TC54

Voltage Detector

Features

• ±2.0% Detection Thresholds
• Small Packages: 3-Pin SOT-23A, SOT-89, and TO-92
• Low Current Drain: 1 μA, typical
• Wide Detection Range: 1.1V to 6.0V
• Wide Operating Voltage Range: 0.7V to 10V

Applications

• Battery Voltage Monitoring
• Microprocessor Reset
• System Brown-Out Protection
• Switching Circuit in Battery Backup
• Level Discriminator

General Description

The TC54 series are CMOS voltage detectors that are especially well suited for battery-powered applications because of their extremely low 1 μA operating current and small surface-mount packaging. Each part is laser-trimmed to the desired threshold voltage, which can be specified from 1.4V to 6.0V with a 2% tolerance.

The TC54 is available with either an open-drain or complementary output stage. During operation, the output (VOUT) remains in the logic-high state as long as VIN is greater than the specified threshold voltage (VDET –). When VIN falls below VDET –, the output is driven to a logic-low. VOUT remains low until VIN rises above VDET – by an amount VHYST, when it resets to a logic-high state.

Package Types

<table>
<thead>
<tr>
<th>Device</th>
<th>Output Type</th>
<th>State</th>
<th>Reset Delay</th>
<th>Std. Trip Points (1) (typical)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC54VN</td>
<td>Open-Drain</td>
<td>Active Low</td>
<td>No</td>
<td>1.4V, 2.1V, 2.7V, 2.9V</td>
</tr>
<tr>
<td>TC54VC</td>
<td>Push-Pull</td>
<td>Active Low</td>
<td>No</td>
<td>3.0V, 4.2V, 4.3V</td>
</tr>
</tbody>
</table>

Note 1: Custom Trip Points available. Minimum order requirement. Information available upon request.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

- Input Voltage: +12V
- Output Current: 50 mA
- Output Voltage: CMOS: (VSS – 0.3V) to (VIN + 0.3V)
 Open-Drain: (VSS – 0.3V) to 12V
- Power Dissipation (TA ≤ 70°C):
 3-Pin SOT-23A: 240 mW
 3-Pin SOT-89: 500 mW
 3-Pin TO-92: 300 mW
- Operating Temperature Range: -40°C to +85°C
- Storage Temperature Range: -65°C to +150°C

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>VIN</td>
<td>0.7</td>
<td>—</td>
<td>10.0</td>
<td>V</td>
<td>(VDET −) ≥ 1.6V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>—</td>
<td>6.0</td>
<td>µA</td>
<td>V (VDET −) < 1.6V</td>
</tr>
<tr>
<td>Quiescent Current</td>
<td>ISS</td>
<td>—</td>
<td>0.8</td>
<td>2.7</td>
<td></td>
<td>V IN = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>0.9</td>
<td>3.0</td>
<td></td>
<td>V IN = 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1.0</td>
<td>3.2</td>
<td></td>
<td>V IN = 4.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>1.1</td>
<td>3.6</td>
<td></td>
<td>V IN = 5.0V</td>
</tr>
<tr>
<td>Threshold Voltage</td>
<td>VDET −</td>
<td>1.37</td>
<td>1.4</td>
<td>1.43</td>
<td>V</td>
<td>TC54VX14</td>
</tr>
<tr>
<td>(Note 1)</td>
<td></td>
<td>2.06</td>
<td>2.1</td>
<td>2.14</td>
<td></td>
<td>TC54VX21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.65</td>
<td>2.7</td>
<td>2.75</td>
<td></td>
<td>TC54VX27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.84</td>
<td>2.9</td>
<td>2.96</td>
<td></td>
<td>TC54VX29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.94</td>
<td>3.0</td>
<td>3.06</td>
<td></td>
<td>TC54VX30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.12</td>
<td>4.2</td>
<td>4.28</td>
<td></td>
<td>TC54VX42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.21</td>
<td>4.3</td>
<td>4.39</td>
<td></td>
<td>TC54VX43</td>
</tr>
<tr>
<td>Hysteresis Voltage</td>
<td>VHYST</td>
<td>28</td>
<td>70</td>
<td>112</td>
<td>mV</td>
<td>VDET = 1.4V (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42</td>
<td>105</td>
<td>168</td>
<td></td>
<td>VDET = 2.1V (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54</td>
<td>135</td>
<td>216</td>
<td></td>
<td>VDET = 2.7V (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>58</td>
<td>145</td>
<td>232</td>
<td></td>
<td>VDET = 2.9V (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>150</td>
<td>240</td>
<td></td>
<td>VDET = 3.0V (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84</td>
<td>210</td>
<td>336</td>
<td></td>
<td>VDET = 4.2V (typical)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>86</td>
<td>215</td>
<td>344</td>
<td></td>
<td>VDET = 4.3V (typical)</td>
</tr>
<tr>
<td>Output Current</td>
<td>IOUT</td>
<td>3.0</td>
<td>7.7</td>
<td>—</td>
<td>mA</td>
<td>VOL = 0.5V, VIN = 2.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>10.1</td>
<td>—</td>
<td></td>
<td>VOL = 0.5V, VIN = 3.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.0</td>
<td>11.5</td>
<td>—</td>
<td></td>
<td>VOL = 0.5V, VIN = 4.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0</td>
<td>13.0</td>
<td>—</td>
<td></td>
<td>VOL = 0.5V, VIN = 5.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>-10.0</td>
<td>-2.0</td>
<td></td>
<td>TC54VC Only: VOH = VIN – 2.1V, VIN = 8.0V</td>
</tr>
<tr>
<td>Tempco of (VDET −)</td>
<td>TC(VDET −)</td>
<td>—</td>
<td>±100</td>
<td>—</td>
<td>ppm/°C</td>
<td>-40°C ≤ TA ≤ 85°C</td>
</tr>
<tr>
<td>Delay Time</td>
<td>IDLY</td>
<td>—</td>
<td>—</td>
<td>0.2</td>
<td>ms</td>
<td>VDET → VOUT inversion</td>
</tr>
</tbody>
</table>

Note 1: For other voltage options, please contact your regional Microchip sales office.
TEMPERATURE SPECIFICATIONS

Electrical Characteristics: Unless otherwise indicated, all limits are specified for: \(V_{DD} = +1.8\text{V to } +5.5\text{V}, V_{SS}=\text{GND}. \)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>(T_A)</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>(T_A)</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 3L-SOT-23A</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>308</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 3L-SOT-89</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>131.7</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 3L-TO-92</td>
<td>(\theta_{JA})</td>
<td>—</td>
<td>146</td>
<td>—</td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 1-1: Timing Diagram.
2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

<table>
<thead>
<tr>
<th>TC54 Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOUT</td>
<td>Digital Output</td>
</tr>
<tr>
<td>VIN</td>
<td>Analog Input</td>
</tr>
<tr>
<td>VSS</td>
<td>Ground Terminal</td>
</tr>
</tbody>
</table>

2.1 Digital Output (VOUT)

VOUT goes low when VIN drops below VDET– and returns high when VIN rises above VDET– + VHYST– (See Figure 3-1).

2.2 Analog Input (VIN)

VIN can be used for power supply monitoring or a voltage level that requires monitoring.

2.3 Ground Terminal (VSS)

VSS provides the negative reference for the analog input voltage. Typically, the circuit ground is used.
3.0 DETAILED DESCRIPTION

In normal steady-state operation when $V_{IN} \geq V_{DET^{-}}$, the output will be at a logic-high (see Figure 3-1). In the case of the TC54VN, this is an open-drain condition. If the input falls below $V_{DET^{-}}$, the output will pull down (Logic 0) to V_{SS}. Generally, V_{OUT} can pull down to within 0.5V of V_{SS} at rated output current and input voltage. (See Section 1.0 “Electrical Characteristics”).

The output (V_{OUT}) will stay valid until the input voltage falls below the minimum operating voltage (V_{INMIN}) of 0.7V. Below this minimum operating voltage, the output is undefined. During power-up (or anytime V_{IN} has fallen below V_{INMIN}), V_{OUT} will remain undefined until V_{IN} rises above V_{INMIN}. When this occurs, the output will become valid. V_{OUT} will be in its Active-low state, while $V_{INMIN} < V_{IN} < V_{DET^{+}}$ (therefore, $V_{DET^{+}} = V_{DET^{-}} + V_{HYST}$). If the input rises above $V_{DET^{+}}$, the output will assume its Inactive state (high for TC54VC, open-drain for TC54VN).

![FIGURE 3-1: Timing Diagram.](image-url)
4.0 APPLICATIONS INFORMATION

4.1 Modifying the Trip Point, V_{DET-}

Although the TC54 has a pre-programmed V_{DET-}, it is sometimes necessary to make adjustments during prototyping. This can be accomplished by connecting an external resistor divider to a TC54, which has a V_{DET-} lower than that of V_{SOURCE} (Figure 4-1).

To maintain detector accuracy, the bleeder current through the divider should be significantly higher than the 1 µA operating current required by the TC54. A reasonable value for this bleeder current is 100 µA (100 times the 1 µA required by the TC54). For example, if $V_{DET-} = 2V$ and the desired trip point is 2.5V, the value of $R_1 + R_2$ is 25 kΩ (2.5V/100 µA). The value of $R_1 + R_2$ can be rounded to the nearest standard value and plugged into the equation of Figure 4-1 to calculate values for R_1 and R_2. 1% tolerance resistors are recommended.

$$V_{SOURCE} \times \frac{R_1}{R_1 + R_2} = V_{DET-}$$

Where:
- V_{SOURCE} = Voltage to be monitored
- V_{DET-} = Threshold Voltage setting of TC54

Note: In this example, V_{SOURCE} must be greater than (V_{DET-})

FIGURE 4-1: Modify Trip-Point of the TC54 using External Resistor Divider.

4.2 Other Applications

Low operating power and small physical size make the TC54 series ideal for many voltage detector applications, such as those shown in Figures 4-2, 4-3 and 4-4. Figure 4-2 shows a low-voltage gate drive protection circuit that prevents the overheating of the logic-level MOSFET due to insufficient gate voltage. When the input signal is below the threshold of the TC54VN, its output grounds the gate of the MOSFET. Figures 4-3 and 4-4 show the TC54 in conventional voltage monitoring applications.

FIGURE 4-2: MOSFET Low Drive Protection.

FIGURE 4-3: Battery Voltage Monitor.

FIGURE 4-4: Power Good Monitor.
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

Legend:

XX...X Customer-specific information
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
63 Pb-free JEDEC designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
Symbol Output Voltage

Symbol Output Voltage

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Output</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>CMOS</td>
<td>1.</td>
</tr>
<tr>
<td>C</td>
<td>CMOS</td>
<td>2.</td>
</tr>
<tr>
<td>D</td>
<td>CMOS</td>
<td>3.</td>
</tr>
<tr>
<td>E</td>
<td>CMOS</td>
<td>4.</td>
</tr>
<tr>
<td>F</td>
<td>CMOS</td>
<td>5.</td>
</tr>
<tr>
<td>H</td>
<td>CMOS</td>
<td>6.</td>
</tr>
<tr>
<td>I</td>
<td>CMOS</td>
<td>7.</td>
</tr>
</tbody>
</table>

Symbol Output Voltage

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Output</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Nch</td>
<td>1.</td>
</tr>
<tr>
<td>M</td>
<td>Nch</td>
<td>2.</td>
</tr>
<tr>
<td>N</td>
<td>Nch</td>
<td>3.</td>
</tr>
<tr>
<td>P</td>
<td>Nch</td>
<td>4.</td>
</tr>
<tr>
<td>R</td>
<td>Nch</td>
<td>5.</td>
</tr>
<tr>
<td>S</td>
<td>Nch</td>
<td>6.</td>
</tr>
<tr>
<td>T</td>
<td>Nch</td>
<td>7.</td>
</tr>
</tbody>
</table>

1 represents output configuration (CMOS or Nch) and first integer of voltage
Ex: CMOS 3.x = ① ② ③ ④

2 represents first decimal of output voltage (0-9)
Ex: CMOS 3.x = ① ② ③ ④

3 represents assembly lot code

Symbol Delay Time

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>1</td>
<td>.1</td>
</tr>
<tr>
<td>2</td>
<td>.2</td>
</tr>
<tr>
<td>3</td>
<td>.3</td>
</tr>
<tr>
<td>4</td>
<td>.4</td>
</tr>
<tr>
<td>5</td>
<td>.5</td>
</tr>
</tbody>
</table>

4 represents output configuration (CMOS or Nch)
Ex: CMOS 3.x = ① ② ③ ④

5 represents first integer of detect voltage

6 represents first decimal of detect voltage

7 represents the output delay time

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Delay Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No Delay</td>
</tr>
</tbody>
</table>

8 represents the device accuracy

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>±1.0% (custom)</td>
</tr>
<tr>
<td>2</td>
<td>±2.0% (standard)</td>
</tr>
</tbody>
</table>
3-Lead Plastic Small Outline Transistor (CB) [SOT-23A]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Dimension Limits</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Lead Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.
3. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-130B
3-Lead Plastic Small Outline Transistor (CB) [SOT-23A]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Recommended Land Pattern Diagram]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X3)</td>
<td>X</td>
</tr>
<tr>
<td>Contact Pad Length (X3)</td>
<td>Y</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2130A
3-Lead Plastic Small Outline Transistor Header (MB) [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td></td>
</tr>
<tr>
<td>Number of Leads</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Overall Width</td>
<td>H</td>
</tr>
<tr>
<td>Molded Package Width at Base</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width at Top</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Tab Length</td>
<td>D1</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead 2 Width</td>
<td>b</td>
</tr>
<tr>
<td>Leads 1 & 3 Width</td>
<td>b1</td>
</tr>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Leads</td>
<td>3</td>
</tr>
<tr>
<td>Pitch</td>
<td>1.50 BSC</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>3.00 BSC</td>
</tr>
<tr>
<td>Overall Height</td>
<td>1.40</td>
</tr>
<tr>
<td>Overall Width</td>
<td>3.94</td>
</tr>
<tr>
<td>Molded Package Width at Base</td>
<td>2.29</td>
</tr>
<tr>
<td>Molded Package Width at Top</td>
<td>2.13</td>
</tr>
<tr>
<td>Overall Length</td>
<td>4.39</td>
</tr>
<tr>
<td>Tab Length</td>
<td>1.40</td>
</tr>
<tr>
<td>Foot Length</td>
<td>0.79</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>0.35</td>
</tr>
<tr>
<td>Lead 2 Width</td>
<td>0.41</td>
</tr>
<tr>
<td>Leads 1 & 3 Width</td>
<td>0.36</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-029B
3-Lead Plastic Small Outline Transistor Header (MB) [SOT-89]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com-packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pads 1 & 3 Width</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad 2 Width</td>
<td>X2</td>
</tr>
<tr>
<td>Heat Slug Pad Width</td>
<td>X3</td>
</tr>
<tr>
<td>Contact Pads 1 & 3 Length</td>
<td>Y1</td>
</tr>
<tr>
<td>Contact 2 Pad Length</td>
<td>Y2</td>
</tr>
<tr>
<td>-</td>
<td>K</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2028A
3-Lead Plastic Transistor Outline (ZB) [TO-92]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Bottom to Package Flat</td>
<td>D</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Overall Length</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Radius</td>
<td>R</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions A and E do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005” per side.
2. Dimensioning and tolerancing per ASME Y14.5M.

 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-101B
APPENDIX A: REVISION HISTORY

Revision J (June 2011)
The following is the list of modifications:
1. Updated temperature values in Temperature Specifications table.
2. Corrected equation in Figure 4-1.
3. Added new examples layout in Section 5.1, Package Marking Information.

Revision H (December 2007)
The following is the list of modifications:
1. Updated Features section.
2. Removed 5-Pin SOT-23 related information.
3. Updated Output Current (I_{OUT}) Electrical Specification.
4. Removed 7.7V (typical) Voltage Trip Point Option. Max Trip Point Voltage is now 6.0V.
5. Updated Pin Function Table.
6. Updated Packaging Specification Information.
7. Added Revision History section.

Revision G (August 2004)
Undocumented changes.

Revision F (July 2004)
Undocumented changes.

Revision E (April 2003)
Undocumented changes.

Revision D (October 2002)
Undocumented changes.

Revision C (July 2002)
Undocumented changes.

Revision B (May 2002)
Undocumented changes.

Revision A (March 2001)
Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>Device</th>
<th>Output Config.</th>
<th>Detected Voltage</th>
<th>Extra Feature Code</th>
<th>Tolerance</th>
<th>Temp.</th>
<th>Pkg</th>
<th>Taping Direction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC54V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device: TC54V: Voltage Detector

Output Configuration: N = Nch Open-Drain, C = CMOS Output

Detected Voltage: 14 = 1.4V, 21 = 2.1V, 27 = 2.7V, 29 = 2.9V, 30 = 3.0V, 42 = 4.2V, 43 = 4.3V

Extra Feature Code: 0 = Fixed

Tolerance: 2 = 2%

Temperature: E = -40°C to +85°C

Package: CB = Plastic Small Outline Transistor, SOT-23A, 3-lead, MB = Plastic Small Outline Transistor, SOT-89, 3-lead, ZB = Plastic Transistor Outline, TO-92, 3-lead

Taping Direction: 713 = Standard Taping

Examples:

- a) TC54VC1402ECB713: Tape and Reel, 1.4V Voltage Detector, 2% Tol., SOT-23A-3.
- b) TC54VC1402EMB713: Tape and Reel, 1.4V Voltage Detector, 2% Tol., SOT-89-3.
- c) TC54VC1402EZB: 1.4V Voltage Detector, 2% Tol., TO-92.
- d) TC54VC2102ECB713: Tape and Reel, 2.1V Voltage Detector, 2% Tol., SOT-23A-3.
- e) TC54VC2102EMB713: Tape and Reel, 2.1V Voltage Detector, 2% Tol., SOT-89-3.
- f) TC54VC2102EZB: 2.1V Voltage Detector, 2% Tol., TO-92.
- g) TC54VC2702ECB713: Tape and Reel, 2.7V Voltage Detector, 2% Tol., SOT-23A-3.
- h) TC54VC3002ECB713: Tape and Reel, 3.0V Voltage Detector, 2% Tol., SOT-23A-3.
- i) TC54VN4202ECB713: Tape and Reel, 4.2V Voltage Detector, 2% Tol., SOT-23A-3.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.