Electrical EJTAG CONNECLONuuiiiiiiiiii i e e e e e e e ae e 198
Figure 11.8: Target System Layout for EJTAG CONNECHON........ciiiiiiieiei e e e e e e e e e aeaees 199
Figure D.1: Debug_INt_i ReQISEr FOIMALcooiiiiiiiiiiii e e s n e e e e e e e e aaeaeaeees 210
Figure D.2: Reset ReQISIEr FOMMALcccooiiiiiiiiiiieee s e e e e e e e e e e e e et et e e e et s et a e e e e e e e eaeeaaaaeaeees 211
Figure D.3: Cold Reset ReQISIEr FOIMALcoiiiiiiiiiiii e e e e et e e e e e e e e e e aaeaaaaeaeees 211
Figure D.4: NMI REQISIEr FOIMALcccii i e e e e e e e e e e et et e et e e et e e e e e s e e e e e e e e aeeaaaaeaeees 212
Figure D.5: Debug Interrupt REGISIEr FOIMIALooiiiiiiiiiiiee et e e e e 212
Figure D.6: An Example IMPIEMENTALIONue ittt e e e e e e e e e e e e e s eeeee s 213
10 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

List of Tables

Table 1.1: EJTAG TAP INSITUCHIONSuiiiitiiieeaiei ittt ettt et e e e e e e e ok bbbttt e e e e e e e e e e s e nbbbb s br e et e e eaeeeaananns 18
Table 1.2: Overview of Coprocessor 0 RegiSters fOr EJTAGuuii ittt e e 24
Table 1.3: Overview of Debug Control Register as Memory-Mapped Register for EJTAGcccccvveeeiieeieiiiiiiiinns 24
Table 1.4: Overview of Debug Exception Vector LOCation REQISIENccoiiiiiiiiiiiiiiiiieiee e 25
Table 1.5: Overview of Load Data Value REQISIErcooiiiiiiiieeeeee et e e e e e 25
Table 1.6: Overview of Instruction Hardware Breakpoint REQISIEIS.cooiiiiiiiiiiiiiiieeee e 25
Table 1.7: Overview of Data Hardware Breakpoint REQISTEIS.uuuuiiiiiiiaiiiiiitiie et 26
Table 1.8: Overview of Complex Break and Trigger REQISIEISuuuiiiiiiiiiiiiiiiiee et 26
Table 1.9: Overview of Fast Debug Channel REQISIEIScovviiiiiiiiceeee et 27
Table 1.10: Overview oOf TeSt ACCESS POt REQISIEIS.........ciiiiieiieiiieeire et e e e e e e et e e e e as 28
Table 1.11: RegiSter FIeld NOTALIONS.........uuiiiiiie i i e e e e e e e e e e e e e e e e e et e e eeeaeaebetn e e e e e e eaeaas 31
Table 2.1: Presence of the dSEQ SEOMENT.......cccoii i e e e e e e e e e e e et e e e e e eeas 35
Table 2.2: Physical Address and Cache Attribute for dseg, dmseg and drsSeg...........coovvvvviiiieieieiiiiiicice e 37
Table 2.3: Access to dmseg Segment AdAreSS RANGE.oouviiiiiiiiiiiiieie e e e e e e e e e e e e e et ee e aeas 37
Table 2.4: Access to drseg Segment AAAreSS RANGEooiiiiiiiiieiiiere e 38
Table 2.5: SYNC and EHB INStrUCtiON REEIENCES.......ciiiiiiiiiiiiiie et 41
Table 2.6: EXECULION HAZAIUSttt ettt et e e e e e e et b e et et e e e e e e e s e bbbt sbe e et e e eeeeeaananns 42
Table 2.7: Hazard Clearing INSITUCTIONS it et e e e e e ae e bete e e e e e aaeeaas 42
Table 2.8: Priority of Non-Debug and Debug EXCEPLIONSooouiiiiiiiiiiiieiee et 43
Table 2.9: Debug EXCEPiON VECIOr LOCALIONuuiiiiiiiiiieeai ittt ettt e e e e e e e e e e bbb e et e e e e e e e s e e aanbnees 44
Table 2.10: DebugVectorAddr Register Field Descriptions when Config3SC=0ccccceeiiiiiiiiiiiiiiiiiiieeee s 45
Table 2.11: DebugVectorAddr Register Field Descriptions when Config3SC=1cccciiiiiiiiiiiiiiiiiieeeee e 46
Table 2.12: Exception Handling in DEDUG MOGE..........eiiiiiiiii et 54
Table 2.13: Coprocessor O ReGISIEIS fOr EJTAGuu ittt et e e e e e e e e e e e e s e e aannaees 58
Table 2.14: Debug Register Field DESCHPIIONS.t ittt ettt e e e e e e s e s et bbb e e e e e e e e e e e e s e e aannnees 60
Table 2.15: Debug2 Register Field DESCIIPLIONS. ittt e e e e e e et r e et e e e e e e e s e e aaabeees 68
Table 2.16: DEPC Register Field DESCHIPLIONuuiiiiiiiiieeeiii ittt e e e e e e et e e e e e e e e e e s e e aanneees 70
Table 2.17: DESAVE Register Field DESCIIPLIONS.uiiiiiiiiiiiiiitiiee ettt a e e e e s re e e e e e e e e e s e e annnaees 70
Table 3.1: DCR Register Field DESCIIPLIONS ...ttt e ettt e et e e e e e e e e e e bbe e b e et e e e e e e e s e aaanrnnes 81
Table 4.1: TAP INSIIUCHON OVEIVIEW.ciiiiiieiiiiieiiitt ettt ettt et e e e e e e e o e bbb et ettt e e e e e e e e e s e nbbbbsbeeeeaaeaeeaaaaanns 92
Table 4.2: EJTAG TAP DaAta REQISIEIS .. .uuuuuiiiiie it e et ettt s e aeaeae e se s e as e aeeeeas 94
Table 4.3: Device ID Register Field DESCIIPLIONS. i ittt e e e e e e e e e e e e e e e e e e e s e e aaaneees 96
Table 4.4: Implementation Register Field DeSCIIPLIONS.coiii ittt e e e e 97
Table 4.5: Data Register Field DESCHIPLIONS.uuttiiiiiiieee ettt e et e e e e e e s e e bbb e e e e e e e e e e e e s e e annrnees 99
Table 4.6: Data Register Contents for 32-Dit PrOCESSOIS...........oiviiiiiiiiiire e s 100
Table 4.7: Data Register Contents for 64-Dit PrOCESSOIS.ouvviiiiiiiiiice et s 101
Table 4.8: Address Register Field DESCIPLIONSuuiiiiiiiieiee ittt e e e e e e e e s e e e e e e e e e e e 102
Table 4.9: EJTAG Control Register Field DEeSCHPLIONScciiiiiiiiiiiiie ettt e e e e e e e e e 103
Table 4.10: Combinations of ProbTrap and ProbEN ... 108
Table 4.11: Fastdata Register Field DESCHIPIIONuuitiiiiiiieei ittt e e e e e e e e e e e e 109
Table 4.12: Operation Of the FASTDATA GCCESSuuiiiiiiiaeaaiiiaaitit ettt e e e et e et e e e e e e s s ab bbb e beeeeaaaeaeaaaaan 110
Table 4.13: Bypass Register Field DESCIIPLIONuitiiiiiiiee ettt e e e e e e e e e e bbb e e e e e e e e e e e e e aaas 111
Table 4.14: ManuflD Field Value EXAMPIES........c.uiiiiiiiiiiee ettt e e e e e e e e e e 112
Table 4.15: Information Provided to Probe at ProCESSOr ACCESS.......uuiiiiiiiiaiiiiiiiitit et 113
Table 5.1: Instruction Breakpoint REQISIEr SUMMIAIY.......coiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e 119
Table 5.2: Data Breakpoint REQIStEr SUMIMAIY..........uiiiiiiiiaaiii ittt e e ettt e e e e e e e e e s bbbba e e e e e e e aeeeeaaaaaa 120
Table 5.3: Instruction Breakpoint Condition Parameters..........ooouiiiiiiiiiieeee et 121
MIPS® EJTAG Specification, Revision 6.10 11

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 5.4: Data Breakpoint CoNdition Par@mMeterS.cuu ittt a e e e e e e 122

Table 5.5: BYTELANE at Unaligned Address for 32-Dit PrOCESSOIS......uuuuiiiiiiiiiiii e 126
Table 5.6: BYTELANE at Unaligned Address for 64-Dit PrOCESSOIS......uuuuuiiiiiiiiiii e 126
Table 5.7: Behavior on Precise Exceptions from Data BreakpointS. ...ttt 132
Table 5.8: Rules for Update of Break Status (BS) Bits on Precise Exceptions from Data Breakpoints................ 132
Table 5.9: Actions Resulting from an Instruction/Data Match for Specified BE and TE Bit Values...................... 133
Table 5.10: Rules for Update of Break Status (BS) Bits on Data Triggerpoints.............eueeerrniiiiiiiiiiiieiieeeeeeeeeans 134
Table 5.11: Instruction Breakpoint RegiSter MapPingccooiiiiiiiuiiiiiiiee et e e e e e e e 134
Table 5.12: IBS Register Field DESCIPLIONS ...ttt et e e e e e e e e s st b e e e e e e aeeeeeaaaans 135
Table 5.14: IBMn Register Field DeSCIIPLIONSuuiiiiiiiiieeeee ittt e e r e e e e e e e e e s bbb e e e e e e e e e e e e e aaas 137
Table 5.13: IBAN Register Field DESCIIPLIONSuiiiiiiiiiiie ettt e e e e e e e e e e bbb e e e e e e e e e e e e aaas 137
Table 5.15: IBASIDN Register Field DESCIPLIONSuuuiiiiiiiiaeiiiiiiite ettt e e e e e e e e e e e e e e e e e e e aaas 138
Table 5.16: IBCn Register Field DeSCIIPIIONSuuiiiiiiiiieeeee ittt e e e e e e e e e s bbb e e e e e e e e e e e e e aaaas 140
Table 5.17: Data Breakpoint RegISter IMAPPINGuuuteieiiiiieeae ittt e ettt e e e e e e e e e s e bbb bebeeeeeaaeeeaaaann 142
Table 5.18: DBS Register Field DeSCIPLIONSuiiiiiiiiiiee ettt e e e e e e e e e e e bbea e e e eaeaeeeaaeaans 143
Table 5.20: DBMn Register Field DESCIIPLIONSuutiiiiiiiieiaeiiieiiete ettt e 145
Table 5.19: DBAN Register Field DeSCIIPLIONSuuttiiiiiiiieiee ittt e e e e e e e e e a e e e e e e e e e e e e e aans 145
Table 5.21: DBASIDN Register Field DESCIIPIIONS........uitiiiiieeiiiiiiiie ettt e e e e s e e e e e e e e e 146
Table 5.22: DBCN Register FIeld DeSCHIPIIONS.uuiiiiiiiiieeeiei ittt e e e e e e s e bbb e e e e e e e e e e e e e aaas 148
Table 5.23: DBVN Register Field DeSCIIPLIONSuuttiiiiiiiieeeei ittt e e e e e e e e e s bbb e e e e e e e e e e e e aaas 151
Table 6.1: Registers in the Complex Break and Trigger Block and Their drseg Memory Addresses................... 158
Table 6.2: CBTC Register Field DESCIIPLIONSuiiiiiiiiiiiie ettt e e e e e e e e e s s bbb a e e e e e e e e e e e e e aaas 159
Table 6.3: IBCCn Register Field DESCHIPIIONS.uuiiiiiiiiieeeie ittt e e e e e e s e bbb e e e e e e e e e e e e aaas 160
Table 6.4: IBPCn Register Field DeSCIIPLIONSuuiiiiiiiiieee ettt ettt e e e e e e e e e s bbb e e e e e e e e e e e e aaas 161
Table 6.5: DBCChn Register Field DESCIPLIONSuttiiiiiiiiiieeeiie ittt ettt e e e e e e e e e bbb e e e e e e e e e e e e aaas 162
Table 6.6: DBPCn Register Field DESCIIPLIONSuuiiiiiiiiiieeiiieiitite ettt e e e e e e et e e e e e e e e e e 164
Table 6.8: STCtl Register Field DEeSCIIPLIONSuuiiiiiiiiiee ettt e e e e e e e e e e e e e e e e e eeeeaaaaaas 165
Table 6.7: PrCndA Register Field DESCHPIIONS.uuuiiiiiiiieeeei ittt e e e e e e et e e e e e e e e e e e e e aaas 165
Table 6.9: STCNt Register Field DESCIPLIONSuiiiiiiiiiiee ettt e et e e e e e e e e e e s bbb e r e e e e e e eeeeaaaaans 167
Table 6.10: Addresses for PrCnd[A-D][I/D]N Registers in drseg MEMOTYcccuuviiiiiiiiiieeiiaiiiiiiiiieeee e 169
Table 6.11: Debug Break Indicator Bits Set for Simple and Complex Breaksccccccceiiiiiiiiiiiiiiiiiiiees 172
Table 7.1: PCsample Register Field DeSCIPLIONS.u ittt ettt e e e e e e e e e e e e e e e e e e e aaas 174
Table 8.1: Cause Register FDC Field DE@SCHIPLIONutttiiiiieiiiiiiiiitee ettt e e e e e e e e e e e e e e e e e e 178
Table 8.2: INtCtl Register FDC Field DEeSCIIPLIONuuiiiiiiiiieeiiiiitite ettt e e e e e e e e e e e e e e e e 179
Table 8.3: Instruction Breakpoint REQISIEr MaPPINGccceeieiiiiiiiiiiiie ittt e e e e e e e e e e e e e 180
Table 8.4: FDC Access Control and Status Register Field DeSCrPLIONSoooiiiiiiiiiiiiiieeee e 181
Table 8.5: FDC Configuration Register Field DeSCIPLIONSooiuuiiiiiiiiiiie et e e e 182
Table 8.7: FDC Receive Register Field DESCHPIONS.........uiiii ittt e e e e e e e e e e e 183
Table 8.6: FDC Status Register Field DESCIIPLIONS.u ittt e e e e e e e e e e e e e 183
Table 8.8: FDC Transmit Register Field DeSCIPIONS.........iiii ittt e e e e e e e 184
Table 9.1: EJ_DisableProbeDebug Signal OVEIVIEW............ciiviiiiiiiiiiiiiiie e e s e e e e e e e e e e e e e e e e e e e 185
Table 11.1: Test ACCESS POrt SIgNalS OVEIVIEWcccceeiiiiiiii s e e e e e e e e e e e e e e e e e e e as 190
Table 11.2: Debug INterrupt SIGNal OVEIVIEWuuuiiiiiiieeeeee ittt e e e e e e e e e s r e e e e e e e e e e e e e aans 191
Table 11.3: System ReSet SigNal OVEIVIEW.......cciiii i i ee e ae s eas 191
Table 11.4: Voltage Sense for 1/O SigNal OVEIVIEW...........coiiiiiiiieeiieiee e e e et e e e e e e e e e e e e e e e e as 191
Table 11.5: Voltage Sense for 1/O Signal OVEIVIEW...........coiiiiiiiieeieeirs e e e et e e e e e e e e e e e e et e e e as 192
Table 11.6: Test Access Port Signals TiImMING VAIUESoooiiiiiiiiiiiiee et 193
Table 11.7: Debug Interrupt Signal TIMING VAIUEScooiiiiiiiiiie e 194
Table 11.8: System Reset Signal TIMING VaAlUE..........coooiiiiiiiieee e et s 194
Table 11.9: Voltage Sense for 1/O Signal TimMING ValUE...........ooviiiiiiiiiiiiiieiie s 195
Table 11.10: DC Electrical CharaCleriStCS.cciiiiiiiiiiiiiii ettt 195
Table 11.11: EJTAG CONNECTOT PINOUL......ciiutiiiiiiiiiiii ettt ettt ettt e s e e e s es 197
Table A.1: Debug Exception Vector Location for R3k Privileged Environment ProCessors..........ccuvveeeeieeeeeennnns 201
12 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table A.2: Offsets for Instruction Breakpoint Registers for R3k Privileged Environment Processors................... 202

Table A.3: ASID Field iN IBCN REQISIETuuuuiiiiiiiie it e ae e ae e e e eas 202
Table A.4: Offsets for Data Breakpoint Registers for R3k Privileged Environment ProCcessors............cvveeeenennns 202
Table A.5: ASID Field in DBCN REQISTEI .. .uuuuiiiiii it e et e ae e ae e aa s e eas 203
Table D.1: SMCBU ReQISter MEMOIY Mapccooiiiiiiiiiiieiie e ettt e e ettt e e e e e e e e e s e bbb b e b e e e e e aeeeeaaaana 209
Table D.2: MCBU Debug_Int RegiSter MEMOIY MBIccuiiiieiiiiiiiiiee ettt e e e e e e e e e e e e 209
Table D.3: Debug_Int_i Register Field DESCHPLIONScuiiiiiiiiiiiiie ettt e e e e e e e e e e 210
Table D.4: Reset Register Field DeSCIIPLIONSuutiiiiiiiiee ettt e aaas 211
Table D.5: Cold Reset Register Field DESCHIPIIONS.........uuiii ittt e e e e e e e e e 211
Table D.6: NMI Register Field DESCHPIONSoiiiiiiiiiieeie ettt e e e e e e e e s bbb e e e e e e e e e e e e e aaas 212
Table D.7: Debug Interrupt Register Field DeSCIPLIONS.coiiiiiiiiiiiei et e e e 212
Table E.1: drSEQ MEIMOIY VAttt e e e ettt oo e oottt et e e e e e e o e e bt bbb ettt e e e e e e e e e s e nbb bbb b beeeeaaaeeesaaann 214
MIPS® EJTAG Specification, Revision 6.10 13

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

14

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 1

Overview of the EJTAG System

This specification describes the behavior and organization of on-chip EJTAG hardware resources as seen by software
and by external agents. The software and firmware components of an EJTAG-based debugging environment are out-
side the scope of this document, asis the underlying physical implementation of EJTAG features.

This chapter contains the following sections:

» Section 1.1, "Introduction to EJTAG"

e Section 1.2, "Historical Perspective'

» Section 1.3, "EJTAG Capabilities’

e Section 1.4, "EJTAG Components and Options"

e Section 1.6, "EJTAG-Specific Coprocessor 0 Registers’

e Section 1.7, "Memory-Mapped EJTAG Registers’

e Section 1.8, "Memory-Mapped EJTAG Memory Segment"

e Section 1.9, "Memory-Mapped Fast Debug Channel Registers”

e Section 1.10, "EJTAG Test Access Port Registers”

e Section 1.11, "The Implications of Multiprocessing and Multithreading for EJTAG"

* Section 1.12, "Related Documents’

e Section 1.13, "Notations and Conventions"

For comments or questions on the EJTAG Architecture or this document, send Email to support@mips.com.
1.1 Introduction to EJTAG

EJTAG is a hardware/software subsystem that provides comprehensive debugging and performance-tuning capabili-
ties for MIPS® microprocessors and for system-on-a-chip components that have M1PS processor cores. It exploits
the infrastructure provided by the IEEE 1149.1 JTAG Test Access Port (TAP) standard to provide an external inter-
face, and extends the MIPS instruction set and privileged resource architectures to provide a standard software archi-
tecture for integrated system debugging.

MIPS® EJTAG Specification, Revision 6.10 15

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

mailto:architecture@mips.com

Overview of the EJTAG System

1.2 Historical Perspective

16

Emulating and debugging embedded hardware and software in areal-world environment remains one of the most dif-
ficult tasks facing designers of embedded systems. Embedded microprocessor cores are growing more complex, have
increasingly higher performance requirements, and use larger software programs than ever before. To meet these
challenges, embedded-systems engineers and programmers must have advanced tools to perform the required levels
of in-circuit emulation and debugging.

The MIPS architecture has historically provided a set of primitives for debugging software and systemsthat is consis-
tent with the “RISC” philosophy of integrated hardware/software architecture, providing functionality at a minimum

cost in silicon. The base philosophy of integrated Ml PS32®/MIPS64® Instruction Set Architecture (IsA) and
MIPS16e™ Application Specific Extension (ASE), includes:

» A breakpoint instruction, BREAK, whose execution causes a specific exception.

» A setof trap instructions, whose execution causes a specific exception when certain register value criteria are sat-
isfied.

» A pair of optional Watch registers that can be programmed to cause a specific exception on aload, store, or
instruction fetch access to a specific 64-bit doubleword in virtual memory.

* Anoptional TLB-based MMU that can be programmed to trap on any access, or more specifically, on any store
to a page of memory.

All of these mechanisms assume software support in the form of an operating system, or at |least a software monitor,
that can modify program memory to insert breakpoints, manipulate the system coprocessor to set watchpoints, and
change virtual memory page protection, handle the exceptions produced, and communi cate with a user. Additional
external hardware tools can supplement these basic mechanisms, such aslogic analyzers and in-circuit emulators
(ICEs) for additional control and information about program execution. Figure 1.1 shows a possible setup for the
debug of an embedded system.

Figure 1.1 Setup of Debug System without EJTAG

) CPU Pinout or System Prototype
Logic System Bus
Analyzer CPU
I |
IESI,;232 or Deb Program
thernet - ugger
Perlpher_al ROM RAM or
%?6 I/O Device FLASH

Debug Host
While this model of debug works well for many sorts of systems, it has the following shortcomings when the system
to be debugged is a highly-integrated design:

* System-On-a-Chip (SOC) component design no longer provides an external interface to the processor pinout or
system bus, making the use of logic analyzers and ICEs difficult to impossible.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.2 Historical Perspective

» Debugging based on software breakpoints or the insertion of trap-on-condition instructions assumes that pro-
gramsresidein RAM. It isimpractical for fully ROM-based systems and assumes support in the O/S for these
techniques.

» For consumer electronic applications, a communication port like Ethernet or RS-232 serves no purpose beyond
software debug and adds disproportionately to the cost and size of the design.

* Similarly, the ROM necessary to support a debug software monitor on a consumer electronic application could
add unacceptable costs.

One alternative to ICE is a specially-packaged device that is a bond-out of the chip. But this solution has the disad-
vantage of adding to overall product development cost. It also adds the extra requirement of a specially-designed PCB
that is needed to access the signals available only on the development chip.

On-Chip Debug (OCD) provides a solution for all these issues, and the EJTAG Debug Solution defines an advanced
and scalable feature-set for OCD that allows debugging while executing CPU code at full speed.

One could say that OCD puts the | CE functionality on the chip. Although OCD does add alittle extradie areafor fea-
tures that are only required during development, the die areais minimal. More importantly, with development time
and overall time-to-market becoming increasingly critical, the trade-off between die area and time seems reasonable.

Having the debug solution on-chip also makes it possible to use it for software upgrades, field testing, and for diag-
nostics in the final product.

EJTAG supplements the MIPS Architecture in dealing with these problems. A processor or system-on-a-chip imple-
menting EJTAG can be tied into a JTAG scan chain and comprehensively debugged using an external EJTAG probe
connected to the system’s JTAG TAP interface, as shown in Figure 1.2.

Figure 1.2 Setup of Debug System with EJTAG

System Prototype

Debug host Ethernet o
p RS-232 EJTAG probe JTAG TAP System CPU
C.

et interface Logic | | with
e——»| TAPaccess |« > o9 EJTAG

JTAG scan SOC ASIC/ASSP

%i’ chain

EJTAG uses the five-pin interface defined in |EEE 1149.1 JTAG, which forms the Test Access Port (TAP). Thefive
pins (TRST, TCK, TMS, TDI, and TDO) can be reused to limit pin count if the TAP is on-chip for some other pur-
pose.

MIPS® EJTAG Specification, Revision 6.10 17

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Overview of the EJTAG System

Figure 1.3 Test Access Port (TAP) to Internal Connections

TRST____]
Y —

TCK_E:

DO

TAP Controller @)

TDI

|||||I|||||||||||||>

Y

TAP
PORT

Instruction, data &
control registers

This EJTAG interface through the TAP is a serial communications channel with frequencies up to 40 MHz on TCK.
The TAP Controller usesthe TM S pin, which determinesif instruction or data registers should be accessed in the shift
path between TDI and TDO. The TRST signal is used for reset of the TAP.

A number of TAP instructions are defined in EJTAG that allow access to corresponding EJTAG registers, aslisted in

Table 1.1.

Table 1.1 EJTAG TAP Instructions

EJTAG Instruction Description of Register Usage

IDCODE Device Identification Register with manufacturer, part number, and version ID
for the specific chip.

IMPCODE Implementation Register indicating implemented EJTAG features in this spe-
cific chip.

ADDRESS EJTAG Address Register used to access the on-chip address bus.

DATA EJTAG Data Register used to access the on-chip data bus.

CONTROL EJTAG Control Register used for setup and status information.

ALL Accessto EJTAG Address, Data and Control registersin one chain.

EJTAGBOOT Causes processor to fetch code from the debug exception vector after reset.

NORMALBOOT Causes processor to fetch code from the reset handler after reset.

FASTDATA Access to the Data and FastData registers.

TCBCONTROLA Accessto the control register TCBControl A in the Trace Control Block (TCB).

TCBCONTROLB Accessto the other control register TCBControlB in the TCB.

TCBDATA Provides access to the registers specified by the TCBCONTROL Brgg field.

TCBCONTROLC Access to another control register TCBControlC in the TCB.

PCSAMPLE Access the PCsample register.

TCBCONTROLD Access to another control register TCBControlD in the TCB.

TCBCONTROLE Access to another control register TCBControl E in the TCB.

FDC Access to the Fast Debug Channel.

BYPASS One-hit register with no operation.

The size of the EJTAG Address and Data Registers depends on the specific implementation, but usually they are at
least 32 bits. The size of the Device ID, Implementation, and EJTAG Control Registersis 32 bits; these registersallow
the user to do debug setup and provide important status information during the debug session. For exact descriptions
and size of these registers see 4.4 “Instruction Register and Special Instructions’ on page 91.

18

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.3 EJTAG Capabilities

1.3 EJTAG Capabilities

1.3.1 Debug Exception and Debug Mode

To allow inspection of the CPU state at any time in the execution flow, a debug exception with priority over all other
exceptions is introduced.

When a debug exception occurs, the CPU enters Debug Mode, a special mode with no restrictions on access to copro-
Cessors, memory areas, etc., and where usual exceptions like address error and interrupt are masked.

The debug exception handler is executed in Debug Mode and provided by the debug system. It can be executed from
the praobe through a processor access, or may also reside in the application code if the developer choosesto use a
debug task in the application.

An overall requirement is that debugging be non-intrusive to the application so that execution of the application can
be continued after the needed debug operations. However, 10ss of real-time operation is inevitable when the debug
exception handler is executed. The system designer may chose to indicate debug mode by asignal to certain hardware
modules to freeze them when executing the debug exception handler.

EJTAG provides a standard debug 1/0 interface, enabling the use of traditional MI1PS debug facilities on sys-
tem-on-a-chip components. In addition, EJTAG provides the following new capabilities for software and system
debug.

1.3.2 Off-board EJTAG Memory

EJTAG alows a MIPS processor in Debug Mode to reference instructions or data that are not resident on the system
under test. This EJTAG memory is mapped to the processor asif it were virtual memory in the kseg3 segment, and
references to it are converted into transactions on the TAP interface. Both instructions and data can be accessed in
EJTAG memory, which alows debugging of systems without requiring the presence of a ROM monitor or debugger
scratchpad RAM. It also provides acommunications channel between debug software executing on the processor and
an external debugging agent.

The EJTAG probe pollsthe EJTAG Control Register through the TAP, and a bit in this register indicates when a pro-
cessor accessis pending. The physical address of the transaction isthen available in the EJTAG Address Register, and
the transaction size and read/write indication are available in the EJTAG Control Register. The EJTAG Data Register
is then accessed either to get data from awrite or to provide data for aread. Finally the EJTAG Control Register is
updated to indicate that the processor accessis done.

Going through this sequence requires approximately 200 TCK periods for access to 32-bit address and dataregisters.
With a40 MHz TCK, the accesstimeisin the range of 5 ps, resulting in a bandwidth in the range of 800 KB/s for
instruction and data transfers. However, the servicing may be optimized for instruction stuffing, because the address
depends on the provided instructions and could thus be predicted to some extent. In addition, the FASTDATA feature
(see Section 4.4.3 “FASTDATA Instruction”) of the TAP controller permitsfast download or upload of data between
target memory and debug memory.

1.3.3 Debug Breakpoint Instruction

EJTAG introduces a new breakpoint instruction, SDBBP, which differs from the MIPS32 and MIPS64 BREAK
instruction in that the resulting exception, like the single-step and hardware breakpoint debug exceptions described
below, places the processor in Debug Mode and can fetch its associated handler code from EJTAG memory.

MIPS® EJTAG Specification, Revision 6.10 19
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Overview of the EJTAG System

1.3.4 Hardware Breakpoints

EJTAG defines various types of hardware breakpoints for interrupting the CPU when certain transactions occur on the
CPU buses. The debug exception happens before the bus transaction causing the exception modifies any memory or
CPU dtate, e.g., afetched instruction with a break is not executed, or a data load/store transaction is not allowed to
change the register file or the memory.

Hardware breaks on instructions have the advantage over software debug breaks in that it is possible to set themin
any address area. Furthermore, if memory cannot be altered by inserting SDBBP codes, the hardware breaks can till
be used. Hardware data breakpoints allow breaks on load/store operations.

EJTAG implements two kinds of simple breaks:

» Instruction breaks, in which abreak may be set on an instruction fetch from a specific virtual address

» Databreaks, in which abreak may be set on aload/store reference from a specific virtual address, which addi-
tionally can be qualified by a data value.

There may be up to 15 break channels of each type implemented, and each break channel may be programmed with
address, address mask, ASID, and reference type.

EJTAG specification 4.00 and above also define complex breakpoints. There are many different types of complex
breakpoints defined the complex break chapter. Like the simple breaks, the complex breaks can cause atrigger signal
that can be used to enable or disable tracing viathe MI1PS PDtrace architecture.

1.3.5 Single-Step Execution

EJTAG provides support for single-step execution of programs and operating systems, without requiring that the code
residein RAM.

1.4 EJTAG Components and Options

EJTAG hardware support consists of several distinct components: extensions to the MIPS processor core, the EJTAG
Test Access Port, the Debug Control Register, and the Hardware Breakpoint Unit. Figure 1.4 shows the relationship
between these components in an EJTAG implementation. Some components and features are optional, and are imple-
mented based on the needs of an implementation.

20 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.4 EJTAG Components and Options

Figure 1.4 Simplified Block Diagram of EJTAG Components

Memory
MMU Bus Interface
— —P . — System
(TLB) Unit (BIV) Interface
Cache
Processor p| Controller
and
Coprocessor 0 | —
PC drseg dmseg/fdc
ﬁg%R access access
TVPE bus bus
BYTELANE
A A ! ! DATA
Debug I 1 N S
i Hardware r N
exception
i : Breakpoint :4 I E%'LI\:;G | TAP
s Uﬂt_ g — a
Interruptand NMI = — — 71
control etc. | Debug Control -
|Register (DCR)|< Probe enable indication
L = = Debug exception control, debug interrupt request etc.
Debug interrupt request DINT
|:| Non-EJTAG features |:| Required EJTAG features E:] Optional EJTAG features

1.4.1 EJTAG Processor Core Extensions

A MIPS processor or core supporting EJTAG must support EJTAG-specific instructions, additional system coproces-
sor (CPO) registers and vectoring to Debug Exceptions, which puts the processor in a special Debug Mode of execu-
tion, as described in Chapter 2, “EJTAG Processor Core Extensions’ on page 33.

EJTAG processor core extensions are required in any EJTAG implementation, with the following implementa-
tion-dependent options:

* Thesingle-step execution feature is optional. The presence or absence of single step execution capability isindi-
cated to debug software viathe CPO Debug register.

* Thedebug interrupt request from the TAP viathe DINT probe signal or through an implementati on-dependent
internal signal is optional.

» TheTest Access Port (TAP) is optional.
* TheHardware Breakpoint Unit (HBU) is optional. Note that it isrequired if the CBT isimplemented.
» The Complex Break and Trigger (CBT) block is optional.

* The Debug Control Register (DCR) is optional. Note that it is required if either the HBU or the CBT isimple-
mented.

* ThePC Sampling feature of EJTAG is optional.

* TheFast Debug Channel feature of EJTAG is optional.

MIPS® EJTAG Specification, Revision 6.10 21
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Overview of the EJTAG System

22

1.4.2 EJTAG Test Access Port

The EJTAG Test Access Port (TAP) provides a standard TAP interface to the EJTAG system. It is necessary for all
TAP-based EJTAG capabilities for host-based debugging and processor access to external debug memory.

The TAPisoptional. Implementation without a TAP implicitly disallows the EJTAG memory and TAP system access
capabilities, but provides the remaining EJTAG services (Debug Mode, single-step, software and hardware break-
points) while executing from RAM or ROM. Refer to Chapter 4, “EJTAG Test Access Port” on page 87 for more
information on the TAP.

Implementation without a TAP also disallows the PC Sampling feature.

The presence or absence of off-board EJTAG memory is indicated to debug software via the Debug Control Register.

1.4.3 Debug Control Register

The Debug Control Register (DCR) is a memory-mapped register that can be implemented as part of either the pro-
cessor core or an external logic block. It indicates the availability and status of EJTAG features. The memory-mapped
region containing the DCR is available to software only in Debug Mode.

Implementation of the DCR is optional, but the DCR must be implemented if either the EJITAG TAP or EJTAG hard-
ware breakpoints are implemented. The presence or absence of the DCR isindicated in the CPO Debug register. Refer
to Chapter 3, “Debug Control Register” on page 79 for more information on the DCR.

1.4.4 Hardware Breakpoint Unit

The Hardware Breakpoint Unit implements memory-mapped registers that control the instruction and data hardware
breakpoints. The memory-mapped region containing the hardware breakpoint registersis accessible to software only
in Debug Mode.

EJTAG hardware breakpoint support, as described in Chapter 5, “Hardware Breakpoints’ on page 117, is optional,
and can be implemented with the following functionality:

* From zero to 15 independent instruction hardware breakpoints
* From zero to 15 independent data hardware breakpoints

» Breakpoint address comparisons for instruction and data hardware breakpoints optionally qualified with a com-
parison of the MMU ASID

» Datahardware breakpoints optionally qualified with a data value comparison

* Thesense of the datavalue qualifier can beinverted, that is, when the store data for example does NOT match the
specified value in the data break register. Thisis an optional functionality whose presence is indicated by a bit
(15) inthe DCR register. Thisfeature is defined in revision 4.00 and above.

» Debug logic can optionally save theload data value in a specified drseg address register for software replay of the
exception-causing load instruction. Thisis needed to preserve theload data value in situations where the datawas
obtained not from non-volatile memory but from say a FIFO or an 1/0O register. Whether or not thisfeatureis
implemented is indicated by abit (14) in the DCR register. This feature is defined in revision 4.00 and above.

The presence or absence of hardware breakpoint capability is indicated to debug software in the DCR.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.5 Complex Breakpoint and Trigger (CBT) Block

The number of breakpoints and the availability of optional qualifiersisindicated to debug software in the instruction
and data breakpoint status registers.

1.4.5 Fast Debug Channel

EJTAG version 5.0 adds the optional Fast Debug Channel (FDC) mechanism for data transfer between a debug
host/probe and atarget. The FDC mechanism allows the user to set up a data transfer, and then resume normal opera-
tion. The data transfer occursin the background, and the target CPU can either choose to check the status of the trans-
fer periodically, or it can choose to be interrupted at the end of the transfer.

The FDC mechanism adds two First In First Out (FIFO) structures that are mapped into the target CPU physical
address map. The probe uses the new FDC TAP instruction to access these FIFOs, while the CPU itself accessesthem
using memory acCesses.

When compared with the pre-existing FASTDATA mechanism (See Section 4.4.3 “FASTDATA Instruction”), the
primary advantage of FDC isthat it does not require the CPU to be blocked when the probe is reading or writing to
the datatransfer FIFOs. This significantly reduces the CPU overhead and makes datatransfersfar lessintrusive to the
code executing on the CPU.

More information can be found in Chapter 8, “Fast Debug Channel” on page 177.
1.5 Complex Breakpoint and Trigger (CBT) Block

The presence or absence of this optional block isindicated by abit (10) in the DCR register. Each of the listed fea-
tures of this block is optional and the presence or absence of thisfeatureisindicated by bitsin the CBTcontrol regis-
ter which is adrseg address-mapped register at address 0x8000:

» Pass Counters - each break channel, instruction, data, or complex has a counter associated with it that enables a
breakpoint to be taken only after the address/value condition has been met a certain number of times.

» Ability to support 0 to 15 ‘tuples’ - breakpointsthat only fire when both instruction and data conditions match on
asingleinstruction.

* Quadlified Instruction breakpoints - breakpoints that can be enabled and disabled based on the state of a data
breakpoint condition, which can be used to only match on instructions executed in a certain process.

* Primed breakpoints - breakpoints that are only enabled when another breakpoint has occurred, which allows
breaking on a simple sequences of events. It is an implementation choice as to how many priming conditions are
supported for each break; up to 16 priming conditions are possible. Note that the default priming condition isthe
simple break, that is, no priming condition.

» Stopwatch timer - a counter that can be configured to start or stop based on specific instruction breakpoints. It is

an implementation choice which breakpoints are used to start and stop the stopwatch timer. Up to two such pairs
may be supported.

1.6 EJTAG-Specific Coprocessor 0 Registers

This section summarizes the registers and special memory that are used for the EJTAG debug solution. More detailed
information regarding mandatory and optional registers and memory locationsis provided in the relevant chapter.

MIPS® EJTAG Specification, Revision 6.10 23
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Overview of the EJTAG System

Table 1.2 summarizes the Coprocessor O (CPO) registersfor EJTAG. These registers are accessible by debug software
executed on the processor and provide debug control and status information. General information about the debug
CPOregistersisfound in 2.7 “EJTAG Coprocessor O Registers’ on page 58.

Table 1.2 Overview of Coprocessor 0 Registers for EJTAG

Register
Register Name Mnemonic Functional Description Reference

Debug Debug Debug indications and controls for the processor, includ- See Section 2.7.1
ing information about recent debug exception. on page 59

Debug2 Debug2 Indicates cause of debug exceptions due to complex See Section 2.7.2
breakpoints. on page 68

Debug Exception DEPC Program counter at last debug exception or exception in See Section 2.7.3
Program Counter Debug Mode. on page 69

Debug Exception Save DESAVE Scratchpad register available for the debug handler. See Section 2.7.4
on page 70

1.7 Memory-Mapped EJTAG Registers

The memory-mapped EJTAG registers are located in the debug register ssgment (drseg), which is a sub-segment of
the debug segment (dseg). They are accessible by debug software when the processor is executing in Debug Mode.
These registers provide both miscellaneous debug control and control of hardware breakpoints. General information
about the debug segment and registersis found in Section 2.2.2 on page 34 and Section 2.2.2.2 on page 38.

1.7.1 Debug Control Register

Table 1.3 summarizes the Debug Control Register (DCR), which provides miscellaneous debug control.

Table 1.3 Overview of Debug Control Register as Memory-Mapped Register for EJTAG

Register
Register Name Mnemonic Functional Description Reference
Debug Control Register | DCR Indicates available EJTAG memory, and controlsenabling | See Chapter 3, “Debug
and disabling of interrupts and NMI in Non-Debug Mode. | Control Register” on
page 79
24 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.7 Memory-Mapped EJTAG Registers

1.7.2 Debug Exception Vector Location Register

Table 1.4 summarizes the optional Debug Exception Vector Location register, which enables relocation of the debug

exception vector..

Table 1.4 Overview of Debug Exception Vector Location Register

debug exception.

Register
Register Name Mnemonic Functional Description Reference
Debug Exception Vector DebugVectorAddr | Allows debug exception vector to be rel ocated See Section 2.3.2 on
Location and determines the |ISA mode to be used on a page 44

1.7.3 Load Data Value Register

Table 1.5 summarizes the Load Data VVal ue register, which allows for software emulation of aload where returning
data triggered a precise hardware data breakpoint. More information can be found in Section 5.3.3 on page 127.

Table 1.5 Overview of Load Data Value Register

Register
Register Name Mnemonic Functional Description Reference
Load Data Value LoadData- Contains data returned from load, when hardware data See Section 5.3.3
Value breakpoints can be triggered from returning data, and can | on page 127
be taken precisely.

1.7.4 Instruction Hardware Breakpoint Registers

Table 1.6 summarizes the instruction hardware breakpoint registers, which are controlled through a number of mem-
ory-mapped registers. Certain registers are provided for each implemented instruction hardware breakpoint, as indi-
cated with an “n”. General information about the instruction hardware breakpoint registersisfound in Section 5.6 on

page 134.
Table 1.6 Overview of Instruction Hardware Breakpoint Registers
Register
Register Name Mnemonic Functional Description Reference
Instruction Breakpoint IBS Indicates number of instruction hardware breakpointsand | See Section 5.6.1
Status status on a previous match. on page 135
Instruction Breakpoint IBANn Address to compare for breakpoint n. See Section 5.6.2
Address (n) on page 136
Instruction Breakpoint IBMn Mask for address comparison for breakpoint n. See Section 5.6.3
Address Mask (n) on page 137
Instruction Breakpoint IBASIDn ASID value to compare for breakpoint n. See Section 5.6.4
ASID (n) on page 137
Instruction Breakpoint IBCn Control of breakpoint n: comparison of ASID and gener- See Section 5.6.5
Control (n) ated event on match. on page 140

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

25

Overview of the EJTAG System

1.7.5 Data Hardware Breakpoint Registers

Table 1.7 summarizes the data hardware breakpoint registers, which are controlled as a number of memory-mapped
registers. Certain registers are provided for each implemented data hardware breakpoint, as indicated with an “n”.
General information about the data hardware breakpoint registersis found in Section 5.7 on page 142.

Table 1.7 Overview of Data Hardware Breakpoint Registers

Register
Register Name Mnemonic Functional Description Reference
Data Breskpoint Status DBS Indicates number of data hardware breakpoints and status | See Section 5.7.1
on a previous match. on page 142
Data Breakpoint Address (n) DBAN Address to compare for breakpoint n. See Section 5.7.2
on page 144
Data Breakpoint Address DBMn Mask for address comparison for breakpoint n. See Section 5.7.3
Mask (n) on page 145
Data Breakpoint DBASIDn ASID value to compare for breakpoint n. See Section 5.7.4
ASID (n) on page 145
Data Breakpoint DBCn Control of breakpoint n: match on load/store, data bytes, See Section on
Control (n) access to data bytes, comparison of ASID, and generated page 148
event on match.
Data Breakpoint DBVn Data value to match for breakpoint n. See Section
Value (n) 5.7.6 “Data
Breakpoint Valuen
(DBVn) Register”

1.7.6 Complex Break and Trigger Registers

Table 1.8 summarizes the registers used by the Complex Break and Trigger Block, which are implemented as a hum-
ber of memory-mapped registers. Certain registers are provided for each implemented instruction and data hardware
breakpoint, as indicated with an “n”. General information about the Complex Break and Trigger registersisfound in
Section 6.3 “Registersin the Complex Break and Trigger Block”. .

Table 1.8 Overview of Complex Break and Trigger Registers

Register

Register Name Mnemonic Functional Description Reference
Complex Break and Trig- | CBTC Configuration bits indicate the complex breakpoint fea- Section 6.3.1 on
ger Control tures implemented, plus stopwatch control hits. page 158
Instruction Breakpoint IBCCn Complex Instruction Breakpoint condition registers Section 6.3.2 on
Complex Control (n) page 160
Instruction Breakpoint IBPCn Instruction Breakpoint countdown registers Section 6.3.3 on
Pass Counter (n) page 161
Data Breakpoint Complex | DBCCn Complex Data Breakpoint condition registers Section 6.3.4 on
Control (n) page 162
Data Breakpoint Pass DBPCn Data Breakpoint countdown registers Section 6.3.5 0n
Counter (n) page 163

26 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.8 Memory-Mapped EJTAG Memory Segment

Table 1.8 Overview of Complex Break and Trigger Registers (Continued)

Register
Register Name Mnemonic Functional Description Reference
Priming Condition A, PrCndAln, Read-only registers describing implementation-specific Section 6.3.6 on
Instruction and Data PrCndADnN details of complex breakpoint priming conditions page 164
Breakpoint (n)
Stopwatch Timer Control STCtl Control register for Stopwatch Timer Section 6.3.7 on
page 165
Stopwatch Timer Count STCnt Count register for Stopwatch Timer Section 6.3.8 on
page 166

1.8 Memory-Mapped EJTAG Memory Segment

The processor’s memory-mapped EJTAG memory is located in the debug memory segment (dmseg), which isa
sub-segment of the debug segment (dseg). It is accessible by debug software when the processor is executing in
Debug Mode. The EJTAG probe handles all accesses to this segment through the Test Access Port (TAP), whereby
the processor has access to dedicated debug memory even if no debug memory was originally located in the system.
General information about the debug segment and memory is found in Section 2.2.2 on page 34 and Section 2.2.2.1
on page 37.

1.9 Memory-Mapped Fast Debug Channel Registers

Processor accesses to Fast Debug Channel registers are performed through the common device memory map
(CDMM) region. The registers allow communication between a debug host and target-resident code.f

Table 1.9 Overview of Fast Debug Channel Registers

Register
Register Name Mnemonic Functional Description Reference

FDC Access Control and FDACSR Defines device type, and controls user and supervisor See Section 8.3.1

Status mode access to Fast Debug Channel registers on page 180

FDC Configuration FDCFG Configuration register and interrupt controls See Section 8.3.2
on page 181

FDC Status FDSTAT FIFO status register See Section 8.3.3
on page 182

FDC Receive FDRX Top entry in receive FIFO See Section 8.3.4
on page 183

FDC Transmit (n) FDTXn Tagged access to bottom entry in transmit FIFO See Section 8.3.5
on page 183

More information can be found in Chapter 8, “Fast Debug Channel” on page 177.
MIPS® EJTAG Specification, Revision 6.10 27

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Overview of the EJTAG System

1.10 EJTAG Test Access Port Registers

28

The probe accesses EJTAG Test Access Port (TAP) registers (shown in Table 1.10) through the TAP, so the processor
cannot access these registers. These registers allow specific control of the target processor through the TAP. General

information about the TAP registersis found in Section 4.5 on page 94.

Table 1.10 Overview of Test Access Port Registers

Register
Register Name Mnemonic Functional Description Reference
Device ID (none) I dentifies device and accessed processor in the device. See Section 4.5.1
on page 95
Implementation (none) I dentifies main debug features implemented and accessi- See Section 4.5.2
ble through the TAP. on page 96
Data (none) Data register for processor accesses used to support the See Section 4.5.3
EJTAG memory. on page 98
Address (none) Address register for processor access used to support the See Section 4.5.4
EJTAG memory. on page 101
EJTAG Control ECR Control register for most EJTAG features used through the | See Section 4.5.5
TAPR. on page 102
Bypass (none) Provides a one-bit shift path through the TAP. See Section 4.5.8
on page 110
Fastdata (none) Provides a one-bit tag in front of the data register to cap- See Section 4.5.8
ture the processor access pending bit for fast datatransfer. | on page 110
TCBControlA (none) Used by the Trace Control Block to hold control bits for See the PDtrace
tracing. and TCB specifica-
tion document
TCBControlB (none) Used by the Trace Control Block to hold control bits for See the PDtrace
tracing. and TCB specifica-
tion document
TCBData (none) Used by the Trace Control Block to access datafrom See the PDtrace
on-chip trace memory if present and TCB specifica-
tion document
TCBControlC (none) Used by the Trace Control Block to hold control bits for See the PDtrace
tracing and TCB specifica-
tion document
PCsample (none) Used by the PC Sampling logic to write out the PC sample | See Section 4.5.7
and associated information on page 110 and
Chapter 7, “PC
Sampling” on
page 173.
TCBControlD (none) Used by the Trace Control Block to hold control bits for See the PDtrace
tracing and TCB specifica-
tion document

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.11 The Implications of Multiprocessing and Multithreading for EJTAG

Table 1.10 Overview of Test Access Port Registers (Continued)

Register
Register Name Mnemonic Functional Description Reference
TCBControlE (none) Used by the Trace Control Block to hold control bits for See the PDtrace

tracing and TCB specifica-
tion document

1.11 The Implications of Multiprocessing and Multithreading for EJTAG

The MIPS® MT Module allows a processor to implement multiple VPEs (Virtual Processing Elements). Theoreti-
cally, asfar as applications are concerned, this view of the hardware (which must be supported by system software), is
no different from that where there are multiple physical processors present. MIPS M T a so allows multiple thread
contexts within a VPE. Seethe MIPS MT specification for details.

EJTAG visibility is on a per-VPE or per-processor basis. That is, each debug unit implemented in the system exposes
a TAP controller to the externa probe hardware. The probe software must be aware of the number of daisy-chained
debug units and their order so that it can communicate correctly to the correct debug unit.

Note that by the MIPS MT Module specification, an implementation with multiple VPES and hence multiple debug
units, most of the EJTAG hardware is physically not shared between the VPES. For example, each VPE hasits own
copy of the Debug Register, Debug Control Register, TAP controller, and TAP registers. But the hardware breakpoint
registers may either be shared or not shared by the VPESs. The TAP controllers are daisy-chained.

The other sections in this document that describe changes for the MIPS MT Module are:

» Debug Exception in the presence of MIPS MT (see Section 2.2 on page 34).

» Single-Step control bit in the Debug register (see Section 2.7 on page 58 and Section 2.3.9 on page 50).

* Modifications to the Instruction and Data breakpoints matching conditions (see Section 5.3 on page 120).

* Maodifications to the Instruction and Data Hardware Breakpoint registers for MIPSMT (see Section 5.6.5 on
page 140, Section 5.7.4 on page 145, and Section on page 148).

* Maodification to indicate whether the Instruction and Data Hardware Breakpoints are shared or not shared across
the VPEs (see Section 5.6.1 on page 135 and Section 5.7.1 on page 142).

» A bit added to the DCR (VPED), to indicate whether the current VPE is disabled or enabled.

* A bit added to the Debug register to allow MIPS MT thread contexts (TCs) to be taken off-line during debug (see
Section 2.7.1 on page 59).

1.12 Related Documents

The following documents are useful in understanding this specification.
* |EEE Std. 1149.1-1990, |IEEE Standard Test Access Port and Boundary-Scan Architecture

* MIPS32® Architecture for Programmers, Volumes -1V

MIPS® EJTAG Specification, Revision 6.10 29
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Overview of the EJTAG System

1.13

e Mi Architecture for Programmers, Volumes I-1V
» ThePDtrace™ Interface and Trace Control Block Specification (MD00439)

* MIPS32® Architecture for Programmers Volume 1V-f: The MIPS® MT Application-Specific Extension to the
MIPS32® Architecture (MDO0378)

* TheiFlowtrace™ Architecture Specification (M D00526)

Notations and Conventions

This section defines notations and conventions that are used throughout this document.

1.13.1 Compliance

Throughout this document, compliance levels are indicated for specific features. Features are defined as Required,
Optional, or Recommended.

Features defined as required are required of all processors claiming compatibility with the EJTAG architecture.

Features defined as optional provide a standardization that might or might not be appropriate for a particular EJTAG
implementation. If such afeature isimplemented, it must be implemented as described in this document for a proces-
sor to claim compatibility with the EJTAG architecture.

In some cases, there are features within features that have different levels of compliance. For example, if thereisan
optional field within arequired register, the register must be implemented, but the field does not have to be imple-
mented, depending on the needs of the implementation. Similarly, if thereis arequired field within an optional regis-
ter, if the register isimplemented, it must have the specified field.

Features defined as recommended should be implemented unless there is an overriding need not to do so.

1.13.2 UNPREDICTABLE and UNDEFINED Operations

These definitions of UNPREDICTABLE and UNDEFINED are similar to the descriptions in the MIPS32 and
MIPS64 specifications. They are included here for those readers who are not familiar with these documents.

The terms UNPREDICTABLE and UNDEFINED describe the behavior of the processor in certain cases. UNDE-
FINED behavior or operations can occur only as the result of executing instructions in a privileged mode (in Kernel
Mode or Debug Mode, or with the CPO usable bit set in the Status register). Unprivileged software can never cause
UNDEFINED behavior or operations. Conversely, both privileged and unprivileged software can cause UNPRE-
DICTABLE results or operations.

1.13.2.1 UNPREDICTABLE

30

UNPREDICTABLE results can vary from implementation to implementation, instruction to instruction, or as afunc-
tion of time in the same implementation or instruction. Software can never depend on results that are UNPREDICT-
ABLE. An UNPREDICTABLE operation might or might not cause a result to be generated. If it does generate a
result, the result is UNPREDICTABLE. UNPREDICTABLE operations can cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

1.13 Notations and Conventions

* UNPREDICTABLE results must not depend on any data source (memory or internal state) that isinaccessiblein
the current processor mode.

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or an internal statethat is
inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in User Mode
must not access memory or internal state that is only accessible in Kernel Mode, Debug Mode, or in another pro-

Cess.

* UNPREDICTABLE operations must not halt or hang the processor.

1.13.2.2 UNDEFINED

UNDEFINED operations or behavior can vary from implementation to implementation, instruction to instruction, or
as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior can vary from
nothing to creating an environment in which execution can no longer continue. UNDEFINED operations or behavior
can cause data loss.

UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which thereis
no exit other than powering down the processor). The assertion of any reset signal must restore operation to a deter-

ministic state.

1.13.3 Register Field Notations

Table 1.11 defines the notations used to describe the read/write properties of the registersin this document. The nota-
tions below are similar to those in the MIPS32 and M1PS64 specifications, with addition of R/WO0 and R/W1.

Table 1.11 Register Field Notations

ware.

If the Reset State of thisfield is either “0” or “Pre-

set”, hardware initializes this field to zero or to the
appropriate state, respectively, on power-up.

If the Reset State of thisfield is “Undefined”, hard-
ware updates thisfield only under those conditions
specified in the description of the field.

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W A field in which all bits are readable and writable by software and potentially by hardware.

Hardware updates of thisfield are visible by software reads. Software updates of thisfield are visible by
hardware reads.
If the Reset State of thisfield is“Undefined”, either software or hardware must initialize the value before the
first read will return a predictable value. This operation should not be confused with the formal definition of
UNDEFINED behavior.

R/WO Similar to the R/W interpretation, except a software write of value 1 to this bit isignored.

R/W1 Similar to the R/W interpretation, except a software write of value O to this bit is ignored.

R A field that is either static or updated only by hard- | A field to which the value written by softwareis

ignored by hardware. Software can write any value to
this field without affecting hardware behavior. Soft-
ware reads of thisfield return the last value updated
by hardware.

If the Reset State of thisfield is “Undefined”, soft-
ware reads of thisfield resultin an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
thefield.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

31

Overview of the EJTAG System

Table 1.11 Register Field Notations

Read/Write
Notation Hardware Interpretation Software Interpretation
0 A field that hardware does not update, and for which | A field to which the value written by software must

hardware can assume a zero value. be zero. Software writes of non-zero valuesto this
field may result in UNDEFINED behavior of the
hardware. Software reads of thisfield return zero as
long as all previous software writes are zeros.

If the Reset State of thisfield is “Undefined”, soft-
ware must write this field with zero beforeit is guar-
anteed to read as zero.

1.13.4 Value Notations

The following conventions are used for numeric values in this document:
» Decimal values are written as standard base 10 numbers.
» Hexadecimal values are prefaced with “0x”.

* Binary numbers are appended with “,".
For example, the following numbers are equivalent: 13 = = OxD = = 1101,,.

1.13.5 Address Notations

Except where addresses are obviously 32 bits by context (as for a R3000 privileged environment), addresses in this
document are shown as 64 bits. For 32-bit implementations, ignore the upper 32 bits of the address.

Addresses (ADDR) are usually marked in hexadecimal notation as OXADDR.

32 MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 2

EJTAG Processor Core Extensions

This chapter describes the behavior of processors that support EJTAG. It contains the following sections:

Section 2.1 “Overview”

Section 2.2 “Debug Mode Execution”

Section 2.3 “Debug Exceptions’

Section 2.4 “Debug Mode Exceptions’

Section 2.5 “Interrupts and NMIs”

Section 2.6 “Reset and Soft Reset of Processor”
Section 2.8 “EJTAG Instructions’

Section 2.7 “EJTAG Coprocessor 0 Registers’

2.1 Overview

The extensions for EJTAG provide the following major features:

Debug Mode, associated exceptions and dedicated debug vector

Instruction set extensions: SDBBP (Software Debug Breakpoint) and DERET (Debug Exception Return)
CPO registers. Debug, DEPC and DESAVE

Memory-mapped debug segment (dseg) (optional)

Interrupt and NMI control from Debug Control Register (DCR) (optional)

Single step (optional)

Debug interrupt request signal (optional)

Note that some of the features are optional .

The general description in this chapter covers MIPS32 and M1PS64 processors, implying an R4000-like privileged
environment. Differences for processors with R3000 privileged environments are described in Appendix A,
“Differences for R3000 Privileged Environments’ on page 201.

MIPS® EJTAG Specification, Revision 6.10 33

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

2.2 Debug Mode Execution

34

Debug Mode is entered only through a debug exception. It is exited as aresult of either the execution of a DERET
instruction or application of areset or soft reset.

When the processor is operating in Debug Mode, it has access to the same resources, instructions, and CPO registers
asit hasin Kernel Mode. The restrictions on Kernel Mode accesses (non-zero coprocessor references, accessto
extended addressing controlled by UX, SX, KX, etc.) apply equally to Debug Mode, but Debug Mode provides some
additional capabilities described in this chapter.

Other processor modes (Kernel Mode, Supervisor Mode, User Mode) are collectively considered as Non-Debug
Mode. Debug software can determine if the processor isin Non-Debug Mode or Debug Mode through the DM bit in
the Debug register.

A debug exception in a processor implementing the MIPS MT Module will cause al other TCs (Thread Contexts) in
the processor, except the one executing the exception handler, to be suspended from concurrent execution until the
DERET instruction is executed. Debug-mode execution takes priority over all other TC scheduling rulesin MIPS
MT. A TC which is otherwise not permitted to issue instructions, due to a Halted, non-Activated (see the MIPSMT
specification), or OffLine state (see Section 2.7.1 on page 59) may still be used to service a debug exception.

When aMIPSMT processor is operating in Debug Mode, it has access to the same resources and capabilities asif the
VPE in Debug Mode had the MV P bit of the VPEConfO register set, which allows access to all the processor’s V PEs.

The ability of an OffLine MIPSMT TC to execute in Debug mode makes it possible for EJTAG-based debuggers to
allow other TCs and/or other VPEs to continue executing while a particular TC has been stopped for debugging. The
Debug exception handler can cause the TC to put itself, and/or other TCs, in an OffLine state and then execute a
DERET. On exiting Debug mode, the processor will resume normal scheduling of “on-line” TCs, but the OffLine
ones will remain frozen until released by, for example, service of a subsequent DINT Debug exception.

It isnot arequirement in EJTAG, but it isleft as an implementation option in multiprocessor/multicore systems
whether or not aglobal debug stateis defined and can be set by the debugger to suspend other processors when one of
the processors in a multi-core system encounters debug exception. Similarly, implementation can also trigger re-start-
ing of other processors when the one in debug mode executes a DERET. See Appendix <TBD> for a description of
this mechanism.

2.2.1 Debug Mode Instruction Set

The full native |SA of the processor is accessible in Debug Mode.

Coprocessor loads and stores to the dseg segment are not supported. The operation of the processor is UNDEFINED
if acoprocessor load or store to dseg is executed in Debug Mode. Refer to Section 2.2.2 on page 34 for moreinforma-
tion on the dseg address space.

2.2.2 Debug Mode Address Space

Debug Mode access to unmapped address spaceisidentical to that of Kernel Mode. Mapped addresses are accessible
asin Kernel Mode, but only if avalid trandation isimmediately provided by the MMU. Thisis because a memory
access that would cause a TLB-type exception in Kernel Mode, would, when tried in Debug Mode, cause re-entry
into Debug Mode through an exception (see Section 2.4 on page 53). Memory accesses usually causing TLB-type
exceptions are therefore not handled by the usual memory management routines if these memory accesses are made
while in Debug Mode.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.2 Debug Mode Execution

Updating and handling of cached areas is the same asthat in Kernel Mode.

In addition, an optional uncached and unmapped debug segment dseg (EJTAG area) appears in the address range
OxFFFF FFFF FF20 0000 to OXFFFF FFFF FF3F FFFF. The dseg segment thereby appears in the kseg part of the
compatibility segment, and access to kseg is possible with the dseg segment provided as described in Section 2.2.2.1
on page 37 and Section 2.2.2.2 on page 38. Coprocessor |oads and stores to the dseg segment are not allowed, as
described in Section 2.2.1 on page 34.

The dseg segment isimplemented only if the Debug Control Register (DCR) isincluded in the implementation. Refer
to Chapter 3, “Debug Control Register” on page 79 for more on the DCR. The implementation-dependent val ue of
the NoDCR hit in the Debug register (see Section 2.7.1 on page 59) indicates the presence of the dseg segment as
shown in Table 2.1. If the dseg segment is not present, then all transactions from the processor in Debug Maode go to
the Kernel Mode address space. Debug software must check the Debugy,pcr bit before trying to access the dseg seg-

ment.

Table 2.1 Presence of the dseg Segment

NoDCR bhit in Debug Register dseg Presence
0 dseg Present
1 No dseg

Conditions for accesses to the dseg segment are described in Section 2.2.2.2 on page 38 and Section 2.2.2.1 on
page 37. Figure 2.1 shows the layout of the virtual address space.

MIPS® EJTAG Specification, Revision 6.10 35

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

Figure 2.1 Virtual Address Spaces with Debug Mode Segments

64-hit Virtual Memory 32-bit Compatibility
P T r OXFFFF FFFF FFFF FFFF
1 Kernd | Kernel ksea3
Debug Mode Segment ' Mapped | »| Mapped &g
b ; OXFFFF FFFF E000 00000
OXFFFF FFFF FF3F FFFF ' Supervisor | Supervisor
Debug 1 Mapped ! Mapped)
dseg Unmapped b ; OXFFFF FFFF C000 0000
Uncached 1 Kernd 1 Kernel
' Unmapped | Unmapped ksegl
OXFFFF FFFF FF20 0000 | |
| Uncached Uncached | o rrre FrFF A000 0000
The dseg appears at an address . Kernel Kernel ksegO
range also used for accessto kseg. ' Unmapped ! Unmapped
However, kseg is still available - | OXFRFF FFRF 8000 0000
when in Debug Mode. Kerne K 2%-byte Compatibility Segrmers
Mapped XKSeY
0xC000 0000 0000 0000
Kernel
Unmapped xkphys
0x8000 0000 0000 0000
Supervisor
M apped Xsseg
0x4000 0000 0000 0000
User
Xuseg
Mapped 231 hyte Compatibility Segment
| | 0x0000 0000 7FFF FFFF
| |
| |
| |
| |
| |
| |
' User ! User
| Mapped | Mapped | %
| l
| |
| |
| |
| |
L ! - 0x0000 0000 0000 0000
36 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.2 Debug Mode Execution

The dseg segment is subdivided into dmseg (EJTAG memory) segment and the drseg (EJTAG registers) segment. The
dmseg segment is used when the probe services the memory segment. The drseg segment is used when the mem-
ory-mapped debug registers are accessed. Table 2.2 shows the subdivision and attributes for the segments.

Table 2.2 Physical Address and Cache Attribute for dseg, dmseg and drseg

Segment | Subsegment Cache
Name Name Virtual Address Reference Address Attribute
dseg dmseg OxFFFF FFFF FF20 0000 Because the dseg segment is serviced Uncached
to exclusively by the EJTAG features, there

OxFFFF FFFF FF2F FFFF are no physical addresses per se. Instead,
the lower 21 bits of the virtual address
select the appropriate reference in either
EJTAG memory or registers.

References are not mapped through the
TLB, nor do the accesses appear on the
external system memory interface.

drseg OXFFFF FFFF FF30 0000
to
OXFFFF FFFF FF3F FFFF

The SYNC instruction, followed by appropriate spacing (as described in Section 2.2.3.7 on page 40 and Section 2.2.4
on page 41) must be executed to ensure that an access to the dseg segment is committed (for example, after writing to
the dseg segment and before leaving Debug Mode). This procedure ensures that locations in the dseg segment are
fully updated for Non-Debug Mode; otherwise, behavior of the processor is UNDEFINED.

2.2.2.1 Access to dmseg (EJTAG memory) Address Range

Table 2.3 shows the behavior of processor accesses in Debug Mode to the dmseg segment from
OxFFFF FFFF FF20 0000 to OxFFFF FFFF FF2F FFFF.

Table 2.3 Access to dmseg Segment Address Range

NoDCR bit in ProbEn bit in LSNM bit in
Debug Register Transaction DCR register Debug Register Access
1 X (Not present) 0 (read-only) Kernel Mode address space
0 Fetch 1 X dmseg
0 X See comments bel ow regarding behavior
when ProbEnisO
L oad/Store 1 0 dmseg
1 Kernel Mode address space
0 1 Kernel Mode address space
0 See comments bel ow regarding behavior
when ProbEnis 0
‘X’ denotesdon’t care

From Table 2.3, when ProbEn equals 0 for dmseg segment accesses, debug software accessed the dmseg segment
when the ProbEn bit was 0, indicating that there is no probe available to service the request. Debug software must
read the state of the ProbEn bit in the DCR register before attempting to reference the dmseg segment. However,
accessing the dmseg segment while ProbEn is 0 can occur because there is an inherent race between the debug soft-
ware sampling the ProbEn bit as 1 and the probe clearing it to 0. The probe can therefore not assume that a reference

MIPS® EJTAG Specification, Revision 6.10 37
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

38

to the dmseg segment never occurs if the ProbEn bit is dynamically cleared to 0. If debug software references the
dmseg segment when ProbEn is O, the reference hangs until it is satisfied by the probe.

There are no timing requirements with respect to transactions to the dmseg segment, which the probe services. There-
fore, a system watchdog must be disabled during dseg segment transactions, so that accesses can take any amount of
time without being terminated.

The protocol for accesses to the dmseg segment does not allow atransaction to be aborted after it has started, except
by areset or soft reset.

Transactions of all sizes are allowed to the dmseg segment.

Merging is alowed for accesses to the dmseg segment, whereby, for example, two byte accesses can be merged to
one halfword access, and debug software is thus required to allow merging. However, merging must only occur for
accesses which can be combined into legal processor accesses, because processor access can only indicate accesses
which can occur due to a single load/store, thus not, for example, accessesto only first and last bytes of aword. The
SYNC instruction, followed by appropriate spacing (as described in Section 2.2.3.7 on page 40 and Section 2.2.4 on
page 41) can be executed to ensure that earlier accesses to the dmseg segment are committed and thus will not be
merged with later accesses.

The processor can do speculative fetching from the dmseg segment whereby it can fetch doublewords even if an
instruction that is not required in the execution flow is thereby fetched. For example, if the DERET instruction is
fetched asthe first word of a doubleword, then the instruction in the second word is not executed. For details, refer to
the architecture description covering speculative fetching from uncached areasin general.

If the TAP is not present in the implementation, the operation of the processor is UNDEFINED when the dmseg seg-
ment is accessed.

2.2.2.2 Access to drseg (EJTAG Registers) Address Range

Table 2.4 shows the behavior of processor accesses in Debug Mode to the drseg segment from
OxFFFF FFFF FF30 0000 to OxFFFF FFFF FF3F FFFF.

Table 2.4 Access to drseg Segment Address Range

NoDCR bit in LSNM bit in
Debug Register Transaction Debug Register Access
1 X 0 (read-only) Kernel Mode address space
0 Fetch X Operation of the processor is UNDEFINED at fetch
Load/Store 0 drseg segment (see comments below the table)
1 Kernel Mode address space
‘X’ denotesdon't care

Instruction fetches from drseg are not allowed. The operation of the processor is UNDEFINED if the processor
attempts am instruction fetch from the drseg segment.

When the NoDCR bit is 0 in the Debug register, it indicates that the processor is allowed to access the entire drseg
segment, and therefore a response occurs to al transactions in the drseg segment.

The DCR register, at offset 0x0000 in the drseg segment, is aways available if the dseg segment is present. Debug
software is expected to read the DCR register to determine what other memory-mapped registers exist in drseg. The

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.2 Debug Mode Execution

value returned in response to aread of any unimplemented memory-mapped register is UNPREDICTABLE, and
writes are ignored to any unimplemented register in the drseg segment.

The allowed transaction size islimited for the drseg segment: only word-size transactions are allowed for 32-bit pro-
cessors, and only doubleword-size transactions are allowed for 64-bit processors. Operation of the processor is
UNDEFINED for other transaction sizes.

2.2.3 Debug Mode Handling of Processor Resources

Unless otherwise specified, the processor resources in Debug Mode are handled identically to those in Kernel Mode.
Some identical cases are described in the following subsections for emphasis. In addition, see the following related
sections for more information:

e Section 2.4 “Debug Mode Exceptions’ covering exception handling in Debug Mode.
e Section 2.5 “Interrupts and NMIs” for handling in both Debug and Non-Debug Modes.

e Section 2.6 “Reset and Soft Reset of Processor” for handling in both Debug and Non-Debug Modes.

2.2.3.1 Coprocessors

A Debug Mode Coprocessor Unusable exception is raised under the same conditions as for a Coprocessor Unusable
exception in Kernel Mode (see Section 2.4.1 on page 54). Therefore Debug M ode software cannot reference Copro-
cessors 1 through 2 without first setting the respective enable in the Status register.

2.2.3.2 Random Register

For TLB-based MMU implementations, the Random register (CPO register 1, select 0) can optionally be frozenin
Debug Maode, whereby execution with and without debug exceptions are identical with respect to TLB exception han-
dling.

If the values that the Random register provides cannot be identical in behavior to the case where debug exceptions do
not occur, then freezing the Random register has no effect, because execution with and without debug exceptions will

not be identical. Stalls when entering Debug Mode (for example, due to pending scheduled |oads resolved when con-
text is saved in the debug handler) can make it impossible in some implementations to ensure that the Random regis-
ter will provide the same set of values when running with and without debug exceptions.

Thereisno bit to indicate or control if the Random register isfrozen in Debug Mode, so the user must consult system
documentation.

2.2.3.3 Count Register
The Count register (CPO register 9) operation in Debug Mode depends on the state of the CountDM bit in the Debug
register (see Section 2.7.1 on page 59). The Count Register has three possible configurations, depending on the
implementation:
e Count register runs the same in Debug Mode as in Non-Debug Mode
» Count register is stopped in Debug Mode but is running in Non-Debug Mode

* The CountDM hit controls the Count register behavior in Debug Mode, whereby it can be either running or
stopped

MIPS® EJTAG Specification, Revision 6.10 39
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

40

Stopping of the Count register in Debug Mode is allowed in order to prevent the generation of an interrupt at every
return to Non-Debug Maode, for the case when the debug handler takes so long to execute that the Count/Compare
registers request an interrupt. In this case, system timing behavior might not be the same as if no debug exception
occurred.

2.2.3.4 WatchLo/WatchHi Registers

The WatchL o/WatchHi registers (CPO Registers 18 and 19) are inhibited from matching any instruction executed in
Debug Mode.

2.2.3.5 CacheErr Register

The MIPS32 and M1PS64 architecture specifications state that operation of the CacheErr register isimplementation-
dependent, which means that the CacheErr register handling described in the EJTAG Architecture is only arecom-
mendation. Therefore, debug software cannot always depend on the CacheErr register being implemented as recom-
mended bel ow.

The recommendation is that a CacheErr shadow register captures information presented when a cache error isindi-
cated, and holds thisinformation until alater update of the CacheErr register when a Cache Error exception occurs.
The CacheErr shadow register is updated when there is a cache error indication, and the program isin Non-Debug
Mode or in Debug Mode with the |EXI bit = 1. The CacheErr shadow register is not updated in Debug Mode when
the IEXI bit = 0, but in this case, a cache error only occurs due to an instruction executed in Debug Mode if proper
debug handler entry code is used. The CacheErr register is only updated at a Cache Error exception, and thus not at a
Debug Mode Cache Error exception.

If the CacheErr register valueisto be correct for a cache error deferred through Debug Mode, then no cache errors
may occur when in Debug Mode and the IEXI bit is set. The debug handler must therefore ensure the entry and exit
code, executed with |EXI is set, cannot cause cache error; otherwise, the CacheErr register contents presented to
Non-Debug Mode are invalid.

2.2.3.6 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair

A DERET instruction does not clear the LLbit (see“DERET” on page 75), nor does the occurrence of a debug excep-
tion. Loads and stores to uncacheable locations that do not match the physical address of the previous LL instruction
do not affect the results of the SC instruction. The value of the LLbit is not directly visible by software.

2.2.3.7 SYNC and EHB Instruction Behavior

The SYNC instruction is used to request the hardware to commit certain operations before proceeding. For example,
aSYNC isrequired to remove memory hazards on reference to the dseg segment. The EHB instruction ensures that
status bits in the Debug register are fully updated before the debug handler accesses them and before Debug Mode is
exited. Similarly, the SYNC instruction ensures that the hardware breakpoint registersin drseg memory address space
are fully updated before the debug handler accesses them and before Debug Mode is exited. Cores implementing
Release 2 of the architecture can use the EHB instruction (or Release 1 implementations can use SSNOP instructions
combined with appropriate spacing), see Section 2.2.4 on page 41 to remove Coprocessor 0 (CP0) execution hazards.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.2 Debug Mode Execution

The SYNC and EHB instructions must provide the specific behavior described in Table 2.5.

Table 2.5 SYNC and EHB Instruction References

Behavior Section References
Commit accesses to the dseg segment See Section 2.2.2 on page 34
Update the DDBL Impr and DDBSImpr bits in the Debug register See Section 2.3.8 on page 49 and
Section 2.7.1 on page 59
Update the BS bitsin the IBS and DBS registersin drseg See Section 5.4.2 on page 131
Update the IBuseP, DBuUSEPR, CacheEP, and M CheckP bitsin the Debug register See Section 2.4.2 on page 55 and
Section 2.7.1 on page 59

The SYNC instruction must be executed before leaving Debug Mode in order to commit all accesses to the dseg seg-
ment, for example, to commit accesses to set up hardware breakpoints.

It may be required to remove hazards in relation to the SY NC instruction, as described in Section 2.2.4 on page 41.

Other requirements of the SYNC instruction are described in the MIPS32 and M1PS64 Architecture specifications.

2.2.4 CPO and dseg Segment Hazards

Because resources controlled via Coprocessor 0 and EJTAG memory and registersin the dseg segment affect the
operation of various pipeline stages of the processor, manipulation of these resources may produce results that are not
detectable by subsequent instructions for some number of execution cycles. When no hardware interlock exists
between one instruction that causes an effect that is visible to a second instruction, a CPO or dseg segment hazard
exists.

In Release 1 of the MIPS32 and MIPS64 Architectures, hazards were rel egated to implementati on-dependent
cycle-based solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that thisisan
insufficient and error-prone practice that must be addressed with a firm compact between hardware and software. As
such, new instructions have been added to Release 2 of the Architecture which act as explicit barriers that eliminate
hazards. To the extent that it was possible to do so, the new instructions have been added in such away that they are
backward-compatible with existing MIPS processors.

2.2.4.1 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below. In Table 2.6 below, the final column liststhe “typical” spacing required in implementations of Release
1 of the Architecture to allow the consumer to eliminate the hazard. The “typical” value shown in these tables repre-
sent spacing that isin common use by operating systems today. An implementation of Release 1 of the Architecture
which requires less spacing to clear the hazard (including one which has full hardware interlocking) should operate
correctly with an operating system which uses this hazard table. An implementation of Release 1 of the Architecture
which requires more spacing to clear the hazard incurs the burden of validating kernel code against the new hazard
requirements.

Note that for superscalar MIPS implementations, the number of instructionsissued per cycle may be greater than one,
and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It isfor this reason
that MI1PS Release 1 defines the SSNOP instruction to convert instruction issues to cyclesin a superscalar design.

MIPS® EJTAG Specification, Revision 6.10 41

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 2.6 lists execution hazards related to EJTAG.

Table 2.6 Execution Hazards

“Typical”
Spacing
Producer - Consumer Hazard On (Cycles)
SYNC - DERET dseg memory 2
locations
SYNC - Load / Store BSbhitsintheIBS 2
and DBS regis-
tersin drseg
SYNC - MFCO Debug DebugDDBg| mprs 2
DebugppaLimpr
Debuggusep
Debugppusep
Debugcacheer
Debug checkp
MTCO DEPC - DERET DEPC 2
MTCO Debug - DERET Debug 2
MTCO - Load / Store in dseg Debug[LSNM] 3
Debug[LSNM]
MTCO - Instructions that can cause animpre- | Debug[|EX1] 3
Debug[IEXI] cise exception

Dependencies from the SYNC instruction as producer take effect, since specific updates of the dseg segment and the
resolving of pending imprecise exception indications are triggered by the SYNC instruction. Thisis described in
Section 2.2.3.7 on page 40.

Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another
instruction. There are no instruction hazards that are specific to EJTAG.

2.2.4.2 Hazard Clearing Instructions
Table 2.7 lists the instructions designed to eliminate hazards.

Table 2.7 Hazard Clearing Instructions

Mnemonic Function

EHB Clear execution hazard

JALR.HB | Clear both execution and instruction hazards

JR.HB Clear both execution and instruction hazards
SSNOP Superscalar No Operation

SYNCI Synchronize caches after instruction stream write

42 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.3 Debug Exceptions

2.2.4.3 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing M1PS implementations, including many which pre-date
the MIPS architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using anew encoding of the REGIMM opcode. This encoding was chosen because
it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software running on pro-
cessors that don’'t implement Release 2 can emulate the function using the CACHE instruction.

The SSNOP and EHB instructions are fully described in the MIPS32 and MIPS64 Architecture for Programmers,
Volumell.

2.3 Debug Exceptions

This section describes issues related to debug exceptions. Debug exceptions bring the processor from Non-Debug
Mode into Debug Mode. Implementations need only support those debug exceptions that are applicable to that imple-
mentation.

Exceptions can occur in Debug Mode, and these are denoted as debug mode exceptions. These exceptions are handled
differently from exceptions that occur in Non-Debug Mode, which are described in Section 2.4 on page 53.

2.3.1 Debug Exception Priorities

Table 2.8 lists the exceptions that can occur in Non-Debug Mode in order of priority, from highest to lowest. The
table also categorizes each exception with respect to type (debug or non-debug). Each debug exception has an associ-
ated status bit in the Debug register (indicated in the table in parentheses). Refer to Section 2.7.1 on page 59 for more

information.
Table 2.8 Priority of Non-Debug and Debug Exceptions
Priority Exception Type of Exception
Highest |Reset Non-debug
Soft reset
Debug Single Step Debug

Debug Interrupt; by external signal (DINT), from EjtagBrk in TAP, or through use
of EJTAG Boot.

Debug Data Break Load/Store Imprecise (DDBLImpr/DDBSImpr)
Nonmaskable Interrupt (NMI) Non-debug
Machine Check

Interrupt
Deferred Watch
Debug Instruction Break Debug

MIPS® EJTAG Specification, Revision 6.10 43
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

Table 2.8 Priority of Non-Debug and Debug Exceptions (Continued)

Priority

Lowest

Exception

Type of Exception

Watch on instruction fetch

Non-debug

Address error on instruction fetch

TLB refill on instruction Ifetch

TLB Invalid on instruction Ifetch

Cache error on instruction Ifetch

Bus error on instruction Ifetch

Debug Breakpoint; execution of SDBBP instruction

Debug

Other execution-based exceptions

Non-debug

Debug Data Break on Load/Store address match only
or Debug Data Break on Store address+data value match

Debug

Watch on data access

Non-debug

Address error on data access

TLB RE€fill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Debug Data Break on Load address+data match

Debug

The specific implementation determines which exceptions can occur and the priority of asynchronous exceptions,

such as interrupts.

2.3.2 Debug Exception Vector Location

The same vector is used for all debug exceptions. The location of this vector can be changed by the processor and
through the optional Test Access Port (TAP). The vector location can be controlled from the TAP through the EJTAG

Control Register (ECR) ProbTrap hit.

Table 2.9 Debug Exception Vector Location

ECRprobEN ECRprobTrap DCRRpvec Debug Exception Vector Address
X 0 0 OxFFFF FFFF BFCO 0480
X 0 1 OxFFFF FFFF 0000 0000 +
(DebugVectorAddrg; 1 || 0)
1 1 0 OxFFFF FFFF FF20 0200 in dmseg
1 1

Starting with EJTAG version 5.0, an additional method to relocate the debug exception vector is provided, using
optional drseg register DebugVectorAddr at offset 0x00020. The value in DebugVectorAddr is used when the ECR
ProbTrap bit is 0, and when relocation is enabled through the optional RDVec control bit in the Debug Control Regis-

ter (DCR). Bit 0 of DebugVectorAddr determines the |SA mode used to execute the handler.

44

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 2.2 shows the format of the DebugVectorAddr register for legacy fixed memory segmentation; Table 2.10

describes the DebugVectorAddr register fields for legacy fixed memory segments.

2.3 Debug Exceptions

Figure 2.2 DebugVectorAddr Register Format when Config3gc=0

31

30 29

6

1

0

2]

0 | DebugVectorOffset

0

]

Table 2.10 DebugVectorAddr Register Field Descriptions when Config3g-=0

Fields
Power-up
Name Bits Description Read / Write State Compliance
1 31 Ignored on write; returns one on read. R 1 Required when
RDVecis
implemented
DebugVec- 29:7 Programmable Debug Exception Vector Offset R/W Preset to Required when
torOffset O0x7F8009 | RDVecimple-
mented
IM 0 ISA mode to be used for exception handler if if microMIPS | Required when
microMIPS | implemented: | microMIPSis
implemented: | value from implemented
R/W Confi g3|SA[0] and RDVec
Otherwise: Otherwise: implemented
R 0
0 30,6:1 Ignored on write; returns zero on read. R 0 Required when
RDVecisim-
plemented

If the Config3g register field is not set, bits 31..30 of the DebugVectorAddr register are fixed with the value

0b10, and the addition of the base address (OxFFFFFFFFO0000000) and the exception offset is done inhibiting a

carry between bit 29 and bit 30 of the final exception address. The combination of these two restrictions forces the
final exception addressto bein the kseg0 or ksegl unmapped virtual address segments. For cache error exceptions, bit
29isforced to a1l in the ultimate exception base address so that this exception always runs in the ksegl unmapped,
uncached virtual address segment.

When microMIPS™ is implemented, the power-up state of IM is set by bit O of the ISA field in Config3. When

MIPS16 isimplemented, the power-up state of IM is zero. If the implementation does not include microMIPS™ or
MIPS16, the IM field is read-only, should be written with zero and will return O on aread.

If the TAPis not implemented, then the debug exception vector locationisasif ProbTrapisO.

With the addition of programmable memory segmentation (refer to Volume 111 of the MIPS® Architecture Reference
Manual, Enhanced Virtual Addressing and Segmentation Control sections), the DebugVectorAddr register is

extended to support programmable placement of the DebugVectorOffset field. Segmentation Control is denoted by

the setting of the Config3g register field.

Figure 2.3 shows the format of the DebugVectorAddr register for Segmentation Control; Table 2.11 describes the

DebugVectorAddr register fields for Segmentation Control.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

45

EJTAG Processor Core Extensions

46

In a Segmentation Control enabled implementation, DebugVectorOffset is no longer hardwired to ksegO, ksegl seg-
ments. Therefore, bits 31..30 of the DebugVectorAddr register are added to the DebugVectorOffset field. These bits
are writeable, allowing redefinition of the final exception address segment.

Bit 29 is unmodified by exception type, for Cache type exceptions, the associated Segmentation Control SegCtl regis-
ter CFG.EU field should be set to 1, setting segment access to uncached. Care must be taken so that the DebugVector-

Offset field resulting addresses are set in an appropriately configured memory segment.

Figure 2.3 DebugVectorAddr Register Format when Config3gc=1

31 7 6 5 10
DebugVectorOffset |WG| 0 | IM |
Table 2.11 DebugVectorAddr Register Field Descriptions when Config3gc-=1
Fields
Power-up
Name Bits Description Read / Write State Compliance
DebugVec- 317 Programmable Debug Exception Vector Offset R/W Preset to Required when
torOff set 0x17F8009 RDVec and
Segmentation
Control imple-
mented
WG 6 Must be one to write bits 31:30 of DebugVector- R/W 0 Required
Offset

0 5:1 Ignored on write; returns zero on read. R 0 Required
IM 0 ISA mode to be used for exception handler if if microMIPS | Required when
microMIPS | implemented: | microMIPSis
implemented: | value from implemented

R/W Config3gajg) | and RDVec
Otherwise: Otherwise: implemented
R 0

2.3.3 Debug Exception ISA mode

For devices that implement the microMIPS™ instruction set, there is a choice of which instruction set is used during
Debug Exception handling.

On each debug exception, the processor |SA mode is set to match the handler provided. When the handler islocated
in EJTAG memory, asindicated by ECRpohen=1 and ECRpyqtrap=1, the ISA mode is set from ECR)saonpebug:

If the exception handler islocated in normal memory (ECRpyo1r4p=0) and the Debug Exception Vector is relocated
(DCRRpvec=1), the ISA mode is determined by bit O of the DebugVectorAddr register.

For all other cases, the ISA mode used is the same as would be used for a Reset, Soft Reset, or Non-Maskable Inter-
rupt (NM1). When MIPS16 is implemented, the value used is zero. When microM1PS ™ isimplemented, the ISA

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.3 Debug Exceptions

field of Config3 indicates the available instruction sets and the I SA value to be used for Reset, Soft Reset, NMI, and
Debug Exceptions.

Operation:

if ECRproprrap = 1 then
ISAmode <« ECR1ga0nDebug
else
if DCRgpyec = 1 then
ISAmode <« DebugVectorAddrg
else
if IsMIPSl6Implemented() then
ISAmode « 0
else
ISAmode ¢ Config31gaqo]
endif
endif
endif

If the TAP is not implemented, then the debug exception ISA modeisasif ProbTrap isO.

2.3.4 General Debug Exception Processing

All debug exceptions have the same basic processing flow:

* TheDEPC register isloaded with the PC at which execution can be restarted, and the DBD bit is set to indicate
whether the last debug exception occurred in abranch delay slot. Bit O of DEPC is set to indicate the ISA mode
to be used when executions restart. The value loaded into the DEPC register is either the current PC (if the

instruction is not in the delay slot of a branch) or the PC of the branch or jump (if the instruction isin the delay
slot of abranch or jump).

» TheDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bitsin the Debug register are updated
appropriately depending on the debug exception.

» DExcCodefield in the Debug register is UNPREDICTABLE.

» Halt and Doze bitsin the Debug register are updated appropriately.

» |EXI bit is set to inhibit imprecise exceptionsin the start of the debug handler.
» DM bit in the Debug register is set to 1.

* ThelSA modeis set appropriately, as specified in Section 2.3.3 on page 46.

* Theprocessor begins fetching instructions from the debug exception vector, specified in Section 2.3.2 on
page 44.

The value loaded into the DEPC register represents the restart address from the debug exception and does not need to
be modified by the debug exception handler software. Debug software need only look at the DBD bit in the Debug
register to identify the address of the instruction that actually caused a precise debug exception.

The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bitsin the Debug register indicate the
occurrence of distinct debug exceptions, except when a Debug Data Break L oad/Store Imprecise exception occurs

MIPS® EJTAG Specification, Revision 6.10 a7

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

48

(see Section 2.3.8 on page 49). Note that the occurrence of an exception while in Debug mode will clear these bits.
The handler can thereby determine whether a debug exception or an exception in Debug Mode occurred.

Also note that multiple cause bits may be set, but the priority of the debug exception or interrupt dictates the order in
which they are handled. For example, because DSSisthe highest priority Debug exception, if it occurs, it will aways
be taken first. Then, after it DERETS, other debug exceptions can be taken. For example, assume that the processor is
in single-step mode in a branch delay slot, and waiting to go past the delay slot to enter the DSS exception. At the
branch delay slot, it could get a DINT or other lower priority Debug exception. In this case, it would not take the
lower exception, but enter Debug M ode past the delay slot. The entry into Debug Mode will clear the DINT. It would
process the single-step exception and DERET to normal non-debug mode. Note that in practice, not many cores set
multiple cause bitsin the Debug register since the highest priority debug exception istaken, and the others are cleared
on entry to Debug Mode as already specified.

No other CPO registers or fields are changed due to the debug exception, thus no additiona state is saved.

The overall exception processing flow happensin hardware before setting PC to point to the debug exception vector is
shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ¢« BranchInstructionPC
Debugppp < 1
else
DEPC <« PC
Debugpgp ¢« O
endif
DEPC, ¢« ISAmode
Debudpgs, pep, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ¢ DebugExceptionType
Debugppyxecode ¢ UNPREDICTABLE
Debugy,1+ ¢ HaltStatusAtDebugException
Debugp,,. ¢ DozeStatusAtDebugException
Debugrpxr < 1
Debugpy < 1
if ECRproprrap = 1 then
PC « OxFFFF FFFF FF20 0200
ISsAmode ¢ ECRrgaonpebug
else
if DCRgpyec = 1 then
PC < OxXFFFF FFFF 0000 0000 + (DebugVectorAddrs; ; | 0)
ISAmode <« DebugVectorAddrg,
else
PC < OxFFFF FFFF BFCO 0480
if IsMIPSl6Implemented() then
ISAmode <« 0
else
ISAmode « Config31ga(g;
endif
endif
endif

2.3.5 Debug Breakpoint Exception

A Debug Breakpoint exception occurs when an SDBBP instruction is executed. The contents of the DEPC register
and the DBD bit in the Debug register indicate that the SDBBP instruction caused the debug exception.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.3 Debug Exceptions

Debug Register Debug Status Bit Set
DBp

Additional State Saved

None

Entry Vector Used

Debug exception vector

2.3.6 Debug Instruction Break Exception

A Debug Instruction Break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint match. This exception can only occur if instruction hardware breakpoints are implemented (see
Chapter 5, “Hardware Breakpoints’ on page 117).

Debug Register Debug Status Bit Set

DIiB

Additional State Saved

None

Entry Vector Used

Debug exception vector

2.3.7 Debug Data Break Load/Store Exception

A Debug Data Break L oad/Store exception occurs when a data hardware breakpoint matches the load/store address of
an executed load/store instruction. The DEPC register and DBD bit in the Debug register indicate the load/store
instruction that caused the data hardware breakpoint to match, asthisis a precise debug exception. The load/store
instruction that caused the debug exception has not completed (it has not updated the destination register or memory
location), and the instruction therefore is executed on return from the debug handler. This exception can only occur if
data hardware breakpoints with precise data breaks are implemented (see Chapter 5, “ Hardware Breakpoints’ on
page 117).

Debug Register Debug Status Bit Set

DDBL for aload instruction or DDBS for a store instruction

Additional State Saved
None

Entry Vector Used
Debug exception vector

2.3.8 Debug Data Break Load/Store Imprecise Exception

A Debug Data Break Load/Store Imprecise exception occurs when a data hardware breakpoint matches aload/store
access of an executed load/store instruction, if it is not possible to take a precise debug exception on the instruction.
This case occurs when a data hardware breakpoint was set up with avalue compare, and aload access did not return
data until after the load instruction had left the pipeline as for non-blocking loads. The DEPC register and the DBD

MIPS® EJTAG Specification, Revision 6.10 49

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

50

bit in the Debug register indicate an instruction later in the execution flow instead of the load/store instruction that
caused the data hardware breakpoint to match. The DDBLImpr/DDBSImpr bitsin the Debug register indicate that a
Debug Data Break L oad/Store Imprecise exception occurred. The instruction that caused the Debug Data Break

L oad/Store Imprecise exception will have completed. It updates its destination register, and is not executed on return
from the debug handler. This exception can only occur if data hardware breakpoints with imprecise data breakpoints
are implemented (see Chapter 5, “Hardware Breakpoints’ on page 117).

Imprecise debug exceptions from data hardware breakpoints are indicated together with another debug exception if
the load/store transaction that made the data hardware breakpoint match did not complete until after another debug
exception occurred. In this case, the other debug exception was the cause of entering Debug Mode, so the DEPC reg-
ister and the DBD bit in Debug register point to thisinstruction. DDBLImpr/DDBSImpr are set concurrently with the
status bit for that debug exception.

The SYNC followed by appropriate spacing and the EHB instruction, (as described in Section 2.2.3.7 on page 40 and
Section 2.2.4 on page 41) must be executed in Debug Mode before the DDBLImpr and DDBSImpr bits in the Debug
register and the BS bits for the data hardware breakpoint are respectively read in order to ensure that all imprecise
breaks are resolved and the bits are fully updated. A match of the data hardware breakpoint is indicated in
DDBLImpr/DDBSImpr so the debug handler can handle this together with the debug exception.

This scheme ensures that all breakpoints matching due to code executed before the debug exception are indicated by
the DDBLImpr, DDBSImpr, and BS bits for the following debug handler. Matches are neither queued nor do they
cause debug exceptions at alater point. A debug exception occurring later than the debug exception handler is there-
fore caused by code executed in Non-Debug Maode after the debug exception handler.

Debug Register Debug Status Bit Set

DDBLImpr for aload instruction or DDBSImpr for a store instruction

Additional State Saved
None

Entry Vector Used
Debug exception vector

2.3.9 Debug Single Step Exception

When single-step mode is enabled, a Debug Single Step exception occurs each time the processor has taken a single
execution step in Non-Debug Mode. An execution step is a single instruction, or an instruction pair consisting of a
jump/branch instruction and the instruction in the associated delay slot. The SX bit in the Debug register enables
Debug Single Step exceptions. They are disabled on the first execution step after a DERET.

The DEPC register points to the instruction on which the Debug Single Step exception occurred, which is also the
next instruction to execute when returning from Debug Mode. The debug software can examine the system state
before thisinstruction is executed. Thus the DEPC will not point to the instruction(s) that have just executed in the
execution step, but rather the instruction following the execution step. The Debug Single Step exception never occurs
on aninstruction in ajump/branch delay slot, because the jump/branch and the instruction in the delay slot are always
executed in one execution step; thus the DBD bit in the Debug register is never set for a Debug Single Step exception.

Exceptions occurring on the instruction(s) in the execution step are taken regardless, so if a non-debug exception
occurs (other than reset or soft reset), a Debug Single Step exception istaken on the first instruction in the non-debug
exception handler. The non-debug exception occurs during the execution step, and the instruction(s) that received a
non-debug exception counts as the execution step.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.3 Debug Exceptions

Debug exceptions are unaffected by single-step mode; returning to an SDBBP instruction with single step enabled
causes a Debug Breakpoint exception with the DEPC register pointing to the SDBBP instruction. Also, returning to
an instruction (not jump/branch) just before the SDBBP instruction causes a Debug Single Step exception with the
DEPC register pointing to the SDBBP instruction.

To ensure proper functionality of single-step execution, the Debug Single Step exception has priority over all excep-
tions, except resets and soft resets.

Debug Single Step exception is only possible when the NoSSt bit in the Debug register is 0 (see Section 2.7.1 on
page 59).

In an core that implements the MIPS MT Module, the St bit isinstantiated per TC. If the S bit of the TC isset, a
Debug exception will be taken by that TC after any non-Debug mode instruction is executed. Other TCswith S&t
cleared are scheduled and issue instructions normally according to the scheduling policy in force. Global single-step
operation of a VPE can be achieved by setting SX for all TCsfor the specified VPE.

When the single-step exception bit is set for multiple TCs, then the preferred behavior appliesit to each TC indepen-
dently and independent of the scheduling policy. This hasimplications for the software observable instruction execu-
tion completion order. Three examples are shown in Figure 2.4, Figure 2.5, and Figure 2.6. In Figure 2.4 there are two
threads TCO and TC1, and thread TCO has its S bit set but thread TC1 does not have its St bit set. In Figure 2.5,
there are two threads and both their SS bits are set. In Figure 2.6, there are four threads, and two threads have their
S bits set and the other two do not. The figures show the observed instruction completion order for each of the cases.
The notation used is TC#.Instn#.

Debug Register Debug Status Bit Set
DSS

Additional State Saved
None

Entry Vector Used
Debug exception vector

Figure 2.4 Example 1: Single-stepping One Thread TCO with Non-single-Stepping Thread TC1

0.0-DSS

0.x - dexc

0.x - DERET
1.0 - completes
0.0 - completes
01-D

0.x - dexc

0.x - DERET
1.1 - completes
0.1 - completes

MIPS® EJTAG Specification, Revision 6.10 51

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

Figure 2.5 Example 2: Single-stepping Two Threads TCO and TC1

0.0-DSS

0.x - dexc handler
0.x - DERET
1.0- DSS

1.x - dexc handler
1.x - DERET

0.0 - completes
1.0 - completes
0.1-DSS

0.x - dexc handler
0.x - DERET

Figure 2.6 Example 3: Single-stepping Two Threads TCO and TC1 with Other Threads TC2 and TC3

0.0- DSS

0.x - dexc handler
0.x - DERET

1.0 - completes
2.0-DSS

2.X - dexc handler
2.x - DERET

3.0 - completes
0.0 - completes
1.1 - completes
2.0 - completes
3.1 - completes
0.1-DSS

0.x - dexc handler
0.x - DERET

1.2 - completes

2.3.10 Debug Interrupt Exception

The Debug Interrupt exception is an asynchronous debug exception that is taken as soon as possible, but with no spe-
cific relation to the executed instructions. The DEPC register and the DBD hit in the Debug register reference the
instruction at which execution can be resumed after Debug Interrupt exception service.

Debug interrupt requests are ignored when the processor isin Debug Mode, and pending requests are cleared when
the processor takes any debug exception, including debug exceptions other than Debug Interrupt exceptions.

A debug interrupt restarts the pipeline if stopped by a WAIT instruction and the processor clock isrestarted if it was
stopped due to alow-power mode.

Debug Register Debug Status Bit Set
DINT

52 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.4 Debug Mode Exceptions

Additional State Saved
None

Entry Vector Used
Debug exception vector

The possible sources for debug interrupts depend on the implementation. The following sources can cause Debug
Interrupt exceptions:

e TheDINT signa from the probe

The optional DINT signal from the probe can request a debug interrupt on alow (0) to high (1) transition. The
DINTsup bit in the Implementation register in the Test Access Port (TAP) indicates whether the DINT signal
from the probe to the target processor is implemented (see Section 4.5.2 on page 96). The timing requirements
for the DINT signal are shown in Section 11.2.2 on page 194.

The DINT signal can be synchronized to the processor clock domain before edge detection while still observing
the required timing of the DINT signal. If the CPU clock speed or clocking schemeis such that the required tim-
ing does not leave enough time for synchronization or clock wake-up, then the DINT pulseis extended by the tar-
get system in the processor.

The EjtagBrk bit in the EJTAG Control register provides similar functionality similar to DINT from the probe,
but with higher latency.

* TheEjtagBrk Bit in the EJTAG Control Register

The EjtagBrk bit in the EJTAG Control register requests a Debug I nterrupt exception when set (see Section 4.5.5
on page 102).

* A debug boot by EJTAGBOOT

The EJTAGBOOT feature causes code to be fetched from the debug interrupt vector immediately after areset or
soft reset has occurred (see Section 2.6.1 on page 57 and Section 4.4.2 on page 93).

* Animplementation-specific debug interrupt signal to the processor

Through the availability of an optional debug interrupt request signal to the processor system, an external device
can request a Debug Interrupt exception, for example, when a signal goes from deasserted to asserted.

2.4 Debug Mode Exceptions

The handling of exceptions generated in Debug Mode, other than through resets and soft resets, differs from those
exceptions generated in Non-Debug Mode in that only the Debug and DEPC registers are updated. All other CPO reg-
isters are unchanged by an exception taken in Debug Mode. The exception vector is equal to the debug exception vec-
tor (see Section 2.3.2 on page 44), and the processor staysin Debug Maode.

Reset and soft reset are handled as when occurring in Non-Debug M ode (see Section 2.6 on page 57).

MIPS® EJTAG Specification, Revision 6.10 53
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

2.4.1 Exceptions Taken in Debug Mode

Only some Non-Debug Mode exception events cause exceptions in Debug Mode. Remaining events are blocked.
Exceptions occurring in Debug Mode have the same relative priorities as the Non-Debug M ode exceptions for the
same exception event. These exceptions are called Debug Mode <Non-Debug Mode exception name>. For example,
a Debug Mode Breakpoint exception is caused by execution of a BREAK instruction in Debug Mode, and a Debug
Mode Address Error exception is caused by an address error due to an instruction executed in Debug Mode.

Table 2.12 lists all the Debug M ode exceptions with their corresponding non-debug exception event names, priorities,

54

and handling.
Table 2.12 Exception Handling in Debug Mode
Priority Event in Debug Mode Debug Mode Handling
Highest |Reset Reset and soft reset handled as for
Soft reset Non-Debug Mode, see Section 2.6 on
page 57.
Debug Single Step Blocked

Lowest

Debug Interrupt

Debug Data Break L oad/Store Imprecise

NMI

Machine Check Re-enter Debug Mode
Interrupt Blocked
Deferred Watch

Debug Instruction Break, DIB

Watch on instruction fetch

Address error on instruction fetch

TLB refill on instruction Ifetch

TLB Invalid on instruction Ifetch

Cache error on instruction Ifetch

Bus error on instruction Ifetch

Re-enter Debug Mode

Debug Breakpoint; execution of SDBBP instruction

Re-enter Debug Mode as for execution of
the BREAK instruction

Other execution-based exceptions

Re-enter Debug Mode

Debug Data Break L oad/Store address match only or
Debug Data Break Store address+data value match

Watch on data access

Blocked

Address error on data access

TLB Refill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Re-enter Debug Mode

Debug Data Break on Load address+data match

Blocked

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.4 Debug Mode Exceptions
The specific implementation determines which exceptions can occur. Exceptions that are blocked in Debug Mode are
simply ignored, not causing updates in any state.
Handling of the exceptions causing Debug Mode re-enter are described below.

2.4.2 Exceptions on Imprecise Errors

Exceptions on imprecise errors are possible in Debug Mode due to a bus error on an instruction fetch or data access,
cache error, or machine check.

ThelEXI bit in the Debug register blocks imprecise error exceptions on entry or re-entry into Debug Mode. They can
be re-enabled by the debug exception handler after sufficient context has been saved to allow a safe re-entry into
Debug Mode and the debug handler.

Pending exceptions due to instruction fetch bus errors, data access bus errors, cache errors, and machine checks are
indicated and controlled by the IBusEP, DBusEP, CacheEP and M CheckP bit in the Debug register.

The SYNC instruction, followed by appropriate spacing and the EHB instruction, (as described in Section 2.2.3.7 on
page 40 and Section 2.2.4 on page 41) must be executed in Debug Mode before the IBusEP, DBusEP, CacheEP, and
MCheckP bitsare read in order to ensure that al pending causes for imprecise errors are resolved and all bitsare fully
updated.

Those bits required to handle the possible imprecise errorsin an implementation are implemented as R/W; otherwise,
they areread only.

2.4.3 Debug Mode Exception Processing

All exceptions that are allowed in Debug M ode (except for reset and soft reset) have the same basic processing flow:

* TheDEPC register isloaded with the PC at which execution can be restarted, and the DBD bit is set to indicate
whether the last debug exception occurred in abranch delay slot. If the multiple |SAs are supported, Bit O of
DEPC is set to indicate the ISA mode to be used when executions restart. The value loaded into the DEPC regis-
ter is either the current PC (if the instruction is not in the delay slot of abranch) or the PC of the branch or jump
(if theinstruction isin the delay slot of a branch or jump).

» TheDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bitsin the Debug register are all
cleared to differentiate from debug exceptions where at |east one of the bits are set.

» The DExcCodefield in the Debug register is updated to indicate the type of exception that occurred.

* TheHalt and Doze bits in the Debug register are UNPREDICTABLE.

* ThelEXI bit is set to inhibit imprecise exceptions at the start of the debug handler.

* TheDM bit in the Debug register is unchanged, leaving the processor in Debug Mode.

* ThelSA modeis set appropriately, as specified in Section 2.3.3 on page 46.

* Theprocessor is started at the debug exception vector, specified in Section 2.3.2 on page 44.

The value loaded into the DEPC register represents the restart address for the exception; typically debug software

does not need to modify this value at the location of the debug exception. Debug software need not look at the DBD

MIPS® EJTAG Specification, Revision 6.10 55

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

bit in the Debug register unlessit wishesto identify the address of the instruction that actually caused the exceptionin
Debug Mode.

It isthe responsibility of the debug handler to save the contents of the Debug, DEPC, and DESAVE registers before
nested entries into the handler at the debug exception vector can occur. The handler returns to the debug exception
handler by ajump instruction, not a DERET, in order to keep the processor in Debug Mode.

The cause of the exception in Debug Mode isindicated through the DExcCode field in the Debug register, and the
same codes are used for the exceptions as those for the ExcCode field in the Cause register when the exceptions with
the same names occur in Non-Debug Mode, with addition of the code 30 (decimal) with the mnemonic CacheErr for
cache errors.

No other CPO registers or fields are changed due to the exception in Debug Mode. For example, if the implementation
supports setting of the TS bit in the CPO Status register on the detection of a match on multiple TLB entries before a
machine check exception, then the write of this TS bit should be suppressed when the machine check exception
occurs in Debug mode.

The overall processing flow for exceptions in Debug Mode is shown below:

Operation:

if (InstructionInBranchDelaySlot) then
DEPC ¢« BranchInstructionPC
Debugppp ¢« 1
else
DEPC <« PC
Debugppp ¢« O
endif
DEPC, ¢« ISAmode
Debugpss, pep, DDEL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr < O
Debugpgxccoge ¢ DebugExceptionType
Debugy,1t ¢ UNPREDICTABLE
Debugp,,. ¢ UNPREDICTABLE
Debugrpxr < 1
if ECRproprrap = 1 then
PC « OxFFFF FFFF FF20 0200
ISAmode ¢ ECRrgaonpebug
else
if DCRgpyec = 1 then
PC ¢« OxXFFFF FFFF 0000 0000 + (DebugVectorAddrs; i || 0)
ISAmode <« DebugVectorAddrg
else
PC « OxFFFF FFFF BFCO 0480
if IsMIPSl6Implemented() then
ISAmode « 0
else
ISAmode ¢ Config3i1gaqo]
endif
endif
endif

2.5 Interrupts and NMls

Interrupts and NMIs are handled for EJTAG-compliant processors as described in the following subsections.

56 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.6 Reset and Soft Reset of Processor

2.5.1 Interrupts

Interrupts are requested through either asserted external hardware signals or internal software-controllable bits. Inter-
rupt exceptions are disabled when any of the following conditions are true:

» The processor is operating in Debug Mode

e Thenterrupt Enable (IntE) bit in the Debug Control Register (DCR) is cleared (see Section Table 3.1 “DCR
Register Field Descriptions”)

* A non-EJTAG related mechanism disables the interrupt exception
A pending interrupt is indicated through the Cause register, even if Interrupt exceptions are disabled.

2.5.2 NMis

An NMI isreguested on the asserting edge of the NMI signal to the processor, and an internal indicator holds the NMI
request until the NMI exception is actually taken.

NMI exceptions are disabled when either of the following is true:
» TheProcessor is operating in Debug Mode

* TheNMI Enable (NMIE) bit in the Debug Control Register (DCR) is cleared, see Section Table 3.1 “DCR
Register Field Descriptions”

If an asserting edge on the NMI signal to the processor is detected while NMI exception is disabled, then the NM|
request is held pending and is deferred until NMI exceptions are no longer disabled.

A pending NMI isindicated in the NMIpend bit in the DCR even if NMI exceptions are disabled.

2.6 Reset and Soft Reset of Processor

This section covers the handling of issues with respect to resets and soft resets. For EJTAG features, there are no dif-
ference between areset and a soft reset occurring to the processor; they behave identically in both Debug Mode and
Non-Debug Mode. References to reset in the following therefore refers to both reset (hard reset) and soft reset.

2.6.1 EJTAGBOOT Feature

The EJTAGBOOQOT feature causes code to be fetched from the debug interrupt vector as aresult of areset instead of
the code from regular reset exception vector.

The EJTAGBOOT feature only affects the address value which isloaded into the PC after the reset event. All of the
other effects of areset event - such asthe clearing of RP, BEV, TS, SR, NMI and ERL fields within the Status register
and the updating of the ErrorEPC register still occur due to the reset event.

The location of the debug exception handler is controlled by the ProbTrap bit in the TAP Control register. When this
bit is set, the instructions for the debug exception handler are provided by the probe through the dmseg segment, tak-
ing care of a situation where the normal memory system does not work properly.

MIPS® EJTAG Specification, Revision 6.10 57

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

Control and details of EJTAGBOQOT are described in Section 4.4.2 on page 93 and Table 4.9 describes the ProbTrap
bit in the EJTAG Control register.

2.6.2 Reset from Probe

While asserted, the RST* signal from the probe is required to generate areset or soft reset to the system. The SRstE
bit in the Debug Control Register does not mask this source. See Section 11.1.3 on page 191 for more information.

2.6.3 Processor Reset by Probe through Test Access Port

The PrRst bit in the EJTAG Control register can optionally cause areset depending on the implementation. If areset
occurs, then all parts of the system are reset, because partial resets are not allowed.

2.6.4 Reset Occurred Indication through Test Access Port

The Rocc bit in the EJTAG Control register is set at both reset and soft reset in order to indicate the event to the probe.
Refer to Section 4.5.5 on page 102 for more information on the EJTAG Control Register.

2.6.5 Soft Reset Enable

The optional Soft Reset Enable (SR<tE) bit in the Debug Control Register (DCR) can mask the soft reset signal out-
side the processor. Because SRstE masks the soft reset signal before it arrives at the processor, there is no masking of
soft reset within the processor itself.

2.6.6 Reset of Other Debug Features

The operation of processor resets and soft resets also apply to resets of the following:
» Debug Control Register (DCR), see Chapter 3, “Debug Control Register” on page 79
* Hardware Breakpoint, see Chapter 5, “Hardware Breakpoints’ on page 117

» Test Access Port (TAP) EJTAG Control Register, see Chapter 4, “EJTAG Test Access Port” on page 87

2.7 EJTAG Coprocessor 0 Registers

58

The Coprocessor O registers for EJTAG are shown in Table 2.13. Each register is described in more detail in the fol-
lowing subsections.

Table 2.13 Coprocessor 0 Registers for EJTAG

Register Register Compliance
Number | Sel Name Function Reference Level
23 0 Debug Debug indications and controls for the processor. | See Section 2.7.1 Required
on page 59
23 6 Debug2 Complex breakpoint status See Section Required
272 onpage68 | (EJTAG4.00
and higher)

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.7 EJTAG Coprocessor 0 Registers

Table 2.13 Coprocessor 0 Registers for EJTAG (Continued)

Register Register Compliance
Number | Sel Name Function Reference Level
24 0 DEPC Program counter at last debug exception or See Section 2.7.3 Required
exception in Debug Mode. on page 69
31 0 DESAVE Debug exception save register. See Section 2.7.4 Required
on page 70

The CPO instructions MTCO, MFCO, DMTCO, and DMFCO work with the three EJTAG CPO registers as per the
MIPS32 and MIPS64 Architecture specifications.

Operation of the processor is UNDEFINED if the Debug, DEPC, or DESAVE registers are written from Non-Debug
Mode. The value of the Debug, DEPC, or DESAVE registersis UNPREDICTABLE when read from Non-Debug
Mode, unless otherwise explicitly stated in the individual register description. However, for test purposes, the imple-
mentations can allow writes to and reads from the registers from Non-Debug Maode.

To avoid pipeline hazards, there must be an appropriate spacing, refer to Section 2.2.4 on page 41, between the update
of the Debug and DEPC registers by MTCO/DMTCO and use of the new value. This applies for example to modifica-
tion of the LSNM bit of the Debug register and aload/store affected by that bit.

In a processor implementing the MIPS MT Maodule, each of the Coprocessor 0 EJTAG registers described aboveis
instantiated per VPE. The exception isthe S3 and OffLine bits in the Debug register which is instantiated per-TC.

2.7.1 Debug Register (CPO Register 23, Select 0)

Compliance L evel: Required for EJTAG debug support.

The Debug register contains the cause of the most recent debug exception and exception in Debug Mode. It also con-
trols single stepping. This register indicates low-power and clock states on debug exceptions, debug resources, and
other interna states.

Only the DM hit and the EJTAGver field are valid when read from the Debug register in Non-Debug M ode; the value
of al other bitsand fieldsis UNPREDICTABLE.

The following bits and fields are only updated on debug exceptions and/or exceptions in Debug Mode:

 DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and DDBSImpr are updated on both debug
exceptions and on exceptions in Debug Modes

» DExcCodeis updated on exceptions in Debug Mode, and is undefined after a debug exception

» Halt and Doze are updated on a debug exception, and are undefined after an exception in Debug Mode. In the sit-
uation where the processor is awakened from sleep or doze state by a hardware interrupt or other external event,
and a debug exception is taken instead (for example, if single-stepping a WAIT instruction), the state of the Halt
and Doze hits should be asif the hardware interrupt had not occurred. That is, these bits should indicate that the
state of the processor was in Halt or Doze respectively before the exception, ignoring that the interrupt time
might be between halt/doze and the debug exception.

» DBD isupdated on both debug and on exceptions in Debug Modes

MIPS® EJTAG Specification, Revision 6.10 59

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

The SYNC instruction, followed by appropriate spacing and the EHB instruction, (as described in Section 2.2.3.7 on
page 40 and Section 2.2.4 on page 41) must be executed to ensure that the DDBL Impr, DDBSImpr, IBusEP, DBUSEP,
CacheEP, and M CheckP bits are fully updated. This instruction sequence must be used both in the beginning of the
debug handler before pending imprecise errors are detected from Non-Debug Mode, and at the end of the debug han-
dler before pending imprecise errors are detected from Debug Mode. The IEXI bit controls enable/disable of impre-
Cise error exceptions.

Figure 2.7 shows the format of the Debug register; Table 2.14 describes the Debug register fields.

Figure 2.7 Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DDB | DDB
No Count|IBus| M |Cach|DBus EJTAGver
DBD| DM | o [LSNM | Doze| Halt |y ep | cheokp| eep | P |'EX! Irr?pr m';pr [2:1]
32/64-bit Proces- 5 14 09 8 7 & 5 4 3 2 1 0
sor
EJTA
Gver DExcCode NoSSt| SSt |OffLine DIBI DINT| DIB DDB| DDB DBp|DSS
mpr S L
(0]
Table 2.14 Debug Register Field Descriptions
Fields
Read/W Reset
Name Bits Description rite State Compliance
DBD 31 Indicates whether the last debug exception or exception R Undefined Required
in Debug Mode occurred in abranch or jump delay slot:
Encoding Meaning
0 Not in delay slot
1 In delay dlot
DM 30 Indicates that the processor is operating in Debug Mode: R 0 Required
Encoding Meaning
0 Processor is operating in Non-Debug
Mode
1 Processor is operating in Debug Mode
NoDCR 29 Indicates whether the dseg segment is present: R Preset Required
Encoding Meaning
0 dseg segment is present
1 dseg present is not present
60 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.7 EJTAG Coprocessor 0 Registers

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/W
rite

Reset
State

Compliance

LSNM

28

Controls access of |oads/stores between the dseg seg-
ment and remaining memory when the dseg segment is
present:

Encoding Meaning

0 Loads/stores in the dseg segment
address range go to the dseg segment

1 L oads/stores in dseg segment address
range go to system memory

Further description in Section 2.2.2 on page 34.
If DCR is not implemented, this bit is read-only (R) and
reads as zero.

RIW

0

Required if the
dseg segment is
present; other-
wise not imple-
mented.
See bit 29,
NoDCR.

Doze

27

Indicates that the processor was in alow-power mode
when a debug exception occurred:

Encoding Meaning

0 Processor not in low-power mode
when debug exception occurred

1 Processor in low-power mode when
debug exception occurred

See the introduction above for corner casesin setting the
state of this bit. The Doze bit indicates Reduced Power
(RP) and WAIT, and other implementation-dependent
low-power modes.

If the implementation does not support low-power
modes, then this bit always reads as 0.

Undefined

Required

Halt

26

Indicates that the internal processor system bus clock
was stopped when the debug exception occurred:

Encoding Meaning

0 Internal system bus clock running
1 Internal system bus clock stopped

See the introduction above for corner casesin setting the
state of this bit. Halt indicates WAIT, and other imple-
mentati on-dependent events that stop the system bus
clock.

If the implementation does not support a halt state, then
the bit always reads as 0.

Undefined

Required

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

61

EJTAG Processor Core Extensions

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/W
rite

Reset
State

Compliance

CountDM

25

Controls or indicates the Count register behavior in
Debug Mode. Implementations can have fixed behavior,
in which case this bit isread-only (R), or the implemen-
tation can allow this bit to control the behavior, in which
case this bit is read/write (R/W).

The reset value of this bit indicates the behavior after
reset, and depends on the implementation.

Encoding of the it is:

Encoding

0 Count register stopped in Debug Mode

1 Count register is running in Debug
Mode

Meaning

If not implemented, thisbit is read-only (R) and reads as
zero.

R
or
RIW

Preset

Required

IBusEP

24

Indicatesif aBus Error exception is pending from an
instruction fetch. Set when an instruction fetch bus error
event occurs or a 1 iswritten to the bit by software.
Cleared when a Bus Error exception on an instruction
fetch is taken by the processor. If IBUsEP is set when
IEXI iscleared, a Bus Error exception on an instruction
fetch is taken by the processor, and IBusEP is cleared.
In Debug Mode, a Bus Error exception appliesto a
Debug Mode Bus Error exception.

If not implemented, thisbit is read-only (R) and reads as
zero.

R/W1

Required if
imprecise bus
error can occur
on instruction
fetch; otherwise
optional.

MCheckP

23

Indicates if aMachine Check exception is pending. Set
when amachine check event occurs or a1 iswritten to
the bit by software. Cleared when a Machine Check
exception is taken by the processor. If MCheckP is set
when IEXI| is cleared, a Machine Check exceptionis
taken by the processor, and MCheckP is cleared.

In Debug Mode, aMachine Check exception appliesto a
Debug Mode Machine Check exception.

Note that machine checks due to duplicate TLB entries
must be reported asynchronous with respect to the
instruction that causes them, and these would be priori-
tized as*“ Other execution-based exception” in Table 2.8.
In this case this bit would not be set.

Any asynchronous implementation-dependent machine
check should be reported using EJTAG priority in Table
2.8.

If not implemented, thishit isread-only (R) and reads as
zero.

R/W1

Required if
imprecise
machine check
€error can occur;
otherwise
optional.

62

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.7 EJTAG Coprocessor 0 Registers

Table 2.14 Debug Register Field Descriptions (Continued)

Fields
Read/W Reset
Name Bits Description rite State Compliance

CacheEP 22 Indicates if a Cache Error is pending. Set when a cache R/W1 0 Required if
error event occurs or a1 iswritten to the hit by software. imprecise cache
Cleared when a Cache Error exception is taken by the €error can occur;
processor. If CacheEP is set when |EX| iscleared, a otherwise
Cache Error exception is taken by the processor, and optional.
CacheEP is cleared.

In Debug Mode, a Cache Error exception appliesto a
Debug Mode Cache Error exception.

If not implemented, this bit is read-only (R) and reads as
zero.

DBuUsEP 21 Indicates if a Data Access Bus Error exception is pend- R/W1 0 Required if
ing. Set when a data access bus error event occursor al imprecise bus
iswritten to the bit by software. Cleared when aBus error can occur
Error exception on data accessis taken by the processor. on data access;
If DBUSEP is set when IEX| is cleared, a Bus Error otherwise
exception on data access is taken by the processor, and optional.
DBusEP is cleared.

In Debug Mode, a Bus Error exception appliesto a
Debug Mode Bus Error exception.

If not implemented, thisbit isread-only (R) and reads as
zero.

IEXI 20 An Imprecise Error eXception Inhibit (IEXI) controls R/W 0 Required if any
exceptions taken due to imprecise error indications. Set imprecise error
when the processor takes a debug exception or an excep- covered by
tion in Debug Mode occurs. Cleared by execution of the M CheckP,
DERET instruction. Otherwise modifiable by Debug CacheEP,
Mode software. IBUSEP or
When |EX| is set, then the imprecise error exceptions DBusEP, can
from bus errors on instruction fetches or data accesses, occur; otherwise
cache errors, or machine checks are inhibited and optional.
deferred until the bit is cleared.

If not implemented, thisbit is read-only (R) and reads as
zero.

DDBSImpr 19 Indicates that a Debug Data Bresk Store Imprecise R Undefined Required if
exception due to a store was the cause of the debug Debug Data
exception, or that an imprecise data hardware break due Break on Store
to a store was indicated after another debug exception Imprecise excep-
occurred. Cleared on exception in Debug Mode. tion can occur;

i - otherwise
Encoding Meaning optional.
0 No match of an imprecise data hard-
ware breakpoint on store
1 Match of imprecise data hardware
breakpoint on store
If not implemented, this bit reads as zero.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

Table 2.14 Debug Register Field Descriptions (Continued)

Fields
Read/W Reset
Name Bits Description rite State Compliance
DDBLImpr 18 Indicates that a Debug Data Break Load Imprecise R Undefined Required if
exception due to aload was the cause of the debug Debug Data
exception, or that an imprecise data hardware break due Break on Load
to aload was indicated after another debug exception Imprecise excep-
occurred. Cleared on exception in Debug Mode. tion can occur;
E ai M - otherwise
ncoding eaning optional.
0 No match of an imprecise data hard-
ware breakpoint on load
1 Match of imprecise data hardware
breakpoint on load
If not implemented, this bit reads as zero.
EJTAGver 17:15 Providesthe EJTAG version. Note that each new version R Preset Required

number is used to indicate the addition of a significant
new modification or addition to the architecture. For
example, Version 3.1 (value of 3) indicates the EJTAG
upgrade that includes PC sampling. Similarly, Version
4.0 (value 4) includes the addition of Complex Break
and Trigger (CBT) feature. Version 5.0 additionsinclude
the Fast Debug Channel and a relocatable debug excep-
tion vector. A processor or core that implements PC
sampling should indicate a version number of at least 3.
Intermediate revisions of the specification only include
typographical edits and address minor issues in the spec-
ification itself without adding any new features. It is rec-
ommended that an implementation use the |atest version
of the specification, because features like PC sampling
and CBT are optional.

Encoding Meaning
0 Version1and 2.0
1 Version 2.5
2 Version 2.6
3 Version 3.1
4 Version 4.0
5 Version 5.0

6-7 Reserved

64

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.7 EJTAG Coprocessor 0 Registers

Table 2.14 Debug Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/W
rite

Reset
State

Compliance

DExcCode

14:10

Indicates the cause of the latest exception in Debug
Mode.

Thefield is encoded as the ExcCode field in the Cause
register for those exceptions that can occur in Debug
Mode (the encoding is shown in MIPS32 and MIPS64
specifications), with addition of code 30 with the mne-
monic CacheErr for cache errors and the use of code 9
with mnemonic Bp for the SDBBP instruction.

This valueis undefined after a debug exception.

R

Undefined

Required

NoSSt

Indicates whether the single-step feature controllable by
the SSt bit is available in this implementation:

Encoding Meaning

0 Single-step feature available
1 No single-step feature available

A minimum number of hardware instruction breakpoints
must be available if no single-step feature isimple-
mented in hardware. Refer to Section 5.8.1 on page 152
for more information.

Preset

Required

Controls whether single-step feature is enabled:

Encoding Meaning

0 No enable of single-step feature
1 Single-step feature enabled

If not implemented due to no single-step feature (NoSSt
is1), thisbit is read-only (R) and reads as zero.

If implemented, then in a processor with MIPS MT, this
bit isinstantiated on a per-TC basis.

Required if sin-
gle-step features
are available;
otherwise not
implemented.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

65

EJTAG Processor Core Extensions

Table 2.14 Debug Register Field Descriptions (Continued)

Fields
Read/W Reset
Name Bits Description rite State Compliance
OffLine 7 In MIPS MT processors, this bit isinstantiated on a R/W 0 Required for pro-
per-TC basis and alows a hardware thread context (TC) cessorsimple-
to be taken off-line for debug. menting EJTAG
Encodi Neani and MIPSMT
ncoding eaning Module. Other-
0 TC may fetch and issue according to wise optional.
therulesof MIPSMT
1 TC may only fetch and executein
Debug mode.
In non-MT processors, the OffLine bit, if implemented,
inhibits the fetch and issue of instructions by the proces-
sor asawhole, unlessit isin Debug mode. This allows
isolation of processorsin amulti-processor or multi-core
system.
Following a DERET with the OffLine bit set, aMIPS
MT processor can be taken out of the off-line state by a
MTTR instruction targeting the off-line TC's Debug reg-
ister, by aDINT Debug exception handler, or ahardware
reset.
Following a DERET with the OffLine bit set, anon-MT
processor can only be taken out of the off-line state by a
DINT Debug exception handler clearing the OffLine bit,
or a hardware reset.
If not implemented, thisbit is read-only (R) and reads as
zero.
DIBImpr 6 Indicates that a Debug Instruction Break Imprecise R Undefined Required if
exception occurred. Cleared on exception in Debug Debug Instruc-
Mode. tion Break Impre-
- - cise exception
Encoding Meaning can oceur: other-
0 No Debug I nstruction Break |mprecise wise optional
exception
1 Debug Instruction Break Imprecise
exception
If not implemented, this bit reads as zero.
DINT 5 Indicates that a Debug I nterrupt exception occurred. R Undefined Required if
Cleared on exception in Debug Mode. Debug Interrupt
: i exception can
Encoding Meaning occur; otherwise
0 No Debug Interrupt exception not implemented.
1 Debug Interrupt exception
If not implemented, this bit reads as zero.
66 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.7 EJTAG Coprocessor 0 Registers

Table 2.14 Debug Register Field Descriptions (Continued)

Fields
Read/W Reset
Name Bits Description rite State Compliance
DIB 4 Indicates that a Debug I nstruction Break exception R Undefined Required if
occurred. Cleared on exception in Debug Mode. Debug Instruc-
tion Break excep-
Encoding Meaning tion can occur;
0 No Debug Instruction Break exception pth(?rwise 23‘
1 Debug Instruction Break exception mpemented.
If not implemented, this bit reads as zero.
DDBS 3 Indicates that a Debug Data Break Store exception R Undefined Required if
occurred on a store due to a precise data hardware bresk. Debug Data
Cleared on exception in Debug Mode. Break Store
: i exception can
Encoding Meaning occur; otherwise
0 |No Debug DataBreak Store Exception not implemented.
1 Debug Data Break Store Exception
If not implemented, this bit reads as zero.
DDBL 2 Indicates that a Debug Data Break Load exception R Undefined Required if
occurred on aload due to a precise data hardware break. Debug Data
Cleared on exception in Debug Mode. Break Load
: i exception can
Encoding Meaning occur; otherwise
0 No Debug Data Break Load Exception not implemented.
1 Debug Data Break Load Exception
If not implemented, this bit reads as zero.
DBp 1 Indicates that a Debug Breakpoint exception occurred. R Undefined Required
Cleared on exception in Debug Mode.
Encoding Meaning
0 No Debug Breakpoint exception
1 Debug Breakpoint exception
DSS 0 Indicates that a Debug Single Step exception occurred. R Undefined Required if
Cleared on exception in Debug Mode. Debug
Single Step
Encoding Meaning exception can
0 No debug single-step exception occur; otherwise
- - not implemented.
1 Debug single-step exception
This bit isread-only (R) and reads as zero if not imple-
mented.
On aprocessor implementing the MIPS MT, this bit is
implemented per-V PE.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

67

EJTAG Processor Core Extensions

64-bit Processor

2.7.2 Debug?2 Register (CPO Register 23, Select 6)

Compliance L evel: Required for EJTAG debug support for EJTAG specification 4.00 and higher.

The Debug2 register is aread/write register that is used to indicate the cause of debug exceptions due to complex
breakpoints if implemented. The size of this register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

Figure 2.8 shows the format of the Debug? register; Table 2.15 describes the Debug?2 register fields.

31

Figure 2.8 Debug?2 Register Format

4

3 2 1

0

32-hit Processor |

|Prm| DQ |Tup|PaCo|

63

4

3 2 1

0

0

|Prm| DQ |Tup|PaCo|

Table 2.15 Debug? Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

Prm 3 This bit indicates that the break exception happened due R Undefined Required if
to a primed complex break match. Cleared on exception primed break
in Debug Mode. is supported

CBTCpp=1
Encoding Meaning
0 No Debug Primed Break exception
1 Debug Primed Break exception
If not implemented, this bit reads as zero.

DQ 2 This bit indicates that the break exception happened due R Undefined Required if
to adata qualified complex break match. Cleared on dataqualified
exception in Debug Mode. break is sup-

£ 3 v - ported
ncoding eaning CBTCpop=1
0 No Debug Data Qualified Break
exception
1 Debug Data Qualified Break exception
If not implemented, this bit reads as zero.

Tup 1 This bit indicates that the break exception happened due R Undefined Required if
to atuple complex break match. Cleared on exceptionin tuplebreak is
Debug Mode. supported

CBTCp=1
Encoding Meaning
0 No Debug Tuple Break exception
1 Debug Tuple Break exception
If not implemented, this bit reads as zero.

68

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.7 EJTAG Coprocessor 0 Registers

Table 2.15 Debug2 Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
PaCo 0 This bit indicates that the break exception happened R Undefined Required if
when a pass counter in the complex break unit reached a pass counter
zero count (this overrides other settings on the break- is supported
point, such as data qualifier or prime condition). Cleared CBTCpcp=1
on exception in Debug Mode.
Encoding Meaning
0 No Debug Instruction, Data, or Tuple
Break on pass counter exception
1 Debug Instruction, Data, or Tuple
Break on pass counter exception
If not implemented, this bit reads as zero.
0 MSB:4 Must be written as zeros return zeros on reads. 0 0 Reserved

2.7.3 Debug Exception Program Counter Register (CPO Register 24, Select 0)

Compliance L evel: Required for EJTAG debug support.

The Debug Exception Program Counter (DEPC) register is aread/write register that contains the address at which
processing resumes after the exception has been serviced. The size of thisregister is 32 bits for 32-bit processors and
64 bits for 64-bit processors, even with only 32-bit virtual addressing enabled. All bits of the DEPC register are sig-
nificant and writable. A DMFCO from the DEPC register returns the full 64-bit DEPC on 64-hit processors.
Hardware updates this register on debug exceptions and exceptionsin Debug Mode.

For precise debug exceptions and precise exceptions in Debug Mode, the DEPC register contains either:

» thevirtual address of the instruction that was the direct cause of the exception, or

e thevirtual address of theimmediately preceding branch or jump instruction, when the exception-causing instruc-
tionisin abranch delay slot, and the Debug Branch Delay (BDB) bit in the Debug register is set.

For imprecise debug exceptions and imprecise exceptions in Debug Mode, the DEPC register contains the address at
which execution is resumed when returning to Non-Debug Mode.

On debug exceptions and exceptions in debug mode, bit 0 of DEPC is set by hardware to indicate the ISA modeto be
used when execution restarts. Processors without MIPS16 set bit O to zero.

Figure 2.9 shows the format of the DEPC register; Table 2.16 describes the DEPC register field.

MIPS® EJTAG Specification, Revision 6.10 69

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Processor Core Extensions

Figure 2.9 DEPC Register Format

31 1 0

32-bit Processor | DEPC | IM |
63 1 0

64-bit Processor| DEPC | IM |

Table 2.16 DEPC Register Field Description

Fields
Read / Reset
Name Bits Description Write State Compliance
DEPC MSB:1 Debug Exception Program Counter R/W Undefined Required
IM 0 Debug Exception |SA mode R/W Undefined Required

2.7.4 Debug Exception Save Register (CPO Register 31, Select 0)

Compliance Level: Required for EJTAG debug support.

The Debug Exception Save (DESAVE) register is aread/write register that functions as a simple scratchpad register.
The size of thisregister is 32 bits for 32-bit processors and 64 bits for 64-bit processor.

The debug exception handler uses this to save one of the GPRs, which is then used to save the rest of the context to a
pre-determined memory area, for example, in the dmseg segment. This register allows the safe debugging of excep-
tion handlers and other types of code where the existence of avalid stack for context saving cannot be assumed.

Figure 2.10 shows the format of the DESAVE register; Table 2.17 describes the DESAVE register field.

Figure 2.10 DESAVE Register Format

31 0

32-bit Processor | DESAVE |
63 0

64-hit Processor DESAVE |

Table 2.17 DESAVE Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
DESAVE MSB:0 Debug Exception Save contents R/W Undefined Required

2.8 EJTAG Instructions

The SDBBP and DERET instructions are added to the processor’s instruction set as part of the required EJTAG fea
tures. These instructions are described on the next two pages.

70 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

2.8 EJTAG Instructions

MIPS® EJTAG Specification, Revision 6.10 71

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Software Debug Breakpoint SDBBP
31 26 25 0
SPECIAL2 code SDBBP
011100 111111
6 20 6
15 11 10 5 4 0
RR code SDBBP MIPS16e
11101 00001 Format
5 6 5
Format: SDBBP code EJTAG

72

Purpose: Software Debug Breakpoint
To cause a debug breakpoint exception

Description:

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed, the exception is a Debug Mode Exception, which sets
the Debugpexecode field to the value 0x9 (Bp). The code field can be used for passing information to the debug excep-
tion handler, and is retrieved by the debug exception handler only by loading the contents of the memory word con-
taining the instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:

A Reserved Instruction Exception is signaled if EJTAG is not implemented.

Operation:

If Debugpy = 0 then

SignalDebugBreakpointException ()

else

SignalDebugModeBreakpointException ()

endif

Exceptions:

Debug Breakpoint exception
Debug Mode Breakpoint exception

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

/* See Section 2.3.4 on page 47 */

/* See Section 2.4.3 on page 55 */

MIPS® EJTAG Specification, Revision 6.10

MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

73

74

31 26 25 16 15 0
POOL 32A code SDBBP POOL 32Axf
000000 1101101101 111100
6 10 10 6
15 10 4 3
POOL 16C SDBBP16
010001 101100 code
6 6 4
Format: SDBBP code EJTAG + microMIPS

See MIPS version on the previous page for the description.

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

MIPS® EJTAG Specification, Revision 6.10

Debug Exception Return DERET

31 26 25 24 6 5 0
COPO Cco 0 DERET
010000 1 000 0000 0000 0000 0000 011111
6 1 19 6
Format: DERET EJTAG+ MIPS

Purpose: Debug Exception Return
To Return from a debug exception.

Description:

DERET clears execution and instruction hazards, returns from Debug Mode and resumes non-debug execution at the
instruction whose address is contained in the DEPC register. DERET does not execute the next instruction (i.e., it has
no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.

If the DEPC register with the return address for the DERET was modified by an MTCO or a DMTCO instruction, a
CPO hazard exists that must be removed via software insertion of the appropriate number of SSNOP instructions (for
implementations of Release 1 of the Architecture) or by an EHB, or other execution hazard clearing instruction (for
implementations of Release 2 of the Architecture).

DERET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0
state changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier are seen starting with the
instruction fetch and decode of the instruction at the PC to which the DERET returns.

This instruction is legal only if the processor is executing in Debug Mode, the operation of the processor is UNDE-
FINED otherwise.

The operation of the processor isUNDEFINED if a DERET is executed in the delay slot of abranch or jump instruc-
tion.

Operation:

if Debugpy = 1 then
Debugpy < 0
Debugipxr < 0
if (IsMIPSl6Implemented()|Config3;ga>1) then
PC ¢« DEPCpcyrpra-1..1 || O
ISAMode ¢« DEPCj,
else
PC « DEPC
endif
else
UNDEFINED
endif
ClearHazards ()

Exceptions:

Coprocessor Unusable Exception
Reserved Instruction Exception

MIPS® EJTAG Specification, Revision 6.10 75

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

76

MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

31 26 25 24 16 15 6 5 0
POOL32A 0000 DERET POOL 32Axf
000000 000 000 1110001101 111100
6 10 10 6
Format: DERET EJTAG+ microMIPS

See MIPS version on the previous page for the description.

MIPS® EJTAG Specification, Revision 6.10 77
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

78

MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 3

Debug Control Register

Compliance Level: Optional, but requires EJTAG processor core extensions. If this register is not implemented then
other features that depend on bits in this register behave asif these bits are present and have the reset value.

The Debug Control Register (DCR) controls and provides information about debug issues. The width of theregister is
32 hitsfor 32-bit processors, and 64 bits for 64-bit processors. The DCR islocated in the drseg segment at offset
0x0000.

The Debug Control Register (DCR) provides the following key features:

* Interrupt and NMI control when in Non-Debug Mode

NMI pending indication

Availability indicator of instruction and data hardware breakpoints
* Availahility and control of of the PC sample feature and its sample period
« Auvailability of the Fast Debug Channel (FDC) feature

For EJTAG features, there are no differences between areset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug Mode. Therefore all references to reset in this chapter refer to both
reset (hard reset) and soft reset.

The DataBrk and InstBrk bits within the DCR indicate the types of hardware breakpoints implemented. Debug soft-
ware is expected to read hardware breakpoint registers for additional information on the number of implemented
breakpoints. Refer to Chapter 5, “Hardware Breakpoints’ on page 117 for descriptions of the hardware breakpoint
registers.

Hardware and software interrupts can be disabled in Non-Debug Mode using the DCR’s IntE bit. This bit is a global
interrupt enable used along with several other interrupt enables that enable specific mechanisms. The NMI interrupt
can be disabled in Non-Debug Mode using the DCR’s NMIE hit; a pending NMI isindicated through the NMIpend
bit. Pending interrupts are indicated in the Cause register, and pending NMIs are indicated in the DCR register NMI-
pend bit, even when disabled. Hardware and software interrupts and NMIs are always disabled in Debug Mode. See
Section 2.5 on page 56 for more information.

The optional SRstE hit allows masking of soft resets. A soft reset can be applied to the system based on different
events, referred to as sources. It isimplementation-dependent which soft reset sourcesin a system can be masked by
the SRstE bit. Soft reset masking can be applied to a soft reset source only if that source can be efficiently masked in
the system. Theresult isno reset at all for any part of the system, if masked. If only a partial soft reset is possible, then
that soft reset source is not to be masked, because a“half” soft reset might cause the system to fail or hang without
warning. Thereis no automatic indication of whether the SRstE it is effective, so the user must consult system docu-
mentation.

MIPS® EJTAG Specification, Revision 6.10 79

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Debug Control Register

The ProbEn bit reflects the state of the ProbEn bit from the EJTAG Control register (ECR). Through this bit, the
probe can indicate to the debug software running on the CPU if it expects to service dmseg segment accesses. See
Section 4.5.5 on page 102 for more information.

Figure 3.1 shows the format of the DCR register; Table 3.1 describes the DCR register fields. The reset valuesin
Table 3.1 take effect on both hard resets and soft resets.

32-hit
Processor

64-bit
Processor

80

31

30

29

28

Figure 3.1 DCR Register Format

27

26

25

24

23

22

21

20

19

18

17

16

EJTAG PCnoG
Brk PCnoT PCno FDC | Data | Inst
Over- O |ENM 1D CID PCIM ASID DASQ| DASe| DAS 0 Impl | Brk | Brk
ride
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IVM | DVM 0 RD CBT | PCS PCR PCSe | IntE [NMIE NMI SRstE Prob
Vec pend En
63 32
0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
EJTAG
PCnoG
Brk PCnoT PCno FDC | Data | Inst
Over- 0 ENM | 1D CID PCIM ASID DASQ| DASe| DAS 0 Impl | Brk | Brk
ride
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IVM | DVM 0 RD CBT | PCS PCR PCSe | IntE |[NMIE NMI SRstE Prob
Vec pend En

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 3.1 DCR Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
EJTAG _Br 31 Override EjtagBrk and DINT disable. Please refer to R/W 0 Optional
k_Override Secure Debug Chapter.
If not
Re-enable EjtagBrk and DINT signal during boot. imple-
mented,
Allows EjtagBrk to be asserted by a EJTAG probe (or must be
assertion of DINT signal) , resulting in arequest for a written
Debug Interrupt exception from the processor. Thispro- | aszeros;
vides a means of recovering the cpu from crash, hang, return
loop or low-power mode. zeroson
This feature can allow a Debug Executive to communi- reads.
cate with the probe over the Fast Debug Channel (FDC)
and provides a host-based debugger the ability to query
the target processor via Debug Executive commands,
useful for determining cause of hang.
Software can write this bit and read back to determine if
the Secure Debug feature isimplemented.
ENM 29 Endianess in which the processor is running in kernel R Preset Required
and Debug Mode:
Encoding Meaning
0 Little endian
1 Big endian
PCnoGID 28 Controls whether PC Sampling includes or omits the Read Undefined Required
GuestI D when the VZE module isimplemented: required, when
i : write GuestCtl1g e
Encoding Meaning optional wpisimple
0 GuestID included in PCSAMPLE scan mented
1 GuestID omitted from PCSAMPLE
scan
PCnoTCID 27 Controls whether PC Sampling includes or omitsthe TC Read Undefined Required
identity field when the MT Module isimplemented: required, when MT
i : write Moduleis
Encoding Meaning optional implemented
0 TC field included in PCSAMPLE scan
1 TC field omitted from PCSAMPLE
scan

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Debug Control Register

Table 3.1 DCR Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
PCIM 26 Configures PC Sampling to capture all executed Read Undefined Optiona if
addresses or only those that missin theinstruction required, PC Sampling
cache: write isimple-
optional mented; oth-
Encoding Meaning erwise not
0 All PC's captured implemented
1 Captures only PC’sthat missin
instruction cache
PCnoASID 25 Controls whether the PCSAMPLE scan chain includes Read Undefined Optiond if
or omitsthe ASID field: required, PC Sampling
i : write isimple-
Encoding Meaning optional mented; oth-
0 |ASIDincludedin PCSAMPLE scan .erIVisenoéd
1 |ASID omitted from PCSAMPLE scan mplement
DASQ 24 Qualifies Data Address Sampling using a data break- R/W 0 Required if
point: DataAddress
Sampling is
Encoding Meaning implemented
0 All data addresses are sampled
1 Sample matches of data breakpoint O
DASe 23 Enables Data Address Sampling: R/W 0 Required if
DataAddress
Encoding Meaning Sampling is
0 |DataAddress sampling disabled. implemented
1 Data Address sampling enabled.
DAS 22 Indicates if the Data Address Sampling feature isimple- R Preset Required
mented:
Encoding Meaning
0 No DA Sampling implemented
1 DA Sampling implemented
FDClmpl 18 Indicates if the fast debug channel isimplemented: R Preset Required
Encoding Meaning
0 No fast debug channel implemented
1 Fast debug channel implemented
82 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 3.1 DCR Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
DataBrk 17 Indicates if data hardware breakpoint is implemented: R Preset Required
Encoding Meaning
0 No data hardware breakpoint imple-
mented
1 Data hardware breakpoint imple-
mented
InstBrk 16 Indicates if instruction hardware breakpoint isimple- R Preset Required
mented:
Encoding Meaning
0 No instruction hardware breakpoint
implemented
1 Instruction hardware breakpoint
implemented
IVM 15 Indicates if inverted data value match on data hardware R Preset Required
breakpoints isimplemented:
Encoding Meaning
0 No inverted data value match on data
hardware breakpoints implemented
1 Inverted data value match on data
hardware breakpoints implemented
DVM 14 Indicates if a data value store on a data val ue breakpoint R Preset Required
match is implemented:
Encoding Meaning
0 No data value store on adata value
breakpoint match implemented
1 Data value store on a data val ue break-
point match implemented
RDVec 11 Enables relocation of the debug exception vector. The R/W 0 Optional
value in the DebugVectorAddr register is used for
EJTAG exceptions when ProbTrap=0 and RDVec=1.
CBT 10 Indicates if complex breakpoint block isimplemented: R Preset Required
Encoding Meaning
0 No complex breakpoint block imple-
mented
1 Complex breakpoint block imple-
mented
MIPS® EJTAG Specification, Revision 6.10 83

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Debug Control Register

Table 3.1 DCR Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance

PCS 9 Indicates if the PC Sampling feature isimplemented.: R Preset Required

Encoding Meaning
0 No PC Sampling implemented
1 PC Sampling implemented

PCR 8:6 PC Sampling rate. Values 0 to 7 map to values 2° to 212 Read Undefined | Required if
cycles, respectively. That is, aPC sampleiswrittenout | required, PCSis1

every 32, 64, 128, 256, 512, 1024, 2048, or 4096 cycles Write
respectively. The external probe or softwareisalowedto | Optional
set this value to the desired sample rate.

PCSe 5 If the PC sampling feature is implemented, then indi- R/W 0 Required if
cates whether PC sampling isinitiated or not. That is, a PCSis1
value of 0 indicates that PC sampling is not enabled, and
abit value of 1 indicates PC sampling is enabled and the
counters are operational .

IntE 4 Hardware and software interrupt enable for Non-Debug R/W 1 Required
Mode, in conjunction with other disable mechanisms:

Encoding Meaning

0 Interrupt disabled

1 Interrupt enabled depending on other
enabling mechanisms

NMIE 3 Non-Maskable Interrupt (NM1) enable for Non-Debug R/W 1 Required
Mode:

Encoding Meaning

0 NMI disabled
1 NMI enabled

NMIpend 2 Indication for pending NMI: R 0 Required

Encoding Meaning

0 No NMI pending
1 NMI pending

SRstE 1 Controls soft reset enable: R/W 1 Optional

Encoding Meaning

0 Soft reset masked for soft reset sources
dependent on implementation
1 Soft reset isfully enabled

Bit isread-only (R) and reads as zero if not imple-
mented.

84 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 3.1 DCR Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
ProbEn 0 Indicates value of the ProbEn value in the DCR register: R Samevalue Required if
Encoding Meaning as ProbEn EJTAG TAP
in ECR is present;
0 No access should occur to the dmseg otherwise not
segment implemented
1 Probe services accesses to the dmseg
segment
Bit isread-only (R) and reads as zero if not imple-
mented.
0 63:32 Must be written as zeros; return zeros on reads. 0 0 Reserved
(64:bit),
30, 28:27,
21:19,
13:12

MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Debug Control Register

86

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 4

EJTAG Test Access Port

This chapter describes the EJTAG features provided when the optional EJTAG Test Access Port (TAP) isincluded in

the implementation. The TAP isan optional part of EJTAG, but if it isimplemented, the DCR must also be imple-
mented, and all the features in the TAP described below are required, except for those features explicitly described
optional.

This chapter contains the following sections:

* Section4.1 “TAP Overview”

e Section4.2 “TAP Signals’

* Section 4.3 “TAP Controller”

e Section 4.4 “Instruction Register and Special Instructions’

e Section4.5 “TAP Data Registers’

e Section4.6 “Examplesof Use”
4.1 TAP Overview

The overall features of the EJTAG Test Access Port (TAP) are:

» |dentification of device and EJTAG debug features accessed through the TAP

» dmseg segment memory “emulation” (mapping dmseg segment processor accesses into probe transactions)
» Reset handling allows debug exception immediately after reset

» Debug interrupt request from probe

» Low-power mode indications

» Implementation-dependent processor and peripheral reset

If the TAP is not implemented, other features depending on register values and indications from the TAP should
behave as if these register values and indications have the power-up and reset values.

Figure 4.1 shows an overview of the elementsin the TAP.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

as

87

EJTAG Test Access Port

Figure 4.1 Test Access Port (TAP) Overview

TCK

B S,
T™S o I
'I 1
@ : :
g ! TAP controller
:5 El
c
T ;DO
<
V]
<
Instruction Register
S v
Selected Data Register(s)
TRST* (optional

The TAP consists of the following signals: Test Clock (TCK), Test Mode (TMS), Test Dataln (TDI), Test Data Out
(TDO), and the optional Test Reset (TRST*). TCK and TMS control the state of the TAP controller, which controls
access to the Instruction or selected data register(s). The Instruction register controls selection of dataregisters.
Access to the Instruction and data register(s) occurs serially through TDI and TDO. The optional TRST* isan asyn-
chronous reset signal to the TAP.

Access through the TAP does not interfere with the operation of the processor, unless features specifically described
to do so are used.

The description of the EJTAG TAP in this chapter is intended only to cover EJTAG issues related to use of a TAP.
Consult the IEEE Sd 1149.1-1990, |EEE Standard Test Access Port and Boundary-Scan Architecture for detailed
information about the use of a TAP for other purposes, for example, integration with JTAG boundary scan.

For EJTAG features, there are no difference between areset and a soft reset occurring to the processor; they behave
identically in both Debug Mode and Non-Debug Mode. References to reset in the following therefore refers to both
reset (hard reset) and soft reset.

4.2 TAP Signals

Thesignals TCK, TMS, TDI, TDO, and the optional TRST* make up the interface for the TAP. These signals are
described in detail below. Refer to Chapter 10, “ On-Chip Interfaces’ on page 187 for the connection of the signalsto

chip pins.
4.2.1 Test Clock Input (TCK)

TCK isthe clock that controls the updating of the TAP controller and the shifting of data through the Instruction or
selected data register(s).

TCK isindependent of the processor clock, with respect to both frequency and phase.
4.2.2 Test Mode Select Input (TMS)

TMSisthe control signal for the TAP controller. This signal is sampled on the rising edge of TCK.

88 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.3 TAP Controller

4.2.3 Test Data Input (TDI)

TDI isthe test datainput to the Instruction or selected data register(s). Thissignal is sampled on the rising edge of
TCK for some TAP controller states.

4.2.4 Test Data Output (TDO)

TDO isthetest data output from the Instruction or dataregister(s). Thissignal changes on the falling edge of TCK, or
becomes 3-stated asynchronously when TRST* is driven low.

The off-chip TDO is only driven when datais shifted out; otherwise, the off-chip TDO is 3-stated.
The 3-state notation indicates that the TDO off-chip signal is undriven.

4.2.5 Test Reset Input (TRST*)

TRST* isthe optional test reset input that asynchronously resets the TAP, with the following immediate effects:
* TheTAP controller is put into the Test-L ogic-Reset state

* Thelnstruction register is loaded with the IDCODE instruction

 Any EJTAGBOOT indication iscleared

* TheTDO output is 3-stated

TRST* does not reset another part of the TAP or processor. Thus this type of reset does not affect the processor, and
the processor reset is not allowed to have any effect on the above parts of the TAP.

Even though TRST* isan optional signal, the TRST* signal isreferred to in the following discussions. If TRST* is

not implemented, then a power-up reset of the TAP must provide the reset functionality similar to alow value on
TRST* during power-up.

4.3 TAP Controller

The TAP controller is a state machine whose active state controls TAP reset and access to Instruction and data regis-
ters.

The state transitions in the TAP controller occur on the rising edge of TCK or when TRST* goes low. The TMS sig-
nal determines the transition at the rising edge of TCK. Figure 4.2 shows the state diagram for the TAP controller.

MIPS® EJTAG Specification, Revision 6.10 89
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

90

Figure 4.2 TAP Controller State Diagram

o=)
Exit2-DR

e)

The behavior of the functional states shown in the figure is described below. The non-functional states are intermedi-
ate statesin which no registersin the TAP change, and are not described here.

Events in the following subsections are described with relation to the rising and falling edge of TCK. The described
events take place when the TAP controller isin the corresponding state when the clock changes.

The TAP controller isforced into the Test-L ogic-Reset state at power-up either by alow value on TRST* or by a
power-up reset circuit.

4.3.1 Test-Logic-Reset State

When the Test-L ogic-Reset state is entered, the Instruction register is loaded with the IDCODE instruction, and any
EJTAGBOOT indication is cleared. This state ensures that the TAP does not interfere with the normal operation of the
CPU core.

The TAP controller always reaches this state after five rising edges on TCK when TMSis set to 1.

A low value on TRST* immediately places the TAP controller in this state asynchronousto TCK.

4.3.2 Capture-IR State

In the Capture-IR state, the two L SBs of the Instruction register are loaded with the value 01,, and the upper MSBs
are loaded with implementation-dependent values. Both values are loaded on the rising edge of TCK.

4.3.3 Shift-IR State

In the Shift-IR state, the LSB of the Instruction register is output on TDO on the falling edge of TCK. The Instruction
register is shifted one position from MSB to L SB on the rising edge of TCK, with the MSB shifted in from TDI. The
value in the Instruction register does not take effect until the Update-IR state. Figure 4.3 shows the shifting direction
for the Instruction register.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.4 Instruction Register and Special Instructions

Figure 4.3 TDI to TDO Path when in Shift-IR State

L}I Instruction Register Iﬁy

MSB 0/LSB

The length of the Instruction register is specified in Section 4.4 on page 91.

The value loaded in the Capture-IR state is used asthe initial value for the Instruction register when shifting starts;
thusit is not possible to read out the previous value of the Instruction register.

4.3.4 Update-IR State

In the Update-IR state, the value in the Instruction register takes effect on the rising or falling edge of TCK.

4.3.5 Capture-DR State

In the Capture-DR state, the value of the selected data register(s) is captured on the rising edge of TCK for shifting
out in the Shift-DR state. The Capture-DR state reads the data, in order to output this read value in the Shift-DR state.

The Instruction register controls the selection of the following data register(s): Bypass, Device ID, Implementation,
EJTAG Control, Address, and Data register(s).

4.3.6 Shift-DR State

In the Shift-DR state, the LSB of the selected data register(s) is output on TDO on the falling edge of TCK. The
selected data register(s) is shifted one position from MSB to L SB on the rising edge of TCK, with TDI shifted in at
the MSB. The value(s) shifted into the register(s) does not take effect until the Update-DR state. Figure 4.4 shows the

shifting direction for the selected data register.

Figure 4.4 TDI to TDO Path for Selected Data Register(s) when in Shift-DR State

DI TDO
4>| Selected Data Register(s) |—>

MSB 0/LSB

The length of the shift path depends on the selected data register(s).

4.3.7 Update-DR State

In the Update-DR state, the update of the selected dataregister(s) with the value from the Shift-DR state occurs on the
faling or rising edge of TCK. This update writes the selected register(s).

4.4 Instruction Register and Special Instructions

The Instruction register controls selection of accessed data register(s), and controls the setting and clearing of the
EJTAGBOOT indication.

MIPS® EJTAG Specification, Revision 6.10 91

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

The Instruction register is five or more bits wide when used with EJTAG. Table 4.1 shows the alocation of the TAP

instruction.
Table 4.1 TAP Instruction Overview

Code Instruction Function
AllO0's (Freefor other use) Free for other use, such as JTAG boundary scan
0x01 IDCODE Selects Device Identification (ID) register
0x02 (Free for other use) Free for other use, such as JTAG boundary scan
0x03 IMPCODE Selects Implementation register
0x04 - 0x07 (Free for other use) Free for other use, such as JTAG boundary scan
0x08 ADDRESS Selects Address register
0x09 DATA Selects Data register
Ox0A CONTROL Selects EJTAG Control register
0x0B ALL Selects the Address, Data and EJTAG Control registers
0x0C EJTAGBOOT Makes the processor fetch code from the debug exception vector after reset
0x0D NORMALBOOT Makes the processor execute the reset handler after reset
OX0E FASTDATA Selects the Data and Fastdata registers
OxOF (EJTAG reserved) Reserved for future EJTAG use
0x10 TCBCONTROLA Selects the control register TCBTraceControl in the Trace Control Block
Oox11 TCBCONTROLB Selects another trace control block register
0x12 TCBDATA Used to access the registers specified by the TCBCONTROLBggg field and

transfers data between the TAP and the TCB control register

0x13 TCBCONTROLC Selects another trace control block register
0x14 PCSAMPLE Selects the PCsampl e register
0x15 TCBCONTROLD Selects another trace control block register
0x16 TCBCONTROLE Selects another trace control block register
0x17 FDC Selects Fast Debug Channel.
0x18 - 0x1B (EJTAG reserved) Reserved for future EJTAG use
0x1C-All 1's (Free for other use) Free for other use, such as JTAG boundary scan
All I's BYPASS Select Bypass register

Theinstructions IDCODE, IMPCODE, ADDRESS, DATA, CONTROL, and BY PASS select asingle dataregister, as
indicated in the table. The unused instructions reserved for EJTAG select the Bypassregister. The ALL, EJTAG-
BOOT, NORMALBOOT, and FASTDATA instructions are described in the following subsections. The instructions
that are related to trace registers in the trace control block (TCB) are described in the Trace Control Block Specifica
tion document.

Any EJTAGBOQT indication is cleared at power-up either by alow value on the TRST* or by a power-up reset cir-
cuit, and the Instruction register isloaded with the IDCODE instruction.

4.4.1 ALL Instruction

The Address, Data and EJTAG Control data registers are selected at once with the ALL instruction, as shown in
Figure 4.5.

92 MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.4 Instruction Register and Special Instructions

Figure 4.5 TDI to TDO Path when in Shift-DR State and ALL Instruction is Selected

TDI TDO
4>| Address register |—>| Dataregister |—>| EJTAG Control register |—>

MSB 0/LSB MSB 0/LSB MSB 0/LSB

4.4.2 EJTAGBOOT and NORMALBOQOT Instructions

The EJTAGBOOT and NORMALBOOT instructions control whether instructions are fetched from the debug excep-
tion vector as aresult of areset. If EJTAGBOOT isindicated then instead of fetching instructions from the reset
exception vector, instructions are fetched from the debug exception vector.

The location of the debug exception vector is controlled by the ProbTrap bit in the EJTAG Control register (see Table
4.9 on page 103). If the ProbTrap bit is set, the debug exception handler isin this case fetched from the probe through
the dmseg segment. It is possible to take the debug exception and execute the debug handler from the probe even if no
instructions can be fetched from the reset handler. This condition guarantees that the system will not hang at reset
when the EJTAGBOOT feature is used, even if the normal memory system does not work properly.

Aninternal EJTAGBOQT indication holds information on the action to take at a processor reset, and thisis set when
the EJTAGBOOT instruction takes effect in the Update-IR state. The indication is cleared when the NORMALBOOT
instruction takes effect in the Update-IR state, or when the Test-L ogic-Reset state is entered, for example, when
TRST* is asserted low. The requirement of clearing the internal EJTTAGBOOT indication when the Test-L ogic-Reset
state is entered, and not on a TCK clock when in the state, ensures that the indication can be cleared with five clocks
on TCK when TMSis high.

Theinternal EJTAGBOOT indication is cleared at power-up either by alow value on the TRST* or by a power-up
reset circuit. Thus the processor executes the reset handler after power-up unless the EJTAGBOOT instruction is
given through the TAP.

The Bypass register is selected when the EJTAGBOOT or NORMALBOQOT instruction is given.

The EjtagBrk, ProbEn, and ProbTrap bitsin the EJTAG Control register follow the internal EJTAGBOQOT indication.

They are all set at processor reset if a Debug Interrupt exception is to be generated, with execution of the debug han-
dler from the probe.

4.4.3 FASTDATA Instruction

This selects the Data and the Fastdata registers at once, as shown in Figure 4.6. The use of the FASTDATA instruction
is described in more detail in Section 4.5.6 “Fastdata Register (TAP Instruction FASTDATA)”.

Figure 4.6 TDI to TDO Path when in Shift-DR State and FASTDATA Instruction is Selected

DI Data register |—>| Fastdata register TDO
0

MSB 0/LSB

4.4.4 FDC Instruction

This selects the Fast Debug Channel. The use of the FDC is described in more detail in Chapter 8.

MIPS® EJTAG Specification, Revision 6.10 93
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

4.5 TAP Data Registers

Table 4.2 summarizes the data registersin the TAP. Complete descriptions of these registers are located in the follow-
ing subsections.

Table 4.2 EJTAG TAP Data Registers

Instruction Used to Register Compliance
Access Register Name Function Reference Level
IDCODE DevicelD Identifies device and accessed proces- | See Section 4.5.1 on Required
sor in the device. page 95
IMPCODE Implementation Identifies main debug featuresimple- | See Section 4.5.2 on Required
mented and accessible through the page 96
TAP
DATA, ALL, or FAST- | Data Data register for processor access. See Section4.5.30n Required
DATA page 98
ADDRESSor ALL Address Address register for processor access. | See Section 4.5.4 on Required
page 101
CONTROL or ALL EJTAG Control Control register for most EJTAG fea= | See Section 4.5.5 on Required
tures used through the TAP. page 102
BYPASS, Bypass Provides a one bit shift path through See Section 4.5.8 on Required
EJTAGBOOT, the TAP. page 110
NORMALBOOT, or
unused EJTAG instruc-
tions
FASTDATA Fastdata Provides aone hit register whose value | See Section 4.4.3on | Required with
istagged to the front of the Dataregis- | page 93 EJTAG version
ter to capture the value of the processor 02.60 and
access pending (PrAcc) bit in the higher
EJTAG Control register
TCBCONTROLA TCBControlA Implemented and used in the Trace See the TCB docu- Required with
Control Block (TCB). Used by external | mentation EJTAG version
probe (debugger) software to control 02.60 and
tracing output from the core higher if trace
logicisimple-
mented
TCBCONTROLB TCBControlB Implemented and used in the Trace Seethe TCB docu- | Required with
Control Block (TCB). Controlstracing | mentation EJTAG version
configuration options 02.60 and
higher if trace
logicisimple-
mented
TCBDATA TCBData Implemented and used in the TCB. Seethe TCB docu- | Required with
mentation EJTAG version
02.60 and
higher if trace
logicisimple-
mented

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers

Table 4.2 EJTAG TAP Data Registers (Continued)

Instruction Used to Register Compliance
Access Register Name Function Reference Level
TCBCONTROLC TCBControlC Implemented and used in the Trace Seethe TCB docu- | Required with
Control Block (TCB). Controlstracing | mentation EJTAG version
configuration options 3.10 and higher
if tracelogicis
implemented
PCSAMPLE PCsample Implemented and used by the PC Sam- | See Chapter 7, “PC | Optional fea-
pling logic Sampling” on ture (defined
page 173. EJTAG 3.10)
TCBCONTROLD TCBControlD Implemented and used in the Trace Seethe TCB docu- | Required with
Control Block (TCB). Controlstracing | mentation EJTAG version
configuration options 4.10 and higher
if tracelogicis
implemented
TCBCONTROLE TCBControlE Implemented and used in the Trace Seethe TCB docu- | Required with
Control Block (TCB). Controlstracing | mentation EJTAG version
configuration options 4.10 and higher
if tracelogicis
implemented

A read of adataregister corresponds only to the Capture-DR state of the TAP controller, and awrite of the dataregis-
ter corresponds to the Update-DR state only.

Theinitia states of these registers are specified with either areset state or a power-up state. If areset state is speci-

fied, then the indicated value is applied to the register when a processor reset is applied. If a power-up state is speci-
fied, then the indicated value is applied at power-up reset.

TCK does not have to be running in order for a processor reset to reset the registers.

4.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)

Compliance L evel: Required with EJTAG TAP feature.

The Device ID register isa32-bit read-only register that identifies the specific device implementing EJTAG. This reg-
ister isalso defined in |EEE 1149.1. The Device ID register holds a unique number among different devices with
EJTAG compliant processors implemented. It is recommended that the register is aso unique amongst different
EJTAG compliant processorsin the same device.

Figure 4.7 shows the format of the Device ID register; Table 4.3 describes the Device D register fields.

Figure 4.7 Device ID Register Format

31 28 27 12 11 1 0
32064bILPIOY e gion PartNumber ManufID 1
cessor
MIPS® EJTAG Specification, Revision 6.10 95

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

Table 4.3 Device ID Register Field Descriptions

Fields
Read / | Power-up

Name Bits Description Write State Compliance

Version 31:28 Identifies the version of a specific device. R Preset Required
Thevaluein thisfield must be unique for particular values
of Manufacturer ID and Part Number values. The value
identifies a specific revision of the design (such as a
sequence of bug fixes within the same major design). The
valueis assigned by the design house.

Part- 27:12 Identifies the part number of a specific device. R Preset Required
Number The value in this field must be unique for a particular
Manufacturer ID value.

Design houses which wish to use the MIPS Technologies,
Inc. Manufacturer ID may request assignment of a group
of Part Numbers which are then managed by that design
house. Assignment of Part Numbers within another Manu-
facturer 1D value is done by the owner of that Manufac-
turer ID.

ManuflD 11:1 Identifies the manufacturer identity code of a specific R Preset Required
device, which identifies the design house implementing
the processor.

According to |EEE 1149.1-1990 section 11.2, the manu-
facturer identity codeis a compressed form of a JEDEC
standard manufacturer’s identification code in the JEDEC
Publications 106, which can be found at:
http://www.jedec.org/

ManufID[6:0] are derived from the last byte of the JEDEC
code with the parity bit discarded. ManufID[10:7] provide
abinary count of the number of bytesin the JEDEC code
that contain the continuation character (0x7F). When the
number of continuations characters exceeds 15, these four
bits contain the modulo-16 count of the number of contin-
uation characters.

If the design house does not have a JEDEC Standard Man-
ufacturer's ldentification Code, which is encoded for use
in thisfield, the design house can request use of the MIPS
Technologies, Inc. assigned number, or use the number
assigned to the core provider. Use of the MIPS Technolo-
gies, Inc. number requires prior approval of the Director,
MIPS Architecture.

The MIPS Technologies, Inc. Standard Manufacturer's
Identification Code is 0x127.

1 0 Ignored on write; returns one on read. R 1 Required

96

4.5.2 Implementation Register (TAP Instruction IMPCODE)

Compliance Level: Required with EJTAG TAP feature.

The Implementation register is a 32-bit read-only register that identifies features implemented in this EJTAG compli-
ant processor, mainly those accessible from the TAP.

Figure 4.8 shows the format of the Implementation register; Table 4.4 describes the Implementation register fields.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers

Figure 4.8 Implementation Register Format

31 29 28 27 25 24 23 22 21 20 17 16 15 14 13 11 10 1
32/64-bit Rak/ DINT ASID MIPS No MIPS
Processor | TOACVE | Ray 0 ap | 0| size 0 16 | O [pma| TP | Typelnfo aoe,

Table 4.4 Implementation Register Field Descriptions
Fields
Read / | Power-up
Name Bits Description Write State Compliance
EJTAGver 31:29 Indicates the EJTAG version: R Preset Required
Encoding Meaning
0 Version 1 and 2.0
1 Version 2.5
2 Version 2.6
3 Version 3.1
4 Version 4.0
5 Version 5.0
6-7 Reserved
R4k/R3k 28 Indicates R4000 or R3000 privileged environment: R Preset Required
Encoding Meaning
0 R4000 privileged environment
1 R3000 privileged environment
DINTsup 24 Indicates support for DINT signal from probe: R Preset Required
Encoding Meaning
0 DINT signa from the probe is not sup-
ported by this processor
1 Probe can use DINT signal to make
debug interrupt on this processor
ASIDsize 22:21 Indicates size of the ASID field: R Preset Required
Encoding Meaning
0 No ASID in implementation
1 6-bit ASID
2 8-bit ASID
3 Reserved
MIPS16e 16 Indicates MIPS16e™ ASE support in the processor: R Preset Required
Encoding Meaning
0 No MIPS16e support
1 MIPS16e is supported
MIPS® EJTAG Specification, Revision 6.10 97

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

Table 4.4 Implementation Register Field Descriptions (Continued)

Fields
Read / | Power-up

Name Bits Description Write State Compliance

NoDMA 14 Indicates no EJTAG DMA support: R 1 Required

Encoding Meaning

0 Reserved
1 No EJTAG DMA support

Type 13:11 Indicates what type of entity is associated with this TAP R Preset Required
and whether the Typelnfo field exists.

Encoding Meaning

0 Legacy value - probably attached to a
CPU. Typelnfo field not implemented.

1 This TAP is attached to a CPU and the
Typelnfo field reflects

EBasecpynum-

2 ThisTAPisattached to a Trace-Master
and the Typelnfo field is not used.

Others | Reserved

Typelnfo 10:1 Identifier information specific to the type of entity associ- R Preset Required
ated with this TAP. The attached entity is specified by the
Typefield.

Attached
Entity Meaning

CPU |Reflects EBasecpynym Of the asso-
ciated CPU

Others | Reserved

MIPS32/64 0 Indicates 32-bit or 64-bit processor: R Preset Required

Encoding Meaning

0 32-bit processor

1 64-bit processor

See the R4000/R3000 hit for indication of privileged envi-
ronment.

0 27:25, 23, |lgnored on writes; return zeros on reads. R 0 Required
20:17, 15

4.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA)

Compliance L evel: Required with EJTAG TAP feature.

98 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers
The read/write Dataregister is used for opcode and data transfers during processor accesses. The width of the Data
register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.
Thevalueread in the Dataregister isvalid only if a processor access for awrite is pending, in which case the data reg-
ister holds the store value. The value written to the Data register is only used if a processor access for a pending read
isfinished afterwards, in which case the data value written is the value for the fetch or load. This behavior implies that
the Data register is not amemory location where a previously written value can be read afterwards.

Figure 4.9 shows the format of the Data register; Table 4.5 describes the Dataregister field.

Figure 4.9 Data Register Format

31 0
32-bit Data
Processor
63 0
64-bit Data
Processor
Table 4.5 Data Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
MSB:0 Data used by processor access. R/W Undefined Required

The contents of the Data register are not aligned but hold data asit is seen on adata bus for an external memory sys-
tem. Thus the bytes are positioned in the Data register based on access size, address, and endianess.

The bytes not accessed for a processor access write are undefined, and the bytes not accessed for a processor access
read can be written with any value by the probe shifting the value into the Data register.

Table 4.6 and Table 4.7 show the position of bytesin the Data register for all possible accesses. This positioning
depends on the Psz field from the EJTAG Control register, the two or three L SBs from the Address register, and the
endianess.

The endianness for Debug Mode, used in the following, isindicated through the ENM bit in the Debug Control Reg-
ister (DCR), see Chapter 3, “Debug Control Register” on page 79.

MIPS® EJTAG Specification, Revision 6.10 99

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

Table 4.6 shows the byte positioning for a 32-bit processor (MIPS32/64 = 0), in which case the two L SBs of the
Address register are used. Byte O refersto bits 7:0, byte 1 refersto bits 15:8, byte 2 refersto bits 23:16, and byte 3
refersto bits 31:24, independent of endianess.

Table 4.6 Data Register Contents for 32-bit Processors

Psz Little Endian Big Endian
from
ECR Size Address[1:0] (3|2 | 1|0 31210
0 Byte 00,
01,
10,
11,
1 Halfword 00,
10,
2 Word 00,
3 Triple 00,
01,
Reserved n.a n.a
100 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers

Table 4.7 shows the byte positioning for a 64-bit processor (MIPS32/64 = 1), in which case the three L SBs of the
Address register are used. Byte O refersto bits 7:0, byte 1 refers to bits 15:8, and so on up to byte 7 which refersto
bits 63:56, independent of endianess.

Table 4.7 Data Register Contents for 64-bit Processors

Psz Little Endian Big Endian
from
ECR Size Address[2:0] | 7 514(3]2 7 51432
0 Byte 000,
001,
010,
011,
100,
101,
110,
111,
1 Halfword 000,
010,
100,
110,
2 Word 000,
5-byte/Quinti 001,
6-byte/Sexti 010,
7-byte/Septi 011,
Word 100,
5-byte/Quinti 101,
6-byte/Sexti 110,
7-byte/Septi 111,
3 Triple 000,
010,
100,
110,
Doubleword 111,
Reserved na na

4.5.4 Address Register (TAP Instruction ADDRESS or ALL)

Compliance L evel: Required with EJTAG TAP feature.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

101

EJTAG Test Access Port

102

The read-only Address register provides the address for a processor access. The width of the register corresponds to
the size of the physical addressin the processor implementation (from 32 to 64 bits). The specific length is deter-
mined by shifting through the Address register, because the length is not indicated el sewhere.

The valueread in the register isvalid if aprocessor access is pending; otherwise, the value is undefined.

The two or three LSBs of the register are used with the Psz field from the EJTAG Control register to indicate the size
and data position of the pending processor access transfer. These bits are not taken directly from the address refer-
enced by the load/store. See Section 4.5.3 on page 98 for more details.

Figure 4.10 shows the format of the Address register; Table 4.8 describes the Address register field.

Figure 4.10 Address Register Format

MSB 0

32/64-bit Address

Processor

Table 4.8 Address Register Field Descriptions
Fields
Read/ Reset
Name Bits Description Write State Compliance

Address MSB:0 Address used by processor access. R Undefined Required

4.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)

Compliance L evel: Required with EJTAG TAP feature.

The 32-bit EJTAG Control Register (ECR) handles processor reset and soft reset indication, Debug Mode indication,
access start, finish, and size and read/write indication. The ECR &l so:

» controls debug vector location and indication of serviced processor accesses,

» adlowsadebug interrupt request,

e indicates processor low-power mode, and

e dlowsimplementation-dependent processor and peripheral resets.

The EJTAG Control register is not updated/written in the Update-DR state unless the Reset occurred; that is Rocc (bit
31) iseither already 0 or iswritten to 0 at the same time. This condition ensures proper handling of processor accesses

after areset.

Reset of the processor can be indicated through the Rocc bit in the TCK domain a number of TCK cycles after it is
removed in the processor clock domain in order to allow for proper synchronization between the two clock domains.

Bitsthat are R/W in the register return their written value on a subsequent read, unless other behavior is defined.
Internal synchronization ensures that awritten value is updated for reading immediately afterwards, even when the
TAP controller takes the shortest path from the Update-DR to Capture-DR state.

Figure 4.11 shows the format of the EJTAG Control register; Table 4.9 describes the EJTAG Control register fields.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers

Figure 4.11 EJTAG Control Register Format

31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11

32/64-bit Per |PRn| Pr Pr | Prob| Prob [ISAOn| Ejtag
Processor Roce| Pz 0 |VPED|Doze| Halt Rst| W |Acc 0 Rst| En | Trap | Debug| Brk

DM 0

Table 4.9 EJTAG Control Register Field Descriptions

Fields

Read /

Name Bits Description Write Reset State

Compliance

Rocc 31 Indicates if a processor reset or soft reset has occurred R/WO 1

since the bit was cleared:

Encoding

0 No reset occurred
1 Reset occurred

Meaning

The Rocc hit stays set aslong asreset is applied.

This bit must be cleared to acknowledge that the reset
was detected. The EJTAG Control register isnot updated
inthe Update-DR state unless Rocc is 0 or writtento O at
the sametime. Thisisin order to ensure correct handling
of the processor access after reset. Refer to Section 4.6.3
on page 112 for more information on Rocc.

Required

Psz 30:29 Indicates the size of a pending processor access, in com- R Undefined

bination with the Address register:

32-bit
Processor
Encoding| MIPS32/64=0
0 Byte
1 Halfword
2 Word
3 Triple

64-bit
Processor
MIPS32/64=1

Byte
Halfword
Word, 5-7 bytes

Triple, Double-
word

A full description islocated in Section 4.5.3 on page 98,
including reserved combinations with Address register
bits.

Thisfield isvalid only when a processor accessis pend-
ing; otherwise, the read value is undefined.

Required

Ofornon-MT
coresand 1
for MT cores

VPED 23 For processors with MIPS MT Module, thisbit is a sta- R
tus bit that indicates whether the VPE is currently dis-
abled. A value of 1 indicates that the VPE is disabled
and the rest of the EJTAG state isnot valid. If thisbitis
0, the processor is either not an MT coreor itisanMT
core that is currently enabled. Hence, anon-MT core

must implement this bit and tieit to zero.

Required for
EJTAG ver-
sion3.10 and
higher.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

103

EJTAG Test Access Port

Table 4.9 EJTAG Control Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset State

Compliance

Doze

22

Indicates if the processor isin low-power mode:

Encoding Meaning

0 Processor is not in low-power mode
1 Processor isin low-power mode

Doze indicates Reduced Power (RP), WAIT, and other
implementation-dependent |ow-power modes.

If the implementation does not support low-power
modes, then this bit always reads as 0.

R

0

Required

Halt

21

Indicates if theinternal system bus clock is running:

Encoding Meaning

0 Internal system bus clock is running
1 Internal system bus clock is stopped

Halt indicates WAIT, and other implementation-depen-
dent events that stop the system bus clock.

If the implementation does not support a halt state, this
bit aways reads as 0.

Required

PerRst

20

Controls the peripheral reset with implementa-
tion-dependent behavior:

Encoding
0 No peripheral reset applied
1 Peripheral reset applied

Meaning

This bit PerRst might not have any effect. Thereisno
inherent indication of whether the PerRst is effective, so
the user must consult system documentation.

When this bit is changed, then it is only guaranteed that
the new value has taken effect when it can be read back
here. This handshake mechanism ensures that the setting
fromthe TCK clock domain takes effect in the processor
clock domain and in peripherals.

This bit isread-only (R) and reads as zero if not imple-
mented.

R/W

Optional

PRnW

19

Indicates read or write of a pending processor access:

Encoding Meaning

0 Read processor access, for afetch/load
access

1 Write processor access, for a store
access

Thisvalueis defined only when a processor accessis
pending.

Undefined

Required

104

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers

Table 4.9 EJTAG Control Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset State

Compliance

PrAcc

18

Indicates a pending processor access and controls finish-
ing of apending processor access. When read:

Encoding Meaning

0 No pending processor access
1 Pending processor access

A write of 0 finishes a processor accessif pending; oth-
erwise operation of the processor is UNDEFINED if the
bit is written to 0 when no processor accessis pending.
A write of 1 isignored.

A successful FASTDATA access will clear thisbit. See
Table 4.11 for details.

R/WO

0

Required

PrRst

16

Controls the processor reset with implementation-depen-
dent behavior:

Encoding Meaning

0 No processor reset applied
1 Processor reset applied

The PrRst bit might not have any effect. Thereisno
inherent indication of an effective PrRst, so the user
must consult system documentation.

If areset occurson PrRst, then all parts of the system are
reset. It isnot alowed for only some device to be reset.
When this bit is changed then it is guaranteed that the
new val ue has taken effect when it can be read back here.
This handshake mechanism ensures that the setting from
the TCK clock domain takes effect in the processor
clock domain and in peripherals.

However, because a processor reset clears this bit, then
the effect of setting it can be that the bit is cleared when
the reset takes effect. In this case, the Rocc bit should be
observed to detect that the reset took effect.

This bit isread-only (R) and reads as zero if not imple-
mented.

R/W

Optional

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

105

EJTAG Test Access Port

Table 4.9 EJTAG Control Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset State

Compliance

ProbEn

15

Controls whether the probe handles accesses to the
dmseg segment through servicing of processors
accesses;

Encoding Meaning

0 Probe will not serve processor
accesses

1 Probe will service processor accesses

The ProbEn bit is reflected in aread-only bit in the
Debug Control Register (DCR) hit 0, see Chapter 3,
“Debug Control Register” on page 79.

When this bit is changed, then it is guaranteed that the
new value has taken effect in the DCR when it can be
read back here. This handshake mechanism ensures that
the setting from the TCK clock domain takes effect in
the processor clock domain.

However, a change of the ProbEn prior to setting the
EjtagBrk bit will be effective for the debug handler.
Not all combinations of ProbEn and ProbTrap are
alowed, see section 4.5.5.2 .

R/W

See Section
455.10n
page 107

Required

ProbTrap

14

Controls location of the debug exception vector:

Encoding Meaning

0 See Section 2.3.2 “Debug Exception
Vector Location”

1 |OXFFFF FFFF FF20 0200

When ProbTrap=1, the debug exception vector isrelo-
cated to probe-controlled EJTAG memory, at the fixed
location OXFFFF FFFF FF20 0200.

When this bit is changed, it is guaranteed that the new
valueisindicated to the processor when it can be read
back here. This handshake mechanism ensures that the
setting from the TCK clock domain takes effect in the
processor clock domain.

However, a change of the ProbTrap prior to setting the
EjtagBrk bit will be effective at the debug exception.
Not all combinations of ProbEn and ProbTrap are
alowed, see Section 4.5.5.2 on page 108.

See Section
455.10n
page 107

Required

106

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers

Table 4.9 EJTAG Control Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State | Compliance

ISAOnDe- 13 Determines the Instruction Set Architecture to be used R/W Bit O of Required
bug on adebug exception when ProbTrap=1: Config31SA
field - 1if

Encoding Meaning only micro-

0 Use MIPS32/MIPS64 I1SA MIPSimple-

: mented;
1 Use microMIPS ISA otherwise 0.

This bit isread-only and returns O if microMIPS is not
implemented. Thisis bit read-only and returns 1 if only
microMIPS isimplemented.

EjtagBrk 12 Requests a Debug Interrupt exception to the processor R/W1 See Section Required
when this bit iswritten as 1. The debug exception 455.10n
request isignored if the processor is aready in debug page 107
mode at the time of the request. A write of 0 isignored.
The debug request restarts the processor clock if the pro-
cessor was in alow-power mode.

The read value indicates a pending Debug Interrupt
exception requested through this hit:

Encoding Meaning

0 No pending Debug Interrupt excep-
tion requested through this bit

1 Pending Debug Interrupt exception

The read value can, but is not required to, indicate other
pending DINT debug requests (for example, through the
DINT signa).

Thisbit is cleared by hardware when the processor
enters Debug Mode.

DM 3 Indicates if the processor isin Debug Mode: R 0 Required

Encoding Meaning

0 Processor is not in Debug Mode
1 Processor isin Debug Mode

0 28:24, Must be written as zeros; return zeros on reads. 0 0 Reserved
17, 13,
11:4,
2:0

4.5.5.1 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap and ProbEn
The reset value of the EjtagBrk, ProbTrap, and ProbEn bits follows the setting of the internal EITAGBOQOT indica-
tion. If the EJTAGBOOT instruction has been given, and the internal EITAGBOQT indication is active, then the reset
value of the three bitsis set (1); otherwise, the reset valueis clear (0).

The results of setting these bits are:

MIPS® EJTAG Specification, Revision 6.10 107

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

108

» Setting the EjtagBrk causes a Debug Interrupt exception to be requested right after the processor reset from the
EJTAGBOOT instruction

» Thedebug handler is executed from the EJTAG memory because ProbTrap is set to indicate debug vector in
EJTAG memory at OxFFFF FFFF FF20 0200

» Service of the processor access is indicated because ProbEn is set

Thusit is possible to execute the debug handler right after a processor reset from the EJTAGBOOT instruction, with-
out executing any instructions from the normal reset handler.

4.5.5.2 Combinations of ProbTrap and ProbEn

Use of ProbTrap and ProbEn allows independent specification of the debug exception vector location and availability
of EJTAG memory. Behavior for the different combinationsis shown in Table 4.10. Note that not all combinations
are allowed. The second combination shown in thetable, that isProbTrap is 0 and ProbEn is 1, puts the debug handler
in normal memory, but also makes the probe's EJTAG memory available. This combination can be useful, because
debug handler execution benefits from the speed of normal memory, but the probe’s EJTAG memory can still be
accessed, for example to save/restore data values and for probe/handler communications.

Table 4.10 Combinations of ProbTrap and ProbEn

Processor Accesses to
ProbTrap ProbEn Debug Exception Vector EJTAG memory region
0 0 Normal memory, Section 2.3.2 “Debug Exception Not serviced by probe
0 1 Vector Location” Serviced by probe
1 0 If these two bits are changed to this state, the operation of the processor is UNDEFINED,

indicating that the debug exception vector isin EJTAG memory, but the probe will not ser-
ViCe processor accesses.

1 1 EJTAG memory at OxFFFF FFFF FF20 0200 | Serviced by probe

4.5.6 Fastdata Register (TAP Instruction FASTDATA)

Compliance L evel: Required with EJTAG TAP feature for EJTAG version 02.60 and higher.

The width of the Fastdataregister is 1 bit. During a Fastdata access, the Fastdata register iswritten and read, i.e., abit
isshifted in and abit is shifted out. (See Section 4.4.3 on page 93 for how the Data + Fastdata registers are selected by
the FASTDATA instruction.) During a Fastdata access, the Fastdata register value shifted in specifies whether the
Fastdata access should be completed or not. The value shifted out is aflag that indicates whether the Fastdata access
was successful or not (if completion was requested).

Figure 4.12 Fastdata Register Format

0

32/64-bit | SPrA
Processor cc

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.5 TAP Data Registers

Table 4.11 Fastdata Register Field Description

Fields
Read / | Power-up
Name Bits Description Write State Compliance
SPrAcc 0 Shifting in a zero value requests completion of the Fast- R/W Undefined Required

dataaccess. The PrAcc bit in the EJTAG Control register
is overwritten with zero when the access succeeds. (The
access succeeds if PrAcc is one and the operation
addressisin the legal dmseg segment Fastdata area.)
When successful, aoneis shifted out. Shifting out azero
indicates a Fastdata access failure.

Shifting in a one does not compl ete the Fastdata access
and the PrAcc bit is unchanged. Shifting out a one indi-
cates that the access would have been successful if
allowed to complete and a zero indicates the access
would not have successfully completed.

The FASTDATA access is used for efficient block transfers between the dmseg segment (on the probe) and target
memory (on the processor). An “upload” is defined as a sequence of processor |oads from target memory and stores
to the dmseg segment. A “download” is a sequence of processor loads from the dmseg segment and stores to target
memory. The “Fastdata ared’ is aspecial range of dmseg segment addresses (OxF..F20.0000 - OxF..F20.000F) that
must be used for Fastdata uploads and downloads. The Data + Fastdata registers (selected with the FASTDATA
instruction) allow efficient completion of pending Fastdata area accesses.

During Fastdata uploads and downloads, the processor will stall on accesses to the Fastdata area. The PrAcc (proces-
sor access pending bit) will be 1 indicating the probe is required to compl ete the access. Both upload and download
accesses by the probe are attempted by shifting in azero SPrAcc value (to request access completion) and shifting out
SPrAccto seeif the attempt will be successful (i.e., there was an access pending and alegal Fastdata area address was
used). Downloads will also shift in the datato be used to satisfy the load from the dmseg segment Fastdata area, while
uploads will shift out the data being stored to the dmseg segment Fastdata area.

As noted above, two conditions must be true for the Fastdata access to succeed. These are:
* PrAcc must be1l, i.e., there must be a pending processor access.

» The Fastdata operation must use a valid Fastdata area address in the dmseg segment (OxF..F20.0000 to
OxF..F20.000F).

MIPS® EJTAG Specification, Revision 6.10 109

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

110

Table 4.12 shows the values of the PrAcc and SPrAcc bits and the results of a Fastdata access.

Table 4.12 Operation of the FASTDATA access

PrAccin
Address the LSB PrAcc LSB
Probe Match Control (SPrAcc) Action in the changes shifted Data shifted
Operation check Register | shifted in | Data Register to out out
Download Fails X X none unchanged 0 invalid
using FAST- . .
DATA Passes 1 1 none unchanged 1 invalid
1 0 write data 0 (SPrAcc) 1 valid (previ-
ous) data
0 X none unchanged 0 invalid
Upload using Fails X X none unchanged 0 invalid
FASTDATA
Passes 1 1 none unchanged 1 invalid
1 0 read data 0 (SPrAcc) 1 vaid data
0 X none unchanged 0 invalid

Thereis no restriction on the contents of the Dataregister. It is expected that the transfer size is negotiated between
the download/upload transfer code that initiates the Fastdata access on the core and the probe software. To download
aseries of datawords, the transfer code on the processor side would execute a loop of |oads from the Fastdata mem-
ory area, and stores to target memory (accompanied by address increments). Note that the most efficient transfer sizes
are word and double-word for 32-bit and 64-bit processors respectively.

The Rocc hit of the Control register is not used for the FASTDATA operation.

4.5.7 PCsample Register (PCSAMPLE Instruction)

Compliance Level: Required if PC Sampling feature isimplemented in EJTAG (PC Sampling was introduced in
EJTAG revision 3.xx.)

The PCSAMPLE instruction selects the PCsampl e register. The width of the register depends on whether or not the
processor implements the MIPSMT Module. If MIPS MT is not implemented, the length is 41 bits. If MIPSMT is
implemented, then the PCsample register length is 49 bits.

Please refer to Chapter 7, “PC Sampling” on page 173 for adescription of this feature and the PCsample register,

4.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)

Compliance L evel: Required with EJTAG TAP.

The Bypass register is a one-bit read-only register, which provides a minimum shift path through the TAP. Thisregis-
ter isalso defined in IEEE 1149.1.

Figure 4.13 shows the format of the Bypass register; Table 4.13 describes the Bypass register field.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.6 Examples of Use

Figure 4.13 Bypass Register Format

0

32/64-bit

0
Processor

Table 4.13 Bypass Register Field Description

Fields
Read / | Power-up
Name Bits Description Write State Compliance
0 0 Ignored on writes; returns zero on reads. R 0 Required

4.6 Examples of Use

This section provides several examples that use the TAP.

4.6.1 TAP Operation

An example for operation of the TAP is shown in Figure 4.14. TRST* is assumed deasserted high.

Figure 4.14 TAP Operation Example

o JJyuuuuuuuuuuuyyyyl

TMS
[}
=5 @
o
TAP 3 2 z 3 2 2 5
controller = = z |2 |3 &
s 8 28R 2
TDI IRO | IR1 | IR2 | IR3 | IR4 DRO | DR1|DR2

0 AVES OO0

Thefive-bit Instruction register isinitially loaded with 00001,. The first bit shifted out of the Instruction register isa

1 followed by four O's. IR0 to IR4 indicate the new value for the Instruction register. IR0, the new LSB, is shifted in
first, because it will be at the LSB position when al five bits have been shifted in.

Thisexampleis similar for the selected data register.

MIPS® EJTAG Specification, Revision 6.10 111

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

112

4.6.2 ManufID Value

Table 4.14 shows the values of the ManufID field in the Device ID register as defined by the manufacturers. The
Device ID register is described in Section 4.5.1 on page 95.

Table 4.14 ManufID Field Value Examples

Last byte without
Company JEDEC Code Continuations Carry ManufID Value
Philips 0x15 0 0x15 0x015
LS! Logic 0xB6 0 0x36 0x036
IDT 0xB3 0 0x33 0x033
Toshiba 0x98 0 0x18 0x018
MIPS Technologies, Inc. OX7F 7TFA7 2 0x27 0x127

4.6.3 Rocc Bit Usage

The R/WO0 Rocc bit in the EJTAG Control register acknowledges that the probe has seen a processor reset, and further
accesses take this reset into account. This bit is set at reset. The probe must clear it as an acknowledge of the reset.

All other writesto the EJTAG Control register, except for the reset acknowledge, should write 1 to this bit in order to
not acknowledge any resets occurring between reads and writes of the EJTAG Control register.

Correct use of the Rocc bit ensures safe handling of processor access even across reset. An example is the following

scenario:

1. A processor accessis pending and the PrAcc is read with value 1 (Rocc has been cleared previously).

2. The Address and Dataregisters are accessed and set up to handle the processor access.

3. TheEJTAG Control register is accessed to finish the processor access. The register isread in the Capture-DR
state. Shifting in of the value to write begins.

4. A reset of the processor occurs, the Rocc bit is set, and the PrAcc bit is cleared.

5. A new processor access occurs, because EJTAGBOOQOT was indicated.

6. A writeof the EJTAG Control register is attempted with PrAcc equal to 0 and Rocc equal to 1, but the write does
not occur because the Rocc bit is set. The new processor access that was not seen is not finished.

7. Poalling of the EJTAG Control register continues. The probe detects that the Rocc hit is set.

8. The probe writes the EJTAG Control register with Rocc equal to 0 to acknowledge that the probe has seen the
reset.

9. Thenew processor accessis serviced as usual.

Inhibiting writes to the EJTAG Control register because of the Rocc bit ensures that the new processor accessis not
finished by mistake due to detection of a pending processor access before the reset occurred.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.6 Examples of Use

4.6.4 EJTAG Memory Access Through Processor Access

The processor access feature makes it possible for the probe to handle accesses from the processors to the specific
EJTAG memory area (dmseg). Thus the processor can execute a debug handler from EJTAG memory, whereby appli-
cations that are not prepared with EJTAG code in the system memory still can be debugged.

The probe can get information about the access through the TAP as shown in Table 4.15.

Table 4.15 Information Provided to Probe at Processor Access

Information Field and Register
Pending processor access PrAcc field in the EJTAG Control register
Read or write access PRnW field in the EJTAG Control register
Size and datalocation Psz field in EJTAG Control register, and two or three LSBsin the Address register
Address Address register
Data Data register

The servicing of processor accesses works with a polling scheme, where the PrAcc bit is polled until a pending pro-
cessor accessisindicated by PrAcc equal to 1. Then the Address register isread to get the address of the transaction,
and the Data register is accessed to get the write data or provide the read data. Finally the PrAcc bit is cleared, in
order to finish the access from the processor.

In addition, the ProbTrap and ProbEn bits control the debug exception vector location and the indication to the pro-
cessor that the probe will service accesses to the EJTAG memory through processor accesses.

Handling of processor accessin relation to reset requires specific handling. A pending processor accessiis cleared at
reset. At the sametime, the Rocc hit is set, thereby inhibiting any processor accesses to be finished until Rocc is
cleared. Thus the probe will have to acknowledge that a reset occurred, and will thereby not accidentally finish a pro-
cessor access due to a processor access that occurred before the reset.

A pending processor access can only finish if the probe clears PrAcc or a processor reset occurs.

The width of the Address register isfrom 32 to 64 hits. The specific length is determined by shifting a known bit pat-
tern through the register.

The following subsections show examples of servicing read and write processor accesses.
4.6.4.1 Write Processor Access
Figure 4.15 shows a possible flow for servicing awrite processor access. The example implements a 32-bit processor

with 32-bit Address register, running in little-endian mode. A halfword storeis performed to address OxFF20 1232 of
value 0x5678.

MIPS® EJTAG Specification, Revision 6.10 113
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

Figure 4.15 Write Processor Access Example

PrAcc

PRnW

Psz Size=1
Address Address = = OxFF20 1232
Data Data = = 05678 XXXX

O NONONNONNONNONONE

The different probe actions shown on the figure are described below:

1. TheEJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is attempted to
be written to 1 when polling, in order to prevent a processor access from finishing before being serviced. The val-
ues of PRnW and Psz are saved when PrAcc indicates a pending processor access.

2. The Addressregister isread. It contains the address of the store resulting in the write processor access.

3. TheDataregister isread, which contains the data from the store resulting in the write processor access.

4. ThePrAcc bit iswritten to O, in order to finish the processor access.

The probe must update the appropriate bytesin its internal memory used for EJTAG memory with the value of the
write.

Notice that the two lower bytes of the Data register are undefined, and that the two lower bytes of the saved register
are shifted up on the two high bytes in the Data register as on adata bus for an external memory system. The Address
register in this case contains the address from the store; however, for some accesses, thisis not the case because the
two L SBs (32-bit processor) are modified for some accesses depending on size and address.

4.6.4.2 Read Processor Access

Figure 4.16 shows a possible flow for servicing aread processor access. The example implements a 64-bit processor
with 36-bit Address register. A doubleword load/fetch from address OxFFFF FFFF FF20 3450 is shown in the figure.

114 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

4.6 Examples of Use

Figure 4.16 Read Processor Access Example

PrAcc

PRnW [
Psz Size=3

Address Address = = OxF FF20 3457

Data 00.00.0 0.0 BEEF

A ONONO ® ©, © © C

The different probe actions shown in the figure are described below:

1. TheEJTAG Control register is polled for the indication of apending PrAcc bit. The PrAcc bit is attempted to be
written to 1 when polling, in order to prevent a processor access from finishing before being serviced. The values
of PRNW and Psz are saved when PrAcc indicates a pending processor access.

2. TheAddressregister isread. It contains the address of the load/fetch resulting in the write processor access, with
the three L SBs (64-bit processor) modified to allow size indication together with the Psz.

3. TheDataregister iswritten with the datato return for the load/fetch, resulting in the read processor access.

4. ThePrAcc bitiscleared, in order to finish the processor access.

The probe must provide data for the read processor access from the internal EJTAG memory.

Notice that the Address register does not contain the direct address from the access, because the three L SBs (64-bit
processor) are modified to indicate the size in conjunction with Psz. Also notice that in this case, there is no shifting

of the data returned for the processor access by writing to the Data register, because a doubleword is provided. For
other accesses, the Data register must be written with a shifted value depending on the specific access.

MIPS® EJTAG Specification, Revision 6.10 115

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

EJTAG Test Access Port

116 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 5

Hardware Breakpoints

This chapter describes the optional instruction and data hardware breakpoints. It contains the following sections:
* Section 5.1 “Introduction”

e Section 5.2 “Overview of Instruction and Data Breakpoint Registers”

e Section 5.3 “Conditions for Matching Breakpoints’

e Section 5.4 “Debug Exceptions from Breakpoints’

e Section 5.5 “Breakpoints Used as Triggerpoints’

e Section 5.6 “Instruction Breakpoint Registers’

e Section 5.7 “Data Breakpoint Registers’

e Section 5.8 “Recommendations for Implementing Hardware Breakpoints’

e Section 5.9 “Breakpoint Examples’

The general description in this chapter covers processors with R4000 privileged environments. Differences for pro-

cessors with R3000 privileged environments are described in Appendix A, “Differences for R3000 Privileged
Environments” on page 201.

5.1 Introduction

Hardware breakpoints compare addresses and data of executed instructions, including data | oad/store accesses.
Instruction breakpoints can be set even on addressesin ROM areas, and data breakpoints can cause debug exceptions
on specific data accesses. I nstruction and data hardware breakpoints are alike in many aspects, and are described in
parallel in the following sections. When the term “breakpoint” is used in this chapter, then the referenceisto a*“ hard-
ware breakpoint”, unless otherwise explicitly noted.

The breakpoints provide the following key features:

» From zeroto 15 instruction breakpoints can be implemented to cause debug exceptions on executed instructions,
both in ROM and RAM. Bit masking is provided for virtual address compares, and masking of compares with
ASID (optional) is also provided.

» From zero to 15 data breakpoints can be implemented to cause debug exceptions on data accesses. Bit masking is
provided for virtual address compares, masking of compares with ASID (optional) is provided, optional data
value compares allows masking at byte level, and qualification on byte access and access typeis possible.

e Optionaly provide for equality and masking breakpoints for inclusive and exclusive address range matching.

MIPS® EJTAG Specification, Revision 6.10 117

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

118

* Registersfor setup and control are memory mapped in the drseg segment, accessible in Debug Mode only.

» Breakpoints have several implementation options to ease integration with various microarchitectures.
Hardware breakpoints require the implementation of the Debug Control Register (DCR).

Several additional options are possible for breakpoints, as described in the following subsections.

For EJTAG features, there are no difference between areset and a soft reset occurring to the processor; they behave

identically in both Debug Mode and Non-Debug Mode. References to reset in the following therefore refers to both
reset (hard reset) and soft reset.

5.1.1 Instruction Breakpoint Features

Figure 5.2 shows an overview of the instruction breakpoint feature. The feature compares the virtual address (PC) and
the ASID of the executed instructions with each instruction breakpoint, applying masking on address and ASID.
When an enabled instruction breakpoint matches the PC and ASID, a debug exception and/or atrigger is generated,
and an internal bit in an instruction breakpoint register is set to indicate that a match occurred. If the processor imple-
ments the MIPS MT Module, then a match for the TC (Thread Context Id) may also be enabled and required.

Figure 5.1 Instruction Breakpoint Overview

PC
— > .
ASID Instruction Debug Exception

-
TC (for MIPSMT) Hardware : —
—_— Breakpoint Trigger Indication >

Guest| D (for VZ) >

5.1.2 Data Breakpoint Features

Figure 5.2 shows an overview of the data breakpoint feature. The feature compares the load or store access type
(TYPE), the virtual address of the access (ADDR), the ASID, the accessed bytes (BY TELANE), and data value
(DATA) with each data breakpoint, applying masks and/or qualifications on the access properties. If the processor
implements the MIPS MT Module, then amatch for the TC (Thread Context 1d) may also be enabled and required.

Figure 5.2 Data Breakpoint Overview

TYPE
ADDR
ASID Debug Exception

Data
BYTELANE Hardware

DATA Breakpoint

|
Trigger Indication >

TC (for MIPSMT),

Guest| D (for VZ) 3

When an enabled data breakpoint matches, a debug exception and/or atrigger is generated, and an internal bit in a
data breskpoint register is set to indicate that a match occurred. The match is either precise (the debug exception or
trigger occurs on the instruction that caused the breakpoint to match) or imprecise (the debug exception or trigger
occurs later in the program flow).

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.2 Overview of Instruction and Data Breakpoint Registers

5.2 Overview of Instruction and Data Breakpoint Registers

From zero to 15 instruction and data breakpoints can be implemented independently. Implementation of any break-
point implies that the Debug Control Register (DCR) isimplemented.

The InstBrk and DataBrk bits in the DCR register indicate whether there are zero or 1 to 15 implementations of a
breakpoint type. If no breakpoints of a specific type are implemented, then none of the registers associated with this
breakpoint type are implemented.

If any (1 to 15) breakpoints of a specific type areimplemented, then the breakpoint status register associated with that
breakpoint typeisimplemented. The instruction and data break status registersindicate the number of breakpointsfor
each corresponding type. The number of additional registers depends on the number of implemented breakpoints for
the respective breakpoint type.

Registersfor ASID compares are only implemented if indicated in the corresponding breakpoint status register.
5.2.1 “Overview of Instruction Breakpoint Registers’ and 5.2.2 “Overview of Data Breakpoint Registers’ provide

overviews of the instruction and data breakpoint registers, respectively. All registers are memory mapped in the drseg
segment. All registers are 32 bits wide for 32-bit processors and 64 bits wide for 64-bit processors.

5.2.1 Overview of Instruction Breakpoint Registers

Table 5.1 lists the Instruction Breakpoint registers. The Instruction Breakpoint Status register provides implementa-
tion indication and status for instruction breakpointsin general. The 1 to 15 implemented breakpoints are numbered O
to 14, respectively, for registers and breakpoints. The specific breakpoint number isindicated by “n”.

Table 5.1 Instruction Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference Compliance Level

IBS Instruction Breakpoint Status See Section 5.6.1 on | Required if any instruction breakpoints
page 135 are implemented, optional otherwise.

IBANn Instruction Breakpoint Addressn See Section 5.6.2 on | Required with instruction breakpoint n,
page 136 optional otherwise.

IBMn Instruction Breakpoint Address Mask n See Section 5.6.3 on
page 137

IBASIDn Instruction Breakpoint ASID n See Section 5.6.4 on | Required with instruction breakpoint n,
page 137 optional otherwise. Not implemented if

ASIDsup bitin IBSis 0 (zero).

IBCn Instruction Breakpoint Control n See Section 5.6.50on | Required with instruction breakpoint n,

page 140 optional otherwise.

Register addresses are shown in Section 5.6 on page 134.

5.2.2 Overview of Data Breakpoint Registers

Table 5.2 lists the Data Breakpoint Registers. The Data Breakpoint Status register provides implementation indica-
tion and status for data breakpointsin general. The 1 to 15 implemented breakpoints are numbered 0 to 14, respec-
tively, for registers and breakpoints. The specific breakpoint number isindicated by “n”. The registers for data value

MIPS® EJTAG Specification, Revision 6.10 119

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

compares are only implemented if the value compares for the data breakpoints are implemented, which occurs when

either the NoLV match bit or the NoSVmatch bit in the DBSis 0.

Table 5.2 Data Breakpoint Register Summary

Register
Mnemonic Register Name and Description Reference Compliance Level
DBS Data Breakpoint Status See Section 5.7.1 on | Required if any data breakpoints are
page 142 implemented, optional otherwise.
DBAN Data Breakpoint Addressn See Section 5.7.2 on | Required with data breakpoint n,
page 144 optional otherwise.
DBMn Data Breakpoint Address Mask n See Section 5.7.3 on
page 145
DBASIDn Data Breakpoint ASID n See Section 5.7.4 on | Required with data breakpoint n,
page 145 optional otherwise. Not implemented if
ASIDsup bit in DBSis 0 (zero).
DBCn Data Breakpoint Control n See Section on Required with data breakpoint n,
page 148 optional otherwise.
DBVn Data Bresakpoint Value n See Section 5.7.6 on | Required with data breakpoint n,
page 151 optional otherwise. Only implemented
with value compares, shown in DBS.

Register addresses are shown in Section 5.7 on page 142.

5.3 Conditions for Matching Breakpoints

120

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data
access. These conditions are described in the following subsections. A breakpoint only matches for instructions exe-
cuted in Non-Debug Mode, never due to instructions executed in Debug Mode.

The match of an enabled breakpoint generates a debug exception as described in Section 5.4 on page 131 and/or a
trigger indication as described in Section 5.5 on page 133. The BE and/or TE bitsin the IBCn or DBCn registers
enable the breakpoints for breaks and triggers, respectively.

It is implementati on-dependent whether or not a breakpoint stalls the processor in order to evaluate the match expres-
sion; for example, if required for timing reasons or in order to wait on a scheduled load to return for evaluation of a
data breakpoint with a data value compare. In some cases, stalling is avoided with imprecise data breakpoints, as
described in Section 5.4.2 on page 131.

5.3.1 Conditions for Equality and Mask Matching Instruction Breakpoints

When an instruction breakpoint is enabled, that breakpoint is evaluated in Non-Debug M ode with the instruction
boundary address (the lowest address of a byte in the instruction) of every executed instruction. The instruction
breakpoint is also evaluated on addresses usually causing an Address Error exception, a TLB exception, or other
exceptions. It isthereby possible to cause a Debug I nstruction Break exception on the destination address of ajump,
even if ajump to that address would cause an Address Error exception. The breakpoint is not evaluated on instruc-
tions from speculative fetches or execution.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.3 Conditions for Matching Breakpoints

A match of an instruction breakpoint depends on a number of parameters, shown in Table 5.3. Thefieldsin the
instruction breakpoint registers are in the form REGg g p-

Table 5.3 Instruction Breakpoint Condition Parameters

Parameter Description Width
ASID ASID field in EntryHi CPO register. 8 hits
IBCNasiDuse Use ASID value in compare for instruction breakpoint n: 1 bit

Encoding Meaning
0 Do not use ASID value in compare
1 Use ASID valuein compare
IBASIDnpgp Conditional Instruction breakpoint n ASID value for comparing. 8 bits
PC Virtual address of instruction boundary or target for jump/branch. 32/ 64 hits
ISAmode Used only when MIPS16e | SA support isimplemented. It indicates the | SA modefor the | 1 bit

executed instruction or the mode at the target of ajump/branch:

Encoding Meaning

0 32-bit MIPS instruction
1 MIPS16e instruction

IBANgA Instruction breakpoint n address for compare with conditions. 32/ 64 bits
IBMngy Instruction breakpoint n address mask condition: 32/ 64 bits
Encoding Meaning

0 Corresponding address bit compared
1 Corresponding address hit masked

IBCnreyse Thread Context (TC) value used in compare for instruction breakpoint n: 1 bit
Encoding Meaning
0 Do not use TC value in compare
1 Use TC value in compare
IBCnrc TCidvalue 8 bits max
GuestID ID field in GuestCtl CPO register. 8 hits
IBASIDNnygip Use GuestID value in compare for instruction breakpoint n: 1 bit
Encoding Meaning
0 Do not use GuestID value in compare
1 Use GuestI D value in compare
IBASIDNGuestiD Conditional Instruction breakpoint n GuestlD value for comparing. 8 bits

The PC, IBAN|ga, and IBMn,gy, fields are 32 bits wide for 32-bit processors and 64 bits wide for 64-hit processors.

The equation that determines the match is shown below with “ C”-like operators. In the equation, 0 means all bits are
0's, and ~0 means al bits are 1's. The widths are similar to the widths of the parameters. The match equation is
IB_match, and is dependent on whether MIPS16e is supported or not.

MIPS® EJTAG Specification, Revision 6.10 121
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

If there is no support for MIPS16e then the IB_match equation is:

IB_match =

(!'IBChpeyse || (TC == IBCnqe)) &&

(! IBCnagrpuse || (ASID == IBASIDnagrp)) &&

(! IBASIDnygrp || (GuestID == IBASIDng,eqerp)) &&
((IBMngy | ~ (PC ~ IBAngg,)) == ~0)

If MIPS16e is supported then the IB_match equation is shown below, in which case the ISAmode bit is compared
with bit O of IBANgp instead of a compare with bit 0in PC:

IB_match =

(1IBCnpeyge || (TC == IBCnge)) &&

(! IBCnagrpuse || (ASID == IBASIDn,grp)) &&

(! IBASIDnygrp || (GuestID == IBASIDng,ege1p)) &&

((IBMngy | ~ (((PC[MSB:1] << 1) + ISAmode) ~ IBAngg,)) == ~0)

The IB_match equation also applies to 64-bit processors running in 32-bit addressing mode, in which case all 64 bits
are compared between the PC and the IBANgp register.

The match indication for instruction breakpointsis always precise; that is, it isindicated on the instruction causing the
IB_match to be true.

It isimplementation-dependent for an instruction breakpoint to match when the memory system does not ever
respond to the fetch or generates a bus error from a system watchdog. If no match occurs, then the processor hangs
without the instruction breakpoint generating either a debug exception or atrigger.

It isimplementation specific whether an instruction breakpoint will match a microMIPS instruction for the case
where the first halfword is within the match range while the second halfword is not.

5.3.2 Conditions for Equality and Mask Matching Data Breakpoints

When adata breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with both the access address of
every data access due to load/store instructions (including loads/stores of coprocessor registers) and the address caus-
ing address errors upon data access. Data breakpoints are not evaluated with addresses from PREF (prefetch) or
CACHE ingtructions. It is implementati on-dependent whether an SC or SCD instruction causes a data breakpoint if
all conditions would cause a match, but the SC or SCD instruction would fail because the LLbit isO.

The concept “data bus” is used in the following to denote the bytes accessed and the data value transferred in a
load/store operation. In this notation data bus refers to the naturally-aligned memory word (for 32-bit processors) or
doubleword (for 64-bit processors) containing the accessed address referred to as ADDR. This notation is indepen-
dent of the actual width of the processor bus, e.g., the “ databus’ width of a64-bit processor is 64, even if that proces-
sor has a 32-bit processor bus.

A match of the data breakpoint depends on a number of parameters, shown in Table 5.4. The fields in the data bresk-
point registers are in the form REGg g p.

Table 5.4 Data Breakpoint Condition Parameters

Reference Description Width
TYPE Data access type is either load or store. (no width)
122 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.3 Conditions for Matching Breakpoints

Table 5.4 Data Breakpoint Condition Parameters (Continued)

Reference

Description

Width

DBChinoss

Controls whether condition for data breakpoint is fulfilled on a store access:

Encoding Meaning

0 Condition can be fulfilled on store access

1 Condition is never fulfilled on store access

1 bit

DBCnnoLB

Controls whether condition for data breakpoint is fulfilled on aload access:

Encoding Meaning

0 Condition can be fulfilled on load access

1 Condition is never fulfilled on load access

1 bit

ASID

ASID field in EntryHi CPO register.

8 hits

DBCnasipuse

ASID value used in compare for data breakpoint n:

Encoding Meaning

0 Do not use ASID value in compare
1 Use ASID vaue in compare

1 bit

DBASIDNagp

Conditional Data breakpoint n ASID value for comparison.

8 bits

ADDR

With one exception, virtual address of data access, effective address. The exception is
the LUXC1 and SUXCL instructions in which the lower three bits of the effective
address are ignored (forced to zero for the operation). In this case, ADDR isthe effective
address with bits 2:0 forced to zero.

32/ 64 bits

DBAnDBA

Data breakpoint n address for compare with conditions.

32/ 64 bits

DBMnpgy,

Conditional Data breakpoint n address mask:

Encoding Meaning

0 Corresponding address bit compared
1 Corresponding address bit masked

32/ 64 hits

BYTELANE

Byte lane access indication, where BY TELANE[Q] is 1 only if the byte at bits[7:0] of
the data busis accessed, BY TELANE[1] is 1 only if the byte at bits [15:8] of the data
bus is accessed, etc.

4/ 8 hits

DBCngp

Determines whether access isignored to specific bytes. BAI[0] controlsignore of access
to the byte at bits[7:0] of the data bus, BAI[1] ignores accessto byte at bits [15:8] of the
data bus, etc.:

Encoding Meaning

0 Condition depends on access to corresponding byte

1 Access for corresponding byte isignored

4/ 8 bits

DATA

Data value from the data bus.

32/ 64 bits

DBVnpgy

Conditional Data breakpoint n data value for compare.

32/ 64 hits

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

123

Hardware Breakpoints

Table 5.4 Data Breakpoint Condition Parameters (Continued)

Reference Description Width
DBCng m Conditional Byte lane mask for value compare on data breakpoint. BLM[0] masks byte |4/ 8 bits
at bits[7:0] of the data bus, BLM[1] masks byte at bits[15:8], etc.:
Encoding Meaning
0 Compare corresponding byte lane
1 Mask corresponding byte lane
DBCnreyse Thread Context (TC) value used in compare for data breakpoint n: 1 bit
Encoding Meaning
0 Do not use TC value in compare
1 Use TC value in compare
DBCnyc TCidvalue 8 bits max
DBCnjym Indicates whether or not to invert the data value match 1 bit
GuestID ID field in GuestCtl CPO register. 8 hits
DBASIDnygp Use GuestI D value in compare for data breakpoint n: 1 bit
Encoding Meaning
0 Do not use GuestID value in compare
1 Use GuestID value in compare
DBASIDNgestip Conditional Instruction breskpoint n Guestl D value for comparing. 8 hits

The ADDR, DBANpga, DBMnpgym, DATA, and DBVnpgy, fields are 32 bits wide for 32-bit processors and 64 bits
wide for 64-bit processors. The BY TELANE, DBCng, ;, and DBCngp, fields are four bits wide for 32-bit proces-
sors and eight bits wide for 64-bit processors. The width isindicated as“N” in the equations below.

The match equations are shown below with “ C”-like operators. In the equation, O means all bitsare 0's, and ~0 means
al bitsare 1's. The bit widths are similar to the widths of the parameters.

DB_match is the overall match equation (the DB_addr_match, DB_no_value_compare, and DB_value_match equa-
tionsin the DB_match equation are defined below):

DB_match =

(!DBChpcyse || (TC == DBCnge)) &&

(((TYPE == load) && ! DBCnyop) || ((TYPE == store) && ! DBChy,sg)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

DB_addr_match is defined as:

DB_addr_match =

(! DBCnpgrpuse || (ASID == DBASIDnagrp)) &&
(! DBASIDnygrp || (GuestID == DBASIDnguestp)) &&
((DBMnpgy | ~ (ADDR ~ DBAnpg,)) == ~0) &&
((~ DBCnga; & BYTELANE) != 0)
124 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.3 Conditions for Matching Breakpoints

The DB_addr_match equation also applies to 64-hit processors running in 32-bit addressing mode, in which case all
64 bits are compared between the ADDR and the DBANpg field. Please note the special case used for ADDR for the

LUXC1 and SUXC1 instructions as described in Table 5.4.

DB_no_value_compare is defined as:

DB_no_value_compare =
((DBCngry | DBCngap | ~ BYTELANE) == ~0)

If adatavalue compareisindicated on abreakpoint, then DB_no_value compareisfalse, and if thereisno datavalue
compare then DB_no_value _compareistrue. Note that a data value compareis arun-time property of the breakpoint
if (DBCng | DBCngpa,) isnot ~0, because DB_no_value_compare then depends on BY TELANE provided by the

load/store instructions. The DBC,y), bit inverts the sense of the match. If set, the value match term will be high if the
data value is not the same as the data in the DBV n register.

If adatavalue compare is required, then the data value from the data bus is compared and masked with the registers
for the data breakpoint, as shown in the DB_value_match equation:

DB_value_match =

DBCnryy
((DATA[7:0] == DBVnpgy(7:07) || ! BYTELANE[O] || DBCngrypo; || DBCngarjo;) &&
((DATA[15:8] == DBVnpgpy[15:.87) || ! BYTELANE[1] || DBCngryr1; || DBCnparpr;) &&
((DATA[8*N-1:8*N-8] == DBVnpgy(g+n-1:8+n-8]) ||

! BYTELANE[N-1] || DBCnpruiy-17 || DBCnparin-17)

Data breakpoints depend on endianess, because values on the byte lanes are used in the equations. Thusit is required
that the debug software programs the breakpoints accordingly to endianess.

It isimplementati on-dependent for a data breakpoint to match when the memory system does not ever respond to the
data access or generates a bus error from a system watchdog. If no match occurs, then the processor hangs without the
data breakpoint generating a debug exception or trigger.

5.3.2.1 Inverting the Data Value Match Condition

EJTAG specification 4.00 and above introduces the concept of inverting the sense of the data value match. Thisisan
optional feature whose presenceisindicated by bit 15 in the Debug Control Register (DCR,y\). When present, bit 1

in the Data Break Control register DBC,y/), indicates whether the match sense should be inverted during execution.
5.3.2.2 Data Breakpoints in case of Unaligned Address

Unaligned addresses can result from explicit halfword, word, and doubleword accesses (for example, if an effective
address of 0x01 is used as source of aLoad Halfword (LH) instruction). The ADDR used in the comparison is the

MIPS® EJTAG Specification, Revision 6.10 125

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

effective address. The BY TELANE valueis defined according to Table 5.5 for a 32-bit processor and to Table 5.6 for
a 64-bit processor.

Table 5.5 BYTELANE at Unaligned Address for 32-bit Processors

ADDR BYTELANE[3:0]
Size [2] [1] [O] Little Endian Big Endian
Halfword X 0 X 0011, 1100,
X 1 X 1100, 0011,
Word X X X 1111,
‘X’ denotes don’t care

Table 5.6 BYTELANE at Unaligned Address for 64-bit Processors

126

ADDR BYTELANE[7:0]

Size [2] [1] [O] Little Endian Big Endian

Halfword 0 0 X 00000011, 11000000,

0 1 X 00001100, 00110000,

1 0 X 00110000, 00001100,

1 1 X 11000000, 00000011,

Word 0 X X 00001111, 11110000,

1 X X 11110000, 00001111,

Doubleword X X X 11111111,
‘X’ denotes don't care

With the above well-defined values of BY TELANE, the behavior is well-defined for data breakpoints without value
compares on operations with unaligned addresses. The BLM field in the DBCn register can be used to avoid value
comparesif al BLM bitsare set to 1.

If the data breakpoint depends on a value compare, then loads will cause an Address Error exception, and for stores
the data value (DATA) is UNPREDICTABLE. This UNPREDICTABLE data can cause match of a data breakpoint
on a store, but an implementation can choose never to indicate a match on data breakpoints depending on value com-
pareif having unaligned address.

If adebug exception is taken on the store then the debug handler can investigate the processor state and thereby deter-
mineif the address was unaligned and UNPREDICTABLE store data for the memory access thereby caused the
debug exception. If adebug exception is not taken for the store, then an Address Error exception is taken. So, in both
casesit is possible for debug software to detect the bug. The BLM field in the DBCn register can be used to avoid
compare on UNPREDICTABLE data, in case al of the BLM bits are set to 1.

If the data breakpoint is used as atriggerpoint (see Section 5.5 on page 133) then aBreak Status (BS) bit might be set
after acompare with UNPREDICTABLE data; however, an Address Error exception occurs in this case thereby mak-
ing it possible to detect the bug.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.3 Conditions for Matching Breakpoints

5.3.2.3 Match for Data Breakpoint with Value Compare on Bus or Cache Error

If adatavalue compare is required to evaluate a data breakpoint, the DB_no_value compare equation is false (see
Section 5.3.2 on page 122). However, if abus or cache error occurs on the load, then thereis no valid datato usein
the compare. This case has two possibilities:

* Thematch will fail.

* Thematch will compare on invalid data, and then indicate a pending bus or cache error through the DBuUsEP or
CacheEP bitsin the Debug register, if a debug exception is taken. This occurrence might cause atrigger indica-
tion to be set on the compare with invalid data.

A bus or cache error on a store does not affect the data breakpoint compare.

Refer to Section 5.8.3 on page 152 for recommendations on implementing data breakpoint compares on invalid data.

5.3.2.4 Precise Match for Data Breakpoints

A precise match for a data breakpoint occurs when the match equation can be fully evaluated at the time the
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the
DB_match equation to be true.

Matches on data breakpoints without data value compares are always precise. Accesses using data value compares
are either imprecise or precise depending on the implementation and specific access.

5.3.2.5 Imprecise Match for Data Breakpoints

An imprecise match for a data breakpoint occurs when the match eguation cannot be fully evaluated at the time the
load/store instruction is executed. This case occurs when the processor is not stalled on a scheduled load and a data
breakpoint must compare on the data value returned by the load. If the breakpoint matches, then the DB_match equa-
tion istrue later in the execution flow rather than at the same time as load/store instruction that caused the load/store
access to match.

Only data breakpoints with value compares can be imprecise, in which case the breakpoints can be imprecise for all
or some of those accesses depending on the implementation.

5.3.3 Precise Exceptions on Data Value Match Breaks

When the EJTAG hardware implements data value match breaks to be taken precisely, the core EJTAG hardware on
obtaining the data value will match the value and cause an exception to be taken on the load instruction. In this situa-
tion, the data value is already read out from its source location and brought to the processor. When the exception han-
dler has taken the exception, the DEPC points to the load instruction (because the exception is taken precisely), and
the load instruction re-executes on a return from exception. If the load value was being read from regular memory,
then thisis usually not an issue. But in a situation where the load data was coming from a special FIFO or 1/0 regis-
ter, thisinstruction cannot be re-executed without altering the state of the peripheral or special memory. To handle
thistype of situation, when the EJTAG hardware implements precise data value exceptions, it is al so expected to keep
the load data value in adrseg register. This allows the debug exception handler to re-execute this instruction in soft-
ware using this data value. The debug handler must also re-calculate the new DEPC value and update it before exe-
cuting the DERET instruction. This Load Data Value register is at drseg address Ox2FFO.

Thisisan optional feature of regular EJTAG introduced in revision 4.00 and above, and the presence of thisfeatureis
indicated by bit 14 (DVM) of the DCR register.

MIPS® EJTAG Specification, Revision 6.10 127

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

5.3.4 Address Range Triggered Instruction Breakpoints

I mplementations may optionally support the address range triggered data breakpoints. When thisfeature is supported,
the following data breakpoint registers are redefined as the following:

IBAN : represents the upper limit of a address range boundary
IBMn : represents the lower limit of the address range boundary
For this feature, the following register bits must be implemented:

IBCn[10] - HWARTSfield : apreset value of 1 represents the address range triggered data breakpoint featureis
supported for this particular data breakpoint channel. This bit is read-only.

IBCn[9] - EXCL field : avalue of 0 represents the breakpoint will match for addresses inclusive (within) the
range defined by IBMn and IBAN. A value of 1 represents the breakpoint will match for addresses exclusive
(outside) to the range defined by IBMn and IBANn. Thisbit iswriteable.

IBCn[8] - HWART field : avalue of 0 respresents the breakpoint will match using the equality-mask equation as
found in Section 5.3.1 “Conditions for Equality and Mask Matching Instruction Breakpoints’. A value of 1 rep-
resents the breakpoint will match using address ranges using the equation below:

128 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.3 Conditions for Matching Breakpoints

The match equations are defined to the following:
IB_match =
(1BCnycyee | (TC==1BCnyc)) &&
(! IBCnagpuse Il (ASID == IBASIDnagp)) &&
(! IBASIDnygp || (Guest!D == IBASIDNg eqip)) &&
(((~1BCnpyarts Il ~1BCnpyart) &&

((IBMnIBM |~ (PC/IBANIBA)) ==~0) ||

((1BCNryyarts && 1BCNiyart) &&
((~IBCNgyq && (IBM <= PC <= IBA)) ||
(1BCNgyq && (IBM > PC || PC > IBA)

)

If either microMIPS or MIPS16e is used, the match equations are defined as the following:
IB_match =
(BCnycuse | (TC==1BCn¢c)) &&
(! IBCNagpuse Il (ASID == IBASIDnagp)) &&
(! IBASIDNygp || (Guest!D == IBASIDNgueqip)) &&
((1BCharts | ~1BCripyary) &&
((1BMnjgp |~ (((PC[MSB:1] << 1) +ISAmode) N IBANga)) ==~0) ||
((1BCNpyyarts && 1BCNpyart) &&
(IBMnigml[0] | ~ (ISAmode ™ IBANga[0])) == ~0) &&
((~1BCngg && (IBM[MSB:1] <= PC[MSB:1] <= IBA[MSB:1])) ||
(IBCNgyg && (IBM[MSB:1] > PC[MSB:1] || PC[MSB:1] > IBA[MSB:1])

)

Also note that addresses that overlap aboundary is considered for both exclusive and inclusive breakpoint matches.

MIPS® EJTAG Specification, Revision 6.10 129
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

It isimplementation specific whether an instruction breakpoint will match a microMIPS instruction for the case
where the first halfword is within the match range while the second halfword is not.

5.3.5 Address Range Triggered Data Breakpoints

Implementations may optionally support the address range triggered data breakpoints.
When this feature is supported, the following data breakpoint registers are redefined:
DBAnN : represents the upper limit of a address range boundary
DBMn : represents the lower limit of the address range boundary
In addition, the following register bits must be implemented:

DBCn[10] - hwartsfield: apreset value of 1 represents the address range triggered data breakpoint featureis sup-
ported for this particular data breakpoint channel. This bit is read-only.

DBCn[9] - excl field: avalue of 0 represents the breakpoint will match for addresses inclusive (within) the range
defined by DBMn and DBAN. A value of 1 represents the breakpoint will match for addresses exclusive (out-
side) to the range defined by DBMn and DBAN. Thisbit iswriteable.
DBCn[8] - hwart field: avalue of 0 respresents the breakpoint will match using the equality-mask equation as
found in Section 5.3.2 “Conditions for Equality and Mask Matching Data Breakpoints’..A value of 1 represents
the breakpoint will match using address ranges using the equation below:
The match equations are redefined to the following:

DB_match =

(!DBchCUSE ” (TC== DBchc)) &&

(((TYPE==load) && ! DBCnnoLg) Il ((TYPE == store) && ! DBCnyosg)) &&

DB_addr_range _match && (DB_no_vaue _compare || DB_value_match)

DB_addr_range match =
(! DBCNagpuse Il (ASID == DBASIDNagp)) &&
(! DBCnygp |l (GuestID == DBASIDNG exip)) &&
(((~DBChpyarts [l ~DBCriyyary) & &
((DBMnpgy |~ (ADDR " DBANpga)) ==~0) ||
((DBChpyyarts & & DBChyyart) & &

((~DBCngg && (DBMn <= ADDR <= DBAN)) ||

130 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.4 Debug Exceptions from Breakpoints

(DBCngy && (DBMn > ADDR || ADDR > DBAnN)

)

When address range triggered data breakpointsis enabled, DBCn.BLM[3:0] must be set to 4'b1111 because value
matching is not supported with this feature. Addresses that overlap a boundary is considered for both exclusive and
inclusive breakpoint matches.

5.4 Debug Exceptions from Breakpoints

This section describes how to set up instruction and data breakpoints to generate debug exceptions when the match
conditions are true.

5.4.1 Debug Exception Caused by Instruction Breakpoint

The BE bit in the IBCn register must be set for an instruction breakpoint to be enabled. A Debug I nstruction Break
exception occurs when the IB_match equation is true (see Section 5.3.1 on page 120). The corresponding Break Sta-
tus (BS) hit in the IBS register is set when the breakpoint generates the debug exception. Note that the BE bit alone
enables the breakpoint exception, whether or not the TE hit is set (see Section 5.5 on page 133).

The Debug Instruction Break exception is precise, so the DEPC register and DBD hit in the Debug register (see
Section 2.7 on page 58) point to the instruction that caused the IB_match equation to be true.

Theinstruction receiving the debug exception only updates the debug related registers. That instruction will not cause
any loads/stores to occur. Thus a debug exception from a data breakpoint cannot occur at the same time an instruction
receives a Debug Instruction Break exception.

The debug handler usually returns to the instruction causing the Debug Instruction Break exception, whereby the
instruction is executed. Debug software must disable the breakpoint when returning to the instruction; otherwise, the
Debug Instruction Break exception will reoccur. An alternative is for debug software to emulate the instruction(s) in
software and change the DEPC accordingly.

5.4.2 Debug Exception by Data Breakpoint

The BE bit in the DBCn register must be set for a data breakpoint to be enabled. A debug exception occurs when the
DB_match condition istrue (see Section 5.3.2 on page 122). A matching data breakpoint generates either aprecise or
an imprecise debug exception. Note that the BE bit alone enables the breakpoint exception, whether or not the TE bit
isset (see Section 5.5 “Breakpoints Used as Triggerpoints’).

Refer to Section 5.8.4 on page 152 for additional information on precise and imprecise debug exceptions.

5.4.2.1 Debug Data Break Load/Store Exception as a Precise Debug Exception

A Debug Data Break L oad/Store exception occurs when a data breakpoint indicates a precise match. In this case, the
DEPC register and DBD bit in the Debug register point to the load/store instruction that caused the DB_match equa-

MIPS® EJTAG Specification, Revision 6.10 131

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

132

tion to be true (see Section 5.3.2 on page 122), and the corresponding BS bit in the DBS register is set. Details of the
behavior of the instruction causing the debug exception are shown in Table 5.7.

Table 5.7 Behavior on Precise Exceptions from Data Breakpoints

Instruction and Load/Store Instruction Destination

Data Breakpoint Execution Register External Memory System Access
Store wo/w value match Not completed Not updated® Store to memory is not committed
Load without value match Not updated? Load from memory does not occur
Load with value match Load from memory does occur

1. This applies to the Store Conditional Word/Doubleword (SC/SCD) instructions
2. Thisincludes side effects like for the Load Linked Word/Doubleword (LL/LLD) instructions

In the case of a data breakpoint where a data value compareis set up on aload instruction, the load does occur from
the external memory, since the data value is required to evaluate the match condition, but the destination register is
not updated, so the loaded value is simply discarded.

Therules shown in Table 5.8 describe the update of the BS bits when several data breakpoints match the same access
and generate a debug exception.

Table 5.8 Rules for Update of Break Status (BS) Bits on Precise Exceptions from Data Breakpoints

Breakpoints That Matches... Update of BS Bits for Matching Data Breakpoints
Without Value With Value
Instruction Compare Compare Without Value Compare With Value Compare

Load / Store One or more None BS bits set for all No matching breakpoints

Load One or more One or more BS hits set for all Unchanged BS bits because
load of data value does not
occur, so match of the break-
point can’t be determined.

Load None One or more (No matching breakpoints) BS bits set for all.

Store One or more One or more BS hits set for all Optional to either set BShitsfor
all, or change none of the BS
bits.

Store None One or more (No matching breakpoints) BS bits set for all.

Any BS bit set prior to the match and debug exception remains set, because only debug software can clear the BS
bits.

The debug handler usually returns to the instruction that caused the Debug Data Break L oad/Store exception,
whereby the instruction is re-executed. This re-execution resultsin arepeated |oad from system memory after a data
breakpoint with a data value compare on aload, because the |oad occurred previously in order to allow evaluation of
the breakpoint as described above. Memory-mapped devices with side effects on loads must allow such reloads, or
debug software should aternatively avoid setting data breakpoints with data value compares on the address of such
devices. Debug software must disable breakpoints when returning to the instruction; otherwise, the Debug Data
Break Load/Store exception will reoccur. An aternative is for debug software to emulate the instruction in software
and change the DEPC accordingly.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.5 Breakpoints Used as Triggerpoints

5.4.2.2 Debug Data Break Load/Store Exception as an Imprecise Debug Exception

A Debug Data Break L oad/Store |mprecise exception occurs when a data breakpoint indicates an imprecise match. In
this case, the DEPC register and DBD bit in the Debug register point to an instruction later in the execution flow
rather than at the |oad/store instruction that caused the DB_match equation to be true.

The load/store instruction causing the Debug Data Break L oad/Store Imprecise exception always updates the destina-
tion register and completes the access to the external memory system. Therefore this load/store instruction is not
re-executed on return from the debug handler, because the DEPC register and DBD bit do not point to that instruc-
tion.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple outstanding
data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data Break Load/Store Imprecise
exception is generated only for the first one matching. Both the first and succeeding matches cause corresponding BS
bits and DDBLImpr/DDBSImpr to be set, but no debug exception is generated for succeeding matches because the
processor is already in Debug Mode. Similarly, if a debug exception had already occurred at the time of the first
match (for example, due to a precise debug exception), then all matches cause the corresponding BS bits and
DDBLImpr/DDBSImpr to be set, but no debug exception is generated because the processor is already in Debug
Mode.

The SYNC and EHB instructions, followed by appropriate spacing, (as described in Section 2.2.3.7 on page 40 and
Section 2.2.4 on page 41) must be executed before the BS bits and DDBLImpr/DDBSImpr bits are respectively
accessed for read or write. This delay ensures that these bits are fully updated.

Any BS bit set prior to the match and debug exception are kept set, because only debug software can clear the BS
bits.

5.5 Breakpoints Used as Triggerpoints

Software can set up both instruction and data breakpoints such that a matching breakpoint does not generate a debug
exception, but sends an indication through the BS bit only. But note that if the BE hit is set, then a debug exception
will be generated, even if the TE bit isset. The TE bit in the IBCn or DBCn register controls whether an instruction or
data breakpoint, respectively, is used as atriggerpoint. Triggerpoints are evaluated for matches under the same crite-
ria as breakpoints.

The BShit inthe IBS or DBS register is set for atriggerpoint when the respective |B_match condition (see Section
5.3.1 on page 120) or DB_match condition (see Section 5.3.2 on page 122) istrue.

Table 5.9 Actions Resulting from an Instruction/Data Match for Specified BE and TE Bit Values

TE BE Breakpoint Exception BS bit is setin IBS/DBS
0 0 Not taken No
0 1 Taken Yes
1 0 Not taken Yes
1 1 Taken Yes

For the BS hit to be set for an instruction triggerpoint, either the instruction must be fully executed or an exception
must occur on the instruction.

MIPS® EJTAG Specification, Revision 6.10 133

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

The BS hit for a data triggerpoint can only be set if no exception with higher priority than the Debug Data Break

L oad/Store exception with address match only occurred on the load/store instruction. For exceptions with equal or
lower priority than the Debug Data Break L oad/Store exception with address match only, the BS bits are still set for a
matching triggerpoint. For example, the BS bit is set evenif aTLB or Bus Error exception occurred on the load/store
instruction. Data triggerpoints with value compares require the data value to be valid for the BS bit to be set, which is
not the case if, for example, a TLB or Bus Error exception occurs on aload instruction. However, for stores, the trig-
ger may compare on UNPREDICTABLE data as described in Section 5.3.2.2 on page 125.

Therulesfor update of the BS bits are shown in Table 5.10.

Table 5.10 Rules for Update of Break Status (BS) Bits on Data Triggerpoints

Instruction Without/With Value Compare BS Bits Update for Triggerpoint

Load / Store Without value compare BS bit set if no exception with higher priority than the Debug

Data Break Load/Store exception, with address match only,
occurred on the instruction.

Load With value compare BS bit set if no exception with higher priority than the Debug

Data Bresk Load exception, with address and data value match,
occurred on the instruction.

Store With value compare BSbit is set if no exception occurred on the instruction, and is

optional to be set if an exception with equal or lower priority than
the Debug Data Break Store exception, with address match only,
occurred on the instruction, with the requirement that either all the
relevant BS bits are set, or none are changed.

Data breakpoints with imprecise matches generate imprecise triggers when enabled by the TE bit.

Note that trigger indications by BS may be set based on compare with UNPREDICTABLE data, as described in (see
Section 5.3.2.2 on page 125).

A triggerpoint match can be indicated on an optional internal signal or chip pin.

5.6 Instruction Breakpoint Registers

134

This section describes the instruction breakpoint registers for MIPS32 and M1PS64 processors, and other R4000 priv-
ileged environment implementations of 32-bit and 64-bit processors. These registers provide status and control for
theinstruction breakpoints. All registers are in the drseg segment. The 1 to 15 implemented breakpoints are numbered
0 to 14, respectively, for registers and breakpoints. The specific breakpoint number isindicated by “n” in the range O
to 15 depending on the implemented number of instruction breakpoints. The registers and their respective addresses
offsets are shown in Table 5.11. For adescription of the two registers IBCC and IBPC used for complex breakpoints,
see Section 6.3.2 on page 160 and Section 6.3.4 on page 162 respectively.

Table 5.11 Instruction Breakpoint Register Mapping

Register
Offset in drseg Mnemonic Register Name and Description
0x1000 IBS Instruction Breakpoint Status
0x1100 + 0x100* n IBAN Instruction Breakpoint Addressn
0x1108 + 0x100 * n IBMn Instruction Breakpoint Address Mask n
0x1110 + 0x100 * n IBASIDn Instruction Breakpoint ASID n

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.6 Instruction Breakpoint Registers

Table 5.11 Instruction Breakpoint Register Mapping (Continued)

Register
Offset in drseg Mnemonic Register Name and Description
0x1118 + 0x100 * n IBCn Instruction Breakpoint Control n
0x1120 + 0x100 * n IBCCn Instruction Breakpoint Complex Control n
0x1128 + 0x100* n IBPCn Instruction Breakpoint Pass Counter n

5.6.1 Instruction Breakpoint Status (IBS) Register

Compliance L evel: Required if any instruction breakpoints are implemented, optional otherwise.

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints. It islocated at drseg segment offset 0x1000. The ASIDsup bit appliesto all instruction breakpoints.

Figure 5.3 shows the format of the IBS register; Table 5.12 describes the IBS register fields.

Figure 5.3 IBS Register Format

31 30 29 28 27 24 23 16 15 14 0
ASl IBP
32-bit Processor 0 [Dsu 0 BCN 0 shar BS[14:0]
p e
63 31 30 29 28 27 24 23 16 15 14 0
ASl IBP
64-bit Processor| 0 Dsu 0 BCN 0 Tsh BS[14:0]
p are

Table 5.12 IBS Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

ASIDsup 30 Indicates if ASID compare is supported in instruction R Preset Required
breakpoints:

Encoding Meaning

0 No ASID compare

1 ASID compare (IBASIDn register
implemented)

ASID support indication does not guarantee a TLB-type
MMU, because the same breakpoint implementation can
be used with processors having all different types of
MMUs.

BCN 27:24 Number of instruction breakpoints implemented: R Preset Required

Encoding Meaning

0 Reserved
1-15 Number of instructions breakpoints

MIPS® EJTAG Specification, Revision 6.10 135

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

Table 5.12 IBS Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
IBPshare 15 Determines whether the I nstruction breakpoints are shared R Preset Required in
across the different VPEs of the processor, or are imple- MIPSMT is
mented per-VPE. implemented.
Otherwise
Encoding Meaning Reserved.
0 Not shared
1 Shared across VPEs
BS[14:0] 14:0 Break Status (BS) bit for breakpoint nisat BS[n], wheren | R/WO0 Undefined Required for
is0to 14. A bitis set to 1 when the condition for its corre- bits at imple-
sponding breakpoint has matched. mented break-
The number of BS bits implemented corresponds to the points,
number of breakpoints indicated by the BCN field. other bits not
Debug software is expected to clear the bits before use, implemented
because reset does not clear these hits.
Bits not implemented are read-only (R) and read as zeros.
0 MSB:31, |[Must bewritten as zeros; return zeros on read. 0 0 Reserved
29:28, 23:16

5.6.2 Instruction Breakpoint Address n (IBAn) Register

Compliance L evel: Required with instruction breakpoint n, optional otherwise.

If IBCn.hwart register field is zero, then the Instruction Breakpoint Address n (IBAN) register has the virtual address
used in the condition for instruction breakpoint n.

If IBCn.hwart register field is one, then the Instruction BreakPoint Address n (IBAN) register holds the upper limit of
the address range to match. The lower limit is held in the IBMn register.

Itislocated at drseg segment offset 0x1100 + 0x100 * n.
Figure 5.4 shows the format of the IBAnN register; Table 5.13 describes the IBAN register field.

Figure 5.4 IBAn Register Format

31 0
32-hit Processor | IBANn |

63 0
64-bit Processor| IBAN |
136 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.6 Instruction Breakpoint Registers

Table 5.13 IBAn Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
IBA MSB:0 Instruction breakpoint virtual address for condition. R/W Undefined Required

5.6.3 Instruction Breakpoint Address Mask n (IBMn) Register

Compliance L evel: Required with instruction breakpoint n, optional otherwise.

If IBCn.hwart register field is zero, then the Instruction Breakpoint Address Mask n (IBMn) register has the address
compare mask used in the condition for instruction breakpoint n. The address that is masked is in the IBAnN register.

If IBCn.hwart register field is one, then the Instruction BreakPoint Address Mask n (IBMn) register holds the lower
limit of the address range to match. The upper limit is held in the IBAnN register.

The IBMn register islocated at drseg segment offset 0x1108 + 0x100 * n.
Figure 5.5 shows the format of the IBMn register; Table 5.14 describes the IBMn register field.

Figure 5.5 IBMn Register Format

31 0
32-bit Processor | IBMn |

63 0
64-hit Proceﬁor| IBMn |

Table 5.14 IBMn Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
IBM MSB:0 Instruction breakpoint address mask for condition: R/W Undefined Required

Encoding Meaning

0 Corresponding address bit compared
1 Corresponding address bit masked

5.6.4 Instruction Breakpoint ASID n (IBASIDn) Register

Compliance L evel: Required with instruction breakpoint n if the ASIDsup bit in the IBS register is 1, optional other-
wise.

The Instruction Breakpoint ASID n (IBASIDn) register hasthe ASID value used in the compare for instruction break-
point n. It islocated at drseg segment offset 0x1110 + 0x100 * n.

Figure 5.6 shows the format of the IBASIDn register; Table 5.15 describes the IBASIDn register fields. The width of
the ASID field for the compareis 8 bits. If the wider 10-bit ASID isimplemented within the TLB, the EASID fidd is

MIPS® EJTAG Specification, Revision 6.10 137

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

also used. The number of compared ASID bitsisidentical to the width of the ASID field in the EntryHi register used

with the TLB-type MMU.

Figure 5.6 IBASIDn Register Format

31 24 23 22 21 20 19 12 11 8 7
32-hit Processor GuestiD | UGID |EASID |MGPA| 0 VPE ASID
63 32 31 24 23 22 21 20 12 11 8 7
M'b'grroc‘* 0 GuestD UGID |EASID |MGPA 0 VPE ASID
Table 5.15 IBASIDn Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
ASID 7.0 Instruction breakpoint ASID value for compare. R/W Undefined Required
VPE 11:8 Thisfield indicates the value of the VPE id to use for com- R/W Undefined Required if
parison and isused only if VPEusein IBCn register is 1 MIPSMT is
and the breakpoints are shared across VPESs. If the break- implemented.
points are not shared, then these bits read zero, and writes Otherwise
areignored. Reserved.
MGPA 20 Match on Guest Physical Address. R/W or R | Undefined Optiond if
MIPSVZ mod-
If this bit is clear, then this breakpoint matches on Guest uleisimple-
Virtual Address (or Root Virtual Address for non-virtual- mented
ized accesses). (Config3y,z=1).
Otherwise
If this bit is set, then this breakpoint matches only on Reserved.
Guest Physical Address.
If thisbit is set and the UGID bit is set, the match happens
only for Guest Physical Address when the Guestld field
matches the GuestI D of the executed instruction.
Thisbit is alowed to be hardwired to zero when the fea-
ture is not implemented. This bit is not allowed to be hard-
wired to one as the preferred behavior isto match on
Virtual Addressesif thereisno choice between virtual and
physical addresses.
Probe Software can determineif this feature is software
configurable by writing and reading back this bit.
EASID 22:21 Extended ASID R/W Undefined Required if
If Configdag is set, then the extended bits of the ASID Configdag is
vaue are held here. set. Otherwise
Reserved.
138 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.6 Instruction Breakpoint Registers

Table 5.15 IBASIDn Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
UGID 23 Use GuestI D field. R/W or R | Undefined Optional if
MIPSVZ mod-
If this bit is set, match only happens when GuestID field uleisimple-
within this register matches the GuestID of the memory mented
request and deviceis executing in GuestMode (Config3yz=1)
(GuestCtlOgp=1 and Root.Statusgy =0 and Root.Statu- : Otherwise
SerL =0 and Root.Debugp,=0). Reserved.
If this bit ic clear, the GuestID field is not used for match
calculation.
If this bit is set, the GuestI D field is used for the match
calculation regardless of the setting of the MGVA field.
Thisbit is allowed to be hardwired to zero when the fea-
ture is not implemented. This bit is allowed to be hard-
wired to one when the implementation always uses the
GuestID field for the match comparisions.
Probe Software can determine if this feature is software
configurable by writing and reading back this bit.
GuestID 3124 GuestI D value used for match comparison. R/W or R | Undefined Optional if
MIPSVZ mod-
If GuestCtl0g;=1, then the active width of this register uleisimple-
field matches the number of writeable bits of GuestCtl1, . mmted
If GuestCtl0g;=0, then only the right-most bit of this reg- (Confi 93VZ:1);
ister field is writeable and the rest of the bitsin thisfield Otherwise
are read-only as zero. Reserved.
A value of zero is used to select Root-mode execution.
If thisfeature is not implemented (UGID field read-only
as zero), then the GuestID field is also read-only as zero.
Please refer to Section 7.2 on page 173 to see how Root
and Guest Modes are represented in thisfield.
0 63:32, 1912 | Must be written as zeros; return zeros on read. 0 0 Reserved

The following table shows how the UGID/GuestID and MGPA fields are used to control what type of addresses are
matched in a system supporting the VZ Module. In thistable, the term “match” just refers to the comparision for

UGID=0 or UGID not
implemented, UGID=0 or UGID not UGID=1, UGID=1,
MGPA=0 or MGPA implemented, MGPA=0 or MGPA MGPA=1
Address Type not implemented MGPA=1 not implemented
Guest Virtual Address |Always Match No Match Match on Specified No Match
non-zero GuestiD value
Guest Physical Address [No Match Always Match No Match Match on specified
non-zero GuestID value

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

139

Hardware Breakpoints

UGID=0 or UGID not
implemented, UGID=0 or UGID not UGID=1, UGID=1,
MGPA=0 or MGPA implemented, MGPA=0 or MGPA MGPA=1
Address Type not implemented MGPA=1 not implemented
Root Virtual Address from |Always Match No Match Match when Guestl D=0|Match when GuestID=0
non-virtualized Access

these fields, it does not mean the final match condition - which needs to also compare against the address, load/store
type and optionally the ASID, TCID and VPE fields.

5.6.5 Instruction Breakpoint Control n (IBCn) Register

Compliance Level: Required with instruction breakpoint n, optional otherwise.

The Instruction Breakpoint Control n (IBCn) register determines what constitutes instruction breakpoint n: trigger-
point, breakpoint, ASID value inclusion. This register islocated at drseg segment offset 0x1118 + 0x100 * n.

Figure 5.7 shows the format of the IBCn register; Table 5.15 describes the IBCn register fields.

Figure 5.7 IBCn Register Format

31 24 23 22 21 7 6 5 4 3 2 1 0

32 it Procesor re L o Texrw el o T
63 32 31 24 23 22 21 7 6 5 4 3 2 1 0

o bitProcesso] 0 re Asol el i Tex e Vel e o T

Table 5.16 IBCn Register Field Descriptions

Fields
Read/W Reset
Name Bits Description rite State Compliance
TC 31:24 The value of TC (thread context) to match in the compari- | R/W Undefined Required if
son to determine if the instruction break is to be taken. MIPSMT is
This comparison is effective only if the TCuse bit is set to implemented.
1. Otherwise this TC value isignored. Otherwise
Reserved.
ASIDuse 23 Use ASID value in compare for instruction breakpoint n: R/W Undefined Required if
ASIDsupinIBS
Encoding Meaning register is 1;
0 Do not use ASID valuein compare chelrwise nec(’jt
- t
1 Use ASID vauein compare mplemen
Debug software should only set the ASIDuseif aTLB in
the implementation is used by the application software.
Thisbit isread-only and reads as zero, if not implemented.
140 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.6 Instruction Breakpoint Registers

Table 5.16 IBCn Register Field Descriptions (Continued)

Fields

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Read/W Reset
Name Bits Description rite State Compliance
TCuse 22 Use TC value in comparison for instruction breakpoint n. R/W Undefined Required if
If TCisnot used in the comparison, then the comparison MIPSMT is
isrestricted to the match all TCsin the current VPE if the implemented.
breakpoints are not shared. If the breakpoints are shared, Otherwise
then they can match all TCsin the processor unless Reserved.
VPEuseis set.
Encoding Meaning
0 Do not use TC value in compare
1 Use TC value in compare
HWART 6 Indicates whether Address Range Match Mode isimple- R Preset Required if
mented or not for this Breakpoint. Address Range
BreakPointsare
Encoding Meaning implemented.
0 Address Range Match Mode not Imple- Otherwise
mented. Reserved
1 Address Range Match Mode Imple-
mented.
EXCL 5 If Address Range Matching Mode is chosen, indicates R/W 0 Required if
whether the range is exclusive or inclusive: Address Range
BreakPointsare
Encoding Meaning implemented.
0 Inclusive - match will occur for addresses Otherwise
inside range defined by IBMn and IBAN Reserved
1 Exclusive - match will occur for
addresses outside range defined by IBMn
and IBAN.
HWART 4 BreakPoint MatchMode: R/W 0 Required if
Address Range
Encoding Meaning BreakPointsare
0 Equality & Mask matching implemented.
(non-Range) Otherw;le
1 Address Range matching Reserv
VPEuse 3 Use VPE value in comparison for instruction breakpoint n. R/W Undefined Required if
Thisfield is used only if the breakpoints are shared across MIPSMT is
the VPEs of aMT core, that is, the IBPshare bit isset in implemented.
register IBP. Otherwise
If the breakpoints are not shared, then these bits read zero, Reserved.
and writes are ignored.
MIPS® EJTAG Specification, Revision 6.10

141

Hardware Breakpoints

Table 5.16 IBCn Register Field Descriptions (Continued)

Fields
Read/W Reset
Name Bits Description rite State Compliance
TE 2 Useinstruction breakpoint n as triggerpoint: R/W 0 Required
Encoding Meaning
0 Do not use it as triggerpoint
1 Useit as triggerpoint
BE 0 Use instruction breakpoint n as breakpoint: R/W 0 Required
Encoding Meaning
0 Do not use it as breakpoint
1 Useit as breakpoint
0 21:4,1 Must be written as zeros; return zeros on read. 0 0 Reserved

5.7 Data Breakpoint Registers

This section describes the data breakpoint registers for MIPS32 and MIPS64 processors, and other R4000 privileged
environment implementations of 32-bit and 64-bit processors. These registers provide status and control for the data
breakpoints. All registers are in the drseg segment. The 1 to 15 implemented breakpoints are numbered O to 14,
respectively, for registers and breakpoints. The specific breakpoint number isindicated by “n” in the range 0 to 15
depending on the implemented number of data breakpoints. The registers and their respective addresses offsets are
shown in Table 5.17. For a description of the two registers DBCC and DBPC used for complex breakpoints, see
Section 6.3.4 on page 162 and Section 6.3.5 on page 163 respectively.

Table 5.17 Data Breakpoint Register Mapping

Register

Offset in drseg Mnemonic Register Name and Description
0x2000 DBS Data Breakpoint Status
0x2100 + 0x100 * n DBAN Data Breakpoint Address n
0x2108 + 0x100 * n DBMn Data Breskpoint Address Mask n
0x2110 + 0x100 * n DBASIDn Data Breskpoint ASID n
0x2118 + 0x100 * n DBCn Data Breakpoint Control n
0x2120 + 0x100 * n DBVn Data Breakpoint Valuen
0x2128 + 0x100 * n DBCCn Data Breskpoint Complex Control n
0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n

5.7.1 Data Breakpoint Status (DBS) Register

Compliance L evel: Required if any data breakpoints are implemented, optional otherwise.

142 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.7 Data Breakpoint Registers

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.

Itislocated at drseg segment offset 0x2000. The ASIDsup, NoSV match, and NoLV match fields apply to all data
breakpoints.

Figure 5.8 shows the format of the DBS register; Table 5.18 describes the DBS register fields.

31

Figure 5.8 DBS Register Format

30 29 28 27 24 23 16 15

14

32-hit Processor 0

AS NoL DB

D [NOSVIymat BCN 0 Psh
match

sup ch are

BS[14:0]

63 31

30 29 28 27 24 23 16 15

14

64-bit Processor

AS NoL DB

D [NOSVIymat BCN 0 Psh
match

sup ch are

BS[14:0]

Table 5.18 DBS Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

ASIDsup

30

Indicates if ASID compare is supported in data break-
points:

Encoding Meaning

0 No ASID compare

1 ASID compare (DBASIDn register
implemented)

ASID support indication does not guarantee a TLB-type
MMU, because the same breakpoint implementation can
be used with processors having all different types of
MMUs.

R

Preset

Required

NoSVmatch

29

Indicatesif avalue compare on astoreis supported in data
breakpoints:

Encoding Meaning

0 Datavalue and addressin condition on
store

1 Address compare only in condition on
store

Preset

Required

NoLVmatch

28

Indicates if avalue compare on aload is supported in data
breakpoints:

Encoding Meaning

0 Datavalue and addressin condition on
load

1 Address compare only in condition on
load

Preset

Required

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

143

Hardware Breakpoints

Table 5.18 DBS Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
BCN 27:24 Number of data breakpoints implemented: R Preset Required
Encoding Meaning
0 Reserved
1-15 |Number of data breakpoints
DBPshare 15 Determines whether the Data breakpoints are shared R Preset Required if
across the different VPEs of the processor, or areimple- MIPSMT is
mented per-VPE. implemented;
i i otherwise
Encoding Meaning Reserved.
0 Not shared
1 Shared across VPES
BS14:0] 14:0 Break Status (BS) bit for breakpoint nisat BS[n], wheren R/WO0 Undefined Required for
is0to 14. The bit is set to 1 when the condition for its cor- bits at imple-
responding breakpoint has matched. mented break-
The number of BS bits implemented corresponds to the points,
number of breakpoints indicated by the BCN bit. other bits not
Debug software is expected to clear the hits before use, implemented
since they are not cleared by reset.
Bits not implemented are read-only (R) and read as zeros.
0 MSB:31, | Must bewritten as zeros; return zeros on read. 0 0 Reserved
23:16

5.7.2 Data Breakpoint Address n (DBAnN) Register

Compliance Level: Required with data breakpoint n, optional otherwise.

If DBCn.hwart register field is zero, then the Data Breakpoint Address n (DBAN) register has the virtual address used
in the condition for data breakpoint n.

If DBCn.hwart register field is one, then the Data BreakPoint Address n (DBAN) register holds the upper limit of the
address range to match. The lower limit is held in the DBMn register.

Thisregister islocated at drseg segment offset 0x2100 + 0x100 * n.
Figure 5.9 shows the format of the DBAnN register; Table 5.19 describes the DBAN register field.

Figure 5.9 DBAnN Register Format

31 0
32-bit Processor | DBAnN |

63 0
64-hit Processor DBAnN |
144 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table 5.19 DBAnN Register Field Descriptions

5.7 Data Breakpoint Registers

Fields
Read / Reset
Name Bits Description Write State Compliance
DBA MSB:0 Data breakpoint virtual address for condition R/W Undefined Required

5.7.3 Data Breakpoint Address Mask n (DBMn) Register

Compliance L evel: Required with data breakpoint n, optional otherwise.

If DBCn.hwart register field is zero, then the Data Breakpoint Address Mask n (DBMn) register has the address com-
pare mask used in the condition for data breakpoint n. The address that is masked isin the DBAnN register.

If DBCn.hwart register field is one, then the Data BreakPoint Address Mask in (DBMn) register holds the lower limit
of the address range to match. The upper limit is held in the DBAN register.

The DBMn register islocated at drseg segment offset 0x2108 + 0x100 * n.
Figure 5.10 shows the format of the DBMn register; Table 5.20 describes the DBMn register field.

Figure 5.10 DBMn Register Format

31 0
32-bit Processor | DBMn |

63 0

64-hit Proceﬁor| DBMn |

Table 5.20 DBMn Register Field Descriptions

Fields

Read / Reset
Name Bits Description Write State Compliance
DBMn MSB:0 Data breakpoint address mask for condition: R/W Undefined Required

Encoding Meaning

0 Corresponding address bit compared
1 Corresponding address bit masked

5.7.4 Data Breakpoint ASID n (DBASIDn) Register

Compliance L evel: Required with data breakpoint n if the ASIDsup bit in the DBS register is 1, optional otherwise.

The Data Breakpoint ASID n (DBASIDn) register hasthe ASID value used in the compare for data breakpoint n. Itis
located at drseg segment offset 0x2110 + 0x100 * n.

Figure 5.11 shows the format of the DBASIDn register; Table 5.21 describes the DBASIDn register fields. The width
of the ASID field for the compare is 8 bits. If the wider 10-bit ASID isimplemented within the TLB, the EASID field

MIPS® EJTAG Specification, Revision 6.10 145

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

isalso used. The number of compared ASID bhitsisidentical to the width of the ASID field in the EntryHi register
used with the TLB-type MMU.

Figure 5.11 DBASIDn Register Format

31 24 23 22 21 20 19 16 15 8 7 0
32-bit Processor | GuestiD LIJS EASID|MGPA| VPE Tcval ASID
63 32 31 24 23 22 21 20 19 16 15 8 7 0
M'b'grroca"’ 0 | GuestiD lIJDG EASID|MGPA| VPE TCva ASID

Table 5.21 DBASIDn Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
GuestID 31:24 GuestI D value used for match comparison. R/WorR | Undefined | Optiona if if MIPS
VZE isimplemented
If GuestCtl0g;=1, then the active width of this register (Config3,,z=1);
field matches the number of writeable bits of GuestCtl1, . Otherwise Reserved.
If GuestCtl0g;=0, then only the right-most bit of thisreg-
ister field is writeable and the rest of the bitsin thisfield
are read-only as zero.
A value of zero is used to select Root-mode execution.
If thisfeature is not implemented (UGID field read-only
as zero), then the GuestID field is also read-only as zero.
Please refer to Section 7.2 on page 173 to see how Root
and Guest Modes are represented in thisfield.
UGID 23 Use GuestI D field. R/W or R | Undefined Optional if MIPS
If this bit is set, match only happens when GuestID field VZE isimple-
within this register matches the GuestID of the memory mented.

reguest and device is executing in GuestM ode
(GuestCtlOgp=1 and Root.Statusgy =0 and Root.Statu-

SerL =0 and Root.Debugp,=0).

(Config3,,z=1);
Otherwise Reserved.

If this bit ic clear, the GuestI D field is not used for match
calculation.

If this bit is set, the GuestI D field is used for the match
calculation regardless of the setting of the MGVA field.

This bit is allowed to be hardwired to zero when the fea-
ture is not implemented. Thisbit is allowed to be hard-
wired to one when the implementation always uses the
GuestID field for matchcomparisions.

Probe Software can determineif this feature is software
configurable by writing and reading back this bit.

146 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.7 Data Breakpoint Registers

Table 5.21 DBASIDn Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

EASID 22:21 Extended ASID R/W Undefined Required if
If Configdag is set, then the extended bits of the ASID Configdag is set.
value are held here. Otherwise Reserved.

MGPA 20 Match on Guest Physical Address. R/W or R | Undefined Optional if MIPS

VZE isimple-
If this bit is clear, then this breakpoint matches on Guest mented.
Virtual Address (or Root Virtual Address for non-virtual- (Config3,,z=1);
ized accesses). Otherwise Reserved.
If this bit is set, then this breakpoint matches on only
Guest Physical Address.
If thisbit is set and the UGID hit is setl, the match hap-
pens only for Guest Physical Address when the Guestld
field matches the GuestI D of the executed instruction.
This hit is allowed to be hardwired to zero when the fea-
ture is not implemented. This bit is not allowed to be hard-
wired to one as the preferred behavior isto match on
Virtual Addressesif thereis no choice between virtual and
physical addresses. Probe Software can determine if this
feature is software configurable by writing and reading
back this hit.

VPE 19:16 Value of the VPE id to use for comparison and is used R/W Undefined Required if MIPS
only if VPEuse in DBCn register is 1 and the breakpoints MT isimplemented;
are shared across VPESs. If the breakpoints are not shared, otherwise Reserved.
then these hits read zero, and writes are ignored.

TCva 15:8 Value of the thread context that caused the Data Break- R/W Undefined Required if MIPS
point. Because data breaks are imprecise, software can MT isimplemented;
examine these bits to determine which thread context actu- otherwise Reserved.
ally caused the data break.

ASID 7.0 Data Breskpoint ASID value for compare. R/W Undefined Required

0 MSB:23, 20 | Must be written as zeros; return zeros on read. 0 0 Reserved

The following table shows how the UGID/GuestID and MGPA fields are used to control what type of addresses are
matched in a system supporting the VZ Module. In thistable, the term “Match” just refers to the comparisions for

UGID=0 or UGID not
implemented, UGID=0 or UGID not UGID=1, UGID=1,
MGPA=0 or MGPA implemented, MGPA=0 or MGPA MGPA=1
Address Type not implemented MGPA=1 not implemented
Guest Virtual Address |Always Match No Match Match on Specified No Match
non-zero GuestID value
Guest Physical Address [No Match Always Match No Match Match on specified
non-zero GuestID value
Root Virtual Address from |[Always Match No Match Match when Guest|D=0|Match when GuestI D=0,
non-virtualized Access

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

MIPS® EJTAG Specification, Revision 6.10

147

Hardware Breakpoints

these fields, it does not mean the final match condition - which needs to also compare against the address, load/store
type and optionally the ASID, TCID and VPE numbers.

5.7.5 Data Breakpoint Control n (DBCn) Register

Compliance L evel: Required with data breakpoint n, optional otherwise.

The Data Breakpoint Control n (DBCn) register what constitutes data breakpoint n: triggerpoint, breakpoint, ASID
value inclusion, load/store access fulfillment, ignore byte access, byte lane mask. Thisregister islocated at drseg seg-
ment offset 0x2118 + 0x100 * n.

For description of “data bus’ notation see Section 5.3.2 on page 122.

Figure 5.12 shows the format of the DBCn register; Table 5.22 describes the DBCn register fields.

Figure 5.12 DBCn Register Format

31 24 23 22 21 18 17 4 13 12 11 10 9 8 7 4 3 2 1 0
. ASID|TC . No | No HW [EX|HW ~ |VPE A%
32-bit Processor TC use | use 0 BAI[3:0] LB 0 ARTS| CL |ART BLM[3:0] USe TE M BE
63 32 31 24 23 22 21 14 13 12 1 4 3 2 1 0
. ASID|TC . No | No . VPE %
64-bit Processor| 0 TC use | use BAI[7:0] LB BLM[7:0] Use TE M BE
Table 5.22 DBCn Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
TC 31:24 The value of TC (thread context) to match in the compari- R/W Undefined | Requiredif MIPSMT
son to determine if the data break isto be taken. This com- isimplemented; other-
parison is effective only if the TCuse bit is set to 1. wise Reserved.
Otherwise this TC valueisignored.
ASIDuse 23 Use ASID value in compare for data breakpoint n: R/W Undefined | Required if ASIDsup
i : in DBSregisteris 1;
Encoding Meaning otherwise not imple-
0 Do not use ASID value in compare mented.
1 Use ASID vaue in compare
Debug software should only set the ASIDuse if aTLB in
the implementation is used by the application software.
Thisbit isread-only and reads as zero, if not implemented.
TCuse 22 Use TC value in comparison for data breakpoint n. R/W Undefined | Required if ASIDsup
in DBSreg. is 1; oth-
Encoding Meaning erwise not imple-
0 Do not use TC value in compare mented.
1 Use TC value in compare
148 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.7 Data Breakpoint Registers

Table 5.22 DBCn Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read /
Write

Reset
State

Compliance

BAI[:0] 21:14

Byte accessignore. Each bit of thisfield determines
whether a match occurs on an access to a specific byte of
the database (BAI[0] controls matching for data bus bits
7:0; BAI[1] controls matching for databus bits 15:8, etc.).,
with the polarity of each hit, asfollows:

Encoding Meaning

0 Condition depends on accessto corre-
sponding byte

1 Access for corresponding byteis
ignored

A match depends on areference accessing one or more of
the non-ignored bytes. No matches will occur if all bytes
areignored.

Debug software must adjust for endianess when program-
ming thisfield.

RIW

Undefined

Required for byte
lanesin implementa-
tion; otherwise not
implemented.

NoSB 13

Controls whether condition for data breakpoint is ever ful-
filled on a store access:

Encoding Meaning

0 Condition can be fulfilled on store
access

1 Condition is never fulfilled on store
access

RIW

Undefined

Required

NoLB 12

Controls whether condition for data breakpoint is ever fu
filled on aload access:

Encoding

0 Condition can be fulfilled on load
access

Meaning

1 Condition is never fulfilled on load
access

R/W

Undefined

Required

HWART 10

Indicates whether Address Range Match Modeisimple-
mented or not for this Breakpoint.

Encoding Meaning

0 Address Range Match Mode not Imple-
mented.

1 Address Range Match Mode Imple-
mented.

Preset

Required if Address
Range BreakPoints
are implemented. Oth-
erwise Reserved

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

149

Hardware Breakpoints

Table 5.22 DBCn Register Field Descriptions (Continued)

Fields

Read / Reset
Name Bits Description Write State Compliance
EXCL 9 If Address Range Matching Mode is chosen, indicates R/W 0 Required if Address
whether the range is exclusive or inclusive: Range BreakPoints
are implemented. Oth-
Encoding Meaning erwise Reserved
0 Inclusive - match will occur for addresses
inside range defined by IBMn and IBAN
1 Exclusive - match will occur for
addresses outside range defined by IBMn
and IBAnN.
HWART 8 BreakPoint Match Mode: R/W 0 Required if Address
: i Range BreakPoints
Encoding Meaning areimplemented. Oth-
0 |Equality & Mask matching erwise Reserved
(non-Range)
1 Address Range matching

BLM[:Q] 4 Byte lane mask for value compare on data breakpoint. R/W Undefined Required for byte
BLM[0] masks byte at bits[7:0] of the data bus, BLM[1] lanesin implementa-
masks byte at bits [15:8], etc.: tion and if value com-

pare; otherwise not
Encoding Meaning implemented.
0 Compare corresponding byte lane
1 Mask corresponding byte lane
Debug software must adjust for endianess when program-
ming thisfield.
BLM][:0] are unimplemented if value compare is not
implemented, which is the case when NoSVmatch and
NoLVmatch bitsin DBS are both 1. Bits are read-only (R)
and read as zeros if not implemented.

VPEuse 3 Use V PE value in comparison for instruction breakpoint n. RIW Undefined | Requiredif MIPSMT
Thisfield isused only if the breakpoints are shared across isimplemented. Oth-
the VPEs of aMT core, that is, the DBPshare bit isset in erwise Reserved.
register DBP.

If the breakpoints are not shared, this bit reads zero and
writes are ignored.
TE 2 Use data breakpoint n as triggerpoint: R/W 0 Required
Encoding Meaning
0 Do not useit as triggerpoint
1 Useit astriggerpoint
150 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.8 Recommendations for Implementing Hardware Breakpoints

Table 5.22 DBCn Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
IVM 1 Used to indicate that the data value match should be RIW Undefined | Required if DCRyy
inverted. is 1; otherwise not
implemented. Revi-
sion 4.00 and above.
BE 0 Use data breakpoint n as breakpoint: R/W 0 Required
Encoding Meaning
0 Do not use it as breakpoint
1 Useit as breakpoint
0 3 Must be written as zeros; return zeros on read. 0 0 Reserved

5.7.6 Data Breakpoint Value n (DBVn) Register

Compliance L evel: Required with data breakpoint n if data value compare is supported (indicated by either NoSV-
match or NoLV match bitsin DBS being 0), optional otherwise.

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. It is located
at drseg segment offset 0x2120 + 0x100 * n.

Figure 5.13 shows the format of the DBV n register; Table 5.23 describes the DBV n register field.

31

Figure 5.13 DBVn Register Format

32-hit Processor | DBVn |
63 0
64-bit Processor| DBVn |
Table 5.23 DBVn Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
DBV MSB:0 Data breakpoint data value for condition. R/W Undefined Required
Debug software must adjust for endianess when program-
ming thisfield.
5.8 Recommendations for Implementing Hardware Breakpoints
This section provides useful information for implementing instruction and data breakpoints.
MIPS® EJTAG Specification, Revision 6.10 151

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

152

5.8.1 Number of Instruction Breakpoints Without Single Stepping

If hardware single stepping is not implemented, then at least two instruction breakpoints are required. Four instruc-
tion hardware breakpoints are recommended.

5.8.2 Data Breakpoints with Data Value Compares

Data breakpoints should be implemented with data value compares. Also, data value compares should be imple-
mented even if it is not possible to break on loads with precise data value compares. Refer to Section 5.8.4 on
page 152 for more information on precise exceptions.

5.8.3 Data Breakpoint Compare on Invalid Data

Data breakpoints should only compare on valid data, so that debug exceptions are only generated on valid data. For
example, no debug exception should be generated for a bus error on aload that has a pending data compare break-
point on the data returned by the load. This also appliesto compares on store data for a store to an unaligned address.

However, in some cases, the indication of invalid datais late relative to the data, for example, for a cache error asa
result of acomplex error detection. In this case, data breakpoints can indicate a debug exception because the data was
believed to be valid at the time of the compare, and the pending error is then indicated to the debug handler through
the DBUSEP or CacheEP hit in the Debug register, because the error occurred after the debug exception. However, for
bus errors due to external events, the bus error indication is usually available when the compare in the data breakpoint
takes place. Thusit is possible to avoid a debug exception.

5.8.4 Precise/Imprecise Debug Exceptions on Data Breakpoints with Data Value
Compares

When possible in an implementation, it is recommended that data breakpoints generate precise debug exceptions, so
that the DEPC register and DBD bit in the Debug register point to the load/store that caused the debug exception to
occur. Thisinstruction can then be re-executed when execution resumes after the exception has been handled. How-
ever, data breakpoints are allowed to cause imprecise debug exceptions when the breakpoint is set up with data value
compares, for example, when data breakpoints with |oad data compares cannot be made precise due to a non-block-
ing load. In this case, the DEPC register and DBD bit point to an instruction in the execution flow following the
load/store that caused the imprecise debug exception. The Break Status (BS) bit can be updated when the match is
detected, even though a debug exception is not taken until later dueto internal stalls (for example, anulled instruction
in the pipeline at the time the match is detected). It is implementati on-specific as to cases in which a data breakpoint
can cause an imprecise debug exception, but it is recommended that data breakpoints cause imprecise matchesin as
few cases as possible.

In aprocessor implementing the MIPS MT Module, imprecise data breakpoints are especially bothersome, since
instructions from multiple thread contexts may be interleaved in the pipeline, and the thread taking the breakpoint
exception may not be the thread that caused the breakpoint. For thisreason, it is required that in a processor imple-
menting MIPS MT, the hardware must write the value of the TC that caused the breakpoint in the TCval bits of the
corresponding DBASIDn register. For a consistent software implementation, this must be done whether the data
breakpoint exception isimplemented as a precise or an imprecise debug exception,

Implementations can require imprecise debug exceptions from data breakpoints on loads with value comparesin a
specific address range, if re-execution of aload in this range is not acceptable. This caseis possibleif the load has
side effects such as removing an entry on a queue. Imprecise debug exceptions for value compares ensure that the
destination register is properly updated with the loaded value, whereby re-execution of the load is avoided.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.9 Breakpoint Examples
This section provides several examples of instruction and data breakpoint uses.
5.9.1 Instruction Breakpoint Examples

This section provides examples that illustrate using an instruction break.

5.9.1.1 Instruction Break in Small Range of Instructions with ASID

5.9 Breakpoint Examples

This example shows how to set up an instruction breakpoint to break on the fetch of any one of the four instructions

in the virtual address range shown below:

0x0000 0010 J L1 // ASID = 0x5
0x0000 0014 NOP
0x0000 0018 J L2
0x0000 001C NOP

The break registers must be set up as follows:

¢ IBAO=0x0000 0010

¢ IBMO = 0x0000 000C

+ IBCO: BE=1, ASIDuse=1, ASID = 0x5, other bits zero

Note that IBAO has the starting address, and IBMO has the address mask.

5.9.1.2 Instruction Break on 32-bit MIPS16e™ Instruction

In this example, instruction breakpoint O needsto be set up to break on the range 0x0000 0030 to 0x0000 0036, which

starts with the second part of an extended MIPS16e instruction:

0x0000 002e EXT // (lst part of MIPSl6e inst.)
0x0000 0030 ADD // (2nd part)

0x0000 0032 SUB

0x0000 0034 SUB

0x0000 0036 SUB

The break registers must be set up as follows:
+ |BAO=0x0000 0031
+ |IBMO = 0x0000 0006

« IBCO: BE =1, ASIDuse = 0, other bits zero

The CPU does not take a debug exception when fetching the second part of the ADD instruction, because it does not

constitute awhole instruction. The first break is on the SUB instruction at 0x0000 0032.

5.9.2 Data Breakpoint

This section provides three examples of data breakpoints.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

153

Hardware Breakpoints

154

5.9.2.1 Data Break on Load Access with ASID

This example shows how to perform a break on data breakpoint O when the CPU loads data OXAAAA 0000 from
memory location 0x0000 0100 in ASID=0x7:

LW $2, 0x100($0) // ASID = 0x7
The break registers must be set up asfollows:

» DBAO = 0x0000 0100

DBMO = 0x0

» DBVO=0xAAAA 0000

DBCO: BE=1,NoLB =0, NoSB = 1, BLM =0, BAI =0, ASIDuse = 1, ASID = 0x7, other bits zero

In this example, DBAO contains the breakpoint address; DBMO has the address mask; DBV 0 has the data value; and
DBCO indicates a breakpoint condition might be fulfilled on aload but not on a store, there is a value compare for a
corresponding byte, and an ASID is used.

5.9.2.2 Data Break on Store(s) to Halfword in Memory

This example shows a break on data breakpoint 0 when the CPU stores data in a specific halfword in memory. Stores
to the other halfword at the same address can be ignored. The dataword isillustrated in Figure 5.14; the halfword for
bits 31:16 is shaded. The store instructions shown in Figure 5.14 alter the shaded halfword and cause a break if the
breakpoint registers are set up as shown below.

Figure 5.14 Data Break on Store with Value Compare
Break on Memory Address 0x0000 0200 bit 31:16, Little Endian

L 3 | 2 | | |
31 0
SW $2, 0x0000 0200 bytes_valid = 1111,
SH $2, 0x0000 0202 bytes_valid = 1100,
SB $2, 0x0000 0202 bytes_valid = 0100,
SB $2, 0x0000 0203 bytes_valid = 1000,

In this example, the data breakpoint registers are set up asfollows:
« DBAO = 0x0000 0200
- DBMO=0

+ DBCO:BE=1,NoLB =1, NoSB =0, BLM =1111,, BAl = 0011,, ASIDuse = 0, other bits zero

5.9.2.3 Data Break on Store(s) to Halfword Range in Memory with Certain Value

In this example, the most significant halfword in a given memory range is altered, and the most significant part of the
halfword iswritten a certain value. The dataword isillustrated below; the halfword for bits 31:16 is shaded. The store
instructions shown in Figure 5.15 alter the shaded halfword and cause a break if the breakpoint registers are set up as
shown below.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

5.9 Breakpoint Examples

Figure 5.15 Data Break on Store with Value Compare

Break on Memory Address range 0x0000 0200 - 0x0000 02FC
Write to bits 31:16, bits 31:24 with value OXAA, Little Endian

Ls 2] | |

31 0
SW $2, 0x0000 0220 $2=0xAAXX XXXX bytes_valid = 1111,
SH $2, 0x0000 0242 $2=0xXXXX AAXX bytes_valid = 1100,
SB $2, 0x0000 0282 $2=0xXXXX XXXX bytes_valid = 0100,
SB $2, 0x0000 02F3 $2=0xXXXX XXAA bytes_valid = 1000,

‘X’ denotes undefined value.

In this example, the data breakpoint registers are set up asfollows:
« DBAO = 0x0000 0200

+ DBMO = 0x0000 00FC

+ DBVO0=0xAA00 0000

+ DBCO:BE=1,NoLB =1, NoSB =0, BLM = 0111,, BAl = 0011,, ASIDuse = 0, other bits zero

MIPS® EJTAG Specification, Revision 6.10 155
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Hardware Breakpoints

156 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 6

Complex Break and Trigger Block

The complex break and trigger (CBT) block is part of the EJTAG breakpoint block and is therefore integrated into the
core logic when implemented. The CBT block is optional and defined in the EJTAG Specification 4.00 and above.
The CBT bit (bit 10) in the EJTAG Debug Control Register indicates the presence of the CBT block.

The CBT block provides enhanced breakpoint and trace control capability based on the standard instruction and data
breakpoints. It implements complex breakpoint matching conditions that includes matches primed by a previous

breakpoint match, qualified by a previous data break match, matched using pass-counters, matches enabled by the
AND of two other break matches, and more.

6.1 Complex Trigger Features/Capabilities

The complex trigger unit istypically integrated with the EJTAG simple break unit. All of the previous simple break
features are preserved. This section describes the enhancements in the complex trigger block.

Note: the term breakpoints in this section refersto either actual breakpoints that take a debug exception or trigger
points that only record the status and send this signal to the trace block.

» Pass Counters - each break channel has a counter associated with it that enables a breakpoint to only be taken
after the address/val ue condition has been met a certain number of times.

» DataQualified breakpoints - these can be enabled and disabled based on the state of a data breakpoint condition
which can be used to only match on instructions executed in a certain process.

» Primed breakpoints - these are only enabled when another breakpoint has occurred, which allows breaking on a
simple sequences of events.

» Stopwatch timer - a counter that can be configured to start or stop based on specific instruction breakpoints.

» Ability to support ‘tuples’ - breakpoints that only fire when both instruction and data conditions match on asin-
gleinstruction.

6.2 General Complex Break Behavior

Thereis some general complex break behavior that is common to all the features. This behavior is described below:

* Resetsto adisabled state when the coreis reset. The complex break functionality will be disabled, and debug
software that is not aware of complex break should continue to function normally.

» Complex break state is not updated on exceptional instructions.

MIPS® EJTAG Specification, Revision 6.10 157

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

» Complex breakpoints should be implemented such that there is no hazard between enabling and enabled events.
When an instruction causes an enabling event, the following instruction sees the enabled state and reacts accord-

ingly.

* Itisimplementation specific on whether Complex breakpoint state is set when both the complex breakpoint is
triggered and another simple break point is also triggered by the same address or data value.

6.3 Registers in the Complex Break and Trigger Block

The CBTC (complex break and trigger control) register indicates the specific implementation choices made from the
architecture specification. The complex break and trigger block also adds new control registers for the complex con-

Table 6.1 Registers in the Complex Break and Trigger Block and Their drseg Memory Addresses

Register
Mnemonic drseg Address Offset Description
CBTC 0x8000 Complex Break and Trigger Control (see Figure 6.1)
IBCCn 0x1120 + 0x100 * n Instruction Breakpoint Complex Control n (see Figure 6.2)
IBPCn 0x1128 + 0x100 * n Instruction Breakpoint Pass Counter n (see Figure 6.3)
DBCCn 0x2128 + 0x100 * n Data Breakpoint Complex Control n (see Figure 6.4)
DBPCn 0x2130 + 0x100 * n Data Breakpoint Pass Counter n (see Figure 6.5)
PrCndAln 0x8300 + 0x20*n Prime Condition Register A for Instruction breakpoint n (see Figure 6.6)
PrCndADN 0x84EQ + 0x20*n Prime Condition Register A for Data breakpoint n (see Figure 6.6)
STCiHl 0x8900 Stopwatch Timer Control (see Figure 6.7)
STCnt 0x8908 Stopwatch Timer Count (see Figure 6.8)

trol for Instruction and Data breaks. These registers are IBCCn and DBCCn, where n is the number of implemented
instruction or data breaks, to a maximum possible value of 15. The drseg addressesfor all these registers are shownin
Table 6.1.

6.3.1 Complex Break and Trigger Control (CBTC) Register (0x8000)

Compliance L evel: Implemented only if complex breakpoints are implemented.

The CBTC register contains configuration bits that indicate which features of complex break are implemented as well
as acontrol bit for the stopwatch timer. It is possible for an implementation to implement complex breaks and imple-
ment any non-zero subset of these features. Figure 6.1 showsthe format of the CBTC register; Table 6.2 describesthe

CBTC register fields.
Figure 6.1 CBTC Register Format
31 9 8 7 5 4 3 2 1 0
. DQ
32-hit Processor 0 STMode 0 STP| PP P TP |PCP|
63 9 8 7 5 4 3 2 1 0
64-bit Processor 0 STMode 0 STP| PP DPQ TP |PCP|
158 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3 Registers in the Complex Break and Trigger Block

Table 6.2 CBTC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
STMode 8 Indicates the current operating mode of the stopwatch R/W 1 Required if
timer, provided thisis present as indicated by bit STP: complex break
: is present
Encodin (DCRegT=1)
g Meaning
0 Isin free-running mode
STP 4 Indicates if the stopwatch timer isimplemented. Thisis R Preset Required if
optional if complex breaks feature is present: complex break
: is present
Encodin (DCRegT=1)
g Meaning
0 No stopwatch timer present
PP 3 Indicates if primed breakpoints are implemented Thisis R Preset Required if
optional if complex breaks feature is present: complex break
: is present
Encodin (DCRegT =1)
g Meaning
0 No primed breaks are present
DQP 2 Indicates if data qualified breakpoints are implemented R Preset Required if
Thisisoptional if complex breaks feature is present: complex break
is present
Encoding Meaning (DCRcgT=1)
0 No data qualified breaks present
1 Data qualified breaks are present
TP 1 Indicates if tuple breakpoints areimplemented Thisis R Preset Required if
optional if complex breaks feature is present: complex break
: is present
Encodin (DCRcgT=1)
g Meaning
0 No tuples breaks present
PCP 0 Indicatesif the pass counter featureisimplemented Thisis R Preset Required if
optional if complex breaks feature is present: complex break
: is present
Encodin (DCRcgT=1)
g Meaning
0 Do not useit as triggerpoint
0 MSB:9, 7:5 | Must be written as zeros; return zeros on read. R 0 Reserved

Each instruction and data breakpoint now have two additional registers as shown in Table 6.1.

MIPS® EJTAG Specification, Revision 6.10 159
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

6.3.2 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n * 0x100)

Compliance L evel: Implemented only if complex breakpoints are implemented and only for implemented instruction
breakpoints.

The Instruction Breakpoint Complex Control n (IBCCn) register controls the complex break conditions for instruc-
tion breakpoint n. Figure 6.2 shows the format of the IBCCn register; Table 6.3 describes the IBCCn register field.

Figure 6.2 IBCCn Register Format

31 24 23 20 19 14 13 10 9 8 5 4 3 2 1 0

32-hit Processor | 0 | UnPrCnd | 0 | PrCnd |CBE| DBrkNum |Q| 0 |
63 24 23 20 19 14 13 10 9 8 5 4 3 2 1 0

64-bit Processor| 0 | UnPrcnd | 0 | PrCnd |CBE| DBrkNum |Q| 0 |

Table 6.3 IBCCn Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

UnPrCnd 23:20 Specifies the unpriming condition for | breakpoint n. This R/W 0 Required if
field simply points to one of the 16 architecturally defined or primed breaks
priming conditions. This condition is then considered to R are present
unprime this | breakpoint. The 0000 val ue specifies the (CBTCpp=1)
default bypass mode of no unpriming condition, and an
implementation may choose to tiethisfield to azero value
and make this field not writeable and hence disallow soft-
ware to specify an unpriming condition. Theremaining 15
unpriming condition values are specified in up to 4 prim-
ing condition registers per breakpoint (A/B/C/D). See
Section 6.3.6 on page 164.

PrCnd 13:10 Specifies the priming condition for | breakpoint n. The R/W 0 Required if
architecture allows for up to 16 priming conditions to or primed breaks
choose from, where the 0000 val ue specifies the default R are present
bypass mode of no priming condition. An implementation (CBTCpp=1)

can choose to define from no priming condition (default
bypass mode) to up to 15 other possible priming condi-
tions. These 15 priming condition values are specified in
up to 4 priming condition registers per breakpoint
(A/B/C/D). See Section 6.3.6 on page 164.

CBE 9 Complex bresk enable bit is used to indicate that this R/W 0 Required
breakpoint may be used in a complex sequence which
includes: as a priming condition for another breakpoint, to
start or stop the stopwatch timer, or as part of atuple

breakpoint.

DBrkNum 85 Indicates which data breakpoint channel is used to qualify R/W Preset Required if
this instruction breakpoint or data qualified
Thisfield will be read-only if data qualified data break- R breaks are
points are not supported or if an implementation has a present
fixed pairing of qualifier and qualified breskpoints. (CBTCpgp=

1)
160 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3 Registers in the Complex Break and Trigger Block

Table 6.3 IBCCn Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
Q 4 Qualify this breakpoint based on the data breakpoint indi- R/W 0 Required if
cated in DBrkNum: data qualified
. breaks are
Encodin . present
g Meaning (CBTCDQP —
0 Not dependent on qualification 1)
1 Breakpoint must be qualified to be
0 MSB:14, 3:0 | Must be written as zeros; return zeros on read. R 0 Reserved

6.3.3 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)

Compliance L evel: Implemented only if complex breakpoints are implemented and only for implemented instruction
breakpoints.

The Instruction Breakpoint Pass Counter n (IBPCn) register controls the pass counter associated with instruction
breakpoint n. The width of the actual counter isimplementation-dependent. To determine the width software can
write avalue of -1 to the register and read back the value to note the bits that were set on the write. Figure 6.3 shows
the format of the IBPCn register; Table 6.4 describes the IBPCn register field.

Figure 6.3 IBPCn Register Format

31 ntl n 0
32-bit Processor | 0 | PassCnt |

63 ntl n 0
64-hit Processor 0 PassCnt
| | |

Table 6.4 IBPCn Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

PassCnt n:0 For the breakpoint associated with this pass counter, each R/W 0 Required if
time the matching condition is seen, this value will be dec- pass counters
remented by 1. When the value reaches O, or was origi- are present
nally set to 0, subsequent matches will cause a break or (CBTCpcp=1)
trigger as requested and the counter will stay at O.

Note that when the pass counter value is greater than 0, a
break/trigger action will never be taken even on a match-
ing condition. The only action taken would be to decre-
ment the pass counter by 1.

The instruction pass counter should not be set on instruc-
tion breakpoints that are being used as part of atuple
breakpoint.

0 MSB:n+1 | Must be written as zeros; return zeros on read. R 0 Reserved

MIPS® EJTAG Specification, Revision 6.10 161

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

6.3.4 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n * 0x100)

Compliance L evel: Implemented only if complex breakpoints are implemented and only for implemented data
breakpoints.

The Data Breakpoint Complex Control n (DBCChn) register controls the complex break conditions for data breakpoint
n. Figure 6.4 shows the format of the DBCCn register; Table 6.5 describes the DBCCn register field.

Figure 6.4 DBCCn Register Format

31 24 23 20 19 16 15 14 13 10 9 8 5 4 3 2 1 0
) TU CB
32-bit Processor 0 UnPrCnd | TIBrkNum P 0 PrCnd E DBrkNum | Q 0
63 24 23 20 19 16 15 14 13 10 9 8 5 4 3 2 1 0
. TU CB
64-bit Processor 0 UnPrCnd | TIBrkNum P 0 PrCnd E DBrkNum | Q 0

Table 6.5 DBCCn Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

UnPrCnd 23:20 Specifiesthe unpriming condition for D breakpoint n. This R/W 0 Required if
field simply pointsto one of the 16 architecturally defined or primed breaks
priming conditions. This condition is then considered to R are present
unprime this D breakpoint. The 0000 value specifies the (CBTCpp=1)
default bypass mode of no unpriming condition, and an
implementation may chooseto tie thisfield to azero value
and make this field not writeable and hence disallow soft-
ware to specify an unpriming condition. Theremaining 15
unpriming condition values are specified in up to 4 prim-
ing condition registers per breakpoint (A/B/C/D). See
Section 6.3.6 on page 164.

TIBrkNum 19:16 Tuple Instruction Break Channel Number. Thisfield con- R/W Preset Required if
trols which instruction break channel is paired with this or tuplebreaksare
data break channel to form atuple breakpoint. R present
Thisfield will be read-only if tuple breakpoints are not (CBTCrp=1)
supported or if an implementation has afixed tuple pairing
of | and D breakpoints

TUP 15 Enables the tuple breakpoint. This data breakpoint will R/W 0 Required if
only fireif the data conditions are met and the instruction tuplebreaksare
breakpoint in the TIBrkNum field also matched on the present
fetch of the same instruction. (CBTCrp=1)

162

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3 Registers in the Complex Break and Trigger Block

Table 6.5 DBCCn Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
PrCnd 13:10 Specifies the priming condition for D breakpoint n. The R/W 0 Required if
architecture allows for up to 16 priming conditions to primed breaks
choose from, where the 0000 val ue specifies the default are present
bypass mode of no priming condition. An implementation (CBTCpp=1)
can choose to define from no priming condition (default
bypass mode) to up to 15 other possible priming condi-
tion. These 15 priming condition values are specified in up
to 4 priming condition registers per breakpoint (A/B/C/D).
See Section 6.3.6 on page 164.
CBE 9 Complex break enable bit is used to indicate that this R/W 0 Required
breakpoint may be used in a complex sequence which
includes: as a priming or qualifying condition for another
breakpoint, or to start or stop the stopwatch timer.
DBrkNum 85 Indicates which data breakpoint channel is used to qualify R/W Preset Required if
this data breakpoint. or data qualified
Thisfield will be read-only if data qualified data break- R breaks are
points are not supported or if an implementation has a present
fixed pairing of qualifier and qualified breskpoints. (CBTCpgp=
1)
Q 4 Qualify this breakpoint based on the data breakpoint indi- R/W 0 Required if
cated in DBrkNum: data qualified
- breaks are
Encodin ' present
g Meaning (CBTCpgp=
0 Not dependent on qualification 1)
1 Breakpoint must be qualified to be
0 MSB:24, 14, | Must be written as zeros; return zeros on read. R 0 Reserved
3.0

6.3.5 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)

Compliance L evel: Implemented only if complex breakpoints are implemented and only for implemented data
breakpoints.

The Data Breakpoint Pass Counter n (DBPCn) register controls the pass counter associated with data breakpoint n.
Thewidth of the actual counter isimplementation-dependent. To determine the width software can writeavalue of -1
to the register and read back the value to note the bits that were set on the write. Figure 6.5 shows the format of the
DBPCn register; Table 6.6 describes the DBPCn register field.

Figure 6.5 DBPCn Register Format

31 ntl n 0
32-bit Processor | 0 | PassCnt |

63 ntl n 0
64-bit Proceﬁor| 0 | PassCnt |
MIPS® EJTAG Specification, Revision 6.10 163

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

Table 6.6 DBPCn Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

PassCnt n:0 For the breakpoint associated with this pass counter, each R/W 0 Required if
time the matching condition is seen, this value will be dec- pass counters
remented by 1. When the value reaches O, or was origi- are present
nally set to O, subsequent matches will cause a break or (CBTCpcp=1)
trigger as requested and the counter will stay at O.
Note that when the pass counter value is greater than 0, a
break/trigger action will never be taken even on a match-
ing condition. The only action taken would be to decre-
ment the pass counter by 1.
The data pass counters are re-used for a tuple breakpoint
that may be currently associated with the data break.

0 MSB:n+1 | Must be written as zeros; return zeros on read. R 0 Reserved

6.3.6 Priming Condition A I/D n (PrCndA/B/C/DI/Dn) Registers

Compliance Level: Implemented if complex breakpoints are implemented.

The Priming Condition Registers hold implementati on-specific information about which trigger points are used for
the priming and unpriming conditions for each breakpoint register. These priming conditions are predetermined by an
implementation and cannot be changed dynamically by software; hence these registers are read-only.

The architecture allows up to 16 priming conditions per breakpoint, and there can be up to 4 priming condition regis-
ters per breakpoint (A/B/C/D) that contains the necessary information for all 16 priming conditions. An implementa-
tion only needs to implement as many priming condition registers as needed to support the number of implemented

priming conditions. Each register contains the information for four priming conditions.

Figure 6.5 shows the format of the PrCndA register; Table 6.6 describes the PrCndA register fields. Thisregister is
identical for both Instruction and Data and defines the first four priming conditions. The other three registers—
PrCndB, PrCndC, and PrCndD—are similar and implement the remaining 12 possible conditions. Each condition
CondN in the register specifies which trigger point is connected to priming condition O through 15 for the current
breakpoint. Note that condition O is always Bypass and will read the 8 priming condition bits as 8 bO.

31

Figure 6.6 PrCndA Register Format

24 23 16 15

32-bit Processor

164

Cond3 Cond2

Condl

Condo0

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.3 Registers in the Complex Break and Trigger Block

Table 6.7 PrCndA Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
CondN 31:30 Reserved R 0 Required if
23:22 priming condi-
15:14 tionsare
7:6 present
29:28 Trigger type R Preset (CBTCpp=1)
21:20 00 - Specia/Bypass
13:12 01 - Instruction
54 10 - Data
11 - Reserved
27:24 Break Number, 0-14 R Preset
19:16
11:8
3.0

6.3.7 Stopwatch Timer Control (STCtl) Register (0x8900)

Compliance L evel: Implemented if stopwatch timer isimplemented.

The Stopwatch Timer Control register contains configuration information about how the stopwatch timer register is
controlled. Figure 6.7 shows the format of the STCtl register; Table 6.8 describes the STCtI register fields.

Figure 6.7 STCtl Register Format

31 22 21 20 19 18 17 14 13 10 9 8 5 4 1 0

32-bit Processor 0 B;?O BTt?ar B;gto BTtgtar StopChanl | StartChan1 | End| StopChan0 | StartChan0 |En0
63 22 21 20 19 18 17 14 13 10 9 8 5 4 1 0

64-bit Processor 0 BL?O BTt?ar ngo BTgar StopChanl | StartChan1 | End| StopChan0 | StartChan0 |En0

Table 6.8 STCtl Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
BTStopl 21 Break type for Stop Channel 1. A value of 0 implies R/W X

instruction and 1 implies data (this could be atupleif the
datais currently part of atuple). Animplementation that
ties the start and stop channels to predefined breakpoints
will also tie this value to a predefined value.

BTStartl 20 Break type for Start Channel 1. A value of 0 implies R/W X
instruction and 1 implies data (this could be atupleif the
datais currently part of atuple). Animplementation that
ties the start and stop channels to predefined breakpoints
will also tie this value to a predefined value.

MIPS® EJTAG Specification, Revision 6.10 165

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

Table 6.8 STCtl Register Field Descriptions (Continued)

Fields
Read /

Write

Reset
State

Name Bits Description Compliance

BT StopO 19 Break type for Stop Channel 0. A value of 0 implies R/W X
instruction and 1 implies data (this could be atupleif the
datais currently part of atuple). An implementation that
ties the start and stop channels to predefined breakpoints

will also tie this value to a predefined value.

Break type for Start Channel 0. A value of 0 implies R/W X
instruction and 1 implies data (this could be atupleif the
datais currently part of atuple). Animplementation that
ties the start and stop channels to predefined breakpoints
will also tie this value to a predefined value.

BTStart0 18

StopChanl 17:14 Indicates the breakpoint channel for the second pair that R/W X
will stop the counter if the timer is under breakpoint con-
trol. An implementation can chooseto tie thisto a pre-
defined breakpoint. But it is possible for implementation
to allow thisfield to be writable by software, so that the

pair of start and start channelsis dynamically selectable.

Optional

StartChanl 13:10 Indicates the breaskpoint channel for the second pair that R/W X
will start the counter if the timer is under breakpoint con-
trol. An implementation can chooseto tie thisto a pre-
defined breakpoint. But it is possible for implementation
to allow thisfield to be writable by software so that the

pair of start and start channelsis dynamically selectable.

Enl 9 Enable the second pair of breakpoint registers to control R/W X

the timer under breakpoint control.

StopChan0 85 Indicates the breakpoint channel that will stop the counter R/W X Required if

if the timer is under breskpoint control. An implementa-
tion can choose to tie this to a predefined breakpoint. But
it is possible for implementation to allow thisfield to be
writable by software so that the pair of start and start chan-
nelsisdynamically selectable.

StartChan0

4:1

Indicates the breakpoint channel that will start the counter
if the timer is under breskpoint control. An implementa-
tion can choose to tie this to a predefined breakpoint. But
it is possible for implementation to allow thisfield to be
writable by software so that the pair of start and start chan-
nelsisdynamically selectable.

RIW

EnO

Enable the first pair of breakpoint registers to control the
timer under breakpoint control.

R/W

stopwatch
timer ispresent
(CBTCgrp=1)

MSB:22

Must be written as zero; returns zero on read.

Reserved

6.3.8 Stopwatch Timer Count (STCnt) Register (0x8908)

Compliance Level: Implemented if stopwatch timer isimplemented.

The Stopwatch Timer Count register is the count value for the stopwatch timer. Figure 6.8 shows the format of the
STCnt register; Table 6.9 describes the STCnt register field.

166

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

MIPS® EJTAG Specification, Revision 6.10

6.4 Tuple Breakpoints

Figure 6.8 STCnt Register Format

31 0

32-bit Processor | Count |

63 32 31 31 0

64-hit Proceﬁor| 0 | Count |

Table 6.9 STCnt Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Count 310 Current counter value R/W 0 Required if
stopwatch
timer ispresent
(CBTCSTP = l)

6.4 Tuple Breakpoints

A tuple breakpoint isthe logical AND of adata breakpoint and an instruction breakpoint. Whether or not this feature
is present isindicated by CBTCyp Tuple breskpoints are specified as a condition on a data breakpoint. In the data

breakpoint complex control register, if the TUP bit is set (DBCCny,p), the data breakpoint will not match unless the
corresponding instruction breakpoint (specified by DBCCngrnum) 1S Set up for atuple and the matching conditions
are a'so met. The instruction breakpoint must be set up as follows to be considered part of atuple breakpoint:

i IBCCﬂCBE =1
+ IBCCNprcng = 1BCCNpg = IBChyg = 1BCngg = IBPCN = 0

Note that if the instruction breakpoint has BreakEnable set, the instruction will take a simple instruction breakpoint,
and if it is precise, the instruction will not be executed and the data side of the tuple will not even be evaluated.

A tuple uses the data breakpoint resources to specify the break action, break status, pass counter, data qualifier, and
priming conditions.

6.5 Pass Counters

Pass counters are used to specify that the breakpoint conditions must match N times before the breakpoint action will
be enabled, where N is the value written by software to a pass counter register. Whether or not this feature is present
isindicated by CBTCpcp The pass counter registers are drseg memory-mapped and added for each instruction and
data break channel, as described in Section 6.3.3 “Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128
+ n*0x100)” and Section 6.3.5 “Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)”. The data
breakpoint pass counter registers are reused for tuple breakpoints. Pass counter usage is specified below.

» Thearchitecture alows an implementation to implement pass counters on a subset of the implemented instruc-
tion and data breakpoints.

» Thewidth of the counter is also implementation-dependent. Software can determine the width and presence of a
counter by writing avalue of -1 to the register and reading back to see which bits are set. When no bits are set,

MIPS® EJTAG Specification, Revision 6.10 167

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

thisimplies that this breakpoint does not implement a pass counter. The recommended counter sizeis 8 bits for
instruction breakpoints and 16 bits for data breakpoints.

* Writing a non-zero value to this register will enable the pass counters. When enabled, each time the breakpoint
conditions match, the counter will be decremented by 1. When the counter value reaches 0, the breakpoint action
(breakpoint exception, trigger, or complex break enable) will occur on any subsequent matches, and the counter
will not decrement further.

» |If the breakpoint also has priming conditions and/or data qualifier specified, the pass counter will only decrement
when the priming and/or data qualifier conditions have been met. A breakpoint condition can be changed from
being qualified to unqualified or primed to unprimed without any affect on the counter state.

» |If adatabreakpoint is configured to be atuple breakpoint, the data pass counter will only decrement on instruc-
tions where both the instruction and data break conditions match. The pass counter for the instruction break
involved in atuple should not be enabled if the tupleis enabled.

* Writing avalue of 0 to the counter will disable the pass counter and enable the breakpoint to fire whenever the
conditions are met. The counter is reset to O to preserve compatibility with legacy software.

» The counter register will be updated as matches are detected, and the current value can be read from the register
while operating in debug mode. It is not a requirement, but an architectural recommendation that the current
count value be reflected in the drseg register that represents the counter.

* Insomeimplementations, a simple instruction breakpoint may be taken precisely, while a complex breakpoint,
like the one that uses pass counters, may be taken imprecisely. In this situation, when a complex condition like
pass countersis disabled during execution, the breakpoint exceptions will continue to be taken imprecisely until
the complex condition is cleared, for example, when the pass counter is actually written with the zero value.

6.6 Data Qualified Breakpoints

168

Each of the breakpoints, instruction, data, or tuple can be data qualified. Whether or not this feature is present isindi-
cated by CBTCp. In qualified mode, a breakpoint will recognize its conditions only after the specified data break-
point matches both address and data. If the qualifying data breakpoint matches the address but has a mismatch on the
data value, the breakpoint with the qualifier will be disqualified and will not match until a subsequent qualifying
match.

The pairing of which data break qualifies a breakpoint is specified in IBCCnpgnum 81d DBCCnpgnum- These
fields will be read-only if an implementation has a fixed pairing of qualifying and qualified breakpoints and will be
writable if dynamic pairing is supported. The IBCCng and DBCC, bits are used by software to decide when an
instruction or data breakpoint respectively should be actively considered to be data qualified. See Section

6.3.2 “Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n* 0x100)” and Section 6.3.4 “Data
Breakpoint Complex Control n (DBCCn) Register (0x2128 + n* 0x100)”. The tuple breakpoint reuses the bitsin the
corresponding DBCCn register of the data breakpoint that forms the tuple.

This feature can be used similarly to the ASID qualification that is available on cores with TLBs. If an RTOS loads a
process I D for the current process, that load can be used as the qualifying breakpoint. When amatching processID is
loaded (entering the desired RTOS process), qualified instruction breakpoints will be enabled. When a different pro-

cess|Sisloaded (leaving the desired RTOS process), the qualified instruction breakpoints are disabled. Alternatively,
with the InvertValueMatch feature of the data breakpoint, the instruction breakpoints could be enabled on aany pro-

cess | D other than the specified one.

Enabling the data qualifier requires the following to be true:

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.7 Primed Breakpoints

Qudlifier (data break) must have DBCnyg or DBCCnegg Set.
Qualifier should have data comparison enabled (via settings of DBCng, s and DBCngp,).

Qualifier should not have pass counters, priming conditions, data qualification, or tuples enabled.

Qudlifier can be either aload or store instruction (as enabled by DBCnyo g/NosB)

6.7 Primed Breakpoints

Priming conditions provide away for one breakpoint to be enabled or disabled by another one. Whether or not this

feature is present isindicated by CBTCpp Prior to the priming condition being satisfied, any breakpoint matches are
ignored. It is possible for aprimed breakpoint to get unprimed. Once unprimed, the breakpoint must be primed again
before a matching condition will enable the breakpoint to take abreak or trigger action. The details of thisfeature are:

Each breakpoint has a choice of up to a maximum of 16 possible priming conditions. An implementation may
limit thisto a smaller number and will list the specific priming conditions for each of its breakpoints for refer-
ence. The priming conditions vary from breakpoint to breakpoint (since it makes no sense for a breakpoint to
prime itself).

Each Prime condition is the comparator output after it has been qualified by its own Prime condition and pass
counter. Using this, several stages of Priming are possible (e.g. data cycle D followed by instruction A followed
by instruction B followed by instruction C).

One of the conditionsis a bypass mode in which the priming condition is always met. This bypass condition is
the default state of abreakpoint and initialized on reset to be backwards compatible to the simple instruction and
data breakpoints.

The priming breakpoint must have IBCnyg or IBCCncgg set if it is an instruction breskpoint, or it must have
DBCnyg or DBCCncpg set if it isadata (or tuple) breskpoint.

The IBCCnyprcng @d DBCCnyprcng @re used to specify a condition used to unprime the instruction or data
breakpoint respectively. Thisis optional since an implementation can tie thisfield to O and disallowing software
to writeto thisfield. Thisimplies that the unprime feature is abypass and it is not possible to unprime a break-
point once it is primed. A breakpoint is considered to start in the unprimed condition until it matches a priming
condition. Encountering an unprime condition match will take the breakpoint to the unprime state if it was
primed, or leave it unprimed if it was already in the unprimed state.

Section 6.3.6 “Priming Condition A I/D n (PrCndA/B/C/DI/Dn) Registers’ shows the registers used to indicate the
prime or unprime condition. The full list of all the PrCnd Registers and their drseg addressesis shown in Table 6.10.

Table 6.10 Addresses for PrCnd[A-D][I/D]N Registers in drseg Memory

Register drseg Address Reset value
PrCndAIO 0x8300 Preset
PrCndBIO 0x8308 Preset
PrCndCI0 0x8310 Preset
PrCndDIO 0x8318 Preset
PrCndAll 0x8320 Preset
MIPS® EJTAG Specification, Revision 6.10 169

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

Table 6.10 Addresses for PrCnd[A-D][I/D]N Registers in drseg Memory (Continued)

Register drseg Address Reset value
Block of 3 addresses Preset
PrCndAl12 0x8340 Preset
Block of 3 addresses Preset
PrCndAI3 0x8360 Preset
Block of 3 addresses Preset
PrCndAl4 0x8380 Preset
Block of 3 addresses Preset
PrCndAl5 0x83A0 Preset
Block of addresses Preset
PrCndlA14 0x84C0 Preset
Block of 3 addresses Preset
PrCndADO 0x84E0 Preset
PrCndBDO Ox84E8 Preset
PrCndCDO 0x84F0 Preset
PrCndDDO 0x84F8 Preset
PrCndAD1 0x8500 Preset
Block of addresses Preset
PrCndAD14 OX86A0 Preset
Block of 3 addresses Preset

The architecture does not restrict implementation as to when the primed, qualified, or tuple breakpoints are recog-
nized and hence also when the pass counter update occurs. In the current EJTAG specification, simple instruction
breaks are expected to be precise, that is, recognized early in the pipe, and later fetches are squashed as soon as possi-
ble. (Nevertheless, note that the actual break exception istaken only after the instruction passes the point of other pos-
sible exceptionsin the pipe). Data breaks, on the other hand, may be precise or imprecise. If imprecise, then they are
not recognized until later in the pipe and hence early squashing of fetchesis not possible. In the presence of complex
breaks which may be recognized late in the pipe (later than simple instruction breaks), an instruction break of alater
instruction may be primed by a data break from an earlier instruction in the execution sequence, because of the differ-
ent pipeline stages when these breaks may be recognized. This causes a hazard condition. Although it may not be
possible to entirely remove this hazard with complex breaks, its effect on implementation complexity may be reduced
by allowing all complex breaks to be recognized later in the pipe and the pass counter updated later in the pipe. This
reduces the need for speculative updates of the pass counter and roll backs of state when the instruction may be
sguashed for other reasons. Given this type of complex interaction in the pipeline, it is recommended that the recogni-
tion of simple instruction breaks be retained at the early pipe stages, while al complex break recognition be delayed
to the stage where the data breaks are recognized.

6.8 Stopwatch Timer

170

The stopwatch timer is a count register that is memory-mapped to drseg so that it can be read and reset by software
(see Section 6.3.8 “Stopwatch Timer Count (STCnt) Register (0x8908)”). The presence of thisfeatureisindicated by
bit CBTCgrp A stopwatch control register is used to control its operation (see Section 6.3.7 “ Stopwatch Timer

Control (STCtl) Register (0x8900)"). The stopwatch timer works as follows:

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

6.9 Reporting of the Complex Breakpoints in the Debug Register

e Countvalueisreset to 0.

» Thetimer can be configured to bein afree running mode or controlled to start and stop by specific breakpoints
us ng CBTCSTMOde'

» Theability to start and stop the timer using breakpoints can be auseful feature. For example, by using instruction
breaksto start and stop the timer, it would be possible to measure the amount of time spent in aparticular body of
code by setting the start break channel to point to the entry point and the stop break channel to point to the exit
point.

» Thearchitecture allows up to two pairs of start/stop break channels. An implementation can choose to implement
only one pair. If the stopwatch timer feature is implemented, then at least one pair of start/stop breakpoints must
be implemented.

» Reset state has counter stopped and under breakpoint control, so that the counter is not running when the core is
not being actively debugged.

» The counter stops counting on entry into debug mode.

* When controlled by breakpoints, the controlling breakpoints should have the corresponding IBCnyg or IBC-
Cncpg bit set for instructions breaks and the bit set for data (or tupl€) breaks.

e Thearchitecture allows software to program the start and stop hardware breakpoints, but an implementation can
choose to predetermine these breakpoints, only allowing software the ability to enable one pair or the other. Soft-
ware must write -1 to the STCtl register and read back the value to determine whether or not an implementation
has provided software with the ability to program the start/stop breaks and how many pairs are implemented.

e Notethat if two pairs are implemented, then enabling both will cause the hardware to use pair 0 as the controlling
pair.

6.9 Reporting of the Complex Breakpoints in the Debug Register

Described here are the changes to the Debug register (number 23, select 0) and a new CPO register Debug2 (number
23, select 6) which are used to report the cause of debug breaks when the cause arises from a complex breakpoint.

6.9.1 Debug Register (23, select 0) Changes for Complex Breakpoints

The Debug register now defines the DIBImpr field, which indicates if a Debug Instruction Break exception occurred
on an instruction due to an imprecise instruction hardware break.

6.9.2 Debug?2 Register (23, select 6)

Debug2 isanew CPO register specificaly for use by the EJTAG block. The currently defined bitsin this new register
are described in Section 2.7.2 “Debug? Register (CPO Register 23, Select 6)”.

MIPS® EJTAG Specification, Revision 6.10 171

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Complex Break and Trigger Block

The bits expected to be set on a complex break implementation, where all the complex breaks are taken imprecisely,
are shown in Table 6.11 below. Note that this does not imply anything about simple breaks—simple breaks can be
taken precisely or imprecisely, as per the implementation methodol ogy.

172

Table 6.11 Debug Break Indicator Bits Set for Simple and Complex Breaks

Breakpoint Type Debug Register Bits Set Debug?2 Register Bits Set
Simple Precise |break DIB -
Simple Precise Dbreak DDBL or DDBS -
Simple Imprecise |break DIBImpr -

Simple Imprecise Dbreak DDBLImpr or DDBSImpr -
Complex Tuple Break Imprecise | DIBImpr and (DDBLImpr or Tup
DDBSImpr)
Complex Data Quadlified Ibreak | DIBImpr DQ
Imprecise
Complex Data Qualified Dbreak | DDBLImpr or DDBSImpr DQ
Imprecise
Complex Data Quadlified Tuple | DIBImpr and (DDBLImpr or DQ and Tup
Break Imprecise DDBSImpr)
Complex Primed Ibreak Imprecise | DIBImpr Prm
Complex Primed Dbreak Impre- | DDBLImpr or DDBSImpr Prm
cise
Complex Primed Tuple break | DIBImpr and (DDBLImpr or Tup and Prm
Imprecise DDBSImpr)
Complex Ibreak with Pass DIBImpr PaCo

Counter Imprecise

Complex Dbreak with Pass DDBLImpr or DDBSImpr PaCo

Counter Imprecise

Complex Tuple Break with Pass | DIBImpr and (DDBLImpr or Tup and PaCo
Counter Imprecise DDBSImpr)
Complex Data Qualified Ibreak | DIBImpr DQ and PaCo
with Pass Counter Imprecise
Complex Data Qualified Dbreak | DDBLImpr or DDBSImpr DQ and PaCo
with Pass Counter Imprecise
Complex Data Qualified Tuple | DIBImpr and (DDBLImpr or DQ and Tup and PaCo
Break with Pass Counter Impre- | DDBSImpr)
cise
Complex Primed |break with Pass | DIBImpr Prm and PaCo
Counter Imprecise
Complex Primed Dbreak with | DDBLImpr or DDBSImpr Prm and PaCo
Pass Counter Imprecise
Complex Primed Tuple Break | DIBImpr and (DDBLImpr or Prm and Tup and PaCo
with Pass Counter Imprecise | DDBSImpr)

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 7

PC Sampling

This chapter describes the optional PC Sampling feature of EJTAG that was introduced in Version 3.1 of the EJTAG
Specification and extended to include Data Address Sampling in version 5.0. It contains the following sections:

e Section 7.1 “Introduction”

e Section 7.2 “PC and Data Address Sampling”

7.1 Introduction

It is often useful for program profiling and analysis to periodically sample the value of the PC. Thisinformation can
be used for statistical profiling akin to gprof, and is also very useful for detecting hot-spotsin the code. In a
multi-threaded environment, this information can be used to understand thread behavior, and to verify thread schedul-
ing mechanisms in the absence of afull-fledged tracing facility like PDtrace.

The PC sampling feature is optional within EJTAG, but EJTAG and the TAP controller must be implemented if PC
Sampling is required. When implemented, PC sampling can be turned on or off using an enable bit; when the feature
is enabled, the PC value is continually sampled.

7.2 PC and Data Address Sampling

The presence or absence of the PC Sampling feature isindicated by the PCS (PC Sample) bit in the Debug Control
register. If PC sampling isimplemented, and the PCSe (PC Sample Enable) bit in the Debug Control Register isalso
set to one, then the PC values are constantly sampled at the defined rate (DCRpcR) and written to a TAP register. The
old value in the TAP register is overwritten by the new value, even if this register has not been read out by the debug
probe.

The presence or absence of Data Address Sampling isindicated by the DAS (Data Address Sample) hit in the Debug
Control Register and enabled by the DA Se (Data Address Sampling Enable) bit in the Debug Control Register.

The sample rate is specified by the 3-bit PCR (PC Sample Rate) field (bits 8:6) in the Debug Control register (DCR).

These three bits encode a value 2° to 212 in amanner similar to the specification of SyncPeriod. When the implemen-
tation allows these bits to be written, the internal PC sample counter will be reset by each write, so that counting for
the requested sample rate isimmediately restarted.

The sample format includes a New data bit, the sampled value, the ASID of the sampled value (if not disabled by
PCnoASID, bit 25 in DCR) as well asthe Thread Context ID if the processor implements MIPS MT (if not disabled
by PCnoTCID, bit 27 in DCR). Figure 7.1 and Figure 7.2 show the format of the sampled valuesin the PCSAMPLE
TAP register for MIPS32 and MI1PS64 respectively. The New data bit is used by the probe to determine if the sampled
datajust read out is new or has already been read and must be discarded. The K hit is used to differentiate between
Kernel-space addresses vs. User-space addresses when the EVA opcodes are available. The K bit is set while execut-
ing in kernel-mode.

MIPS® EJTAG Specification, Revision 6.10 173

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

PC Sampling

Figure 7.1 PCSAMPLE TAP Register Format (MIPS32)

0 - 8 hits 0 or 8 bits 0 or 1 bit 0 or 8 or 10 bits 32 bits 1 bit
K
MIPSMT proces-| . ASID (if enabled) PC or Data Address New
VZ processors is
sorsonly) .
only) imple-
mented)
Figure 7.2 PCSAMPLE TAP Register Format (MIPS64)
0 - 8 hits 0 or 8 bits 0 or 1 bit 0 or 8 or 10 bits 64 bits 1 bit
K
migle:dl sz)r(Iffor TC (if enabled, for (;;:Xré
MIPSMT proces-| . ASID (if enabled) PC or Data Address New
MIPSVZ proces- is
sors only) .
sors only) imple-
mented)
Table 7.1 PCsample Register Field Descriptions
Fields
Num of Read / Reset
Name Bits Description Write State Compliance
GuestID 1-8 bitsif | GuestlD of the sampled PC. R Undefined Required if
Root.Confi VZEis
g3yz=1 The value of thisfield reflects the effective GuestI D dur- implemented
and ing the execution of the instruction which is sampled. (Root.Config
Root.Guest | Thevalue of thisfield does not have to match the value 3yz=1)
CtlOog; =1; of Root.GuestCtl 1, If executing in one of the Root
modes, the value of thisfield is zero. If executing in one
1 bit if of the Guest modes, the value of thisfield is non-zero.
Root.Confi | See below for how the values for thisfield is calcul ated.
93yz=1 , .)
and Width of this field matches the width of the
Root.Guest | Root.GuestCtl, field if Root.Config3yz=1 and
Ctlog; =0 Root.GuestCtl0g; =1.
Thisfield only existsif DCRpcpogp=0 bit.
TC 8 hits Thread Context Id of the sampled PC. R Undefined Required if
MIPSMT is
Thisfield only existsif DCRpcpotcip=0 bit. implemented
K 1 bit Kernel execution. R Undefined Required if
If K=1, then the instruction was executed while in ker- EVA feature
nel-mode. isimple-
If K=0, then the instruction was executed whilein mented
non-kernel-mode.
ASID 8 or 10 hits | Address Space Id of the sasmpled PC R Undefined Required
Thisfield Only existsif DCRPCnOAS|D:O bit.
174 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

7.2 PC and Data Address Sampling

Table 7.1 PCsample Register Field Descriptions (Continued)

Fields
Num of Read / Reset
Name Bits Description Write State Compliance
PC 32 bitsfor | Program Counter value R Undefined Required
MIPS32;
64 bits for
MIPS64
New 1 bit Processor writes a 1 to this field whenever anew sample R/WO Undefined Required
iswritten into this register. The probe replaces with a
zero when it reads out the sample value. Used to detect a
duplicate sample read on the probe side.

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it isin Debug mode.

The GuestID field is calculated in the following manner;

if (GuestCtlOgy = 1) and ((Root.Statusgg, = 0) and (Root.Statusgyg, = 0)
and (Root.Debugpy = 0)) {// in Guest Mode

if (GuestCtlOg; = 1) {
GuestID ¢« GuestCtllqp

}

else {

GuestID « 1’'bl

}
else { // in Root Mode
GuestID « 0 // 1 bit if GuestCtlOg = 0

}

Note that some of the smaller sample periods can be shorter than the time needed to read out the sampled value. That
is, it might take 60 (TCK) clock ticks to read a MIPS32 sample, while the smallest sample period is 32 (processor)
clocks. While the sampleis being read out, multiple samples may be taken and discarded, needlessly wasting power.
To reduce unnecessary overhead, the TAP register includes only those fields that are enabled. If both PC Sampling
and Data Sampling are enabled, then both samples are included in the PCSample scan register. PC Sampleisin the
least significant bits followed by a Data Address Sample. If either PC Sampling or Data Address Sampling isdis-
abled, then the TAP register does not include that sample. The total scan length for MIPS32is 60 * 2 = 120 bitsif all
fields are present and enabled, and 92 * 2 = 184 bits for MIPS64.

The figures above show the maximum length of the register format if all fields are implemented. Theregister lengthis

reduced if some of the features are not implemented.

MIPS® EJTAG Specification, Revision 6.10 175
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

PC Sampling

7.2.1 PC Sampling in Wait State

Note that the processor samples PC even when it isasleep, that is, in aWAIT state. This permits an analysis of the
amount of time spent by a processor in WAIT state which may be used for example to revert to alow power mode
during the non-execution phase of areal-time application. But counting cycles to update the PC sample valueis a
waste of power. Hence, when in aWAIT state, the processor must simply switch the New bit to 1 each timeitisset to
0 by the probe hardware. Hence, the external agent or probe reading the PC value will detect a WAIT instruction for
as long as the processor remains in the WAIT state. When the processor leaves the WAIT state, then counting is
resumed as before.

7.2.2 PC Sampling a MT Processor

In amulti-V PE implementation of a processor with MIPS MT, each VPE hasits own TAP controller and will inde-
pendently sample the PC of the instructions executing in that VV PE of the processor. In the context of aVPE, PC sam-
pling cannot be enabled for a VPE until that VPE is enabled. If there are no active TCs on a given VPE, no new PC
samples at available at the TAP controller PCsample register, even if PCSe bit is 1. In general, in aprocessor with
MT, it makes sense to leave the PCSe bit disabled until the system has booted and all VPEs are enabled and up and
running before setting PCSe bit to 1. Otherwise, the PC sampling counter will continue to run and consume power
even if there is nothing happening on aVPE and isit disabled in one way or another.

7.2.3 Cache Miss PC Sampling

EJTAG revision 5.0 adds a new optional mechanism for triggering PC sampling when an instruction fetch missesin
the I-cache. When PCIM (bit 26 in DCR) is 1, PC addresses that hit the cache are not sampled. When the PCSR
counter triggers, the most recent instruction whose fetch missed the cache is stored and available for EJTAG to shift
out through PCSAMPLE. Over time, this collection mode resultsin an overall picture of the instruction cache behav-
ior and can be used to increase performance by re-arranging code to minimize cache thrashing.

7.2.4 Data Address Sampling

EJTAG revision 5.0 extends the PC sampling mechanism to allow sampling of data (load and store) addresses. This
featureis enabled with DA Se, bit 23 in the Debug Control register. When enabled, the PCSAMPLE scan register
includes a data address sample. All load and store addresses can be captured, or they can be qualified using a data
breakpoint trigger. DASQ=1 configures data sampling to record a data address only when it triggers data breakpoint
0. To be used for Data Address Sampling qualification, data breakpoint O must be enabled using its TE (trigger
enable) hit.

PCSR controls how often data addresses are sampled. When the PCSR counter triggers, the most recent load/store
address generated is accepted and made available to shift out through PCSAMPLE.

176 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 8

Fast Debug Channel

EJTAG version 5.0 adds an optional Fast Debug Channel (FDC) mechanism for higher bandwidth data transfers
between a debug host/probe and a target. The existing FASTDATA mechanism was designed to make data transfers
more efficient in terms of TAP bandwidth utilization. However, the FASTDATA mechanism causes the target CPU to
block on every fastdata memory access, preventing it from executing non-debug instructions and making the data
transfer intrusive to the program under debug. The FDC mechanism allows the user to set up adata transfer, and then
resume normal operation. The data transfer occursin the background, and the target CPU can either choose to check
the status of the transfer periodically, or it can choose to be interrupted at the end of the transfer. The FDC mechanism
adds several architectural components to EJTAG state. The rest of this chapter describes these components and the
usage of FDC in more detail.

8.1 Overview

The FDC mechanism adds two First In First Out (FIFO) structures that are mapped to the target CPU’s physical
address map. The probe usesthe new FDC TAP instruction to access these FIFOs, while the CPU accesses them using
memory accesses. To transfer data out of the core, the CPU writes one or more pieces of datato the transmit FIFO. At
thistime, the CPU can resume doing other work. An external probe would examine the status of the transmit FIFO
periodicaly, and if thereis data to be read, the probe starts to receive data from the FIFO, one entry at atime. When
all datafrom the FIFO has been drained, the probe goes back to waiting for the CPU to write more data. The CPU can
either choose to be informed of the empty transmit FIFO viaan interrupt, or it can choose to periodically check the
status. Receiving dataworksin asimilar manner, that is, the probe writes to the receive FIFO. At that time, the CPU
is either interrupted, or learns of the event by polling a status bit. The CPU can then do |oad accesses to the receive
FIFO and receive data being sent to it by the probe.

The primary advantage of FDC isthat it does not require the CPU to be blocked when the probeis reading or writing
the datatransfer FIFOs. This significantly reduces the CPU overhead, and makes the data transfer far lessintrusive to
the code executing on the CPU.

8.2 FDC Features

The FDC memory-mapped registers are located in the common device memory map (CDMM) region. FDC has a
device ID of OxFD.

8.2.1 Fast Debug Interrupt

The FDC block can generate an interrupt to signal the CPU that datais available to receive or that spaceisavailableto
send data, If interrupts are enabled, they will be generated based on the occupancy of the receive and transmit FIFOs.
Enabling the receive interrupt also enables the generation of an interrupt from the probe using a special data value.
Note that thisis aregular interrupt, not a debug interrupt.

The FDC Configuration Register (see Section 8.3.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”) includes
fields for enabling and setting the threshold for generating each interrupt. These can be set to match the desired
behavior as follows:

MIPS® EJTAG Specification, Revision 6.10 177

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Fast Debug Channel

Interrupts Disabled: this isthe default setting.

Minimum CPU Overhead: This setting minimizes the CPU overhead by not generating an interrupt until the
receive FIFO is completely full or the transmit FIFO is completely empty.

Minimum latency: To have the CPU take data as soon as it is available, the receive interrupt can be fired when-
ever the receive FIFO is not empty.

Maximum bandwidth: When configured for minimum CPU overhead, bandwidth between the probe and CPU
can be wasted if the CPU does not service the interrupt before the next transfer occurs. To reduce the chances of
this happening, the interrupt thresholds can be set lower so that interrupts are generated when the receive FIFO is
almost full or the transmit FIFO is amost empty. The definition of almost full/empty is implementation-depen-
dent, but is recommended to be 1 entry away from full/empty.

The FDC Interrupt should be handled similarly to the timer and performance counter interrupts in the processor.
These can be combined with one of the interrupt signalsinternally or externally to the core, or can be sent to an inter-
rupt controller to generate a core interrupt. Fields have been added to the Cause and IntCtl CoprocessorO register to
allow software to identify that an interrupt is from the FDC. These registers are described in MIPS64® Architecture
Reference Manual Volume I11: The MIPS54® Privileged Resource Architecture, but the new field descriptions are
excerpted here.

Table 8.1 Cause Register FDC Field Description

Fields
Read / Reset
Name Bits Description Write State Compliance
FDCI 21 Fast Debug Channel Interrupt. This bit denotes whether R Undefined | Optional
an FDC interrupt is pending : (EJTAG Fast
- - Debug Channel
Encoding Meaning Implemented)
0 No FDC interrupt is pending
1 FDC interrupt is pending

If EJTAG FDC is not implemented, thisfield returns O
on aread.

178

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

8.2 FDC Features

Table 8.2 IntCtl Register FDC Field Description

Fields
Read / Reset
Name Bits Description Write State Compliance
IPFDC 25..23 For Interrupt Compatibility and Vectored Interrupt R Preset or Optional
modes, this field specifies the |P number to which the Externaly (EJTAG Fast
Fast Debug Channel Interrupt request is merged, and Set Debug Chan-
allows software to determine whether to consider nel Imple-
Causerp for apotential interrupt. mented)
Hardware
Encoding IP bit Interrupt Source
2 2 HWO
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

The value of thisfieldis UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

If EJTAG FDC is not implemented, thisfield returns
zero on read.

8.2.2 FDC TAP Instruction

The FDC TAP instruction performs a 38-bit bidirectional transfer of data as shown in Figure 8.1. On scan out, the
probe receives a Data Out valid bit, a Receive Buffer Full status bit, a 4-bit channel identifier and 32 bits of data. On
scan in, the probe sends status as to whether the data out in the current scan-out will be accepted by the probe, avalid
bit for data from the probe, 4 channel bits, and 32 hits of data. The probe can cause an interrupt to be sent to the pro-
cessor core by sending in a special value with OxD in the channel bits and a zero value in the Data In Valid bit. This
mechanism can be used by the probe to interrupt the core in cases where a probe to core transfer completes without
filling the receive FIFO. If receive interrupts are not enabled, this specia value has no effect on the core. Figure 8.1
shows a block diagram of the FDC mechanism.

MIPS® EJTAG Specification, Revision 6.10 179

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Fast Debug Channel

Figure 8.1 FDC Block Diagram and TDI to TDO Path

Statu Og: DatalIn Valid Status(0): Data Out Valid OV
Status(1): Probe Data Accept Status(1): Receive Buffer Full | |
T’ Status(2) + Channel (4)+ Data(32)—_|_50 Configuration Register
MSB 4 ' 0/LSB Status Register
| - P Receive Register

L l Transmit Register

| | Receive FIFO :

| L — — ;

| :

| To/From Probe !

L —_ e - — — 4 4.___________:

Transmit FIFO

8.3 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU accessto FDC is vialoads and stores to the FDC
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration
and status information, and access to the transmit and receive FIFOs. The registers and their respective offsets are
shown in Table 8.3

Table 8.3 Instruction Breakpoint Register Mapping

Offset in CDMM Register
device block Mnemonic Register Name and Description
0x0 FDACSR FDC Access Control and Status Register
0x8 FDCFG FDC Configuration Register
0x10 FDSTAT FDC Status Register
0x18 FDRX FDC Receive Register
0x20 + 0x8* n FDTXn FDC Transmit Register n (0 < n < 15)

8.3.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

Thisisthe general CDMM Access Control and Status register which defines the device type and size and controls
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself isonly acces-
sible in kernel mode. Figure 8.1 has the format of an Access Control and Status register (shown as a 64-bit register),
and Table 8.4 describes the register fields.

Figure 8.2 FDC Access Control and Status Register

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0
0 DevID | 0 | DevSize |DevRev| 0 |UW| Ur |s/v| S |
180 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

8.3 Fast Debug Channel Registers

Table 8.4 FDC Access Control and Status Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

DevType 31:24 Thisfield specifies the type of device. R Oxfd Required

DevSize 21:16 Thisfield specifies the number of extra 64-byte blocks R 0x2 Required
allocated to this device. The value Ox2 indicates that this
device uses 2 extra, or 3 total blocks.

DevRev 15:12 Thisfield specifies the revision number of the device. R 0x0 Required
The value 0x0 indicates that thisisthe initial version of
FDC

Uw 3 Thishit indicatesif user-mode write accessto thisdevice R/W 0 Required
isenabled. A value of 1 indicates that access is enabled.

A value of O indicates that accessis disabled. An attempt
to write to the device whilein user mode with access dis-
abled isignored.

Ur 2 This bit indicates if user-mode read accessto this device R/W 0 Required
isenabled. A value of 1 indicates that accessis enabled.
A value of O indicates that accessis disabled. An attempt
to read from the device while in user mode with access
disabled will return 0 and not change any state.

Sw 1 Thisbit indicates if supervisor-mode write accessto this R/W 0 Required
deviceisenabled. A value of 1 indicates that accessis
enabled. A value of O indicates that accessis disabled.
An attempt to write to the device while in supervisor
mode with access disabled isignored.

Sr 0 This bit indicates if supervisor-mode read access to this R/W 0 Required
deviceisenabled. A value of 1 indicates that accessis
enabled. A value of 0 indicates that accessis disabled.
An attempt to read from the device while in supervisor
mode with access disabled will return 0 and not change
any state..

0 63:32, 11:4 | Reserved for future use. Ignored on write; returns zero R 0 Required
on read.

8.3.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 8.3 shows the format of the FDC Configuration register, and Table 8.5 describes the register fields.

Figure 8.3 FDC Configuration Register

31 20 19 18 17 16 15 8 7 0
0 Tx_IntThresh Rx_IntThresh TXFIFOSize RxFIFOSize
MIPS® EJTAG Specification, Revision 6.10 181

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Fast Debug Channel

Table 8.5 FDC Configuration Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
0 31:20 Reserved for future use. Read as zeros, must be written R 0 Required
as zeros.
TxInt- 19:18 Controls whether transmit interrupts are enabled and the R/W 0 Required
Thresh state of the TxFIFO needed to generate an interrupt.
Encoding Meaning
0 Transmit Interrupt Disabled
1 Empty
2 Not Full
3 Reserved for Implementations. Itis
recommended that this entry be used
for “amost empty” conditions - i.e..
oneentry in use
RxInt- 17:16 Controls whether receive interrupts are enabled and the R/W 0 Required
Thresh state of the RXFIFO needed to generate an interrupt.
Encoding Meaning
0 Receive Interrupt Disabled
1 Full
2 Not empty
3 Reserved for Implementations. It is
recommended that this entry be used
for “almost full” conditions - i.e.. one
entry available
TXFIFOS- 15:8 Thisfield holds the total number of entriesin the trans- R Preset Required
ize mit FIFO.
RxFIFOS- 7:0 Thisfield holds the total number of entriesin the receive R Preset Required
ize FIFO.

8.3.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 8.4 has the format of the
FDC Status register, and Table 8.6 describes the register fields.

Figure 8.4 FDC Status Register

31 24 23 16 15 8 7 4 3 2 1 0
Tx_Count Rx_Count 0 | RxChan | RXE| RxF | TxE| TxF|
182 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

8.3 Fast Debug Channel Registers

Table 8.6 FDC Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Tx_Count 31:24 Thisfield holds the number of currently occupied entries R 0 Optional
in the transmit FIFO.
Rx_Count 23:16 Thisfield holds the number of currently occupied entries R 0 Optional
in the receive FIFO.
0 15:8 Reserved for future use. Must be written as zeros and R 0 Required
read as zeros.
RxChan 7:4 Thisfield indicates the channel number used by the top R Undefined Required
item in the receive FIFO. Thisfield isonly valid if
RxE=0.
RXE 3 If RXE is set, the receive FIFO is empty. If RXE is not R 1 Required
set, the FIFO is not empty.
RxF 2 If RXF is set, thereceive FIFO isfull. If RxF isnot set, R 0 Required
the FIFO isnot full.
TXE 1 If TXE is set, the transmit FIFO is empty. If TXE is not R 1 Required
set, the FIFO is not empty.
TXF 0 If TXF is set, the transmit FIFO isfull. If TxFisnot set, R 0 Required
the FIFO isnot full.

8.3.4 FDC Receive (FDRX) Register (Offset 0x18)

Thisregister contains the top entry in the receive FIFO. A read from this register removes the item from the FIFO.
Theresult of awrite to this register is UNDEFINED. The result of aread when the FIFO is empty is also UNDE-
FINED, so software should check the FIFO empty flag prior to reading this register. Figure 8.5 shows the format of
the FDC Receive register, and Table 8.7 describes the register fields.

Figure 8.5 FDC Receive Register

31 0
RxData

Table 8.7 FDC Receive Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
RxData 310 Thisregister holds the top entry in the receive FIFO R Undefined Required

8.3.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers access the bottom entries in the transmit FIFO. The different addresses are used to generate a
4-bit channel identifier that is attached to the data value. This allows software to track different event types without

MIPS® EJTAG Specification, Revision 6.10 183

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Fast Debug Channel

needing to reserve a portion of the 32-bit data as atag. A writeto one of these registers results in awrite to the trans-
mit FIFO of the data value and channel 1D corresponding to the register being written. Reads from these registers are
UNDEFINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software
running on the core must check the FIFO full flag to ensure that there is space for the write. Figure 8.6 shows the for-
mat of the FDC Transmit register, and Table 8.8 describes the register fields.

Figure 8.6 FDC Transmit Register

31

TxData

Table 8.8 FDC Transmit Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
TxData 31:0 Thisregister holds the bottom entry in the transmit FIFO W Undefined Required
Undefined
value on
read

184

MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 9

SecureDebug

This chapter defines the features used to secure EJTAG access to the target system chip. The SecureDebug debug fea-
tureis optional. This chapter contains the following sections:

e Section 9.1 “Disabling EJTAG debugging”
e Section 9.2 “EJTAG Features unmodified by SecureDebug”

The SecureDebug feature provides a controllable method to disable EJTAG access so that an EJTAG probe cannot be
used to control atarget processor, place it into debug mode, insert instructions, access memory, breakpoint or single

step.

This feature assumes that the boot firmware (entry point located at 0OXBFC0.0000) is trusted. If the feature is enabled,
debug is controlled by trusted software (named the Debug Executive for the rest of the document), whose entry point
resides at the Debug exception vector of 0xBFC0.0400. The Debug Executive is assumed to be part of the trusted
boot firmware.

Note that cJTAG isimplemented by converting the EJTAG signalsto 2 cJTAG signals. If the SecureDebug featureis
implemented, cJTAG is similarly secured.

9.1 Disabling EJTAG debugging

9.1.1 EJ DisableProbeDebug Signal

An input signal to the core is defined, EJ_DisableProbeDebug, which when asserted, forces ProbEn=0 and Prob-
Trap=0. EJ_DisableProbeDebug overrides any other ProbEn or ProbTrap settings.

Suggested implementation of the EJ_DisableProbeDebug signal is for a microcontroller to provide a bit within
non-volatile memory (outside the core) that is pre-programmed to set or clear this control signal.

Table 9.1 EJ_DisableProbeDebug Signal Overview

Signal Description Direction | Compliance

EJ DisablePro | When asserted: Input Required for

beDebug e ProbEn=0 Secure Debug
e ProbTrap=0

- EjtagBrk isdisabled™.

« EJTAGBOOT is disabled.
+ PC Sampling is disabled.
+ DINT signal isignored.

1. An EjtagBrk disable and DINT signa Override is provided.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

185

SecureDebug

9.1.2 Override for EjtagBrk and DINT disable

An override for the EjtagBrk and DINT disable caused by the EJ_DisableProbeDebug signal is provided by the regis-
ter field EjtagBrk_Override within the DCR register.

The override is assertable by the CPU during the trusted boot process. Its purpose isto allow a probe to assert Ejtag-
Brk (or assertion of the DINT signal) which requests a Debug I nterrupt exception be raised by the processor. This
provides a means of recovering the CPU from a crash or hang. This feature can allow the Debug Executive, if oneis
provided in target firmware, to communicate with the probe over the Fast Debug Channel (FDC) in order to get atten-
tion of the target by causing a debug exception. It allows a host-based debugger to query the target via Debug Execu-
tive commands, especially to determine the cause of the hang.

9.2 EJTAG Features unmodified by SecureDebug

* FDC (Fast Debug Channel) over EJTAG is required to work. This provides a path for an EJTAG probe to
send/receive messages to the Debug Executive when one isincluded in the target code. This means that the phys-
ical EJTAG serial connection, pins, and protocol must still work. Also, cJTAG (2-wire) must also work for
FDC.

* RST* Thisisthe hardware signal on the EJTAG connector that connectsto the target system reset circuit. It can
be asserted by an EJTAG probe.

186 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 10

On-Chip Interfaces

This chapter covers issues regarding implementation of a processor on a chip with respect to hook-up of the EJTAG
TAP and DINT interfaces. It contains the following sections:

e Section 10.1 “Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals’
e Section 10.2 “Optional TRST* Pin”
e Section 10.3 “Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins’

e Section 10.4 “Connecting Multi-Core Test Access Port (TAP) Controllers”

10.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Sig-
nals

If the EJTAG capabilities provided through the Test Access Port (TAP) and Debug Interrupt (DINT) signals on a pro-
cessor core are unused when the processor core isimplemented on a chip, then TRST* istied to low (if TRST* is
present on the core) and the remaining input signals TCK, TMS, TDI, and DINT must be tied to a constant value,
either high or low. The output signal TDO should be left unconnected.

10.2 Optional TRST* Pin

The TRST* signal to the TAP is optional, and need not be provided as a pin on the chip for a processor implementing
the EJTAG TAP.

If aTRST* chip pinisnot provided, then a TAP reset like the one provided when TRST* is asserted (low) must be
applied to the TAP at power-up, for example, through a power-up reset circuit on the chip. This power-up TAP reset
must be finished after the time Ty oy (Se€ Section 11.2.4 on page 195).

If aTRST* chip pinis provided, then the power-up TAP reset is applied by a pull-down resistor, because the probe
will not drive TRST* at power-up.

10.3 Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins

If aninput buffer with an integrated pull-up resistor is used for the TRST* chip pin, then its resistor value must be
sufficiently large that it is overruled by the external pull-down resistor on the PCB, so awell-defined logical level is
present on the TRST* pin (see Section 11.5.1 on page 197 for more information).

Observe the additional rules described in the |IEEE Std. 1149.1 specification, if the same TAPisused for JTAG
boundary scan also.

MIPS® EJTAG Specification, Revision 6.10 187

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

On-Chip Interfaces

The output driver for the TDO chip pin must be capable of supplying the |, and |5 current required for the probe
(see Section 11.3 on page 195).

10.4 Connecting Multi-Core Test Access Port (TAP) Controllers

188

This section is concerned with building a multi-core system where each core hasits own TAP controller, but share one
set of external EJTAG TAP controller pins. Note that this section does not attempt to address the full issue of
multi-core debug, which involves resolving debugger issues and other hardware issues such as debug signalling
among multiple cores, and handling breakpoints across multiple cores, etc.

Figure 10.1 shows the recommended dai sy-chain connection for a multi-core configuration, where the TCK, TMS
and optional TRST* signals of al the TAP controllers are connected together. The TDI and TDO signals are daisy
chained together so that the information flow between the selected register of al the TAP controllersis a continuous
sequence.

Figure 10.1 Daisy-chaining of Multi-core EJTAG TAP Controllers

EJTAG TAP1 Probe
Connector
TCK |- TCK
TMS |- T™MS
TDI (- TDI
ngTc.k) ‘ TRST* is optional) $gg—r*

Several EJTAG TAPspossible

EJTAG TAPn

TCK -
TMS &
TD| (—————
TDO
TRST* < (TRST* is optional)

The simplest usage model for this multi-core connection, under most circumstance, only uses one “active” device.
Thisis accomplished by including BY PASS TAP instruction for “non-active” devices in every TAP command chain
sent by the debugger. “Non-active” devices only get attention when made “ active”. Note that it is not necessary that
only one device be “active’ at atime, it depends entirely on how the debugger and the end-user want to control the
multiple on-chip TAP controllers.

It is recommended that the EJTAG TAPs are connected in a single daisy-chain without any non-EJTAG TAPs in that
chain, since this provide the fastest access to the EJTAG TAPs and it allows the most debug software packages to
operate the EJTAG TAPs. Specia care must be taken by the system designer if both EJTAG TAPs and non-EJTAG
TAPs are connected in the same chain. In this case the system designer must ensure that both the EJTAG debug hard-
ware and software, and the external device using the non-EJTAG TAPs can apply the BY PASS TAP instruction when
the TAPs unrelated to the current operation are to be made “non-active’.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Chapter 11

Off-Chip and Probe Interfaces

This chapter outlines the requirements for the target system chip and probe interfaces to make them compatible. This
chapter contains the following sections:

e Section11.1 “Logica Signals’

e Section 11.2 “AC Timing Characteristics’

* Section 11.3 “DC Electrical Characteristics”

» Section 11.4 “Mechanical Connector”

¢ Section 11.5 “Target System PCB Design”

e Section 11.6 “Probe Requirements and Recommendations’

The off-chip interface forms the connection from the chip over the target system PCB and to the probe connector,
thereby allowing the probe to connect to the target processor. The probe connection is optional in the target system.

The probe signals are described with respect to logical functionality, timing behavior, electrical characteristics, and
connector and PCB design. Comments are also added with respect to probe functionality.

The descriptionsin this chapter only cover issues related to EJTAG use of the Test Access Port (TAP). Issues related
to reuse of the same TAP on a chip, for example, for JTAG boundary scan, are not covered.

11.1 Logical Signals

This section describes the EJTAG signals categorized according to functionality:
e Test Access Port: TCK, TMS, TDI, TDO, and TRST* (optional TRST*)

e Debug Interrupt: DINT (optional)

System reset (reset or soft reset): RST*

Return TCK: RTCK (optional)

Voltage Sense for 1/0O: VIO

Figure 11.1 shows the signal flow between the chip, target system PCB, and Probe.

MIPS® EJTAG Specification, Revision 6.10 189
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Off-Chip and Probe Interfaces

Figure 11.1 Signal Flow Between Chip, Target System PCB, and Probe

o Target System
Chip with EJTAG Prabe
Connector
TCK (& TCK
TMS (& T™MS
TDI |- DI
TDO — — » TDO
TRST* 4 (TRST* is optional, see description) TRST*
D|NT 4 (DINT is optional, see description) DINT
Reset [<——) RST*
Target System
Reset Circuit ?/T)llrt] 1/10 »| VIO
age
Other reset sources ————— P

11.1.1 Test Access Port Signals

The TCK, TMS, TDI, TDO, and TRST* signals make up the Test Access Port (TAP). For more details about the log-
ical functionality of these signals, refer to Chapter 4, “EJTAG Test Access Port” on page 87. Thefive signalsare
listed in Table 11.1 with a short description.

Table 11.1 Test Access Port Signals Overview

Signal Description Direction Compliance

TCK Test Clock Input is the clock that controls the updates of the TAP controller and Input Requiredwith
the shifts through the Instruction or selected data register(s). Both therising and probe connec-
the falling edges of TCK are used. tion

T™MS Test Mode Select Input isthe control signal for the TAP controller. Thissignal is Input
sampled at the rising edge of TCK.

TDI Test Data Input has the data shifted into the Instruction or data register. This sig- Input
nal is sampled on the rising edge of TCK.

TDO Test Data Output has the data shifted out from the Instruction or data register. Output
This signal is changed on the falling edge of TCK.

TRST* Test Reset Input is used for the TAP reset of the TAP controller, Instruction reg- Input Optiona with
ister, and EJTAGBOOT indication. TAP reset is applied asynchronously when probe connec-
low. tion

The TRST* chip pinisoptional. If TRST* isnot provided, then the TAP controller must be reset by a power-up reset
circuit on-chip. Refer to Section 10.2 on page 187 for information on a power-up reset that is on-chip and Section
11.2.4 on page 195 for duration of this power-up reset.

190 MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

11.1 Logical Signals

11.1.2 Debug Interrupt Signal

The Debug Interrupt (DINT) signal allows the probe to request the CPU to take a debug exception. Table 11.2 briefly

defines this signal.
Table 11.2 Debug Interrupt Signal Overview
Signal Description Direction | Compliance
DINT A debug interrupt is requested when DINT goes from low to high. The CPU is Input Optional with
allowed to synchronize this signal to the CPU clock before detecting itsrising EJTAG TAP
edge, if thisis possible with respect to the minimum pulse width indicated in
Section 11.2.2 on page 194. The request isignored if the CPU is already in
Debug Mode.

The DINT signal from the probeis optional. The DINTsup bit indicates whether or not the DINT signal isimple-

mented. Refer to Section 4.5.2 on page 96 for more information on DINTsup. The debug interrupt request is
described in Section 2.3.10 on page 52.

11.1.3 System Reset Signal

The System Reset (RST*) signal from the probe is required to generate areset of the target board. It is recommended

that assertion of RST* resultsin a (hard) reset of the processor, but it is allowed to generate a soft reset. Table 11.3
briefly describes the RST* signal.

Table 11.3 System Reset Signal Overview

Signal Description Direction | Compliance
RST* RST* isthe system reset of the target board. When the probe asserts RST* low, Input Required with
theresult is either areset (recommended) or soft reset of the processor. probe connec-

No reset is applied when the RST* is undriven (3-stated from the probe). tion

The probe controls the RST* via an open-collector (OC) output. Thus RST* is actively driven low when asserted
(low), but is 3-stated when deasserted (high).

11.1.4 Return Test Clock Input

The Voltage sense for 1/0 (V10) indicates target power is applied and voltage levels are present at the probe I/O con-
nections. Table 11.5 briefly describesthe VIO signal.

Table 11.4 Voltage Sense for I/O Signal Overview

Signal Description Direction | Compliance
RTCK Thisreturn TCK signal to the JTAG connector allows the target chip under Input Optional with
debug to mirror the start and stop of its system clock to correspond to start and probe connec-

stop of the debug probe. tion

Thisis useful when for example, a hardware emulator used with the target core wants to hook up an EJTAG probe for
debugging. The hardware emulator starts and stops its system clock and needs the debug probe to pause any JTAG

operations during that time. This can be achieved by the addition of areturn TCK signal which is an output from the
target chip to the probe and is amirror of the probe’s TCK input after clocking with the system clock. The probe can

MIPS® EJTAG Specification, Revision 6.10 191

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Off-Chip and Probe Interfaces
be configured in amode where it will wait for RTCK to be equal to TCK before proceeding with the scan. Thiswould
then allow the JTAG port to be throttled by the parget as needed.

11.1.5 Voltage Sense for 1/O Signal

The Voltage sense for 1/O (V10) indicates target power is applied and voltage levels are present at the probe I/O con-
nections. Table 11.5 briefly describesthe VIO signal.

Table 11.5 Voltage Sense for I/O Signal Overview

Signal Description Direction | Compliance
VIO Voltage Sense for 1/0 indicates if target power is applied, and indicates the volt- Output Requiredwith
age level for the probe signals. probe connec-

tion

With V10, the probe can auto adjust the voltage level for the signals, and detect if power islost at the target system.

11.2 AC Timing Characteristics

The timing relations and AC requirements for the signals are described in this section. The timing is measured at the
probe connector for the target system, and must be valid in the full operating range of the target board.

All setup and hold times are measured with respect to the 50% value between V, / V4 for inputs, and Vo, / Vg for
outputs.

All rise and fall times are measured at 20% and 80% of the values of V| / V, for inputsand Vg, / V gy for outputs.
The capacitance of Craget aNd Cprope iS assumed to be as seen from the probe connector for the inputs and outputs.
11.2.1 Test Access Port Timing

Figure 11.2 shows the timing relationships of the five TAP signals, TCK, TMS, TDI, TDO, and TRST*. Table 11.6
shows the absolute times for the symbolsin the figure.

192 MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Figure 11.2 Test Access Port Signals Timing

-« Tk

11.2 AC Timing Characteristics

| |
TToKhigh o | @ TTCKlow g i
:‘ | > : Tif :
I | ! I
|
| |
| : I<—>If :
| | T |
| |
TMS | U N [
DI >,< i >,< ! >< .><. :
< >|< ‘> : 1 1 ﬂ—h :
"Trsetup ' TThold i T |
| 1 Tt !
| |
TDO
X o
- e
¢ TRST low | Trpoout ' Trpozstae
|
TRST* I\ e
|
- . Defined Undefined
1 Trf 1 1
Table 11.6 Test Access Port Signals Timing Values
Symbol Description Min Max Unit
Trekeye TCK cycletime 25 ns
TTCKhigh TCK hlgh time 10 ns
Treklow TCK low time 10 ns
Trsetup TAP signals setup time before rising TCK 5 ns
TThold TAP signals hold time after rising TCK 3 ns
TTDOoout TDO output delay time from falling TCK ns
TTDOzstate TDO 3-state delay time from falling TCK ns
TTRST*low TRST* low time 25 ns
Tyt TAP signalsrise/ fall time, all input and output ns

TRST* isindependent of the TCK signal, because TRST* isatruly asynchronous signal. Note the IEEE 1149.1 rec-
ommendation in 3.6.1 (d): “To ensure deterministic operation of thetest logic, TMS should be held at 1 whilethe sig-
nal applied at TRST* changesfrom 0to 1.” A race might otherwise occur if TRST* is deasserted (going from low to
high) on arising edge of TCK when TMS islow, because the TAP controller might go either to Run-Test/Idle state or
stay in the Test-L ogic-Reset state.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

193

Off-Chip and Probe Interfaces

11.2.2 Debug Interrupt Timing

Figure 11.3 showsthe timing for the DINT signal from the probe. Table 11.7 shows the absolute times for the sym-
bolsin the figure.

Figure 11.3 Debug Interrupt Signal Timing

i< TpiNThigh * ToINTIow >: J:fl_:
| | : |
DINT m
A o
Debug interrupt request - _ T
Table 11.7 Debug Interrupt Signal Timing Values
Symbol Description Min Max Unit
ToiNThigh DINT hightime 1 us
TDINTIow DINT low time 1 us
Tyt DINT signal rise/ fall times 3 ns

The probe should guarantee that the TpThigh @d TpinTiow PUlSe widths meet the specifications, in order to leave
enough time for the CPU to synchronize the DINT signal to the internal CPU clock domain.

If the CPU clock speed or clocking scheme is such that TpnThigh @d TpinTiow do not leave enough time for syn-

chronization or, for example, PLL walk-up, then the target system is responsible for extending the DINT pulsein the
processor.

11.2.3 System Reset Timing

Figure 11.4 shows the timing for the RST* signal from the probe. Table 11.8 shows the absolute times for the sym-
bolsin the figure. The target system isresponsible for extending the RST* pulseif required.

Figure 11.4 System Reset Signal Timing

¢ TRsT*low >

RST* N / Undriven .
-—- —— Drivenlow

3-stated

Table 11.8 System Reset Signal Timing Value

Symbol Description Min Max Unit
TRsT*low RST* low time 1 ms
194 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

11.3 DC Electrical Characteristics

11.2.4 Voltage Sense for 1/0 (VIO) Timing

Figure 11.5 showsthe timing for the V1O signal. Table 11.9 shows the absol ute time for the symbol in the figure. VIO
must rise to the stable level within a specific time Ty oyise &fter the probe detects VIO to be above a certain limit

VVIOactive-
Figure 11.5 Voltage Sense for I/0O Signal Timing
VIO
| s
|
VIO l
Vvioactive. _ _ _ _ '
Table 11.9 Voltage Sense for I/O Signal Timing Value
Symbol Description Min Max Unit
Tviorise V10 rise time from Vyggive t0 Stable VIO value 2 s

The target system must ensure that Ty orise iS Obeyed after the V| oactive ValUe is reached, so the probe can use this

value to determine when the target has powered-up. The probe is allowed to measure the Ty, oige time from a higher
value than V| ggive (bBUt lower than Vo minimum) because the stable indication in this case comes later than the
time when target power is guaranteed to be stable.

If TRST* isasserted by a pulse at power-up, either on-chip or on PCB, then this reset must be completed after
Tyviorise: If TRST* is asserted by a pull-down resistor, then the probe will control TRST*.

At power-down no power isindicated to the probe when V10O drops under the V| oactive V&l Ue, Which the probe uses
to stop driving the input signals, except for RST*.

11.3 DC Electrical Characteristics

Table 11.10 describes the DC electrical characteristics for voltage and current measured at the probe connector. Cur-
rent measures positive in direction from the probe to the target system, and negative in the other direction. The char-
acteristics apply to the full operating range of the target system.

Table 11.10 DC Electrical Characteristics

Symbol Description Condition Min Typ Max Unit
Vvio V10 voltage When stable 15 5.0 \Y,
Vvioactive | VIO activeindication 05 \Y
lvio V10 output current 20 mA
MIPS® EJTAG Specification, Revision 6.10 195

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Off-Chip and Probe Interfaces

Table 11.10 DC Electrical Characteristics (Continued)

Symbol Description Condition Min Typ Max Unit
VL Low-level input voltage 28V <Vyo -03 0.8 \Y
VV|O <28V -0.3 0.3* VVlO \Y
Viy High-level input voltage 28V <Vyio 2.0 Vyio+0.3 \
Vyio<28V 0.7* Vyio Vyjo+0.3 \
VoL Low-level output voltage 28V <Vyo -03 0.4 \Y
Vyio <28V -03 0.15* Vy,0 v
VOH ngh-|e\/e| OUtpUt Voltage 28V < VV|O 2.4 VV|O +0.3 Vv
I Low-level input current, except -80 mA
RST*
IrsT RST* low-level input current -10 mA
hH High-level input current 8.0 mA
loL Low-level output current 8.0 mA
loH High-level output current -80 mA
| 7gtate 3-state input or output current 0V <Vgg<Vyio - 50 50 HA
Craget Capacitance for target system 25 pF
Crrobe Capacitance for probe 25 pF

The | 744 SPecifies the current that a 3-stated (undriven) output driver and pull-up/down can provide. It sets alimit

for the driversin the probe for TCK, TMS, TDI, TRST*, DINT, and RST*, and it sets alimit for the output driver
on-chip for TDO. Thislimit allows design of pull-up/down resistors that can keep alogical level when no driver is

controlling the signal.

Crarget ad Cprope are the capacitances in the target system for inputs and the capacitances for the probe for outputs.
Additional capacitance in the target system must be added to Cpygne When designing the output driver, and additional

capacitance for the probe driver is added to Crygg-

11.4 Mechanical Connector

Figure 11.6 shows the recommended EJTAG connector on atarget system. The connector isacommon pin strip with
dimensions 0.100” x 0.100", for example, SAMTEC part number TSW-107-23-L-D or compatible. The socket on the

probe side must allow for an angled connector on the target system.

196

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

11.5 Target System PCB Design

Figure 11.6 EJTAG Connector Mechanical Dimensions

Top view on PCB

Side view on PCB

Signal Positions

2.54 mm 5.84 mm
o B o
| I | I
| | | 1
1|m @2 — TRST* |B ®| GND
B — * TDI|® ®|GND
B &[-- 73 --° 0.64mm TDO (B B | GND
2.54 mm
B OR[-- — * TMS|® B | GND
B = * — > TCK |[® ® | GND
4 — RST* (& key
Pin 12 removed
13 B X®|14 [odmwforkey — DINT | ® X VIO
Table 11.11 shows the pin assignments for the connector.
Table 11.11 EJTAG Connector Pinout
Pin Signal Direction Pin Signal Direction
1 TRST* - Test Reset Input Input 2 GND - Ground GND
3 TDI - Test Data Input Input 4 GND - Ground GND
5 TDO - Test Data Output Output 6 GND - Ground GND
7 TMS - Test Mode Select Input Input 8 GND - Ground GND
9 TCK - Test Clock Input Input 10 GND - Ground GND
11 RST* - System Reset Input 12 RTCK - Return Test Clock Input Input
13 DINT - Debug Interrupt Input 14 V10 - Voltage Sense for 1/0 Output

With older EJTAG connectors, Pin 12 on the target system connector should be removed to provide keying and
thereby ensure correct connection of the probe to the target system. But with the enhancement with the RTCK signal,

generation of RTCK isindicated by the presence of pin 12 on the target connector.

The connector in Figure 11.6 does not provide PC trace signals. An additional connector, probably with 0.05” x 0.05”
spacing, will be defined later when the PC trace feature is redefined.

11.5 Target System PCB Design

This section provides guidelines for using the EJTAG connector on atarget system.

11.5.1 Electrical Connection

Figure 11.7 shows the electrical connection of the target system connector. This subsection only covers the case

where the probe connects directly to a chip with an EJTAG compliant processor.

MIPS® EJTAG Specification, Revision 6.10

197

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Off-Chip and Probe Interfaces

198

Figure 11.7 Target System Electrical EJTAG Connection

VDD
EJTAG-compliant % % % % % %
Processor On Chip 1
TRST* | TRST* P GND
TD! Lt TDI | 5| GND }GND
— TDO GND
TMS |<€ TMS 9 B GND
TCK |- TCK 2 B GND
RST*
=
DINT <€ DINT = {VIO
Reset (soft/hard) s
* % V10 voltage
reference
Other reset Target Syst
sources arg em GND
> Reset Circuit <

InFigure 11.7, the pull-up resistorsfor TCK, TMS, TDI, DINT, and RST*, the pull-down resistor for TRST*, and the
series resistor for TDO must be adjusted to the specific design. However, the recommended pull-up/down resistor is
1.0 kQ, because alow value reduces crosstalk on the cable to the connector, allowing higher TCK frequencies. A typ-
ical value for the seriesresistor is 33 Q. Recommended resistor values have 5% tolerance.

The |EEE 1149.1 specification requires that the TAP controller is reset at power-up, which can occur through a
pull-down resistor on TRST* if the probe is not connected. However, on-chip pull-up resistors can be implemented on
some chips due to an |EEE 1149.1 requirement. Having on-chip pull-up and external pull-down resistors for the
TRST* signal requires special care in the design to ensure that avalid logical level is provided to TRST*, for exam-
ple, using asmall external TRST* pull-down resistor to ensure this level overrides the on-chip pull-up. An aternative
isto use an active power-up reset circuit for TRST*, which drives TRST* low only at power-up and then holds
TRST* high afterwards with a pull-up resistor.

It must be ensured that avalid logical level is provided on TRST*, because some chips have an on-chip pull-down
resistor on TRST* (even through this setup contradicts the IEEE 1149.1 standard), which might cause an undefined
signal value when other chips have on-chip pull-ups, and they all connect to TRST*.

The pull-up resistor on TDO must ensure that the TDO level is high when no probe is connected and the TDO output
is 3-stated. This requirement allows reliable connection of the probe if it is hooked-up when the power is already on
(hot plug). The value of the pull-up resistor depends on the 3-state current of the TDO output driver in the chip, but a
value around 47 kQ usually is sufficient.

Optional diodes to protect against overshoot and undershoot voltage can be provided on the signals to the chip with
EJTAG.

The RST* signal must have a pull-up resistor because it is controlled by an open-collector (OC) driver in the probe,
and thusis actively pulled low only. The pull-up resistor is responsible for the high value when not driven by the
probe. The input on the target system reset circuit must be able to accept the rise time when the pull-up resistor
charges the Crgrger and Cprope Capacitance to ahigh logical level.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

11.6 Probe Requirements and Recommendations

V10 must connect to a voltage reference that drops rapidly to below Vy/joative When the target system loses power,
even with the capacitive load of Cp,qpe. The probe can thus detect the lost power condition.

The signals on the probe connection for the optional signals DINT and TRST* should be left unconnected in the tar-
get system, if unused.

11.5.2 Layout Considerations

Layout around the pin connector on the target system must provide for sufficient clearance for the probe to connect.
Figure 11.8 shows the recommended clearance. Place the connector at the edge of the PCB. Avoid tall components
around the connector to allow for easy access.

Figure 11.8 Target System Layout for EJTAG Connection

Target System PCB
S\@\\;\“ 40 mm
N
N =N A
N N
N =X
N\EEN
N N
NZ 2N
N= ey
N = m'%""
NN 4.0 mm
> -
30mm
—>: :<— No components taller than the
3.0mm base of the pin header should

be placed in the marked area

11.6 Probe Requirements and Recommendations

This section provides the probe requirements for different features.

11.6.1 Target System Power-Up with Probe Attached

A probe connected to the target system at power-up is not allowed to drive the inputs before VIO indicates a stable
voltage (see Section 11.2.4 on page 195). TRST* (if present) is then asserted by the target system pull-down resistor
at power-up, whereby a TAP reset is applied through TRST* for TAPs, depending on TRST*. This step implies that
inputs are not driven until the target system is powered up; otherwise the communication on the TAP might be unde-
fined or damage could occur.

MIPS® EJTAG Specification, Revision 6.10 199
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Off-Chip and Probe Interfaces

200

At power-down the probe is not allowed to drive the inputs after VIO has dropped under a certain level (see Section
11.2.4 on page 195).

The RST* signal is an exception to the above description because it can be driven low by the probe during power-up.

11.6.2 Hot Plug in of Probe

The probe must not drive any inputs to the target system if it is connected while the system is running (hot plug).
Detection of astable VIO from the target system is required before any input is allowed to be (see Section 11.2.4 on

page 195).

To avoid spikes or changesin the input voltage to the target system when the probe is connected, the level of the sig-
nal on the probe must be adjusted to the same level as the signals on the target system. This adjustment can be done
with large pull-up/down resistors (in the range of 150 k) on the probe signals, so the level of these signals matches
the level on the target system shown in Figure 11.8. The specific implementation of this feature is dependent on the
probe, the driver type, etc. used in the probe.

11.6.3 TDO Level when 3-Stated

The probe must apply a pull-up resistor on TDO to have awell-defined logical level when TDO on the TAPis
3-stated. The pull-up on the target system ensures the level at hot plug. The size of the pull-up on the probeis
expected to be 1.0 k€2 or more. The resistor value must be chosen so | 744 iS Observed.

11.6.4 RST* Drive by Open Collector

Drive the RST* signal with an open-collector (OC) output driver to allow for easy connection of the RST* signal in
the target system.

11.6.5 Changing TMS and TDI

It isrecommended that the TMS and TDI signals driven by the probe change in relation to the falling edge generated
on the TCK, because this ensures a high setup and hold time for the TMS and TDI in relation to the rising edge of
TCK, on which these signals are sampled by the target processor.

If the TCK clock speed can be adjusted by extending the high and low period time of the TCK clock, then the behav-
ior described above will also make the probe work even with atarget processor not respecting setup and hold time,
simply by lowering the TCK frequency.

11.6.6 Mechanical Connector

The female connector from the probe must allow for an angled board connector.

Block Hole 12 on the probe connector in order to provide keying and ensure correct connection of the probe to the
target system. Connect the signal from the probe at line 12 to GND on the probe.

With the enhancement of the EJTAG connector with the input RTCK signal on pin 12, targets generating RTCK can
only be used with probes capable of accepting it. Generation of RTCK isindicated by the presence of pin 12 on the
target connector. Probe acceptance of RTCK isindicated by lack of aplug on pin 12 of the probe cable.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix A

Differences for R3000 Privileged Environments

This appendix describes the EJTAG feature differences necessary for integration with a 32-bit processor having an
R3000 privileged environment.

A.1 EJTAG Processor Core Extensions

This section covers differences between an R3000 environment and the description in Chapter 2, “EJTAG Processor
Core Extensions’ on page 33.

A.1.1 SYNC Instruction

The SYNC instruction is not available for processors with R3000 privileged environment, but this instruction must be
available and have behavior as described in Section 2.2.3.7 on page 40.

A.1.2 Debug Exception Vector Location

Table A.1 shows the debug exception vector location in system memory for processors with R3000 privileged envi-
ronments.

Table A.1 Debug Exception Vector Location for R3k Privileged Environment Processors

ProbTrap bit in
ECR register Debug Exception Vector Address

0 OxBFCO 0200

The debug exception vector in dmseg (EJTAG memory) is the same for processors with R3000 and R4000 privileged
environments.

A.1.3 SYNC Instruction Substitute

In case the SYNC instruction is not provided (for example, on a processor with an R3000 privileged environment),
then an implementati on-specific instruction sequence must be used to ensure full update of the Debug register status
bits and BSn bits for hardware breakpoints with respect to handling of imprecise data hardware breakpoints and
imprecise errors.

A.1.4 CPO Register Numbers for Debug and DEPC Registers

The register numbersto use in processors with R3000 privileged environments for CPO Debug and DEPC registersis
shown below:

» Debug register: 16
* DEPC register: 17

MIPS® EJTAG Specification, Revision 6.10 201

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Differences for R3000 Privileged Environments

A.2 Hardware Breakpoints

This section describes the differences between hardware breakpoints in an R3000 privileged environment and those
describesin Chapter 5, “Hardware Breakpoints’ on page 117.

A.2.1 Instruction Breakpoint Registers

Table A.2 shows the address offsets in drseg for the Instruction Breakpoint registers. In the table, n is the breakpoint
number in the range 0 to 14.

Table A.2 Offsets for Instruction Breakpoint Registers for R3k Privileged Environment Processors

Register
Offset in drseg Mnemonic Register Name and Description
0x0004 IBS Instruction Breakpoint Status
0x0100 + 0x010* n IBAN Instruction Breakpoint Addressn
0x0104 + 0x010 * n IBCn Instruction Breakpoint Control and ASID n
0x0108 + 0x010 * n IBMn Instruction Breakpoint Address Mask n

A.2.2 Conditions for Matching Instruction Breakpoints

Thewidth in bits of the ASID field for the compare is 6 bits, asisthe size used inthe TLB. The ASID and
IBASIDn, g p references used in the equations in Section 5.3.1 on page 120 hasthis size.

A.2.3 ASID Field in IBCn Register

Compliance L evel: Required with instruction breakpoints when the ASIDsup bit in the IBS register is 1, optional
otherwise.

The ASID field hasthe ASID value used in the compare for instruction breakpoint n; it is placed in the IBCn register,
not in aregister of its own. Table A.3 shows the format of the ASID field.

Table A.3 ASID Field in IBCn Register

Fields
Read/
Name Bits Description Write Reset State
ASID 29:24 Instruction breakpoint ASID value for compare. R/W Undefined

A.2.4 Data Breakpoint Registers

Table A.4 shows the address offsets in drseg for the Data Breakpoint registers. In the table, nis the breakpoint num-
ber in therange O to 14.

Table A.4 Offsets for Data Breakpoint Registers for R3k Privileged Environment Processors

Register
Offset in drseg Mnemonic Register Name and Description
0x0008 DBS Data Breakpoint Status
202 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

A.3 EJTAG Test Access Port

Table A.4 Offsets for Data Breakpoint Registers for R3k Privileged Environment Processors (Continued)

Register
Offset in drseg Mnemonic Register Name and Description
0x0200 + 0x010 * n DBAN Data Breskpoint Address n
0x0204 + 0x010 * n DBCn Data Breskpoint Control and ASID n
0x0208 + 0x010 * n DBMn Data Breakpoint Address Mask n
0x020C + 0x010* n DBVn Data Breskpoint Value n

A.2.5 Conditions for Matching Data Breakpoints

Thewidth in bits of the ASID field for the compare is 6 bits, asisthe size used inthe TLB. The ASID and
DBASIDnp g p references used in the equations in Section 5.3.2 on page 122 has this size.

A.2.6 ASID Field in DBCn Register

Compliance L evel: Required with instruction breakpoints when the ASIDsup bit in the DBS register is 1, optional
otherwise.

The ASID field has the ASID value used in the compare for data breakpoint n; it is placed in the DBCn register, not
in aregister of its own. Table A.5 shows the format of the ASID field.

Table A.5 ASID Field in DBCn Register

Fields
Read/
Name Bits Description Write Reset State
ASID 29:24 Data breakpoint ASID value for compare. R/W Undefined

A.3 EJTAG Test Access Port

There are no differences for processors with R3000 privileged environment with respect to the EJTAG Test Access
Port. The R4000/R3000 hit in the Implementation register selects between R4000 and R3000 privileged environ-
ments (see Section 4.5.2 on page 96).

MIPS® EJTAG Specification, Revision 6.10 203

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Differences for R3000 Privileged Environments

204 MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix B

Terminology

This appendix defines several terms used throughout this document.

Term Definition
3-state Undriven output, thus output with high impedance
ASE Application Specific Extension.
CPO Coprocessor 0 (zero)
Debug exception Exception bringing the processor from Non-Debug Mode to Debug Mode.

Debug Mode exception

Exception occurring in Debug Mode, which causes the processor to re-enter
Debug Mode.

dmseg Memory-mapped area, accessible from the processor in Debug Mode only. Itis
provided as emulated memory handled by the probe through processor accesses.

drseg Memory mapped area, accessible from the processor in Debug Mode only. It
contains registers for hardware breakpoint setup, for example.

dseg Memory mapped area, accessible from the processor in Debug Mode only. It
contains the combined dmseg and drseg areas.

EJTAG Enhanced JTAG.

EJTAG Area See dseg definition.

EJTAG Memory See dmseg definition.

EJTAG Registers See drseg definition.

GPR General-Purpose RegistersrO to r31.

|IEEE 1149.1 | EEE standard describing the TAP and the boundary-scan architecture.

ISA Instruction Set Architecture.

JTAG Joint Test Action Group.

Hardware breakpoint Instruction or data breakpoints implemented in hardware.

LSB Least Significant Bit.

MMU Memory Management Unit. Translates virtual addresses to physical addresses.

MSB Most Significant Bit.

Naturally-aligned

Alignment of amemory structure at an address corresponding to its size, so for
example aword is aligned to an word boundary thus where the two L SBs of the
address are 0.

Non-Debug Mode

Any mode other than Debug Mode (User Mode, Supervisor Mode or Kernel
Mode).

PC

Program Counter, the virtual address of the currently executed instruction.

Probe

A hardware system controlling the target system through the TAP. The probeis
controlled through the debug host, a PC, or workstation.

Processor access

Access from the processor to dmseg, which is handled by the probe through the
TAP.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

205

Terminology

206

Term

Definition

Software breakpoint

SDBBP instruction, which can be inserted in the code being debugged, causing
a debug exception when executed.

TAP

Test Access Port. The interface port defined in |EEE 1149.1 and used for access
to EJTAG from the probe. The interface is made up of the test clock (TCK), test
mode select (TMS), test dataiin (TDI), test data out (TDO), and optional TAP
reset (TRST*).

TLB

Trandation Lookaside Buffer. Provides programmable mapping of address
trandations done by the MMU.

Triggerpoint

Hardware breakpoint, which is set up to generate a trigger indication when it
matches.

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix C

Functional Clarifications from Old EJTAG 2.5

The following items were clarified from the previous EJTAG rev. 2.5 Specification:
» Update of Instruction register in Update-IR state

Updating Instruction register in the Update-IR state is allowed either on the rising or the falling TCK edge. See
Section 4.3.4 on page 91 for more information.

» Update of selected Dataregister(s) in Update-DR state

Updating selected Data register(s) in the Update-IR state is allowed either on the rising or the falling TCK edge.
See Section 4.3.7 on page 91 for more information.

e Useof the Device ID register

The Device ID register is recommended to be unique among designs and among several processors on the same
chip. See Section 4.5.1 on page 95 for more information.

* Reset State or Power-up State
Either the reset state or the power-up state is indicated for the data registers. It is not possible to state only the
reset value, because areset denotes a processor reset. For example, the Bypass register must be reset to 1 as soon
asthe TAP can be operated, thus the processor should not be required to be reset first. See Section 4.5 on page 94
for more information.

* SRstE Changed to Optional

The SRstE bit described in Chapter 3, “ Debug Control Register” on page 79 has been made optional, because not
every implementation needs it, and its behavior is defined as implementati on-dependent.

» Bypass Register Initial Value as 0 (zero)

Theinitia value for the Bypass register (in Capture-DR state) is defined as 0 (see Section 4.5.8 on page 110),
since the JTAG Specification requires thisin chapter 9 page 9-1.

MIPS® EJTAG Specification, Revision 6.10 207
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Functional Clarifications from Old EJTAG 2.5

208 MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix D

Multithreaded and Multi-Core Debug

Multicore debugging is not a required feature of EJTAG, but is provided here as a recommended method to imple-
ment debug for a multi-core or a multithreaded processor.

D.1 Introduction

This document serves as a guideline for designing a Multi-Core Breakpoint Unit (MCBU) for System-On-Chip
(SOC) devices that integrate multiple MIPS processor cores. The document is intended to be used by designers of
SOC devices and by software tool vendors who design debuggers capable of interacting with these SOC devices.

The MCBU is capable of requesting a debug interrupt from any number of coresin the SOC as aresult of any corein
the system entering Debug Mode. In addition, the MCBU can be used to request a debug interrupt, soft reset, hard
reset, and non-maskabl e interrupt from any number of the cores under software control.

D.2 MCBU Register Map

The MCBU consists of registers that specify which of the processors in the multi-processor system should receive a

RESET, COLD RESET, NMI, and Debug Interrupt signal. There are also per-processor debug interrupt registers that
specify whether that processor causes a debug interrupt to be sent to other processors in the multi-processor system.

These registers are described below. These registers are memory-mapped for access by the debug probe hardware and
software. Refer to Table D.1 and Table D.2.

Table D.1 sMCBU Register Memory Map

Register Name Memory Map of the Register
Reset Base+0x000
Cold_Reset Base+0x010
NMI Base+0x020
Debug_Interrupt Base+0x030

Table D.2 MCBU Debug_Int Register Memory Map

Register Name Memory Map of the Register
Debug Int 0 Base+0x200
Debug_Int_1 Baset+0x210
Debug_Int_2 Base+0x220
MIPS® EJTAG Specification, Revision 6.10 209

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Multithreaded and Multi-Core Debug

Table D.2 MCBU Debug_Int Register Memory Map (Continued)

Register Name Memory Map of the Register

Debug_Int_i Baset+0x200+(0x10%i4g), (i expressed in hex)

Debug_Int_63 Base+0x5F0

SoC designers are advised to design the base address to be Ox1FFFCO0. Thisisthe end of ksegl (ROM isat
O0x1FCO00000). If it isimpossible to map the MCDU into this address, SoC designers are requested to map the base to
ksegl, and to notify the head of the Architecture Team at MIPS Technologies of the selected base address. Debugger
designers are advised to use the above-specified address as the default, but to enable configuring this addressin the
debuggers for SoC devices that are using a different address. A default configuration file

(mips_mcbu_base. cfg) should be made available by the chip manufacturer to the debugger vendors.

Addresses Base through Base+0x1FFF should be reserved for future expansion of the MCBU. If ho morethan N
cores are implemented in the SoC (N < 32), only registers Debug_Int_0 through Debug_Int_N-1 need to beimple-
mented. Registers Debug_Int_N through Debug_Int_31 should remain reserved.

D.3 MCBU Registers

D.3.1 Debug_Int_i

There are amaximum of 64 such registers, but only as many as exist in the multiprocessor system need to be imple-
mented. The Debug_Int_i register is a64-bit read/write register that contains a mask used to control which of the pro-
cessor cores in the SOC device should receive an EJ DINT request on detection of an asserted EJ DebugM in
processor core number i in the SOC. When Mask([j] is set, an asserted EJ_DebugM in processor core number i forces
the EJ_DINT in core number j to be asserted. When Mask[j] is clear, an asserted EJ_DebugM in processor core num-
ber i will have no effect on EJ DINT in core number j.

If no morethan N cores are implemented in the SOC (N < 64), bits N through 63 should remain reserved. Upon SOC
reset, the value of the Mask bits is undefined.

Figure D.1 Debug_Int_i Register Format

63 k1 k 1 0
0 Mask

Table D.3 Debug_Int_i Register Field Descriptions

Fields
Read / | Power-up
Name Bits Description Write State Compliance
Mask k:0 There are k+1 processors in the multi-processor system R/W 0 Required if
under debug. For each processor, the corresponding mask MCBU is
bit, that is, mask([j] for processor j, specifies whether or implemented
not the current processor i will assert EJ_ DINT for j when
i receives an EJ_DebugM.
0 63:k+1 Reserved R 0 Required if
MCBU is
implemented
210 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

D.3 MCBU Registers

D.3.2 Reset

The Reset register is a 64-bit read/write register that contains a mask used to control which of the processor coresin
the SoC device should receive a SI_Reset request. When Mask(j] is set, the MCDU will force the SI_Reset input of
corej to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask hits is undefined.

Figure D.2 Reset Register Format

63 k1 k 1 0
0 Mask

Table D.4 Reset Register Field Descriptions

Fields
Read / | Power-up
Name Bits Description Write State Compliance
Mask k:0 There are k+1 processors in the multi-processor system R/W 0 Required if
under debug. When the mask bit j is set, thisforces a MCBU is
Sl_Reset signal to processor j. implemented
0 63:k+1 Reserved R 0 Required if
MCBU is
implemented

D.3.2.1 Cold Reset

The Cold Reset register is a 64-bit read/write register that contains a mask used to control which of the processor
cores in the SoC device should receive a SI_ColdReset request. When Mask[j] is set, the MCDU will force the
Sl_ColdReset input of corej to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure D.3 Cold Reset Register Format

63 k1 k 1 0
0 Mask

Table D.5 Cold Reset Register Field Descriptions

Fields
Read / | Power-up
Name Bits Description Write State Compliance
Mask k:0 There are k+1 processors in the multi-processor system R/W 0 Required if
under debug. When the mask bit j is set, thisforces a MCBU is
Sl_ColdReset signal to processor j. implemented
0 63:k+1 Reserved R 0 Required if
MCBU is
implemented
MIPS® EJTAG Specification, Revision 6.10 211

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Multithreaded and Multi-Core Debug

D.3.2.2 NMI

The NMI register is a 64-bit read/write register that contains a mask used to control which of the processor coresin

the SoC device should receive a SI_NMI request. When Mask(j] is set, the MCDU will force the SI_NMI input of
corej to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure D.4 NMI Register Format

63 k+1 k 1 0

0 Mask

Table D.6 NMI Register Field Descriptions

Fields
Read / | Power-up
Name Bits Description Write State Compliance
Mask k:0 There are k+1 processors in the multi-processor system R/W 0 Required if
under debug. When the mask bit j is set, thisforces a MCBU is
SI_NMI signal to processor j. implemented
0 63:k+1 Reserved R 0 Required if
MCBU is
implemented

D.3.3 Debug Interrupt

The Debug Interrupt register isa64-bit read/write register that contains amask used to control which of the processor
coresin the SoC device should receive aEJ_DINT request. When Mask([j] is set, the MCDU will forcethe EJ_ DINT
input of corej to be asserted.

If no more than N cores are implemented in the SoC (N < 64), bits N through 63 should remain reserved. Upon SoC
reset, the value of the Mask bits is undefined.

Figure D.5 Debug Interrupt Register Format

63 k+1 k 1 0

0 Mask

Table D.7 Debug Interrupt Register Field Descriptions

Fields
Read / | Power-up
Name Bits Description Write State Compliance
Mask k:0 There are k+1 processors in the multi-processor system R/W 0 Required if
under debug. When the mask bit j is set, thisforces a MCBU is
EJ DINT signal to processor j. implemented
0 63:k+1 Reserved R 0 Required if
MCBU is
implemented
212 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

D.4 Possible Implementation

D.4 Possible Implementation

The following diagram demonstrates a possible implementation of acircuit that generates EJ DINT to processor j in
a system with 9 processors

Figure D.6 An Example Implementation

E\]_Dd)Ugo E‘]_Debugl EJ_DebUgs

Debug_Int_Q[j]

v

Debug_Int_1[j]

J o

Debug_Int_8[j]

Other
DINT
\ Sources
EJ DI NTj
MIPS® EJTAG Specification, Revision 6.10 213

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix E

DRSEG Memory Map

This appendix lists the various registers mapped into the debug register segment (drseg).

Table E.1 drseg Memory Map

Offset Register Section Reference

0x00000 Debug Control Register Chapter 3, “Debug Control Register” on page 79
0x00004 Instruction Breakpoint Status Register (Old) Section A.2.1 “Instruction Breakpoint Registers’
0x00008 Data Breakpoint Status Register (Old) Section A.2.4 “Data Breakpoint Registers’
0x00020 Debug Exception Vector Location Section 2.3.2 “Debug Exception Vector Location”

0x00100-0x001FF

Instruction Breakpoint Control Registers (Old)

Section A.2.1 “Instruction Breakpoint Registers’

0x00200-0x002FF

Data Breakpoint Control Registers (Old)

Section A.2.4 “Data Breakpoint Registers’

0x01000 Instruction Breakpoint Status Section 5.6.1 “Instruction Breakpoint Status (IBS)
Register”
0x01100-0x01FEOQ Instruction Breakpoint Control (15 breakpoints) Section 5.6.2 “Instruction Breakpoint Addressn
(IBAN) Register” - Section 5.6.5 “Instruction
Breakpoint Control n (IBCn) Register”
OxO01FF8 Tracel BPC2 Register The PDtrace™ Interface and Trace Control Block
Specification (MD00439)
0x02000 Data Breakpoint Status (New) Section 5.7.1 “Data Breakpoint Status (DBS)
Register”

0x02100-0x02FEO

Data Breakpoint Control (15 breakpoints)

Section 5.7.2 “DataBreakpoint Addressn (DBAnN)
Register” - Section “”

Ox02FFO0

Load Data Value Register

Section 5.3.3 “Precise Exceptions on Data Value
Match Breaks”

MIPS® EJTAG Specification, Revision 6.10

214

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Table E.1 drseg Memory Map (Continued)

Offset Register Section Reference
0x02FF8 TraceDBPC2 Register
0x3000 TCBControlA
0x3008 TCBControlB
0x3010 TCBControlC
0x3018 TCBControlD
0x3020 TCBControlE
0x3028 TCBConfig
o0 e e e e o e
0x03108 TCBRDP
0x03110 TCBWRP
0x03118 TCBSTP
0x03120 BKUPRDP
0x03128 PKUPWRP
0x03130 BKUPSTP
0x3200-0x3238 TCBTrigX
0x03F80 ITCBTW Trace Word Register
O0x3F88 ITCBRDP Read Address Pointer Register
0x3F90 ITCBWRP Write Address Pointer Register
0x03FCO iFlowTCB Control/Status Register TheiFlowtrace™ Architecture Specification
Ox03FDO I TrigiFlowTrcEn Register (MD00526)
O0x03FD8 DTrigiFlowTrcEn Register
Ox03FEO iFlowTCB2 Control/Status Register
0x04000-0x07FFF On chip SRAM or Trace Memory (iFlowTrace)
0x08000 Complex Break and Trigger Control Register Section 6.3.1 “Complex Break and Trigger
Control (CBTC) Register (0x8000)”
0x08300-0x084DF PrCndAl[n], n=0..14 _) _
OX0B4E0-Ox086BF PrCndAD[n], n=0..14 Section 6.7 *Primed Breakpalnts”
0x08900 Stopwatch Timer Control Section 6.3.7 “Stopwatch Timer Control (STCtl)
Register (0x8900)”
0x08908 Stopwatch Timer Count Section 6.3.8 “Stopwatch Timer Count (STCnt)
Register (0x8908)"

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc.

215

All rights reserved.

DRSEG Memory Map

216 MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Appendix F

Revision History

MIPS documents include change bars (vertical barsin the page margin) that mark significant changes to the docu-
ment since its last release. Change bars are removed for changes which are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions and EJTAG register
definitions), and change bars in these sections indicate changes since the previous version of the relevant Architecture

document.

Revision Date

Description

25 February 22,2000 Release to users under NDA

251 June 6, 2000 Changesin thisrevision:

Clarification describing possible speculative fetch from dmseg. See Section
2.2.2.1 onpage37.

Clarification of SYNC instruction behavior in Section 2.2.3.7 on page 40.
Added hazard description on DEBUG[LSNM] and DEBUGIIEXI] in Section
2.2.4 onpage4l.

Clarification for Doze and Halt bitsin Debug register, see Section 2.7.1 on
page 59.

Removed requirement that bytes of TAP Data Register which are not accessed
for a processor access read must be written with 0s by the probe. Thus, now
any value may be written to the not accessed bytes.

Wording change in headline and beginning of Appendix C covering clarifica-
tion of changes since previous EJTAG revisions.

Added cross references for clarification.

Corrected typos.

Declassify the document.

2.5-2 August 22, 2000 Removed old Section 6.2, and added Section 6.4 to discuss multi-core EJTAG,
i.e., MIPS recommended way to connect multiple TAP controllers to one set of
external EJTAG TAP pins.

02.53 January 8, 2001 Changesin thisrevision:

MIPS® EJTAG Specification, Revision 6.10

Revision number changed to have format XX.Y'Y, thus the next minor revision
after 2.5-2 isnamed 02.53.

Clarification of data triggerpoint handling when exception occur on a
|oad/store instruction.

Clarification of value of BY TELANE for hardware breakpoints when access
with unaligned address occurs.

Elaborated description of fieldsin TAP Device ID register.

Added recommendation for handling of CacheErr register in Debug Mode.
Modified description of connecting multiple TAP controllersin daisy chain.
Updates for clarificationsin general.

Corrected typos.

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

217

Revision History

Revision Date Description

02.60 February 15,2001 Changesin thisrevision:
» Updated the chapter on TAP controller to specify the FASTDATA instruction.
» Added the instructions needed for the trace control block register access.
» Updated the revision number to 02.60 and made avaue of 2 in the EJTAGver
field correspond to this version.

02.61 September 30, 2002 Changesin this revision:
* Include the EJTAGver field encoding of 2, inadvertently left out of version
2.60.

02.62 May 7, 2003 Changesin thisrevision:

* Remove Appendix D, as thisinformation in not appropriate to a specification
documenting the current state of the EJTAG architecture.

* Clarify the definition of EJTAGBOQT. If this condition is active, the first
instruction fetch after reset isto one of the EJTAG debug addresses, not to the
reset exception vector.

* Clarify the wording describing the BAI field of the Data Breakpoint Control
register.

* Clarify the definition of ADDR for the LUXC1 and SUXCL1 instructions, when
used in the data breakpoint address match equation.

* Clarify the use of the Debugpgyccode field for SDBBP instructions in Debug
Mode.

* Add an introduction to EJTAG to the first chapter of the specification.

* Clarify the state of the Halt and Doze bitsin the Debug register if a hardware
interrupt or other event awakens the processor, but a debug exception is taken
instead.

» Makeit clear that it isimplementation-dependent whether an SC/SCD, which
would fail becausethe LLbit is0, will cause a debug exception due to a data
breakpoint match.

» Update with MIPS32 and M1PS64 Release 2 Architecture changes.

3.10 July 5, 2005 Changesin thisrevision:
» Added PC Sampling feature
» Added support for MIPSMT ASE
» EJTAG version 3 for specification revision 3.10 and up
* Inclusion of apossible proposal for implementing EJTAG support for multiple
processors or a multi-threaded configuration
» Miscellaneous cleanup

3.20 September 19, 2005 Changesin thisrevision:
» PC sampling clarifications for M T, add a PCSe hit to DCR
» Typo fixes

4.00 June 28, 2006 Changesin thisrevision:

» Add complex break and trigger chapter and the Debug? register
» Add the ahility to Invert a data value check

» Add the feature that saves a data value on a precise match

» Typo fixes and clarification.

4.10 July 3, 2006 Fix typographical errors, unresolved pointers, and clarification of existing fea-
tures. Add anew Return TCk (RTCK) signal to pin 12 of the EJTAG Connector.
411 May 18, 2007 Add EJTAGJver 4.0 to indicate the architecture upgrade to include the Complex
Break and Trigger feature.
4.12 July 15, 2008 Update copyrights and contact information.
218 MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

Revision

Date

Description

4.13

August 01, 2008 .

DBCCn Register figure was missing UnPRCnd field.

Load Data Value address offset is Ox2FFO.

Page 16, Table 1.1 and Page 138, 7.5.5.1 gave the wrong impression that
EJTAGBOOT and NORMALBoot commands cause reset themselves.

414

November 06, 2008

Added new TAP instructions
Added drseg map appendix

45

January 26, 2009 MIPS Technologies-only release for internal review:

Added Fast Debug Channel control bitsto DCR

Added Fast Debug Channel Chapter

Added information about relocatable debug vector

Added Data Address Sampling and enhanced PC Sampling.

Added TIBrkNum and TUP fields to DBCCn register description

Moved UnPrCnd field in DBCCn registers to avoid overlap with above fields
Added UnPrCnd field to IBCCn register

451

April 8, 2009 MIPS Technologies-only release for internal review:

Changes to ISAOnDebug bit for reset state and microMIPS-only case.

4.52

April 20, 2009 MIPS Technologies-only release for internal review:

Added MIPS64 definition for PCSAMPLE TAP register

Updated sections relating to debug vector relocation

Updated sections relating to | SA mode selection for debug exception handlers
Clarified that FDC is optional, fixed typosin FDC chapter

Updated list of memory mapped registersin Introduction and Appendix
Added new version number for 4.5

Clarified that PC sampling is available from version 3 onwards

Updated description of DEPC to include ISA mode bit

4.53

April 24, 2009 MIPS Technologies-only release for internal review:

microMIPS edits.

5.00

July 20, 2009 External release of all new features post revision 4.14:

Corrected bitfield descriptions for DBASIDn.VPE, DBCn.VPEuse
Changed DCR bit RDVec - now optional

Changed DCR bits PCIM, PCnoASID, PCR - write optional
Changed DebugVectorAddr - now optional, bit 7 is r/w

Added DCR bit PCnoTCID

5.01

October 05,2009 .

IMPCODE.EJTAGVer field - added missing identifier for revision 5.00.
Additional text for DebugVectorAddr register - how vector is actually calcu-
lated for different exceptions. Some clean-up for that description.

5.02

November 16,2009

Many of the embedded tables (tables within tables) in Chapter 8 were clipped
off at the bottom so you couldn’t see the last entry. These have been fixed.
ISAMode bit only existsif microMIPS ISA isimplemented.

5.03

November 18,2009

Moved Core Extensions, DCR and TAP chapters ahead of chapters describing
optional features.
Renamed afew chapters.

5.04

March 01, 2010 .

Remove “Preliminary” Margin Note.

5.05

November 25, 2010

Clarify EJTAGboot behavior - only affects instruction fetch, not exception
type.

5.06

March 05,2011 .

Added CPUNum & Type field to IMPCODE register.

5.07

September 20, 2012 -

Updated DebugVectorAddr register definition for implementati ons supporting
Segmentation Control.

Added K bit in PC Sampling format for EVA opcode support.

Added extended ASID fields for Break Channels .

MIPS® EJTAG Specification, Revision 6.10

Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

219

Revision History

Revision Date Description
6.00 December 18,2012 « Added VZE Module features:
» Break Channels can match on specific Guest|D (Root vs Guest)and GVA vs
GPA

» PC Sample includes GuestID
* R5 name changes - MT/DSP ASE -> MT/DSP Module

6.10 February 07, 2013 + Added Secure Debug Chapter.
* Added EJTAG_Brk_Override bit in DCR.

220 MIPS® EJTAG Specification, Revision 6.10
Copyright © 2000-2012 MIPS Technologies Inc. All rights reserved.

	MIPS® EJTAG Specification
	Table of Contents
	List of Figures
	List of Tables
	Overview of the EJTAG System
	1.1 Introduction to EJTAG
	1.2 Historical Perspective
	1.3 EJTAG Capabilities
	1.3.1 Debug Exception and Debug Mode
	1.3.2 Off-board EJTAG Memory
	1.3.3 Debug Breakpoint Instruction
	1.3.4 Hardware Breakpoints
	1.3.5 Single-Step Execution

	1.4 EJTAG Components and Options
	1.4.1 EJTAG Processor Core Extensions
	1.4.2 EJTAG Test Access Port
	1.4.3 Debug Control Register
	1.4.4 Hardware Breakpoint Unit
	1.4.5 Fast Debug Channel

	1.5 Complex Breakpoint and Trigger (CBT) Block
	1.6 EJTAG-Specific Coprocessor 0 Registers
	1.7 Memory-Mapped EJTAG Registers
	1.7.1 Debug Control Register
	1.7.2 Debug Exception Vector Location Register
	1.7.3 Load Data Value Register
	1.7.4 Instruction Hardware Breakpoint Registers
	1.7.5 Data Hardware Breakpoint Registers
	1.7.6 Complex Break and Trigger Registers

	1.8 Memory-Mapped EJTAG Memory Segment
	1.9 Memory-Mapped Fast Debug Channel Registers
	1.10 EJTAG Test Access Port Registers
	1.11 The Implications of Multiprocessing and Multithreading for EJTAG
	1.12 Related Documents
	1.13 Notations and Conventions
	1.13.1 Compliance
	1.13.2 UNPREDICTABLE and UNDEFINED Operations
	1.13.2.1 UNPREDICTABLE
	1.13.2.2 UNDEFINED

	1.13.3 Register Field Notations
	1.13.4 Value Notations
	1.13.5 Address Notations

	EJTAG Processor Core Extensions
	2.1 Overview
	2.2 Debug Mode Execution
	2.2.1 Debug Mode Instruction Set
	2.2.2 Debug Mode Address Space
	2.2.2.1 Access to dmseg (EJTAG memory) Address Range
	2.2.2.2 Access to drseg (EJTAG Registers) Address Range

	2.2.3 Debug Mode Handling of Processor Resources
	2.2.3.1 Coprocessors
	2.2.3.2 Random Register
	2.2.3.3 Count Register
	2.2.3.4 WatchLo/WatchHi Registers
	2.2.3.5 CacheErr Register
	2.2.3.6 Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair
	2.2.3.7 SYNC and EHB Instruction Behavior

	2.2.4 CP0 and dseg Segment Hazards
	2.2.4.1 Types of Hazards
	2.2.4.2 Hazard Clearing Instructions
	2.2.4.3 Instruction Encoding

	2.3 Debug Exceptions
	2.3.1 Debug Exception Priorities
	2.3.2 Debug Exception Vector Location
	2.3.3 Debug Exception ISA mode
	2.3.4 General Debug Exception Processing
	2.3.5 Debug Breakpoint Exception
	2.3.6 Debug Instruction Break Exception
	2.3.7 Debug Data Break Load/Store Exception
	2.3.8 Debug Data Break Load/Store Imprecise Exception
	2.3.9 Debug Single Step Exception
	2.3.10 Debug Interrupt Exception

	2.4 Debug Mode Exceptions
	2.4.1 Exceptions Taken in Debug Mode
	2.4.2 Exceptions on Imprecise Errors
	2.4.3 Debug Mode Exception Processing

	2.5 Interrupts and NMIs
	2.5.1 Interrupts
	2.5.2 NMIs

	2.6 Reset and Soft Reset of Processor
	2.6.1 EJTAGBOOT Feature
	2.6.2 Reset from Probe
	2.6.3 Processor Reset by Probe through Test Access Port
	2.6.4 Reset Occurred Indication through Test Access Port
	2.6.5 Soft Reset Enable
	2.6.6 Reset of Other Debug Features

	2.7 EJTAG Coprocessor 0 Registers
	2.7.1 Debug Register (CP0 Register 23, Select 0)
	2.7.2 Debug2 Register (CP0 Register 23, Select 6)
	2.7.3 Debug Exception Program Counter Register (CP0 Register 24, Select 0)
	2.7.4 Debug Exception Save Register (CP0 Register 31, Select 0)

	2.8 EJTAG Instructions
	Format: SDBBP
	Format: SDBBP
	Format: DERET
	Format: DERET

	Debug Control Register
	EJTAG Test Access Port
	4.1 TAP Overview
	4.2 TAP Signals
	4.2.1 Test Clock Input (TCK)
	4.2.2 Test Mode Select Input (TMS)
	4.2.3 Test Data Input (TDI)
	4.2.4 Test Data Output (TDO)
	4.2.5 Test Reset Input (TRST*)

	4.3 TAP Controller
	4.3.1 Test-Logic-Reset State
	4.3.2 Capture-IR State
	4.3.3 Shift-IR State
	4.3.4 Update-IR State
	4.3.5 Capture-DR State
	4.3.6 Shift-DR State
	4.3.7 Update-DR State

	4.4 Instruction Register and Special Instructions
	4.4.1 ALL Instruction
	4.4.2 EJTAGBOOT and NORMALBOOT Instructions
	4.4.3 FASTDATA Instruction
	4.4.4 FDC Instruction

	4.5 TAP Data Registers
	4.5.1 Device Identification (ID) Register (TAP Instruction IDCODE)
	4.5.2 Implementation Register (TAP Instruction IMPCODE)
	4.5.3 Data Register (TAP Instruction DATA, ALL, or FASTDATA)
	4.5.4 Address Register (TAP Instruction ADDRESS or ALL)
	4.5.5 EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
	4.5.5.1 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap and ProbEn
	4.5.5.2 Combinations of ProbTrap and ProbEn

	4.5.6 Fastdata Register (TAP Instruction FASTDATA)
	4.5.7 PCsample Register (PCSAMPLE Instruction)
	4.5.8 Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL)BOOT, or Unused)

	4.6 Examples of Use
	4.6.1 TAP Operation
	4.6.2 ManufID Value
	4.6.3 Rocc Bit Usage
	4.6.4 EJTAG Memory Access Through Processor Access
	4.6.4.1 Write Processor Access
	4.6.4.2 Read Processor Access

	Hardware Breakpoints
	5.1 Introduction
	5.1.1 Instruction Breakpoint Features
	5.1.2 Data Breakpoint Features

	5.2 Overview of Instruction and Data Breakpoint Registers
	5.2.1 Overview of Instruction Breakpoint Registers
	5.2.2 Overview of Data Breakpoint Registers

	5.3 Conditions for Matching Breakpoints
	5.3.1 Conditions for Equality and Mask Matching Instruction Breakpoints
	5.3.2 Conditions for Equality and Mask Matching Data Breakpoints
	5.3.2.1 Inverting the Data Value Match Condition
	5.3.2.2 Data Breakpoints in case of Unaligned Address
	5.3.2.3 Match for Data Breakpoint with Value Compare on Bus or Cache Error
	5.3.2.4 Precise Match for Data Breakpoints
	5.3.2.5 Imprecise Match for Data Breakpoints

	5.3.3 Precise Exceptions on Data Value Match Breaks
	5.3.4 Address Range Triggered Instruction Breakpoints
	5.3.5 Address Range Triggered Data Breakpoints

	5.4 Debug Exceptions from Breakpoints
	5.4.1 Debug Exception Caused by Instruction Breakpoint
	5.4.2 Debug Exception by Data Breakpoint
	5.4.2.1 Debug Data Break Load/Store Exception as a Precise Debug Exception
	5.4.2.2 Debug Data Break Load/Store Exception as an Imprecise Debug Exception

	5.5 Breakpoints Used as Triggerpoints
	5.6 Instruction Breakpoint Registers
	5.6.1 Instruction Breakpoint Status (IBS) Register
	5.6.2 Instruction Breakpoint Address n (IBAn) Register
	5.6.3 Instruction Breakpoint Address Mask n (IBMn) Register
	5.6.4 Instruction Breakpoint ASID n (IBASIDn) Register
	5.6.5 Instruction Breakpoint Control n (IBCn) Register

	5.7 Data Breakpoint Registers
	5.7.1 Data Breakpoint Status (DBS) Register
	5.7.2 Data Breakpoint Address n (DBAn) Register
	5.7.3 Data Breakpoint Address Mask n (DBMn) Register
	5.7.4 Data Breakpoint ASID n (DBASIDn) Register
	5.7.5 Data Breakpoint Control n (DBCn) Register
	5.7.6 Data Breakpoint Value n (DBVn) Register

	5.8 Recommendations for Implementing Hardware Breakpoints
	5.8.1 Number of Instruction Breakpoints Without Single Stepping
	5.8.2 Data Breakpoints with Data Value Compares
	5.8.3 Data Breakpoint Compare on Invalid Data
	5.8.4 Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares

	5.9 Breakpoint Examples
	5.9.1 Instruction Breakpoint Examples
	5.9.1.1 Instruction Break in Small Range of Instructions with ASID
	5.9.1.2 Instruction Break on 32-bit MIPS16e™ Instruction

	5.9.2 Data Breakpoint
	5.9.2.1 Data Break on Load Access with ASID
	5.9.2.2 Data Break on Store(s) to Halfword in Memory
	5.9.2.3 Data Break on Store(s) to Halfword Range in Memory with Certain Value

	Complex Break and Trigger Block
	6.1 Complex Trigger Features/Capabilities
	6.2 General Complex Break Behavior
	6.3 Registers in the Complex Break and Trigger Block
	6.3.1 Complex Break and Trigger Control (CBTC) Register (0x8000)
	6.3.2 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n * 0x100)
	6.3.3 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)
	6.3.4 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n * 0x100)
	6.3.5 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)
	6.3.6 Priming Condition A I/D n (PrCndA/B/C/DI/Dn) Registers
	6.3.7 Stopwatch Timer Control (STCtl) Register (0x8900)
	6.3.8 Stopwatch Timer Count (STCnt) Register (0x8908)

	6.4 Tuple Breakpoints
	6.5 Pass Counters
	6.6 Data Qualified Breakpoints
	6.7 Primed Breakpoints
	6.8 Stopwatch Timer
	6.9 Reporting of the Complex Breakpoints in the Debug Register
	6.9.1 Debug Register (23, select 0) Changes for Complex Breakpoints
	6.9.2 Debug2 Register (23, select 6)

	PC Sampling
	7.1 Introduction
	7.2 PC and Data Address Sampling
	7.2.1 PC Sampling in Wait State
	7.2.2 PC Sampling a MT Processor
	7.2.3 Cache Miss PC Sampling
	7.2.4 Data Address Sampling

	Fast Debug Channel
	8.1 Overview
	8.2 FDC Features
	8.2.1 Fast Debug Interrupt
	8.2.2 FDC TAP Instruction

	8.3 Fast Debug Channel Registers
	8.3.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)
	8.3.2 FDC Configuration (FDCFG) Register (Offset 0x8)
	8.3.3 FDC Status (FDSTAT) Register (Offset 0x10)
	8.3.4 FDC Receive (FDRX) Register (Offset 0x18)
	8.3.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

	SecureDebug
	9.1 Disabling EJTAG debugging
	9.1.1 EJ_DisableProbeDebug Signal
	9.1.2 Override for EjtagBrk and DINT disable

	9.2 EJTAG Features unmodified by SecureDebug

	On-Chip Interfaces
	10.1 Connecting Unused EJTAG Test Access Port and Debug Interrupt Signals
	10.2 Optional TRST* Pin
	10.3 Input Buffers with Pull-Up/Down and Output Drivers for Chip Pins
	10.4 Connecting Multi-Core Test Access Port (TAP) Controllers

	Off-Chip and Probe Interfaces
	11.1 Logical Signals
	11.1.1 Test Access Port Signals
	11.1.2 Debug Interrupt Signal
	11.1.3 System Reset Signal
	11.1.4 Return Test Clock Input
	11.1.5 Voltage Sense for I/O Signal

	11.2 AC Timing Characteristics
	11.2.1 Test Access Port Timing
	11.2.2 Debug Interrupt Timing
	11.2.3 System Reset Timing
	11.2.4 Voltage Sense for I/O (VIO) Timing

	11.3 DC Electrical Characteristics
	11.4 Mechanical Connector
	11.5 Target System PCB Design
	11.5.1 Electrical Connection
	11.5.2 Layout Considerations

	11.6 Probe Requirements and Recommendations
	11.6.1 Target System Power-Up with Probe Attached
	11.6.2 Hot Plug in of Probe
	11.6.3 TDO Level when 3-Stated
	11.6.4 RST* Drive by Open Collector
	11.6.5 Changing TMS and TDI
	11.6.6 Mechanical Connector

	Differences for R3000 Privileged Environments
	A.1 EJTAG Processor Core Extensions
	A.1.1 SYNC Instruction
	A.1.2 Debug Exception Vector Location
	A.1.3 SYNC Instruction Substitute
	A.1.4 CP0 Register Numbers for Debug and DEPC Registers

	A.2 Hardware Breakpoints
	A.2.1 Instruction Breakpoint Registers
	A.2.2 Conditions for Matching Instruction Breakpoints
	A.2.3 ASID Field in IBCn Register
	A.2.4 Data Breakpoint Registers
	A.2.5 Conditions for Matching Data Breakpoints
	A.2.6 ASID Field in DBCn Register

	A.3 EJTAG Test Access Port

	Terminology
	Functional Clarifications from Old EJTAG 2.5
	Multithreaded and Multi-Core Debug
	D.1 Introduction
	D.2 MCBU Register Map
	D.3 MCBU Registers
	D.3.1 Debug_Int_i
	D.3.2 Reset
	D.3.2.1 Cold Reset
	D.3.2.2 NMI

	D.3.3 Debug Interrupt

	D.4 Possible Implementation

	DRSEG Memory Map
	Revision History

