Features

- Integrated Temperature Sensing and Multi-speed Fan Control
- Built-in Overtemperature Alert (T_{OVER})
- Temperature-proportional Fan Speed Control for Acoustic Noise Reduction and Longer Fan Life
- Pulse Width Modulation (PWM) Output Drive for Cost and Power Savings
- Solid-state Temperature Sensing
- \(\pm 1{}^\circ \text{C} \) (typ.) Accuracy from 25{}^\circ \text{C} to +70{}^\circ \text{C}
- Operating Range: 2.8V – 5.5V
- TC651 includes Automatic Fan Shutdown
- Low Operating Current: 50 µA (typ.)

Applications

- Thermal Protection For Personal Computers
- Digital Set-Top Boxes
- Notebook Computers
- Data Communications
- Power Supplies
- Projectors

Related Literature

- Application Note 771 (DS00771)

General Description

The TC650/TC651 are integrated temperature sensors and brushless DC fan speed controllers. The TC650/TC651 measure the junction temperature and control the speed of the fan based on that temperature, making them especially suited for applications in modern electronic equipment.

Temperature data is converted from the on-chip thermal sensing element and translated into a fractional fan speed from 40% to 100%. A temperature selection guide in the data sheet is used to choose the low and high temperature limits to control the fan. The TC650/TC651 also include a single trip point over-temperature alert (T_{OVER}) that eliminates the need for additional temperature sensors. In addition, the TC651 features an auto fan shutdown function for additional power savings.

The TC650/TC651 are easy to use, require no software overhead and are, therefore, the ideal choice for implementing thermal management in a variety of systems.

Package Type

8-Pin MSOP

<table>
<thead>
<tr>
<th>8-Pin MSOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
</tr>
<tr>
<td>NC</td>
</tr>
<tr>
<td>SHDN</td>
</tr>
<tr>
<td>GND</td>
</tr>
<tr>
<td>TC650</td>
</tr>
<tr>
<td>T_{OVER}</td>
</tr>
<tr>
<td>NC</td>
</tr>
<tr>
<td>PWM</td>
</tr>
</tbody>
</table>

Tiny Integrated Temperature Sensor & Brushless DC Fan Controller with Overtemperature Alert
Typical Application Circuit

- PICmicro® Microcontroller
- TC650/TC651
- SHDN Control
- Overtemperature Alert
- DC Fan 500 mA
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Input Voltage (V_DD to GND) +6V
Output Voltage (OUT to GND) 6V
Voltage On Any Pin (GND – 0.3V) to (VDD + 0.3V)
Operating Temperature Range–40°C to +125°C
Storage Temperature–65°C to +150°C

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

1.1 DC CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, V_DD = 2.8V to 5.5V, SHDN = V_DD, T_A = –40°C to +125°C.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Voltage</td>
<td>V_DD</td>
<td>2.8</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>PWM, T_OVER are open</td>
</tr>
<tr>
<td>Supply Current</td>
<td>I_DD</td>
<td>—</td>
<td>50</td>
<td>90</td>
<td>µA</td>
<td>—</td>
</tr>
<tr>
<td>SHDN Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHDN Input High Threshold</td>
<td>V_IH</td>
<td>65</td>
<td>—</td>
<td>—</td>
<td>%V_DD</td>
<td></td>
</tr>
<tr>
<td>SHDN Input Low Threshold</td>
<td>V_IL</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>%V_DD</td>
<td></td>
</tr>
<tr>
<td>PWM Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PWM Output Low Voltage</td>
<td>V_OL</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>V</td>
<td>I_SINK = 1 mA</td>
</tr>
<tr>
<td>PWM Output High Voltage</td>
<td>V_OH</td>
<td>V_DD - 0.5</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>I_SOURCE = 5 mA</td>
</tr>
<tr>
<td>PWM Rise Time</td>
<td>I_R</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>µs</td>
<td>I_OH = 5 mA, 1 nF from PWM to GND</td>
</tr>
<tr>
<td>PWM Fall Time</td>
<td>t_F</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>µs</td>
<td>I_OL = 1 mA, 1 nF from PWM to GND</td>
</tr>
<tr>
<td>PWM Frequency</td>
<td>f_OUT</td>
<td>10</td>
<td>15</td>
<td>—</td>
<td>Hz</td>
<td>—</td>
</tr>
<tr>
<td>Start-up Time</td>
<td>I_STARTUP</td>
<td>—</td>
<td>32/f_OUT</td>
<td>—</td>
<td>sec</td>
<td>V_DD Rises from GND or SHDN Released</td>
</tr>
</tbody>
</table>

Temperature Accuracy

<table>
<thead>
<tr>
<th>High Temperature Accuracy</th>
<th>T_H ACC</th>
<th>T_H - 3</th>
<th>T_H</th>
<th>T_H + 3</th>
<th>ºC</th>
<th>Note 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Range Accuracy</td>
<td>(T_H - T_L) ACC</td>
<td>-1.0</td>
<td>—</td>
<td>+1.0</td>
<td>ºC</td>
<td>(T_H - T_L) ≤ 20°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2.5</td>
<td>—</td>
<td>+2.5</td>
<td>ºC</td>
<td>(T_H - T_L) ≥ 20°C</td>
</tr>
<tr>
<td>Auto-shutdown Hysteresis</td>
<td>T_HYST</td>
<td>—</td>
<td>(T_H - T_L)/5</td>
<td>—</td>
<td>ºC</td>
<td>TC651 Only</td>
</tr>
</tbody>
</table>

T_OVER Output

<table>
<thead>
<tr>
<th>T_OVER Output High Voltage</th>
<th>V_HIGH</th>
<th>V_DD - 0.5</th>
<th>—</th>
<th>—</th>
<th>V</th>
<th>I_SOURCE = 1.2 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_OVER Output Low Voltage</td>
<td>V_LOW</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
<td>I_SINK = 2.5 mA</td>
</tr>
<tr>
<td>Absolute Accuracy</td>
<td>T_OVER ACC</td>
<td>T_H + 10</td>
<td>—</td>
<td>—</td>
<td>ºC</td>
<td>At Trip Point</td>
</tr>
<tr>
<td>Trip Point Hysteresis</td>
<td>T_OVER HYST</td>
<td>—</td>
<td>5</td>
<td>—</td>
<td>ºC</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: Transition from 90% to 100% Duty Cycle.
TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $V_{DD} = 2.8V$ to 5.5V, $\overline{SHDN} = V_{DD}$, $T_A = -40^\circ C$ to $+125^\circ C$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-MSOP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>206.3</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{DD} = 2.8V$ to $5.5V$, $SHDN = V_{DD}$, $T_A = -40^\circ C$ to $+125^\circ C$.

FIGURE 2-1: I_{DD} vs. Temperature.

FIGURE 2-2: PWM, I_{SINK} vs. V_{OL}.

FIGURE 2-3: T_{OVER}, I_{SOURCE} vs. $(V_{DD} - V_{OH})$.

FIGURE 2-4: Temperature Accuracy vs. V_{TH}.

FIGURE 2-5: PWM, I_{SOURCE} vs. $(V_{DD} - V_{OH})$.
3.0 PIN DESCRIPTION

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V_DD</td>
<td>Power Supply Input</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>No Internal Connect</td>
</tr>
<tr>
<td>3</td>
<td>SHDN</td>
<td>Fan Shutdown, Active-low Input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Fan in normal operation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = Fan in shutdown</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>No Connect</td>
</tr>
<tr>
<td>6</td>
<td>T_OVER</td>
<td>Overtemperature Alert, Active-low Output</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = Overtemperature condition does not exist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = The device is in the overtemperature condition. The fan is driven at 100%. Potential exists for system over-heating</td>
</tr>
<tr>
<td>7</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>8</td>
<td>PWM</td>
<td>PWM Fan Drive Output</td>
</tr>
</tbody>
</table>

3.1 Power Supply Input

May be independent of fan power supply.

3.2 Fan Shutdown, Active-low Input

During Shutdown mode, the chip still monitors temperature. T_OVER is low if temperature rises above factory set point.

3.3 Ground

Ground return for all TC650/TC651 functions.

3.4 Overtemperature Alert

Active-low output.

3.5 PWM Fan Drive Output

Pulse width modulated rail-to-rail logic output. Nominal frequency is 15 Hz.
4.0 DETAILED DESCRIPTION

The TC650/TC651 acquire and convert their junction temperature (T_J) information from an on-chip, solid-state sensor with a typical accuracy of ±1°C. The temperature data is digitally stored in an internal register. The register is compared with pre-defined threshold values. The six threshold values are equally distributed over a pre-defined range of temperatures (see Table 4-1). The TC650/TC651 control the speed of a DC brushless fan using a fractional speed-control scheme. The output stage requires only a 2N2222-type, small-signal BJT for fans up to 300 mA. For larger current fans (up to 1 amp), a logic-level N-channel MOSFET may be used. In addition to controlling the speed of the fan, the TC650/TC651 include an on-chip overtemperature alarm (T_{OVER}) that gives a low signal when the temperature of the chip exceeds T_H by 10°C (typical). This feature eliminates the need for a separate temperature sensor for overtemperature monitoring. Figure 4-1 shows the block diagram of the device.

4.1 PWM Output

The PWM pin is designed to drive a low-cost transistor or MOSFET as the low-side, power-switching element in the system. This output has an asymmetric complementary drive and is optimized for driving NPN transistors or N-channel MOSFETs. Since the system relies on PWM rather than linear power control, the dissipation in the power switch is kept to a minimum. Generally, very small devices (TO-92 or SOT packages) will suffice. The frequency of the PWM is about 15 Hz. The PWM is also the time base for the Start-up Timer (see Section 4.2 “Start-Up Timer”). The PWM duty cycle has a range of 40% to 100% for the TC650 and 50% to 100% for the TC651.

4.2 Start-Up Timer

To ensure reliable fan start-up, the Start-up Timer turns PWM high for about 2 seconds whenever the fan is started from the off state. This occurs at power-up and when coming out of Shutdown mode.

4.3 Overtemperature Alert (T_{OVER})

This pin goes low when the T_H set point is exceeded by 10°C (typical). This indicates that the fan is at maximum drive and the potential exists for system overheating; either heat dissipation in the system has gone beyond the cooling system’s design limits or some fault exists (such as fan bearing failure or an airflow obstruction). This output may be treated as a “System Overheat” warning and be used to either trigger system shutdown or bring other fans in the system to full speed. The fan will continue to run at full speed while T_{OVER} is asserted. Built-in hysteresis prevents T_{OVER} from “chattering” when the measured temperature is at or near the $T_H + 10^\circ$C trip point. As temperature falls through the $T_H + 10^\circ$C trip point, hysteresis maintains the T_{OVER} output low until the measured temperature is 5°C above the trip point setting.

4.4 Shutdown ($SHDN$)

The fan can be unconditionally shut down by pulling the $SHDN$ pin low. During shutdown, the PWM output is low; ideal for notebook computers and other portable applications where you need to change batteries and must not have the fan running at that time. Thermal monitoring and T_{OVER} are still in operation during shutdown. I_D shutdown current is around 50 µA.

4.5 Auto-shutdown Mode

The TC651 features auto-shutdown. When the temperature is below the factory set point at minimum speed (T_L), PWM is low and the fan is automatically shut off (Auto-shutdown mode). This feature is ideal for notebook computers and other portable equipment that need to conserve as much battery power as possible and, thus, run a fan when it is only absolutely needed. The TC651 will continue to be active in order to monitor temperature for T_{OVER}. The TC651 exits Auto-shutdown mode when the temperature rises above the factory set point (T_1).
4.6 Temperature Selection Guide
(Minimum Fan Speed/Full Speed)

There are two temperature thresholds that determine the characteristics of the device. The minimum fan speed temperature (T_L) and the full fan speed temperature (T_H). Depending on the TC65X device selected, when the temperature is below the T_L trip point, the PWM output will perform a different operation. For the TC650, the PWM will be driven at the minimum PWM frequency, while the TC651 will shut down the PWM (PWM = L).

T_L and T_H can be selected in 5°C increments. T_L can range from 25°C to 35°C. T_H can range from 35°C to 55°C and must be 10°C (or more) than the specified T_L.

The five temperature regions defined by the six thresholds are defined in the TC650/TC651 by means of factory trimming. Once a T_L and T_H are set, the T_1 – T_4 thresholds are automatically equally spaced between T_L and T_H. Table 4-1 shows these 5 regions and what the corresponding PWM duty cycle is.

TABLE 4-1: TEMPERATURE RANGE DEFINITION

<table>
<thead>
<tr>
<th>Temperature (T = T_J) (Note 1)</th>
<th>PWM Duty Cycle</th>
<th>TC650 (Minimum Speed mode)</th>
<th>TC651 (Auto-shutdown mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T < T_L</td>
<td>40%</td>
<td>Off</td>
<td></td>
</tr>
<tr>
<td>T_L < = T < T_1</td>
<td>50%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>T_1 < = T < T_2</td>
<td>60%</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>T_2 < = T < T_3</td>
<td>70%</td>
<td>70%</td>
<td></td>
</tr>
<tr>
<td>T_3 < = T < T_4</td>
<td>80%</td>
<td>80%</td>
<td></td>
</tr>
<tr>
<td>T_4 < = T < T_H</td>
<td>90%</td>
<td>90%</td>
<td></td>
</tr>
<tr>
<td>T_H < = T < T_OV</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>T_OV < = T</td>
<td>100% with Overtemperature Alert (T_OVER = L)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The temperature regions defined by the six temperature thresholds are predefined in the TC650/TC651 by means of factory trimming. Once a T_L and T_H are programmed, the T_1 – T_4 thresholds are automatically equally spaced between T_L and T_H.

Table 4-2 shows the device codes that specify the T_H and T_L temperature thresholds. The following examples are given to assist in understanding the device-ordering nomenclature.

Example 1: Suppose you wanted the fan to run at 40% speed at 25°C or less and go to full-speed at 45°C. You would order the part number TC650AEVUA.

Example 2: Suppose you wanted the fan to turn on at 30°C and go to full speed at 45°C. You would order the part number TC651BEVUA.

TABLE 4-2: DEVICE CODES FOR TEMPERATURE THRESHOLDS

<table>
<thead>
<tr>
<th>Temp. Threshold Difference</th>
<th>T_L</th>
<th>T_H</th>
<th>Threshold Limits Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°C</td>
<td>25</td>
<td>35</td>
<td>AC (1)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>40</td>
<td>BD (2)</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>45</td>
<td>CE (2)</td>
</tr>
<tr>
<td>15°C</td>
<td>25</td>
<td>40</td>
<td>AD (2)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>45</td>
<td>BE (1)</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>50</td>
<td>CF (2)</td>
</tr>
<tr>
<td>20°C</td>
<td>25</td>
<td>45</td>
<td>AE (1)</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>50</td>
<td>BF (2)</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>55</td>
<td>CG (1)</td>
</tr>
<tr>
<td>30°C</td>
<td>25</td>
<td>55</td>
<td>AG (1)</td>
</tr>
</tbody>
</table>

Note 1: This temperature threshold option is available for ordering.

2: This is a custom temperature threshold option. Please contact the factory for more information.
5.0 TYPICAL APPLICATIONS

5.1 Reducing Switching Noise

For fans consuming more than 300 mA, a slowdown capacitor (C_{SLOW}) is recommended for reducing switching PWM induced noise (see Figure 5-1). The value of this capacitor should be 4.7 µF to 47 µF, depending on the fan current consumption.

See Application Note 771, “Suppressing Acoustic Noise in PWM Fan Speed Control Systems” (DS00771), for more information.

FIGURE 5-1: Reducing Switching Noise.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:

- **XX...X**: Customer specific information*
- **Y**: Year code (last digit of calendar year)
- **WW**: Week code (week of January 1 is week '01')
- **NNN**: Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard device marking consists of Microchip part number, year code, week code, and traceability code.
8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010” (0.254mm) per side.

JEDEC Equivalent: MO-187

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010” (0.254mm) per side.

JEDEC Equivalent: MO-187

Drawing No. C04-111
6.2 Product Tape and Reel Specifications

FIGURE 6-1: EMBOSSED CARRIER DIMENSIONS

![Carrier Dimensions Diagram](image)

TABLE 1: CARRIER TAPE/CAVITY DIMENSIONS

<table>
<thead>
<tr>
<th>Case Outline</th>
<th>Package Type</th>
<th>Carrier Dimensions W mm</th>
<th>P mm</th>
<th>Cavity Dimensions A0 mm</th>
<th>B0 mm</th>
<th>K0 mm</th>
<th>Output Quantity Units</th>
<th>Reel Diameter in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS</td>
<td>MSOP 8L</td>
<td>12</td>
<td>8</td>
<td>5.3</td>
<td>3.6</td>
<td>1.4</td>
<td>2500</td>
<td>330</td>
</tr>
</tbody>
</table>

FIGURE 1: MSOP DEVICES

![MSOP Devices Diagram](image)
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>XX</th>
<th>X</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td>Temperature Threshold Limit</td>
<td>Temperature Range</td>
<td>Package</td>
</tr>
<tr>
<td>TC650</td>
<td>Temp Sensor & Brushless DC Fan Controller / Overtemperature Alert (minimum speed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC651</td>
<td>Temp Sensor & Brushless DC Fan Controller / Overtemperature Alert (auto shutdown)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature Threshold Limit</th>
<th>Temperature Difference</th>
<th>TL (1,2)</th>
<th>TH (1,3)</th>
<th>Threshold Limit Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>10°C</td>
<td>25</td>
<td>35</td>
<td>AC</td>
<td></td>
</tr>
<tr>
<td>15°C</td>
<td>25</td>
<td>35</td>
<td>35</td>
<td>AC</td>
</tr>
<tr>
<td>20°C</td>
<td>25</td>
<td>40</td>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>30</td>
<td>45</td>
<td>CE</td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td>30</td>
<td>45</td>
<td>BE</td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td>35</td>
<td>50</td>
<td>CF</td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td>35</td>
<td>50</td>
<td>CF</td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td>35</td>
<td>55</td>
<td>CG</td>
<td></td>
</tr>
<tr>
<td>35°C</td>
<td>35</td>
<td>55</td>
<td>CG</td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td>25</td>
<td>55</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>25</td>
<td>55</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>20°C</td>
<td>20</td>
<td>55</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>15°C</td>
<td>15</td>
<td>55</td>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>10°C</td>
<td>10</td>
<td>55</td>
<td>AG</td>
<td></td>
</tr>
</tbody>
</table>

1. TL and TH can be selected in 5°C increments.
2. TL can range from 25°C to 35°C.
3. TH can range from 35°C to 55°C and must be at least 10°C higher than TL.

Temperature Range: V = -40°C to +125°C (Extended)

Package:
UA = Plastic Micro Small Outline (MSOP), 8-lead
UATR = Plastic Micro Small Outline (MSOP), 8-lead (Tape and Reel)

Examples:

a) TC650ACVUA: Temp Sensor TL = 25, TH = 35 Tape and Reel
b) TC651ACVUATR: Temp Sensor TL = 25, TH = 35 Tape and Reel
c) TC650AEVUA: Temp Sensor TL = 25, TH = 45
d) TC651AGVUA: Temp Sensor TL = 25, TH = 55
e) TC650BEVUA: Temp Sensor TL = 30, TH = 45
f) TC651CGVUA: Temp Sensor TL = 35, TH = 55
g) TC650CGVUATR: Temp Sensor TL = 35, TH = 55 Tape and Reel

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KielLoc® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
World Wide Sales and Service

Americas
Corporate Office
2355 West Chandler Blvd, Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westford, MA
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

Asia/Pacific
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-750-3506
Fax: 86-591-750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shenzhen
Tel: 86-755-8290-1380
Fax: 86-755-8295-1393

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8632
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4816
Fax: 886-7-536-4817

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

Europe
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark - Ballerup
Tel: 45-4420-9895
Fax: 45-4420-9910

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820