Ultra Small Temperature Switches with Pin Selectable Hysteresis

Features
- 5-Pin SOT-23A
- Factory-programmed Thresholds from -45°C to +125°C in 10°C Increments
- Pin Selectable +2°C or +10°C Hysteresis
- ±0.5°C (Typ) Threshold Accuracy Over Full Temperature Range
- No External Components Required
- 17 µA Supply Current (Typ)

Applications
- Thermal Management in PCs and Servers
- Over-temperature Fail-safe Circuits
- Simple Fan Controller
- Temperature Alarms
- Projectors/Printers
- Notebook Computers
- Network Boxes

General Description
The TC6501/2/3/4 are SOT-23 temperature switches that require no external components and are available with factory-programmed temperature thresholds. A choice of factory-trimmed temperature trip points are also available. Pin-selectable hysteresis of +2°C or +10°C allows flexibility to the design of the application. These parts typically consume only 17 µA of current and operate over the entire -55°C to +135°C temperature range, while offering accuracies of ±0.5°C (typ).

The TC6501 and TC6503 have an open-drain, active-low output, which targets microcontroller reset control. The TC6502 and TC6504 have a CMOS, active-high output designed to drive the logic level MOSFET that turns on a fan or heater element.

The TC6501/TC6502 are designed for hot temperature monitoring (+35°C to +125°C). These devices assert a logic signal when the temperature goes above the threshold. The TC6503/TC6504 are optimized for cold temperature monitoring (-45°C to +15°C) and assert a logic signal when the temperature goes below the threshold.

The TC6501/2/3/4 are offered with five standard temperature thresholds. Available in 5-Pin SOT-23A packages, these parts are ideal for applications requiring high integration, small size, low power and low installed cost.

Functional Block Diagram
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage (VCC) -0.3V to +7V
Input Current (All Pins)20 mA
Output Current (All Pins)20 mA
Operating Temperature Range -55°C to +135°C
Storage Temperature Range -65°C to +165°C

TOVER (TC6501) -0.3V to +7V
TOVER (TC6502) -0.3V to (VCC + 0.3V)
TUNDER (TC6503) -0.3V to 7V
TUNDER (TC6504) -0.3V to (VCC + 0.3V)
All Other Pins .. -0.3V to (VCC + 0.3V)

Maximum Junction Temperature, TJ 150°C

Power Dissipation (TA = +70°C):
(Derate 7.1 mW/°C Above +70°C) 570 mW

* Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL SPECIFICATIONS

Electrical Characteristics: Unless otherwise noted, VCC = +2.7V to +5.5V, RPULL-UP = 100 kΩ (TC6501/TC6503 only), 100 pF decoupling capacitor from VCC to GND, TAMB = -55°C to +135°C. Typical values are at TA = +25°C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage Range</td>
<td>VCC</td>
<td>2.7</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Supply Current</td>
<td>ICC</td>
<td>—</td>
<td>17</td>
<td>40</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td>HYST Input Threshold</td>
<td>Vih</td>
<td>0.8 x VCC</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>HYST Input Threshold</td>
<td>Vil</td>
<td>—</td>
<td>—</td>
<td>0.2 x VCC</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Temperature Threshold Accuracy</td>
<td>ΔTTH</td>
<td>-6</td>
<td>±0.5</td>
<td>6</td>
<td>°C</td>
<td>-45°C to -25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4</td>
<td>±0.5</td>
<td>4</td>
<td>°C</td>
<td>-15°C to +15°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4</td>
<td>±0.5</td>
<td>4</td>
<td>°C</td>
<td>+35°C to +65°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>±0.5</td>
<td>6</td>
<td>°C</td>
<td>+75°C to +125°C</td>
</tr>
<tr>
<td>Temperature Threshold Hysteresis</td>
<td>THYST</td>
<td>—</td>
<td>2.0</td>
<td>—</td>
<td>°C</td>
<td>HYST = GND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>°C</td>
<td>HYST = VCC</td>
</tr>
<tr>
<td>Output Voltage High</td>
<td>Voh</td>
<td>0.8 x VCC</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>ISOURCE = 500 µA, VCC > 2.7V (TC6502/TC6504 Only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VCC - 1.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>ISOURCE = 800 µA, VCC > 4.5V (TC6502/TC6504 Only)</td>
</tr>
<tr>
<td>Output Voltage Low</td>
<td>Vol</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>V</td>
<td>ISINK = 1.2 mA, VCC > 2.7V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
<td>ISINK = 3.2 mA, VCC > 4.5V</td>
</tr>
<tr>
<td>Open-Drain Output Leakage Current</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>nA</td>
<td>VCC = 2.7V, TUNDER = 5.5V (TC6503); TOVER = 5.5V (TC6501)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The TC6501/2/3/4 are available with internal, factory-programmed temperature trip thresholds from -45°C to +125°C, in +10°C increments.
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise noted, \(V_{CC} = 5.0\text{V} \), \(R_{PULL-UP} = 100\ \text{k}\Omega \) (TC6501/TC6503 only), 100 pF decoupling capacitor from \(V_{CC} \) to GND, \(T_{AMB} = +25^\circ\text{C} \).

FIGURE 2-1: Trip Threshold Accuracy.

FIGURE 2-2: Output Sink Resistance vs. Temperature.

FIGURE 2-3: Thermal Step Response in Perfluorinated Fluid (SOT-23).

FIGURE 2-4: Supply Current vs. Temperature.

FIGURE 2-5: Hysteresis vs. Trip Temperature.

FIGURE 2-6: Thermal Step Response in Still Air (SOT-23).
Note: Unless otherwise noted, $V_{CC} = 5.0\text{V}$, $R_{PULL-UP} = 100 \text{k}\Omega$ (TC6501/TC6503 only), 100 pF decoupling capacitor from V_{CC} to GND, $T_{AMB} = +25^\circ\text{C}$.

FIGURE 2-7: Output Source Resistance vs. Temperature (TC6502).
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>TC6501</th>
<th>TC6502</th>
<th>TC6503</th>
<th>TC6504</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 2</td>
<td>1, 2</td>
<td>1, 2</td>
<td>1, 2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>HYST</td>
<td>Hysteresis Input</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>V CC</td>
<td>Supply Input (+2.7V to +5.5V)</td>
</tr>
<tr>
<td>—</td>
<td>5</td>
<td>—</td>
<td>—</td>
<td>T OVER</td>
<td>Open-Drain, Active-Low Output</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>T OVER</td>
<td>Push/Pull Active-High Output</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>T UNDER</td>
<td>Open-Drain, Active-Low Output</td>
</tr>
</tbody>
</table>

3.1 Ground

Connect the device ground pins directly to the PCB ground and minimize the length of the connection. The thermal resistance to the die is at a minimum at Pin 2.

3.2 Hysteresis Input (HYST)

Either 2°C (GND) or 10°C (V CC) of hysteresis is selected by connecting HYST to GND or V CC.

3.3 Supply Input (V CC)

A 100 pF or greater decoupling capacitor from V CC to GND is recommended.

3.4 Open-Drain, Active-Low Output (TC6501) (T OVER)

The voltage at the T OVER pin is equal to a logic-low level if the sensor detects a temperature that is greater than the factory-programmed threshold temperature. Because this is an open-drain output, an external pull-up resistor is required (a 100 kΩ pull-up resistor is recommended). The voltage on this pin can be higher than V CC, though the voltage must not exceed the absolute maximum input voltage of 7.0V.

3.5 Push/Pull Active-High Output (TC6502) (T OVER)

The voltage at T OVER is equal to a logic-high level if the sensor detects a temperature greater than the factory-programmed threshold temperature.

3.6 Open-Drain, Active-Low Output (TC6503) (T UNDER)

The voltage at the T UNDER pin is equal to a logic-low level if the sensor detects a temperature that is less than the factory-programmed threshold temperature. Because this is an open-drain output, an external pull-up resistor is required (a 100 kΩ pull-up resistor is recommended). The voltage on this pin can be higher than V CC, though the voltage must not exceed the absolute maximum input voltage of 7.0V.

3.7 Push/Pull Active-High Output (TC6504) (T UNDER)

The voltage at T UNDER is equal to a logic-high level if the sensor detects a temperature less than the factory-programmed threshold temperature.
4.0 DETAILED DESCRIPTION

The TC6501/2/3/4 integrate a temperature sensor with a factory-programmed threshold switch (see Functional Block Diagrams in Figure 5-4 through Figure 5-7). A logic signal is asserted when the die temperature crosses the factory-programmed threshold. An external hysteresis input pin allows the user to select either 2°C or 10°C hysteresis to give further flexibility to the design of the application. The TC6501 and TC6502 are intended for a temperature range of 35°C to 125°C in 10°C increments. The TC6501 has an open-drain output, while the TC6502 has a push-pull output stage. The TC6503 and TC6504 are intended for a cold temperature range of -45°C to +15°C in 10°C increments. The TC6503 has an open-drain output, while the TC6504 has a push/pull output stage. The TC6501 and TC6503 are intended for applications with a microcontroller reset input. The TC6502 and TC6504 are intended for applications where a fan or heater element is turned on.

Please contact Microchip Technology for the availability of a particular temperature threshold not included in Table 4-1.

4.1 Hysteresis Input

To prevent the output from "chattering" at or near the trip point temperature, a selectable HYST input pin is provided. Hysteresis can be externally selected at 2°C (HYST = GND) or 10°C (HYST = VCC) by means of the CMOS compatible HYST input pin. Do not let the HYST pin float, as this could cause an increase in supply current. The hysteresis does not depend on the part's programmed trip threshold.

4.2 Thermal Considerations

With a 17 µA typical supply current, the TC6501/2/3/4 dissipates very little power. Thus, the die temperature is basically the same as the package temperature. To minimize the error in temperature readings, the load current should be limited to a few milliamperes. For example, the typical thermal resistance of a 5-Pin SOT-23A package is 140°C/W. If, for instance, the TC6501 had to sink 1 mA, and the output voltage is ensured to be less than 0.3V, an additional 0.3 mW of power is dissipated within the temperature sensor. This corresponds to a 0.042°C rise in die temperature.

Temperature-monitoring accuracy depends on the thermal resistance between the device being monitored and the temperature switch die. Heat flows primarily through the leads onto the die. Pin 2 provides the lowest thermal resistance to the die. To achieve the best temperature-monitoring results, the TC6501/2/3/4 should be placed closest to the device being monitored. Additionally, a short and wide copper trace from pin 2 to the device should be used. In some cases, the 5-Pin SOT-23A package can be placed directly under the socketed microcontroller for improved thermal contact.

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Threshold (T_{TH}) Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC6501</td>
<td>+35°C < T_{TH} < +125°C</td>
</tr>
<tr>
<td>TC6502</td>
<td>+35°C < T_{TH} < +125°C</td>
</tr>
<tr>
<td>TC6503</td>
<td>-45°C < T_{TH} < +15°C</td>
</tr>
<tr>
<td>TC6504</td>
<td>-45°C < T_{TH} < +15°C</td>
</tr>
</tbody>
</table>
5.0 APPLICATIONS

The TC6501 and TC6503 have open-drain outputs and are, therefore, intended to interface as microcontroller reset inputs. Moreover, the combination of these two devices can be used to implement a temperature window alarm by wire-ORing the outputs and using an external pull-up resistor (see Figure 5-1).

FIGURE 5-1: Over and Under Temperature Alarm.

The TC6502 can be used to control a DC fan. The fan turns on when the sensed temperature rises above the factory-set threshold and remains on until the temperature falls below threshold minus the hysteresis selected. An additional fail-safe measure could be designed by using a second TC6502 with a higher temperature threshold to alert the user of an impending thermal shutdown, should the temperature continue to rise (see Figure 5-2).

FIGURE 5-2: Fan Control with Over Temperature Alert.

The TC6504, with its push-pull output, may be used in a similar fashion to turn on a heater element at cold temperatures (see Figure 5-3).

FIGURE 5-3: TC6504 As Heater Thermostat.
FIGURE 5-4: TC6501 Functional Block Diagram.

FIGURE 5-5: TC6502 Functional Block Diagram.

FIGURE 5-6: TC6503 Functional Block Diagram.

FIGURE 5-7: TC6504 Functional Block Diagram.
6.0 PACKAGING INFORMATION

6.1 Package Marking Diagram

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Marking Code</th>
<th>Temperature Threshold (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC6501P045VCT</td>
<td>HA</td>
<td>45</td>
</tr>
<tr>
<td>TC6501P065VCT</td>
<td>HC</td>
<td>65</td>
</tr>
<tr>
<td>TC6501P075VCT</td>
<td>HD</td>
<td>75</td>
</tr>
<tr>
<td>TC6501P095VCT</td>
<td>HF</td>
<td>95</td>
</tr>
<tr>
<td>TC6501P105VCT</td>
<td>HG</td>
<td>105</td>
</tr>
<tr>
<td>TC6501P115VCT</td>
<td>HH</td>
<td>115</td>
</tr>
<tr>
<td>TC6501P120VCT</td>
<td>HV</td>
<td>120</td>
</tr>
<tr>
<td>TC6501P125VCT</td>
<td>HJ</td>
<td>125</td>
</tr>
<tr>
<td>TC6502P045VCT</td>
<td>JA</td>
<td>45</td>
</tr>
<tr>
<td>TC6502P065VCT</td>
<td>JC</td>
<td>65</td>
</tr>
<tr>
<td>TC6502P075VCT</td>
<td>JD</td>
<td>75</td>
</tr>
<tr>
<td>TC6502P095VCT</td>
<td>JF</td>
<td>95</td>
</tr>
<tr>
<td>TC6502P115VCT</td>
<td>JH</td>
<td>115</td>
</tr>
<tr>
<td>TC6502P125VCT</td>
<td>JJ</td>
<td>125</td>
</tr>
<tr>
<td>TC6503N015VCT</td>
<td>KA</td>
<td>-15</td>
</tr>
<tr>
<td>TC6503P005VCT</td>
<td>KB</td>
<td>5</td>
</tr>
<tr>
<td>TC6504N015VCT</td>
<td>LA</td>
<td>-15</td>
</tr>
<tr>
<td>TC6504P005VCT</td>
<td>LB</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: Please contact Microchip Technology for the availability of a particular temperature threshold not included in Table 4-1.

Legend: 1-2 Part Number Marking Code*
3 Year and two-month period code
4 Lot ID

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

*Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.
5-Lead Plastic Small Outline Transistor (CT) (SOT-23)

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.

JEDEC Equivalent: MO-178

Drawing No. C04-091

Notes:

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.038</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Outside lead pitch (basic)</td>
<td>p1</td>
<td>.075</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
<td>1.90</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.035</td>
<td>.046</td>
<td>.057</td>
<td>.090</td>
<td>1.18</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.035</td>
<td>.043</td>
<td>.051</td>
<td>.090</td>
<td>1.10</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>.000</td>
<td>.003</td>
<td>.006</td>
<td>.000</td>
<td>.008</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.102</td>
<td>.110</td>
<td>.118</td>
<td>2.60</td>
<td>2.80</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.059</td>
<td>.064</td>
<td>.069</td>
<td>1.50</td>
<td>1.63</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.110</td>
<td>.116</td>
<td>.122</td>
<td>2.80</td>
<td>2.95</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.014</td>
<td>.018</td>
<td>.022</td>
<td>.035</td>
<td>.045</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>∅</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.004</td>
<td>.006</td>
<td>.008</td>
<td>.009</td>
<td>.015</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.014</td>
<td>.017</td>
<td>.020</td>
<td>.035</td>
<td>.043</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

*Controlling Parameter
§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.

JEDEC Equivalent: MO-178

Drawing No. C04-091
Product Tape and Reel Specification

- **Device Marking**
- **Pin 1**
- **User Direction of Feed**
- **W, Width of Carrier Tape**
- **P, Pitch**
- **Standard Reel Component Orientation**
- **Reverse Reel Component Orientation**
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Standard Temperature Threshold</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC6501</td>
<td>Ultra Small Temp Switch with Pin-Selectable Hysteresis</td>
<td>N015 = -15°C (TC6503, TC6504) P005 = 5°C (TC6503, TC6504) P045 = 45°C (TC6501, TC6502) P065 = 65°C (TC6501, TC6502) P075 = 75°C (TC6501, TC6502) P095 = 95°C (TC6501, TC6502) P105 = 105°C (TC6501) P115 = 115°C (TC6501, TC6502) P120 = 120°C (TC6501) P125 = 125°C (TC6501, TC6502)</td>
<td>VCTTR = SOT-23, 5-lead (Tape and Reel) (Available only in 95°C and 125°C temperatures for TC6501)</td>
</tr>
<tr>
<td>TC6502</td>
<td>Ultra Small Temp Switch with Pin-Selectable Hysteresis</td>
<td>P045 = 45°C (TC6501, TC6502) P065 = 65°C (TC6501, TC6502)</td>
<td>VCTTR = SOT-23, 5-lead (Reverse Tape and Reel)</td>
</tr>
<tr>
<td>TC6503</td>
<td>Ultra Small Temp Switch with Pin-Selectable Hysteresis</td>
<td>P045 = 45°C (TC6501, TC6502) P065 = 65°C (TC6501, TC6502)</td>
<td>VCTTR = SOT-23, 5-lead (Reverse Tape and Reel)</td>
</tr>
<tr>
<td>TC6504</td>
<td>Ultra Small Temp Switch with Pin-Selectable Hysteresis</td>
<td>P045 = 45°C (TC6501, TC6502)</td>
<td>VCTTR = SOT-23, 5-lead (Reverse Tape and Reel)</td>
</tr>
</tbody>
</table>

Examples:

- a) TC6501P045VCTTR: 5-Pin SOT-23A, 45°C, Open-Drain, tape and reel.
- b) TC6501P065VCTTR: 5-Pin SOT-23A, 65°C, Open-Drain, tape and reel.
- c) TC6501P095VCTTR: 5-Pin SOT-23A, 95°C, Open-Drain, tape and reel.
- d) TC6501P095VCTRT: 5-Pin SOT-23A, 95°C, Open-Drain, reverse tape and reel.
- e) TC6501P125VCTRT: 5-Pin SOT-23A, 125°C, Open-Drain, reverse tape and reel.

- a) TC6502P045VCTTR: 5-Pin SOT-23A, 45°C, Push-Pull, tape and reel.
- b) TC6502P065VCTTR: 5-Pin SOT-23A, 65°C, Push-Pull, tape and reel.
- c) TC6502P095VCTTR: 5-Pin SOT-23A, 95°C, Push-Pull, tape and reel.
- a) TC6503N015VCTTR: 5-Pin SOT-23A, -15°C, Open-Drain, tape and reel.
- b) TC6503P005VCTTR: 5-Pin SOT-23A, 5°C, Open-Drain, tape and reel.
- a) TC6504N015VCTTR: 5-Pin SOT-23A, -15°C, Push-Pull, tape and reel.
- b) TC6504P005VCTTR: 5-Pin SOT-23A, 5°C, Push-Pull, tape and reel.

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, Keeloq, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartShunt and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rLAB, rPIC, Select Mode, SmartSensor, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

Phoenix
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966
Fax: 480-792-4338

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9888-6733
Fax: 61-2-9865-6755

China
Beijing
Unit 706B
Wan Tai Bei Hai Bldg., No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104

China
Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86768200
Fax: 86-28-86766599

China
Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hong Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhue Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393

China - Shunde
Room 401, Hongsing Building, No. 2
Fengxiang Road, Ronggui Town, Shunde District,
Foshan City, Guangdong 528303, China
Tel: 86-757-28395570
Fax: 86-757-28395571

India
Divyasree Chambers
1/Floor, Wing A (A3/A4)
No. 11, O’Shaughnessy Road
Bangalore, 560 025, India
Tel: 91-80-2290061
Fax: 91-80-2290062

Japan
Benex 3-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea
168-1, Youngbo Bldg., 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-862
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 189980
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan
Kaohsiung Branch
30F - 1 No. 5
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 866-2-2717-7175
Fax: 866-2-2545-0139

EUROPE
Austria
Duriaolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-244-399
Fax: 43-7242-244-939

Denmark
Regus Business Centre
Lautrup høj 1-3
Ballierup DK-2750 Denmark
Tel: 45-4420-9895
Fax: 45-4420-9910

France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-69-79

Germany
Steinhilressstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
P. A. De Biesbosch 10
N-1501 LC Drunen, Netherlands
Tel: 31-69-53-63-20
Fax: 31-69-30-90-79

United Kingdom
505 Eskdale Road
Wokingham, Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820
01/08/04