PWM Fan Speed Controller with FanSense™ Technology

Features

- Temperature Proportional Fan Speed for Acoustic Control and Longer Fan Life
- Efficient PWM Fan Drive
- 3.0V to 5.5V Supply Range:
 - Fan Voltage Independent of TC647 Supply Voltage
 - Supports any Fan Voltage
- FanSense™ Technology Fault Detection Circuits Protect Against Fan Failure and Aid System Testing
- Shutdown Mode for "Green" Systems
- Supports Low Cost NTC/PTC Thermistors
- Space Saving 8-Pin MSOP Package

Applications

- Power Supplies
- Personal Computers
- File Servers
- Telecom Equipment
- UPSs, Power Amps
- General Purpose Fan Speed Control

Available Tools

- Fan Controller Demonstration Board (TC642DEMO)
- Fan Controller Evaluation Kit (TC642EV)

Package Types

```
<table>
<thead>
<tr>
<th>Package Types</th>
<th>SOIC/PDIP/MSOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN</td>
<td>1</td>
</tr>
<tr>
<td>CF</td>
<td>2</td>
</tr>
<tr>
<td>VMIN</td>
<td>3</td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
</tr>
<tr>
<td>VDD</td>
<td>8</td>
</tr>
<tr>
<td>VOUT</td>
<td>7</td>
</tr>
<tr>
<td>FAULT</td>
<td>6</td>
</tr>
<tr>
<td>SENSE</td>
<td>5</td>
</tr>
</tbody>
</table>
```

General Description

The TC647 is a switch mode, fan speed controller for use with brushless DC fans. Temperature proportional speed control is accomplished using pulse width modulation (PWM). A thermistor (or other voltage output temperature sensor) connected to VIN furnishes the required control voltage of 1.25V to 2.65V (typical) for 0% to 100% PWM duty cycle. Minimum fan speed is set by a simple resistor divider on the VMIN input. An integrated Start-up Timer ensures reliable motor start-up at turn-on, coming out of shutdown mode or following a transient fault. A logic low applied to VMIN (Pin 3) causes fan shutdown.

The TC647 also features Microchip Technology's proprietary FanSense™ technology for increasing system reliability. In normal fan operation, a pulse train is present at SENSE (Pin 5). A missing pulse detector monitors this pin during fan operation. A stalled, open or unconnected fan causes the TC647 to trigger its Start-up Timer once. If the fault persists, the FAULT output goes low and the device is latched in its shutdown mode.

The TC647 is available in the 8-pin plastic DIP, SOIC and MSOP packages and is available in the industrial and extended commercial temperature ranges.
Functional Block Diagram

- **VIN**
- **VOUT**
- **VDD**
- **FAULT**
- **SHDN**
- **CF**
- **VMIN**
- **GND**
- **10kΩ**
- **SENSE**
- **70mV (typ.)**

TC647

- Control Logic
- 3 x T_{PWM} Timer
- Start-up Timer
- Missing Pulse Detect.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings*

Supply Voltage ... 6V
Input Voltage, Any Pin.... (GND – 0.3V) to (VDD +0.3V)

Package Thermal Resistance:

PDIP (RθJA) ...125°C/W
SOIC (RθJA) ..155°C/W
MSOP (RθJA) ..200°C/W

Specified Temperature Range -40°C to +125°C
Storage Temperature Range.............. -65°C to +150°C

*Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>Supply Voltage</td>
<td>3.0</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>Pins 6, 7 Open, CF = 1 µF, VMIN = VCMAX</td>
</tr>
<tr>
<td>IDD</td>
<td>Supply Current, Operating</td>
<td>—</td>
<td>0.5</td>
<td>1</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>IDD(SHDN)</td>
<td>Supply Current, Shutdown Mode</td>
<td>—</td>
<td>25</td>
<td>—</td>
<td>µA</td>
<td>Pins 6, 7 Open, CF = 1 µF, VMIN = 0.35V</td>
</tr>
<tr>
<td>IN</td>
<td>VMIN, VIN Input Leakage</td>
<td>—</td>
<td>1.0</td>
<td>+1.0</td>
<td>µA</td>
<td>Note 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR</td>
<td>VOUT Rise Time</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>µsec</td>
<td>IOL = 5 mA, Note 1</td>
</tr>
<tr>
<td>FL</td>
<td>VOUT Fall Time</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>µsec</td>
<td>IOL = 1 mA, Note 1</td>
</tr>
<tr>
<td>SHDN</td>
<td>Pulse Width (On VMIN) to Clear Fault Mode</td>
<td>—</td>
<td>30</td>
<td>—</td>
<td>µsec</td>
<td>VSHDN, VHYST Specifications, Note 1</td>
</tr>
<tr>
<td>OL</td>
<td>Sink Current at VOUT Output</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>VOL = 10% of VDD</td>
</tr>
<tr>
<td>OH</td>
<td>Source Current at VOUT Output</td>
<td>5.0</td>
<td>—</td>
<td>—</td>
<td>mA</td>
<td>VOH = 80% of VDD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMAX</td>
<td>Input Voltage at VIN or VMIN for 100% PWM Duty Cycle</td>
<td>2.5</td>
<td>2.65</td>
<td>2.8</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>SPAN</td>
<td>VCMAX - VCMIN</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>SHDN</td>
<td>Voltage Applied to VMIN to Ensure Shutdown Mode</td>
<td>—</td>
<td>—</td>
<td>VDD x 0.13</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>REL</td>
<td>Voltage Applied to VMIN to Release Shutdown Mode</td>
<td>VDD x 0.19</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>VDD = 5V</td>
</tr>
</tbody>
</table>

Pulse Width Modulator

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPWM</td>
<td>PWM Frequency</td>
<td>26</td>
<td>30</td>
<td>34</td>
<td>Hz</td>
<td>CF = 1.0 µF</td>
</tr>
</tbody>
</table>

SENSE Input

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>THSENSE</td>
<td>SENSE Input Threshold Voltage with Respect to GND</td>
<td>50</td>
<td>70</td>
<td>90</td>
<td>mV</td>
<td>Note 1</td>
</tr>
</tbody>
</table>

FAULT Output

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Description</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>OL</td>
<td>Output Low Voltage</td>
<td>—</td>
<td>—</td>
<td>0.3</td>
<td>V</td>
<td>IOL = 2.5 mA</td>
</tr>
<tr>
<td>MP</td>
<td>Missing Pulse Detector Timer</td>
<td>—</td>
<td>32/F</td>
<td>—</td>
<td>Sec</td>
<td></td>
</tr>
<tr>
<td>STARTUP</td>
<td>Start-up Timer</td>
<td>—</td>
<td>32/F</td>
<td>—</td>
<td>Sec</td>
<td></td>
</tr>
<tr>
<td>DIAG</td>
<td>Diagnostic Timer</td>
<td>—</td>
<td>3/F</td>
<td>—</td>
<td>Sec</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Ensured by design, not tested.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V IN</td>
<td>Analog Input</td>
</tr>
<tr>
<td>2</td>
<td>C F</td>
<td>Analog Output</td>
</tr>
<tr>
<td>3</td>
<td>V MIN</td>
<td>Analog Input</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground Terminal</td>
</tr>
<tr>
<td>5</td>
<td>SENSE</td>
<td>Analog Input</td>
</tr>
<tr>
<td>6</td>
<td>FAULT</td>
<td>Digital (Open Collector) Output</td>
</tr>
<tr>
<td>7</td>
<td>V OUT</td>
<td>Digital Output</td>
</tr>
<tr>
<td>8</td>
<td>V DD</td>
<td>Power Supply Input</td>
</tr>
</tbody>
</table>

2.1 Analog Input (V IN)

The thermistor network (or other temperature sensor) connects to the V IN input. A voltage range of 1.25V to 2.65V (typical) on this pin drives an active duty cycle of 0% to 100% on the V OUT pin.

2.2 Analog Output (C F)

C F is the positive terminal for the PWM ramp generator timing capacitor. The recommended C F is 1 µF for 30 Hz PWM operation.

2.3 Analog Input (V MIN)

An external resistor divider connected to the V MIN input sets the minimum fan speed by fixing the minimum PWM duty cycle (1.25V to 2.65V = 0% to 100%, typical). The TC647 enters shutdown mode when V MIN ≤ V SHDN. During shutdown, the FAULT output is inactive and supply current falls to 25 µA (typical). The TC647 exits shutdown mode when V MIN ≥ V REL. See Section 5.0, “Typical Applications”, for more details.

2.4 Ground (GND)

GND denotes the ground terminal.

2.5 Analog Input (SENSE)

Pulses are detected at the SENSE pin as fan rotation chops the current through a sense resistor. The absence of pulses indicates a fault.

2.6 Digital Output (FAULT)

The FAULT line goes low to indicate a fault condition. When FAULT goes low due to a fan fault condition, the device is latched in shutdown mode until deliberately cleared or until power is cycled. FAULT may be connected to V MIN if a hard shutdown is desired.

2.7 Digital Output (V OUT)

V OUT is an active high complimentary output that drives the base of an external NPN transistor (via an appropriate base resistor) or the gate of an N-channel MOSFET. This output has asymmetrical drive (see Section 1.0, “Electrical Characteristics”).

2.8 Power Supply Input (V DD)

V DD may be independent of the fan’s power supply (see Section 1.0, “Electrical Characteristics”).
3.0 DETAILED DESCRIPTION

3.1 PWM

The PWM circuit consists of a ramp generator and threshold detector. The frequency of the PWM is determined by the value of the capacitor connected to the CF input. A frequency of 30 Hz is recommended (C_F = 1 µF). The PWM is also the time base for the Start-up Timer (see Section 3.3, “Start-Up Timer”). The PWM voltage control range is 1.25V to 2.65V (typical) for 0% to 100% output duty cycle.

3.2 VOUT Output

The VOUT pin is designed to drive a low cost transistor or MOSFET as the low side power switching element in the system. Various examples of driver circuits will be shown throughout this data sheet. This output has an asymmetric complimentary drive and is optimized for driving NPN transistors or N-channel MOSFETs. Since the system relies on PWM rather than linear control, the power dissipation in the power switch is kept to a minimum. Generally, very small devices (TO-92 or SOT packages) will suffice.

3.3 Start-Up Timer

To ensure reliable fan start-up, the Start-up Timer turns the VOUT output on for 32 cycles of the PWM whenever the fan is started from the off state. This occurs at power up and when coming out of shutdown mode. If the PWM frequency is 30 Hz (C_F = 1 µF), the resulting start-up time will be approximately one second. If a fault is detected, the Diagnostic Timer is triggered once, followed by the Start-up Timer. If the fault persists, the device is shut down (see Section 3.6, “FAULT Output”).

3.4 Shutdown Control (Optional)

If V_MIN (Pin 3) is pulled below V_SHDN, the TC647 will go into shutdown mode. This can be accomplished by driving V_MIN with an open-drain logic signal or using an external transistor, as shown in Figure 3-1. All functions are suspended until the voltage on V_MIN becomes higher than V_REL (0.85V @ V_DD = 5.0V). Pulling V_MIN below V_SHDN will always result in complete device shutdown and reset. The FAULT output is unconditionally inactive in shutdown mode.

A small amount of hysteresis, typically one percent of V_DD (50 mV at V_DD = 5.0V), is designed into the V_SHDN/ V_REL threshold. The levels specified for V_SHDN and V_REL in Section 1.0, “Electrical Characteristics”, include this hysteresis plus adequate margin to account for normal variations in the absolute value of the threshold and hysteresis.

3.5 SENSE Input

(FanSense™ Technology)

The SENSE input (Pin 5) is connected to a low value current sensing resistor in the ground return leg of the fan circuit. During normal fan operation, commutation occurs as each pole of the fan is energized. This causes brief interruptions in the fan current, seen as pulses across the sense resistor. If the device is not in shutdown mode, and pulses are not appearing at the SENSE input, a fault exists.

The short, rapid change in fan current (high dI/dt) causes a corresponding dV/dt across the sense resistor, R_SENSE. The waveform on R_SENSE is differentiated and converted to a logic-level, pulse-train by CSENSE and the internal signal processing circuitry. The presence and frequency of this pulse-train is a direct indication of fan operation. See Section 5.0, “Typical Applications”, for more details.

3.6 FAULT Output

Pulses appearing at SENSE due to the PWM turning on are blanked with the remaining pulses being filtered by a missing pulse detector. If consecutive pulses are not detected for 32 PWM cycles (≈ 1 Sec if C_F = 1 µF), the Diagnostic Timer is activated and VOUT is driven high continuously for three PWM cycles (≈ 100 msec if C_F = 1 µF). If a pulse is not detected within this window, the Start-up Timer is triggered (see Section 3.3, “Start-Up Timer”). This should clear a transient fault condition. If the missing pulse detector times out again, the PWM is stopped and FAULT goes low. When FAULT is activated due to this condition, the device is latched in shutdown mode and will remain off indefinitely.

Note: At this point, action must be taken to restart the fan by momentarily pulling V_MIN below V_SHDN, or cycling system power. In either case, the fan cannot remain disabled due to a fault condition as severe system damage could result. If the fan cannot be restarted, the system should be shut down.

The TC647 may be configured to continuously attempt fan restarts, if so desired.

CAUTION: Shutdown mode is unconditional. That is, the fan will not be activated regardless of the voltage at V IN. The fan should not be shut down until all heat producing activity in the system is at a negligible level.
Continuous restart mode is enabled by connecting the FAULT output to V_{MIN} through a 0.1 µF capacitor, as shown in Figure 3-1. When so connected, the TC647 automatically attempts to restart the fan whenever a fault condition occurs. When the FAULT output is driven low, the V_{MIN} input is momentarily pulled below V_{SHDN}, initiating a reset and clearing the fault condition. Normal fan start-up is then attempted as previously described. The FAULT output may be connected to external logic (or the interrupt input of a microcontroller) to shut the TC647 down if multiple fault pulses are detected at approximately one second intervals.

FIGURE 3-1: Fan Fault Output Circuit.

Note: The parallel combination of R_3 and R_4 must be >10 kΩ.
4.0 SYSTEM BEHAVIOR
The flowcharts describing the TC647’s behavioral algorithm are shown in Figure 4-1. They can be summarized as follows:

4.1 Power-Up
(1) Assuming the device is not being held in shutdown mode (V_MIN > V_REL)...
(2) Turn V_OUT output on for 32 cycles of the PWM clock. This ensures that the fan will start from a dead stop.
(3) During this Start-up Timer, if a fan pulse is detected, branch to Normal Operation; if none are received...
(4) Activate the 32-cycle Start-up Timer one more time and look for fan pulse; if a fan pulse is detected, proceed to Normal Operation; if none are received...
(5) Proceed to Fan Fault.
(6) End.

4.2 Normal Operation
Normal Operation is an endless loop which may only be exited by entering shutdown mode or Fan Fault. The loop can be thought of as executing at the frequency of the oscillator and PWM.
(1) Reset the missing pulse detector.
(2) Is TC647 in shutdown? If so...
 a. V_OUT duty cycle goes to zero.
 b. FAULT is disabled.
 c. Exit the loop and wait for V_MIN > V_REL to resume operation (indistinguishable from Power-up).
(3) Drive V_OUT to a duty cycle proportional to greater of V_IN and V_MIN on a cycle by cycle basis.
(4) If a fan pulse is detected, branch back to the start of the loop (1).
(5) If the missing pulse detector times out …
(6) Activate the 3-cycle Diagnostic Timer and look for pulses; if a fan pulse is detected, branch back to the start of the loop (1); if none are received...
(7) Activate the 32-cycle Start-up Timer and look for pulses; if a fan pulse is detected, branch back to the start of the loop (1); if none are received...
(8) Quit Normal Operation and go to Fan Fault.
(9) End.

4.3 Fan Fault
Fan Fault is an infinite loop wherein the TC647 is latched in shutdown mode. This mode can only be released by a reset (i.e., V_MIN being brought below V_SHDN, then above V_REL, or by power cycling).
(1) While in this state, FAULT is latched on (low) and the V_OUT output is disabled.
(2) A reset sequence applied to the V_MIN pin will exit the loop to Power-up.
(3) End.
FIGURE 4-1: TC647 Behavioral Algorithm Flowchart.
5.0 TYPICAL APPLICATIONS

Designing with the TC647 involves the following:

1. The temp sensor network must be configured to deliver 1.25V to 2.65V on \(V_{\text{IN}} \) for 0% to 100% of the temperature range to be regulated.

2. The minimum fan speed \((V_{\text{MIN}}) \) must be set.

3. The output drive transistor and associated circuitry must be selected.

4. The SENSE network, \(R_{\text{SENSE}} \) and \(C_{\text{SENSE}} \), must be designed for maximum efficiency while delivering adequate signal amplitude.

5. If shutdown capability is desired, the drive requirements of the external signal or circuit must be considered.

The TC642 demonstration and prototyping board (TC642DEMO) and the TC642 Evaluation Kit (TC642EV) provide working examples of TC647 circuits and prototyping aids. The TC642DEMO is a printed circuit board optimized for small size and ease of inclusion into system prototypes. The TC642EV is a larger board intended for benchtop development and analysis. At the very least, anyone contemplating a design using the TC647 should consult the documentation for both TC642EV and (DS21403) and TC642DEMO (DS21401). Figure 5-1 shows the base schematic for the TC642DEMO.

FIGURE 5-1: Typical Application Circuit.
5.1 Temperature Sensor Design

The temperature signal connected to VIN must output a voltage in the range of 1.25V to 2.65V (typical) for 0% to 100% of the temperature range of interest. The circuit in Figure 5-2 illustrates a convenient way to provide this signal.

![Figure 5-2: Temperature Sensing Circuit.](image)

Figure 5-2 illustrates a simple temperature dependent voltage divider circuit. RT1 is a conventional 100 kΩ @ 25ºC NTC thermistor, while R1 and R2 are standard resistors. The supply voltage, VDD, is divided between R2 and the parallel combination of RT1 and R1 (for convenience, the parallel combination of RT1 and R1 will be referred to as RTEMP). The resistance of the thermistor at various temperatures is obtained from the manufacturer’s specifications. Thermistors are often referred to in terms of their resistance at 25°C. Generally, the thermistor shown in Figure 5-2 is a non-linear device with a negative temperature coefficient (also called an NTC thermistor). In Figure 5-2, R1 is used to linearize the thermistor temperature response and R2 is used to produce a positive temperature coefficient at the VIN node. As an added benefit, this configuration produces an output voltage delta of 1.4V, which is well within the range of the VC(SPAN) specification of the TC647. A 100 kΩ NTC thermistor is selected for this application in order to keep IDIV at a minimum.

For the voltage range at VIN to be equal to 1.25V to 2.65V, the temperature range of this configuration is 0ºC to 50ºC. If a different temperature range is required from this circuit, R1 should be chosen to equal the resistance value of the thermistor at the center of this new temperature range. It is suggested that a maximum temperature range of 50ºC be used with this circuit due to thermistor linearity limitations. With this change, R2 is adjusted according to the following equations:

\[
\begin{align*}
V_{DD} \times R_2 & = V(T_1) \\
R_{TEMP} (T_1) + R_2 & = V(T_1) \\
V_{DD} \times R_2 & = V(T_2) \\
R_{TEMP} (T_2) + R_2 & = V(T_2)
\end{align*}
\]

Where T1 and T2 are the chosen temperatures and RTEMP is the parallel combination of the thermistor and R1.

These two equations facilitate solving for the two unknown variables, R1 and R2. More information about Thermistors may be obtained from AN679, "Temperature Sensing Technologies", and AN685, "Thermistors in Single Supply Temperature Sensing Circuits", which can be downloaded from Microchip’s website at www.microchip.com.

5.2 Minimum Fan Speed

A voltage divider on VMIN sets the minimum PWM duty cycle and, thus, the minimum fan speed. As with the VIN input, 1.25V to 2.65V corresponds to 0% to 100% duty cycle. Assuming that fan speed is linearly related to duty cycle, the minimum speed voltage is given by the equation:

\[
V_{MIN} = \frac{\text{Minimum Speed}}{\text{Full Speed}} \times (1.4V) + 1.25V
\]

For example, if 2500 RPM equates to 100% fan speed, and a minimum speed of 1000 RPM is desired, then the VMIN voltage is:

\[
V_{MIN} = \frac{1000}{2500} \times (1.4V) + 1.25V = 1.81V
\]

The VMIN voltage may be set using a simple resistor divider as shown in Figure 5-3. Per Section 1.0, “Electrical Characteristics”, the leakage current at the VMIN pin is no more than 1 mA. It would be very conservative to design for a divider current, IDIV, of 100 µA. If VDD = 5.0V then;

\[
\begin{align*}
I_{DIV} & = 1e^{-4}A = \frac{5.0V}{R_1 + R_2}, \text{ therefore} \\
R_1 + R_2 & = \frac{5.0V}{1e^{-4}A} = 50,000 \Omega = 50 k\Omega
\end{align*}
\]
FIGURE 5-3: V_{MIN} Circuit.

We can further specify R_1 and R_2 by the condition that the divider voltage is equal to our desired V_{MIN}. This yields the following equation:

EQUATION

$$V_{MIN} = \frac{V_{DD} \times R_2}{R_1 + R_2}$$

Solving for the relationship between R_1 and R_2 results in the following equation:

EQUATION

$$R_1 = R_2 \times \frac{V_{DD} - V_{MIN}}{V_{MIN}}$$

In this example, $R_1 = (1.762) R_2$. Substituting this relationship back into the previous equation yields the resistor values:

- $R_2 = 18.1 \, \text{k}\Omega$
- $R_1 = 31.9 \, \text{k}\Omega$

In this case, the standard values of 31.6 $\, \text{k}\Omega$ and 18.2 $\, \text{k}\Omega$ are very close to the calculated values and would be more than adequate.

5.3 Operations at Low Duty Cycle

One boundary condition which may impact the selection of the minimum fan speed is the irregular activation of the Diagnostic Timer due to the TC647 “missing” fan commutation pulses at low speeds. This is a natural consequence of low PWM duty cycles (typically 25% or less). Recall that the SENSE function detects commutation of the fan as disturbances in the current through R_{SENSE}. These can only occur when the fan is energized (i.e., V_{OUT} is “on”). At very low duty cycles, the V_{OUT} output is “off” most of the time. The fan may be rotating normally, but the commutation events are occurring during the PWM’s off-time.

The phase relationship between the fan’s commutation and the PWM edges tends to “walk around” as the system operates. At certain points, the TC647 may fail to capture a pulse within the 32-cycle missing pulse detector window. When this happens, the 3-cycle Diagnostic Timer will be activated, the V_{OUT} output will be active continuously for three cycles and, if the fan is operating normally, a pulse will be detected. If all is well, the system will return to normal operation. There is no harm in this behavior, but it may be audible to the user as the fan will accelerate briefly when the Diagnostic Timer fires. For this reason, it is recommended that V_{MIN} be set no lower than 1.8V.

5.4 FanSense™ Network (R_{SENSE} and C_{SENSE})

The FanSense network, comprised of R_{SENSE} and C_{SENSE}, allows the TC647 to detect commutation of the fan motor (FanSense™ technology). This network can be thought of as a differentiator and threshold detector. The function of R_{SENSE} is to convert the fan current into a voltage. C_{SENSE} serves to AC-couple this voltage signal and provide a ground referenced input to the SENSE pin. Designing a proper SENSE network is simply a matter of scaling R_{SENSE} to provide the necessary amount of gain (i.e., the current-to-voltage conversion ratio). A 0.1 μF ceramic capacitor is recommended for C_{SENSE}. Smaller values require larger sense resistors, and higher value capacitors are bulkier and more expensive. Using a 0.1 μF results in reasonable values for R_{SENSE}. Figure 5-4 illustrates a typical SENSE network. Figure 5-5 shows the waveforms observed using a typical SENSE network.
5.5 Output Drive Transistor Selection

The TC647 is designed to drive an external transistor or MOSFET for modulating power to the fan. This is shown as Q1 in Figures 3-1, 5-1, 5-4, 5-6, 5-7, 5-8 and 5-9. The VOUT pin has a minimum source current of 5 mA and a minimum sink current of 1 mA. Bipolar transistors or MOSFETs may be used as the power switching element, as shown in Figure 5-7. When high current gain is needed to drive larger fans, two transistors may be used in a Darlington configuration. These circuit topologies are shown in Figure 5-7: (a) shows a single NPN transistor used as the switching element; (b) illustrates the Darlington pair; and (c) shows an N-channel MOSFET.

One major advantage of the TC647’s PWM control scheme versus linear speed control is that the power dissipation in the pass element is kept very low. Generally, low cost devices in very small packages, such as TO-92 or SOT, can be used effectively. For fans with nominal operating currents of no more than 200 mA, a single transistor usually suffices. Above 200 mA, the Darlington or MOSFET solution is recommended. For the fan sensing function to work correctly, it is imperative that the pass transistor be fully saturated when “on”.

Table 5-2 gives examples of some commonly available transistors and MOSFETs. This table should be used as a guide only since there are many transistors and MOSFETs which will work just as well as those listed. The critical issues when choosing a device to use as Q1 are: (1) the breakdown voltage (V_{BRCE} or V_{DS(MOSFET)}) must be large enough to withstand the highest voltage applied to the fan (Note: This will occur when the fan is off); (2) 5 mA of base drive current must be enough to saturate the transistor when conducting the full fan current (transistor must have sufficient gain); (3) the V_{OUT} voltage must be high enough to sufficiently drive the gate of the MOSFET to minimize the R_{DS(on)} of the device; (4) rated fan current draw must be within the transistor's/MOSFET's current handling capability; and (5) power dissipation must be kept within the limits of the chosen device.

A base-current limiting resistor is required with bipolar transistors. This is shown in Figure 5-6.

TABLE 5-1: R\text{SENSE} VS. FAN CURRENT

<table>
<thead>
<tr>
<th>Nominal Fan Current (mA)</th>
<th>R\text{SENSE} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>9.1</td>
</tr>
<tr>
<td>100</td>
<td>4.7</td>
</tr>
<tr>
<td>150</td>
<td>3.0</td>
</tr>
<tr>
<td>200</td>
<td>2.4</td>
</tr>
<tr>
<td>250</td>
<td>2.0</td>
</tr>
<tr>
<td>300</td>
<td>1.8</td>
</tr>
<tr>
<td>350</td>
<td>1.5</td>
</tr>
<tr>
<td>400</td>
<td>1.3</td>
</tr>
<tr>
<td>450</td>
<td>1.2</td>
</tr>
<tr>
<td>500</td>
<td>1.0</td>
</tr>
</tbody>
</table>
The correct value for this resistor can be determined as follows:

\[
V_{OH} = V_{R\text{SENSE}} + V_{\text{BE(sat)}} + V_{R\text{BASE}}
\]

\[
V_{\text{R\text{SENSE}}} = I_{\text{FAN}} \times R_{\text{SENSE}}
\]

\[
V_{R\text{BASE}} = R_{\text{BASE}} \times I_{\text{BASE}}
\]

\[
I_{\text{BASE}} = I_{\text{FAN}} / h_{\text{FE}}
\]

\[
V_{\text{OH}} \text{ is specified as } 80\% \text{ of } V_{\text{DD}} \text{ in Section 1.0, “Electrical Characteristics”; } V_{\text{BE(sat)}} \text{ is given in the chosen transistor data sheet. It is now possible to solve for } R_{\text{BASE}}:
\]

EQUATION

\[
R_{\text{BASE}} = \frac{V_{\text{OH}} - V_{\text{BE(sat)}} - V_{\text{R\text{SENSE}}}}{I_{\text{BASE}}}
\]

Some applications require the fan to be powered from the negative 12V supply to keep motor noise out of the positive voltage power supplies. As shown in Figure 5-8, zener diode D1 offsets the -12V power supply voltage, holding transistor Q1 off when VOUT is low. When VOUT is high, the voltage at the anode of D1 increases by VOUT causing Q1 to turn on. Operation is otherwise the same as the case of fan operation from +12V.

TABLE 5-2: TRANSISTORS AND MOSFETS FOR Q1 (VDD = 5V)

<table>
<thead>
<tr>
<th>Device</th>
<th>Package</th>
<th>Max. V_{\text{BE(sat)}}/\text{VGS} (V)</th>
<th>Min. H_{\text{FE}}</th>
<th>V_{\text{CEO}}/\text{VDS} (V)</th>
<th>Fan Current (mA)</th>
<th>Suggested R_{\text{BASE}} (\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMBT2222A</td>
<td>SOT-23</td>
<td>1.2</td>
<td>50</td>
<td>40</td>
<td>150</td>
<td>800</td>
</tr>
<tr>
<td>MPS2222A</td>
<td>TO-92</td>
<td>1.2</td>
<td>50</td>
<td>40</td>
<td>150</td>
<td>800</td>
</tr>
<tr>
<td>MPS6602</td>
<td>TO-92</td>
<td>1.2</td>
<td>50</td>
<td>40</td>
<td>500</td>
<td>301</td>
</tr>
<tr>
<td>SI2302</td>
<td>SOT-23</td>
<td>2.5</td>
<td>NA</td>
<td>20</td>
<td>500</td>
<td>Note 1</td>
</tr>
<tr>
<td>MGSF1N02E</td>
<td>SOT-23</td>
<td>2.5</td>
<td>NA</td>
<td>20</td>
<td>500</td>
<td>Note 1</td>
</tr>
<tr>
<td>SI4410</td>
<td>SO-8</td>
<td>4.5</td>
<td>NA</td>
<td>30</td>
<td>1000</td>
<td>Note 1</td>
</tr>
<tr>
<td>SI2308</td>
<td>SOT-23</td>
<td>4.5</td>
<td>NA</td>
<td>60</td>
<td>500</td>
<td>Note 1</td>
</tr>
</tbody>
</table>

Note 1: A series gate resistor may be used in order to control the MOSFET turn-on and turn-off times.
5.6 Latch-Up Considerations

As with any CMOS IC, the potential exists for latch-up if signals are applied to the device which are outside the power supply range. This is of particular concern during power-up if the external circuitry (such as the sensor network, V_MIN divider or shutdown circuit) is powered by a supply different from that of the TC647. Care should be taken to ensure that the TC647’s V_DD supply powers up first. If possible, the networks attached to V_IN and V_MIN should connect to the V_DD supply at the same physical location as the IC itself. Even if the IC and any external networks are powered by the same supply, physical separation of the connecting points can result in enough parasitic capacitance and/or inductance in the power supply connections to delay one power supply “routing” versus another.

5.7 Power Supply Routing and Bypassing

Noise present on the V_IN and V_MIN inputs may cause erroneous operation of the FAULT output. As a result, these inputs should be bypassed with a 0.01 μF capacitor mounted as close to the package as possible. This is particularly true of V_IN, which is usually driven from a high impedance source (such as a thermistor). In addition, the V_DD input should be bypassed with a 1 μF capacitor. Ground should be kept as short as possible. To keep fan noise off the TC647 ground pin, individual ground returns for the TC647 and the low side of the fan current sense resistor should be used.

Design Example

Step 1. Calculate R_1 and R_2 based on using an NTC having a resistance of 10 kΩ at T_MIN (25°C) and 4.65 kΩ at T_MAX (45°C) (see Figure 5-9).

\[
R_1 = 20.5 \text{ kΩ} \\
R_2 = 3.83 \text{ kΩ}
\]

Step 2. Set minimum fan speed V_MIN = 1.8V. Limit the divider current to 100 µA from which

\[
R_5 = 33 \text{ kΩ} \quad \text{and} \quad R_6 = 18 \text{ kΩ}
\]

Step 3. Design the output circuit.

Maximum fan motor current = 250 mA. Q_1 beta is chosen at 50 from which

\[
R_7 = 800 \text{Ω}
\]
5.8 TC647 as a Microcontroller Peripheral

In a system containing a microcontroller or other host intelligence, the TC647 can be effectively managed as a CPU peripheral. Routine fan control functions can be performed by the TC647 without controller intervention. The microcontroller receives temperature data from one or more points throughout the system. It calculates a fan operating speed based on an algorithm specifically designed for the application at hand. The processor controls fan speed using complimentary port bits I/O1 through I/O3. Resistors R1 through R6 (5% tolerance) form a crude 3-bit DAC that translates the 3-bit code from the controller or processor's outputs into a 1.6V DC control signal. A monolithic DAC or digital pot may be used instead of the circuit shown in Figure 5-10.

With V_{MIN} set to 1.8V, the TC647 has a minimum operating speed of approximately 40% of full rated speed when the processor's output code is 000[B]. Output codes 001[B] to 111[B] operate the fan from roughly 40% to 100% of full speed. An open-drain output from the processor I/O can be used to reset the TC647 following detection of a fault condition. The FAULT output can be connected to the processor's interrupt input, or to an I/O pin, for polled operation (see Figure 5-10).
FIGURE 5-10: TC647 as a Microcontroller Peripheral.
6.0 PACKAGING INFORMATION

6.1 Package Marking Information

Legend:
XX...X Customer specific information*
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week ’01’)
NNN Alphanumeric traceability code

Note: In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line thus limiting the number of available characters
for customer specific information.

* Standard marking consists of Microchip part number, year code, week code, traceability code (facility
code, mask rev#, and assembly code). For marking beyond this, certain price adders apply. Please check
with your Microchip Sales Office.
TC647

8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.100</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>.140</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.300</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.360</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.125</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>.045</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
<td>.310</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>5</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
- JEDEC Equivalent: MS-001
- Drawing No. C04-018
8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td></td>
<td>h</td>
<td>0</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>0.050</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>0.053</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>0.052</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>0.004</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>0.228</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>0.146</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>0.189</td>
</tr>
<tr>
<td>Chamfer Distance</td>
<td>h</td>
<td>0.010</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.019</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>f</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.008</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>0.013</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-057
6.2 8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254mm) per side.

Notes:

- Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010" (0.254mm) per side.

Drawing No. C04-111
6.3 Taping Form

Component Taping Orientation for 8-Pin SOIC (Narrow) Devices

Component Taping Orientation for 8-Pin MSOP Devices

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin SOIC (N)</td>
<td>12 mm</td>
<td>8 mm</td>
<td>2500</td>
<td>13 in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-Pin MSOP</td>
<td>12 mm</td>
<td>8 mm</td>
<td>2500</td>
<td>13 in</td>
</tr>
</tbody>
</table>
ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape® or Microsoft® Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

• Latest Microchip Press Releases
• Technical Support Section with Frequently Asked Questions
• Design Tips
• Device Errata
• Job Postings
• Microchip Consultant Program Member Listing
• Links to other useful web sites related to Microchip Products
• Conferences for products, Development Systems, technical information and more
• Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and
1-480-792-7302 for the rest of the world.

092002
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To: Technical Publications Manager
RE: Reader Response
From: Name ________________________________
Company ________________________________
Address ________________________________
City / State / ZIP / Country ________________________________
Telephone: (______) _________ - _________ FAX: (______) _________ - _________

Application (optional):

Would you like a reply? ___Y ___N

Device: TC647 Literature Number: DS21447C

Questions:

1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this document easy to follow? If not, why?

4. What additions to the document do you think would enhance the structure and subject?

5. What deletions from the document could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
<th>Package</th>
<th>Temperature Range</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TC647: PWM Fan Speed Controller w/Fault Detection</td>
</tr>
<tr>
<td></td>
<td>V</td>
<td></td>
<td>PA = Plastic DIP (300 mil Body), 8-lead</td>
<td>0°C to +85°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>E</td>
<td></td>
<td>OA = Plastic SOIC, (150 mil Body), 8-lead</td>
<td>-40°C to +85°C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>UA = Plastic Micro Small Outline (MSOP), 8-lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>* PDIP package is only offered in the V temp range</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Examples:

a) TC647VOA: PWM Fan Speed Controller w/Fault Detection, SOIC package.
b) TC647VUA: PWM Fan Speed Controller w/Fault Detection, MSOP package.
c) TC647VPA: PWM Fan Speed Controller w/Fault Detection, PDIP package.
d) TC647EOATR: PWM Fan Speed Controller w/Fault Detection, SOIC package, Tape and Reel.

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELoO, MPLAB, PIC, PICmicro, PICSTART and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999 and Mountain View, California in March 2002. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELOO code hopping devices, Serial EEPROMs, microperipherals, non-volatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.