Features:

- Precision Voltage Monitor
 - 2.63V, 2.93V, 3.08V, 4.38V and 4.63V Trip Points (Typical)
- Manual Reset Input
- Reset Time-Out Delay:
 - Standard: 280 ms (Typical)
 - Optional: 2.19 ms, and 35 ms (Typical)
- Power Consumption ≤ 15 µA max
- No glitches on outputs during power-up
- Active Low Output Options:
 - Push-Pull Output and Open-Drain Output
- Active High Output Option:
 - Push-Pull Output
- Replacement for (Specification compatible with):
 - TC1270, TC1271
 - TCM811, TCM812
- Fully Static Design
- Low-Voltage Operation (1.0V)
- ESD Protection:
 - ≥ 4 kV Human Body Model (HBM)
 - ≥ 400V Machine Model (MM)
- Extended (E) Temperature Range:
 - -40°C to +125°C
- Package Options:
 - 4-Lead SOT-143
 - 5-Lead SOT-23
 - Pb-free Device

Device Features

<table>
<thead>
<tr>
<th>Device</th>
<th>Output Type</th>
<th>Active Level</th>
<th>Reset Delay (ms)</th>
<th>Reset Trip Point (V)</th>
<th>Voltage Range (V)</th>
<th>Temperature Range</th>
<th>Packages</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1270A</td>
<td>Push-Pull</td>
<td>Low</td>
<td>2.19, 35, 280(1)</td>
<td>4.63, 4.38, 3.08, 2.93, 2.63(4)</td>
<td>1.0V to 5.5V</td>
<td>-40°C to +125°C</td>
<td>SOT-143(2), SOT-23-5</td>
<td>Replaces TC1270 and TCM811</td>
</tr>
<tr>
<td>TC1270AN</td>
<td>Open-Drain</td>
<td>Low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOT-143(2), SOT-23-5</td>
<td>New Option</td>
</tr>
<tr>
<td>TC1271A</td>
<td>Push-Pull</td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SOT-143(2), SOT-23-5</td>
<td>Replaces TC1271 and TCM812</td>
</tr>
</tbody>
</table>

Note:
1: The 280 ms Reset delay time-out is compatible with the TC1270, TC1271, TCM811 and TCM812 devices.
2: The SOT-143 package is compatible with the TC1270, TC1271, TCM811 and TCM812 devices.
3: Custom Reset trip points and Reset delays available, contact your local Microchip sales office.
4: The TC1270/1 and TCM811/12 1.75V trip point option is not supported.
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage (VDD to VSS) ...+7.0V
Input Current, VDD.. 10 mA
Output Current, RESET, Reset 10 mA
Voltage on all inputs and outputs w.r.t. VSS -0.6V to (VDD + 1.0V)
Storage Temperature Range-65°C to +150°C
Operating Temperature Range -40°C to +125°C
Maximum Junction Temperature, Tj 150°C
ESD protection on all pins
Human Body Model .. ≥ 4 kV
Machine Model.. ≥ 400V

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to a device. The absolute maximum values are merely stress ratings – functional operation of a device at those, or any other conditions above those indicated in the operational listing of these specifications, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ(1)</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage Range</td>
<td>VDD</td>
<td>1.0</td>
<td>—</td>
<td>5.5</td>
<td>V</td>
<td>VDD > VTRIP for L/M/R/S/T, VDD = 5.5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>7</td>
<td>15</td>
<td>µA</td>
<td>VDD > VTRIP for R/S/T, VDD = 3.6V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>4.75</td>
<td>10</td>
<td>µA</td>
<td>VDD < VTRIP for L/M/R/S/T</td>
</tr>
<tr>
<td>Supply Current</td>
<td>IDD</td>
<td>—</td>
<td>4.54</td>
<td>4.63</td>
<td>4.72</td>
<td>TC127xAL: T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.50</td>
<td>—</td>
<td>4.75</td>
<td>T_A = -40°C to +125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.30</td>
<td>4.38</td>
<td>4.46</td>
<td>TC127xAM: T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.25</td>
<td>—</td>
<td>4.50</td>
<td>T_A = -40°C to +125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.03</td>
<td>3.08</td>
<td>3.14</td>
<td>TC127xAT: T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.00</td>
<td>—</td>
<td>3.15</td>
<td>T_A = -40°C to +125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.88</td>
<td>2.93</td>
<td>2.98</td>
<td>TC127xAS: T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.85</td>
<td>—</td>
<td>3.00</td>
<td>T_A = -40°C to +125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.72</td>
<td>2.77</td>
<td>2.82</td>
<td>TC127xA(5) T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.70</td>
<td>—</td>
<td>2.85</td>
<td>T_A = -40°C to +125°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.58</td>
<td>2.63</td>
<td>2.68</td>
<td>TC127xAR: T_A = +25°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.55</td>
<td>—</td>
<td>2.70</td>
<td>T_A = -40°C to +125°C</td>
</tr>
</tbody>
</table>

Note 1: Data in the Typical (“Typ”) column is at 5V, +25°C, unless otherwise stated.

2: RST output for TC1270A and TC1270AN, RST output for TC1271A.

3: TC127XA refers to the TC1270A, TC1270AN or TC1271A device.

4: Hysteresis is within the VTRIP(MIN) to VTRIP(MAX) window.

5: Custom-ordered voltage trip point. Minimum order volume requirement.

6: This specification allows this device to be used in PIC® microcontroller applications that require the In-Circuit Serial Programming™ (ICSP™) feature (see device-specific programming specifications for voltage requirements). The total time that the RST pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the RST pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to +70°C (+25°C preferred). For additional information, refer to Figure 2-41.
ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: Unless otherwise noted, $V_{DD} = 5V$ for L/M versions, $V_{DD} = 3.3V$ for T/S versions, $V_{DD} = 3V$ for R version, $T_A = -40°C$ to $+125°C$. Typical values are at $T_A = +25°C$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ (1)</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset Threshold Tempco</td>
<td>V_{HYS}</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>%</td>
<td>Percentage of V_{TRIP} Voltage</td>
</tr>
<tr>
<td>Reset Trip Point Hysteresis (1)</td>
<td>V_{IH}</td>
<td>2.3</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$V_{DD} > V_{TRIP(MAX)}$, L/M only</td>
</tr>
<tr>
<td>MR Input High Threshold</td>
<td>—</td>
<td>0.7 V_{DD}</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$V_{DD} > V_{TRIP(MAX)}$, R/S/T only</td>
</tr>
<tr>
<td>MR Input Low Threshold</td>
<td>V_{IL}</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
<td>V</td>
<td>$V_{DD} > V_{TRIP(MAX)}$, L/M only</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>0.25 V_{DD}</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$V_{DD} > V_{TRIP(MAX)}$, R/S/T only</td>
</tr>
<tr>
<td>MR Pull-up Resistance</td>
<td>—</td>
<td>10</td>
<td>18.5</td>
<td>40</td>
<td>kΩ</td>
<td></td>
</tr>
<tr>
<td>Open-Drain High Voltage on Output</td>
<td>V_{ODH}</td>
<td>—</td>
<td>13.5</td>
<td>—</td>
<td>V</td>
<td>Open-Drain Output pin only. $V_{DD} = 3.0V$, Time voltage > 5.5 applied ≤ 100s. Current into pin limited to 2 mA +25°C operation recommended (6)</td>
</tr>
<tr>
<td>Reset Output Voltage Low (2)</td>
<td>V_{OL}</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>V</td>
<td>R/S/T only, $I_{SINK} = 1.2$ mA, $V_{DD} = V_{TRIP(MIN)}$</td>
</tr>
<tr>
<td>TC1270A/TC1270AN</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>R/S/T only, $I_{SINK} = 1.2$ mA, $V_{DD} = V_{TRIP(MAX)}$</td>
</tr>
<tr>
<td>TC1271A</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>R/S/T only, $I_{SINK} = 3.2$ mA, $V_{DD} = V_{TRIP(MIN)}$</td>
</tr>
<tr>
<td>TC1270A/TC1270AN</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>R/S/T only, $I_{SINK} = 3.2$ mA, $V_{DD} = V_{TRIP(MAX)}$</td>
</tr>
<tr>
<td>TC1271A</td>
<td>—</td>
<td>0.3</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>R/S/T only, $I_{SINK} = 50$ µA, $V_{DD} > 1.0V$</td>
</tr>
<tr>
<td>Reset Output Voltage High (2)</td>
<td>V_{OH}</td>
<td>0.8 V_{DD}</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>R/S/T only, $I_{SOURCE} = 500$ µA, $V_{DD} = V_{TRIP(MAX)}$</td>
</tr>
<tr>
<td>TC1270A</td>
<td>$V_{DD} - 1.5$</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>L/M only, $I_{SOURCE} = 800$ µA, $V_{DD} = V_{TRIP(MAX)}$</td>
</tr>
<tr>
<td>TC1271A</td>
<td>0.8 V_{DD}</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>$I_{SOURCE} = 500$ µA, $V_{DD} ≤ V_{TRIP(MIN)}$</td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>I_{IL}</td>
<td>—</td>
<td>±1</td>
<td>—</td>
<td>µA</td>
<td>$V_{PIN} = V_{DD}$</td>
</tr>
<tr>
<td>Open-Drain RST Output Leakage</td>
<td>I_{DLOD}</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>µA</td>
<td>Open-Drain configuration only.</td>
</tr>
<tr>
<td>Capacitive Loading Specification on Output Pins</td>
<td>C_{IO}</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>pF</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. Data in the Typical ("Typ") column is at $5V$, $+25°C$, unless otherwise stated.
2. RST output for TC1270A and TC1270AN, RST output for TC1271A.
3. TC127XA refers to the TC1270A, TC1270AN or TC1271A device.
4. Hysteresis is within the $V_{TRIP(MIN)}$ to $V_{TRIP(MAX)}$ window.
5. Custom-ordered voltage trip point. Minimum order volume requirement.
6. This specification allows this device to be used in PIC® microcontroller applications that require the In-Circuit Serial Programming™ (ICSP™) feature (see device-specific programming specifications for voltage requirements). The total time that the RST pin can be above the maximum device operational voltage (5.5V) is 100s. Current into the RST pin should be limited to 2 mA. It is recommended that the device operational temperature be maintained between 0°C to +70°C (+25°C preferred). For additional information, refer to Figure 2-41.
1.1 AC CHARACTERISTICS

1.1.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

<table>
<thead>
<tr>
<th>1. TppS2ppS</th>
<th>2. TppS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
</tr>
</tbody>
</table>

Lowercase letters (pp) and their meanings:

<table>
<thead>
<tr>
<th>Lowercase Letters</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>io</td>
<td>Input or Output pin</td>
</tr>
<tr>
<td>rx</td>
<td>Receive</td>
</tr>
<tr>
<td>b</td>
<td>RX/TX BITCLK</td>
</tr>
<tr>
<td>dr</td>
<td>Device Reset Timer</td>
</tr>
</tbody>
</table>

Uppercase letters and their meanings:

<table>
<thead>
<tr>
<th>Uppercase Letters</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Fall</td>
</tr>
<tr>
<td>H</td>
<td>High</td>
</tr>
<tr>
<td>I</td>
<td>Invalid (High-impedance)</td>
</tr>
<tr>
<td>L</td>
<td>Low</td>
</tr>
<tr>
<td>P</td>
<td>Period</td>
</tr>
<tr>
<td>R</td>
<td>Rise</td>
</tr>
<tr>
<td>V</td>
<td>Valid</td>
</tr>
<tr>
<td>Z</td>
<td>High-impedance</td>
</tr>
</tbody>
</table>

FIGURE 1-1: Test Load Conditions.

![Test Load Conditions Diagram]
TIMING DIAGRAMS AND SPECIFICATIONS

MR Pin and Reset Pin Waveform

Device Voltage and Reset Pin (Active Low) Waveform

Reset and Device Reset Timer Requirements

Electrical Characteristics: Unless otherwise noted, \(V_{DD} = 5\text{V} \) for L/M versions, \(V_{DD} = 3.3\text{V} \) for T/S versions, \(V_{DD} = 3\text{V} \) for R version, \(T_A = -40°C \) to \(+125°C\). Typical values are at \(T_A = +25°C \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ (1)</th>
<th>Max</th>
<th>Units</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{DD}) to Reset Delay</td>
<td>(t_{RD})</td>
<td>—</td>
<td>50</td>
<td>—</td>
<td>(\mu\text{s})</td>
<td>(V_{DD} = V_{TRIP(MAX)}) to (V_{TRIP(MIN)} - 125\text{mV})</td>
</tr>
<tr>
<td>Reset Active Time Out Period</td>
<td>(t_{RST})</td>
<td>1.09</td>
<td>2.19</td>
<td>4.38</td>
<td>ms</td>
<td>(V_{DD} = V_{TRIP(MAX)})</td>
</tr>
<tr>
<td>TC127XAxBVyy (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC127XAxAVyy (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC127XAxVyy (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR Minimum Pulse Width</td>
<td>(t_{MR})</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>(\mu\text{s})</td>
<td></td>
</tr>
<tr>
<td>MR Noise Immunity</td>
<td>(t_{MRNI})</td>
<td>—</td>
<td>0.1</td>
<td>—</td>
<td>(\mu\text{s})</td>
<td></td>
</tr>
<tr>
<td>MR to Reset Propagation Delay</td>
<td>(t_{MD})</td>
<td>—</td>
<td>0.2</td>
<td>—</td>
<td>(\mu\text{s})</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Unless otherwise stated, data in the Typical ("Typ") column is at 5V, +25°C.

2: \(\text{RST} \) output for TC1270A, \(\text{RST} \) output for TC1271A.

3: TC127XA refers to the TC1270A, TC1270AN or TC1271A device.

"x" indicates the selected voltage trip point, while "yy" indicates the package code.

Note 1: The TC1270AN requires an external pull-up resistor.

\(V_{DD} < 1\text{V} \) is outside the device operating specification. The RST (or RST) output state is unknown while \(V_{DD} < 1\text{V} \).
TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $V_{DD} = +1.0V$ to $+5.5V$, $V_{SS} = GND$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td></td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td></td>
<td>+125</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td></td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 5L-SOT-23</td>
<td>θ_{JA}</td>
<td></td>
<td>256</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 4L-SOT-143</td>
<td>θ_{JA}</td>
<td></td>
<td>426</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables that follow this note are the result of a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1$V to 5.5V, $T_A = -40^\circ$C to +125°C.

FIGURE 2-1: I_{DD} vs. Temperature (Reset Power-up Timer Inactive) (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-2: I_{DD} vs. Temperature (Reset Power-up Timer Inactive) (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-3: I_{DD} vs. Temperature (Reset Power-up Timer Inactive) (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).

FIGURE 2-4: I_{DD} vs. Temperature (Reset Power-up Timer Active) (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-5: I_{DD} vs. Temperature (Reset Power-up Timer Active) (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-6: I_{DD} vs. Temperature (Reset Power-up Timer Active) (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).
Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to $5.5V$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$.

FIGURE 2-7: I_{DD} vs. V_{DD} (Reset Power-up Timer Inactive) (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-8: I_{DD} vs. V_{DD} (Reset Power-up Timer Inactive) (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-9: I_{DD} vs. V_{DD} (Reset Power-up Timer Inactive) (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).

FIGURE 2-10: I_{DD} vs. V_{DD} (Reset Power-up Timer Active) (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-11: I_{DD} vs. V_{DD} (Reset Power-up Timer Active) (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-12: I_{DD} vs. V_{DD} (Reset Power-up Timer Active) (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).
Note: Unless otherwise indicated, all limits are specified for V_{DD} = 1V to 5.5V, T_A = –40°C to +125°C.

FIGURE 2-13: V_{TRIP} and V_{HYS} vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-14: V_{TRIP} and V_{HYS} vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-15: V_{TRIP} and V_{HYS} vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).

FIGURE 2-16: V_{OL} vs. I_{OL} (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-17: V_{OL} vs. I_{OL} (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-18: V_{OL} vs. I_{OL} (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).
Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $T_A = -40^\circ C$ to $+125^\circ C$.

FIGURE 2-19: V_{OL} vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.) @ $V_{DD} = 4.5V$.

FIGURE 2-20: V_{OL} vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.) @ $V_{DD} = 2.7V$.

FIGURE 2-21: V_{OL} vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.) @ $V_{DD} = 1.8V$.

FIGURE 2-22: V_{OH} vs. I_{OL} (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.) @ $+25^\circ C$.

FIGURE 2-23: V_{OH} vs. I_{OH} (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.) @ $+25^\circ C$.

FIGURE 2-24: V_{OH} vs. I_{OH} (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.) @ $+25^\circ C$.
Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1V$ to 5.5V, $T_A = -40°C$ to +125°C.

FIGURE 2-25: V_{DD} Falling to Reset Propagation Delay (t_{RPD}) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-26: V_{DD} Falling to Reset Propagation Delay (t_{RPD}) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-27: V_{DD} Falling to Reset Propagation Delay (t_{RPD}) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).

FIGURE 2-28: Reset Time-Out Period (t_{RST}) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-29: Reset Time-Out Period (t_{RST}) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-30: Reset Time-Out Period (t_{RST}) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).
Note: Unless otherwise indicated, all limits are specified for $V_{DD} = 1\text{V}$ to 5.5V, $T_A = -40^\circ\text{C}$ to $+125^\circ\text{C}$.

FIGURE 2-31: Reset Time-Out Period (t_{RST}) (C time out option) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-32: Reset Time-Out Period (t_{RST}) (C time out option) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-33: Reset Time-Out Period (t_{RST}) (C time out option) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).

FIGURE 2-34: Reset Time-Out Period (t_{RST}) (B time out option) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-35: Reset Time-Out Period (t_{RST}) (B time out option) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-36: Reset Time-Out Period (t_{RST}) (B time out option) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).
Note: Unless otherwise indicated, all limits are specified for \(V_{DD} = 1 \text{V} \) to \(5.5 \text{V} \), \(T_A = -40^\circ \text{C} \) to \(+125^\circ \text{C} \).

FIGURE 2-37: MR Low to Reset Propagation Delay (\(t_{MD} \)) vs. Temperature (TC1270AL, TC1270ANL, TC1271AL - 4.50V min./4.63V typ./4.75V max.).

FIGURE 2-38: MR Low to Reset Propagation Delay (\(t_{MD} \)) vs. Temperature (TC1270AT, TC1270ANT, TC1271AT - 3.00V min./3.08V typ./3.15V max.).

FIGURE 2-39: MR Low to Reset Propagation Delay (\(t_{MD} \)) vs. Temperature (TC1270AR, TC1270ANR, TC1271AR - 2.55V min./2.63V typ./2.70V max.).

FIGURE 2-40: \(V_{DD} \) Transient Duration vs. Reset Threshold Overdrive (\(V_{TRIP} \) (minimum) - \(V_{DD} \)).

FIGURE 2-41: Open-Drain Leakage Current vs. Voltage Applied to RST Pin (TC1270AR, TC1270ANR, TC1271AR - 2.55V minimum).
3.0 PIN DESCRIPTIONS

Descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PINOUT DESCRIPTION

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>TC1270A (Push-Pull, active-low)</th>
<th>TC1270AN (Open-Drain, active-low)</th>
<th>TC1271A (Push-Pull, active-high)</th>
<th>Sym</th>
<th>Pin</th>
<th>Standard Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOT-23-5</td>
<td>SOT-143-4</td>
<td>SOT-23-5</td>
<td>SOT-143-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>V<sub>SS</sub></td>
<td>Power Ground</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td>4</td>
<td>2</td>
<td>RST</td>
<td>Push-Pull</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Type**: Buffer / Driver
- **Buffer / Driver**: Push-Pull

Note 1: The MR pin has an internal weak pull-up (18.5 kΩ typical).
3.1 Ground Terminal (VSS)

VSS provides the negative reference for the analog input voltage. Typically, the circuit ground is used.

3.2 Supply Voltage (VDD)

VDD can be used for power supply monitoring or a voltage level that requires monitoring.

3.3 Reset Output (RST and RST)

There are three types of Reset output pins. These are:
1. Push-Pull active-low Reset
2. Push-Pull active-high Reset
3. Open-Drain active-low Reset, external pull-up resistor required.

3.3.1 ACTIVE-LOW (RST) – PUSH-PULL

The RST push-pull output remains low while VDD is below the Reset voltage threshold (VTRIP). The time that the RST pin is held low after the device voltage (VDD) returns to a high level (> VTRIP) is typically 280 ms. After the Reset Delay Timer expires, the RST pin will be driven to the high state.

3.3.2 ACTIVE-HIGH (RST) – PUSH-PULL

The RST push-pull output remains high while VDD is below the Reset voltage threshold (VTRIP). The time that the RST pin is held high after the device voltage (VDD) returns to a high level (> VTRIP) is typically 280 ms. After the Reset Delay Timer expires, the RST pin will be driven to the low state.

3.3.3 ACTIVE-LOW (RST) – OPEN-DRAIN

The RST open-drain output remains low while VDD is below the Reset voltage threshold (VTRIP). The time that the RST pin is held low after the device voltage (VDD) returns to a high level (> VTRIP) depends on the Reset time-out selected. After the Reset Delay Timer expires, the RST pin will float.

3.4 Manual Reset Input (MR)

The Manual Reset (MR) input pin allows a push button switch to easily be connected to the system. When the push button is depressed, it forces a system Reset. This pin has circuitry that filters noise that may be present on the MR signal.

The MR pin is active-low and has an internal pull-up resistor.

TABLE 3-1: PINOUT DESCRIPTION (CONTINUED)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Pin</th>
<th>Standard Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1270A (Push-Pull, active-low)</td>
<td>TC1270AN (Open-Drain, active-low)</td>
<td>TC1271A (Push-Pull, active-high)</td>
</tr>
<tr>
<td>SOT-23-5</td>
<td>SOT-143-4</td>
<td>SOT-23-5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>MR</td>
<td>I</td>
<td>ST(1)</td>
</tr>
</tbody>
</table>

Note 1: The MR pin has an internal weak pull-up (18.5 kΩ typical).
4.0 DEVICE OPERATION

4.1 General Description

For many of today's microcontroller applications, care must be taken to prevent low-power conditions that can cause many different system problems. The most common causes are brown-out conditions, where the system supply drops below the operating level momentarily. The second most common cause is when a slowly decaying power supply causes the microcontroller to begin executing instructions without sufficient voltage to sustain volatile memory (RAM), thus producing indeterminate results.

The TC127XA family (TC1270A, TC1270AN and TC1271A) are cost-effective voltage supervisor devices designed to keep a microcontroller in Reset until the system voltage has reached and stabilized at the proper level for reliable system operation. These devices also operate as protection from brown-out conditions when the system supply voltage drops below a safe operating level.

A Manual Reset input (MR pin) is provided. This allows a push button switch to be directly connected to the TC127XA device, and is suitable for use as a push button Reset. This allows the system to easily be reset from the external control of the push button switch. No external components are required.

The Reset pin (RST or RST) will be forced active, if any of the following occur:

- During device power-up
- V_{DD} goes below the device threshold voltage
- The Manual Reset input (MR) goes low

Figure 4-1 shows a high level block diagram of the devices. The device can be described with three functional blocks. These are:

- Voltage detect circuit
- Manual Reset with glitch filter circuit
- Reset generator circuit

The Reset generator circuit controls the Reset delay time of the Reset output signal.

There are three Reset Delay Timer options. Depending on the option, the Reset signal (RST/RST pin) will be held active for a minimum of 1.09 ms, 17.5 ms, or 140 ms.

The TC1271A has an active-high RST output while the TC1270A and TC1270AN have an active-low RST output.

The TC1270A and TC1271A have a push-pull output driver, while the TC1270AN has an open-drain output.

Figure 4-2 shows a typical circuit for a push-pull device and Figure 4-3 shows a typical circuit for an open-drain device.

The TC1270A and TC1271A devices are available in a 4-Pin SOT-143 package (to maintain footprint compatibility with the TC1270, TC1271, TCM811 and TCM812 devices) and a SOT-23-5 package. The TC1270AN is only available in the SOT-23-5 package.

Low supply current makes these devices suitable for battery-powered applications.

Device specific block diagrams are presented in Figure 4-4 through Figure 4-6.
4.2 Voltage Detect Circuit

The voltage detect circuit monitors V_DD. The device’s Reset voltage trip point (V_{TRIP}) is selected when the device is ordered. The voltage on the device’s V_DD pin determines the output state of the RST/RST pin.

V_DD voltages above the V_{TRIP(MAX)} force the RST/RST pin inactive. V_DD voltages below the V_{TRIP(MIN)} force the RST/RST pin active. The state of the RST/RST pin is unknown for V_DD voltages between V_{TRIP(MAX)} and V_{TRIP(MIN)}. This is shown in Table 4-1.

TABLE 4-1: V_DD LEVELS TO RST/RST OUTPUT STATES

<table>
<thead>
<tr>
<th>V_DD Voltage Level</th>
<th>Output State</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_DD ≥ V_{TRIP(MAX)}</td>
<td>H{(1, 2)}</td>
</tr>
<tr>
<td>V_{TRIP(MIN)} < V_DD < V_{TRIP(MAX)}</td>
<td>U</td>
</tr>
<tr>
<td>V_DD ≤ V_{TRIP(MIN)}</td>
<td>L</td>
</tr>
</tbody>
</table>

Legend:
H = Driven High
L = Driven Low
U = Unknown, driven either High or Low

Note 1: The RST/RST pin will be driven inactive after the reset delay timer (t_{RST}) times out.

2: The TC1270AN RST pin will be floated after the reset delay timer (t_{RST}) times out.

The term V_{TRIP} will be used as the general term for the trip point voltage where the device actually trips.

In the case where V_DD is falling (for voltages starting above V_{TRIP(MAX)}):
- Voltages above V_{TRIP(MAX)} will never cause the RST/RST output pin to be driven active.
- Voltages below V_{TRIP(MIN)} will always cause the RST/RST output pin to be driven active.

In the case where V_DD is rising (for voltages starting below V_{TRIP(MIN)}):
- Voltages above V_{TRIP(MAX)} will always cause the RST/RST output pin to be driven inactive, (or floated, in the TC1270AN) after the reset delay timer (t_{RST}) times out.
Table 4-2 shows the various device trip point options and their $V_{TRIP(\text{MAX})}$ and $V_{TRIP(\text{MIN})}$ voltages. The negative percentage change from common regulated voltages is also shown.

If the V_{DD} is falling from the regulated voltage as it crosses the V_{TRIP} voltage, the RST/RST pin is driven active. Then, the desired circuitry is forced into Reset, or the circuitry has the indication that the V_{DD} is below the selected V_{TRIP}.

If the V_{DD} is rising as it crosses the V_{TRIP} voltage, the RST/RST pin is driven inactive after the Reset Delay Timer elapses. Then, the desired circuitry is released from Reset and will start to operate in its Normal mode, or the circuitry has the indication that the V_{DD} is above the selected V_{TRIP}.

TABLE 4-2: SELECTING THE TRIP POINT

<table>
<thead>
<tr>
<th>Trip Voltage Selection</th>
<th>$V_{TRIP(\text{MAX})}$ (1)/$V_{TRIP(\text{MIN})}$ (2)</th>
<th>- % From Regulated Voltage</th>
<th>5.0V</th>
<th>3.3V</th>
<th>3.0V</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>4.75V</td>
<td>5.0%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4.50V</td>
<td>10.0%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>M</td>
<td>4.50V</td>
<td>10.0%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>4.25V</td>
<td>15.0%</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>T</td>
<td>3.15V</td>
<td>—</td>
<td>4.5%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3.00V</td>
<td>—</td>
<td>9.2%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>S</td>
<td>3.00V</td>
<td>—</td>
<td>9.2%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2.85V</td>
<td>—</td>
<td>13.7%</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>R</td>
<td>2.70V</td>
<td>—</td>
<td>—</td>
<td>10.0%</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2.55V</td>
<td>—</td>
<td>—</td>
<td>15.0%</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: Voltage regulator circuit must have tighter tolerance (%) than $V_{TRIP(\text{MAX})}$% from regulated voltage.

Note 2: Circuitry being reset must have a wider tolerance (%) than $V_{TRIP(\text{MIN})}$% from regulated voltage.

The TC1270A/TC1270AN/TC1271A devices are optimized to reject fast transient glitches on the V_{DD} line. If the low input signal (which is below V_{TRIP}) is not rejected, the Reset output is driven active within 50 µs of V_{DD} falling through the Reset voltage threshold.

After the device exits the Reset condition, the delay circuitry will hold the RST/RST pin active until the appropriate Reset delay time (t_{RST}) has elapsed.

During device power-up, the input voltage is below the trip point voltage. The device must enter the valid operating range for the device to start operation.

4.2.1 HYSTERESIS

There is also a minimal hysteresis (V_{HYS}) on the trip point. This is so that small noise signals on the device voltage (V_{DD}) do not cause the Reset pin (RST/RST) to “jitter” (oscillate between active and inactive levels).

The characterization graphs shown in Figures 2-13 through 2-15 show the device hysteresis as a percentage of the voltage trip point (V_{TRIP}).

The Reset Delay Timer (t_{RST}) gives a time-based hysteresis for the system.

4.2.2 POWER-UP/RISING V_{DD}

As the device V_{DD} rises, the device’s Reset circuit will remain active until the voltage rises above the “actual” trip point (V_{TRIP}).

Figure 4-7 shows a power-up sequence and the waveform of the RST and RST pins. As the device powers up, the voltage will start below the valid operating voltage of the device. At this voltage, the RST/RST output is not valid. Once the voltage is above the minimum operating voltage (1V) and below the selected V_{TRIP}, the Reset output will be active.

Once the device voltage rises above the V_{TRIP} voltage, the Reset Delay Timer (t_{RST}) starts. When the Reset Delay Timer times out, the Reset output (RST/RST) is driven inactive.

![FIGURE 4-7: RST/RST Pin Operation](image-url)

Note 1: Additional system current is consumed during the t_{RST} time.

Note 2: The TC1270AN requires an external pull-up resistor.
4.2.3 POWER-DOWN/BROWN-OUT

As the device powers-down/browns-out, the VDD falls from a voltage above the devices trip point (VTRIP). The device will trip at a voltage between the maximum trip point (VTRIP(MAX)) and the minimum trip point (VTRIP(MIN)). Once the device voltage (VDD) goes below this voltage, the RST/RST pin will be forced to the active state. Table 4-3 shows the state of the RST or RST pins.

Figure 4-8 shows the waveform of the RST pin as determined by the VDD voltage. As the VDD voltage falls from the normal operating point, the device “enters” Reset by crossing the VTRIP voltage (between VTRIP(MAX) and VTRIP(MIN)). Then, when VDD voltage rises, the device “exits” Reset by crossing the VTRIP voltage (below, or at, VTRIP(MAX)). After the “exit” state has been detected, the Reset Delay Timer (tRST) starts. When the tRST time completes, the Reset pin is driven inactive.

TABLE 4-3: RESET PIN STATES

<table>
<thead>
<tr>
<th>Device</th>
<th>State of RST Pin when: VDD < VTRIP</th>
<th>State of RST Pin when: VDD > VTRIP (1)</th>
<th>Output Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1270A</td>
<td>L</td>
<td>H</td>
<td>Push-Pull</td>
</tr>
<tr>
<td>TC1271A</td>
<td>—</td>
<td>—</td>
<td>Push-Pull</td>
</tr>
</tbody>
</table>

Note 1: The RST/RST pin will be driven inactive after the Reset Delay Timer (tRST) times out.

Note 1: The TC1270AN requires an external pull-up resistor.

FIGURE 4-8: RST Operation as determined by the VTRIP
4.3 Negative-Going VDD Transients

The minimum pulse width (time) required to cause a Reset may be an important criteria in the implementation of a Power-on Reset (POR) circuit. This time is referred to as transient duration. The TC127XA devices are designed to reject a level of negative-going transients (glitches) on the power supply line.

Transient duration is the amount of time needed for these supervisory devices to respond to a drop in VDD. The transient duration time (tTRAN) is dependent on the magnitude of \(V_{TRIP} - V_{DD} \) (overdrive). Any combination of duration and overdrive that lies under the duration/overdrive curve will not generate a Reset signal. Generally speaking, the transient duration time decreases with an increase in the \(V_{TRIP} - V_{DD} \) voltage. Figure 4-9 shows an example transient duration vs. Reset comparator overdrive. It shows that the farther below the trip point the transient pulse goes, the shorter the duration of the pulse required to cause a Reset gets. So, any combination of duration and overdrive that lays under the curve will not generate a Reset signal. Combinations above the curve are detected as a brown-out or power-down.

Transient immunity can be improved by adding a bypass capacitor (typically 0.1 µF) as close as possible to the VDD pin of the TC127XA device.

4.4 Manual Reset with Glitch Filter Circuit

The Manual Reset input (MR) allows the Reset pins (RST/RST') to be manually forced to their active states. The MR pin has circuitry to filter noise pulses that may be present on the pin. Figure 4-10 shows a block diagram for using the TC127XA with a push button switch. To minimize the required external components, the MR input has an internal pull-up resistor.

A mechanical push button or active logic signal can drive the MR input. Once MR has been low for a time, \(t_{MD} \) (the manual Reset delay time), the Reset output pins are forced active. The Reset output pins will remain in their active states for the Reset Delay Timer time-out period (tRST).

Figure 4-11 shows a waveform for the manual Reset switch input and the Reset pins output.

![Figure 4-10: Push Button Reset.](image)

FIGURE 4-10: Push Button Reset.

FIGURE 4-11: MR Input – Push Button.

4.4.1 NOISE FILTER

The noise filter filters out noise spikes (glitches) on the Manual Reset pin (MR). Noise spikes less than 100 ns (typical) are filtered.
4.5 Reset Generator Circuit

The output signals from the voltage detect circuit and the manual Reset with glitch filter circuit are OR'd together and used to activate the Reset generator module.

After the Reset conditions have been removed (the MR pin is no longer forced low and the input voltage is greater than the trip point voltage), the Reset generator circuit determines the Reset delay time-out required.

There are three options for the delay circuit. These are:

• 2.19 ms (typical) delay
• 35 ms (typical) delay
• 280 ms (typical) delay

4.5.1 RESET DELAY TIMER

The Reset Delay Timer ensures that the TC127XA device will "hold" the embedded system in Reset until the system voltage has stabilized. The Reset Delay Timer time-out is shown in Table 4-4.

The Reset Delay Timer starts when the voltage detect circuit output AND the manual Reset with glitch filter circuit output become inactive. While the Reset Delay Timer is active, the RST or RST pin is driven to the active state. When the Reset Delay Timer times out, the RST or RST pin is driven inactive.

The Reset Delay Timer (t_RST) starts after the device voltage rises above the “actual” trip point (V_TRIP). When the Reset Delay Timer times out, the Reset output pin (RST/RST) is driven inactive.

The Reset Delay Timer is cleared if either, or both, the voltage detector circuit output and the manual Reset with glitch filter circuit output become active. The RST or RST pin continues to be driven to the active state.

Figure 4-12 illustrates when the Reset Delay Timer (t_RST) is active or inactive.

4.5.2 EFFECT OF TEMPERATURE ON RESET POWER-UP TIMER (t_RPU)

The Reset Delay Timer time-out period (t_RST) determines how long the device remains in the Reset condition. This time out is affected by the device V_DD and the temperature. Typical responses for varying V_DD values and temperatures are presented in Figures 2-28, 2-29 and 2-30.

<table>
<thead>
<tr>
<th>t_RST</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>Typ</td>
</tr>
<tr>
<td>1.09</td>
<td>2.19</td>
</tr>
<tr>
<td>17.5</td>
<td>35</td>
</tr>
<tr>
<td>140</td>
<td>280</td>
</tr>
</tbody>
</table>

This is the minimum time that the Reset Delay Timer will "hold" the Reset pin active after V_DD rises above V_TRIP.

This is the maximum time that the Reset Delay Timer will "hold" the Reset pin active after V_DD rises above V_TRIP.

Note 1: Shaded rows are custom-ordered time outs.
5.0 APPLICATION INFORMATION

This section presents application-related information that may be useful for your particular design requirements.

5.1 Supply Monitor Noise Sensitivity

The TC127XA devices are optimized for fast responses to negative-going changes in VDD. A system with an inordinate amount of electrical noise on VDD (such as a system using relays) may require a 0.01 µF or 0.1 µF bypass capacitor to reduce detection sensitivity. This capacitor should be installed as close to the TC127XA as possible to keep the capacitor lead length short.

5.2 Conventional Voltage Monitoring

Figure 5-2 and Figure 5-3 show the TC127XA in conventional voltage monitoring applications.

5.3 Using in PIC® Microcontroller, ICSP™ Applications

Note: This operation can only be done using the device that has an Open-Drain RST pin (TC1270AN).

Figure 5-4 shows the typical application circuit for using the TC1270AN for voltage supervisory function when the PIC microcontroller will be programmed via the In-Circuit Serial Programming™ (ICSP™) feature. Additional information is available in the Microchip Technical Brief TB087, “Using Voltage Supervisors with PICmicro® Microcontroller Systems which Implement In-Circuit Serial Programming™” (DS91087).

Note: It is recommended that the current into the RST pin is current that is limited by a 1 kΩ resistor.

© 2007-2011 Microchip Technology Inc.
5.4 Modifying The Trip Point, V_{TRIP}

Although the TC127XA device has a fixed voltage trip point (V_{TRIP}), it can be necessary to make custom adjustments. This is accomplished by connecting an external resistor divider to the TC127XA V_{DD} pin. This causes the V_{SOURCE} voltage to be higher than it is when the TC127XA input equals its V_{TRIP} voltage (Figure 5-5).

To maintain detector accuracy, the bleeder current through the divider should be significantly higher than the 15 μA maximum operating current required by the TC127XA. A reasonable value for this bleeder current is 1 mA (67 times the 10 μA required by the TC127XA). For example, if $V_{TRIP} = 2V$ and the desired trip point is 2.5V, the value of $R_1 + R_2$ is 2.5 kΩ (2.5V/1 mA). The value of $R_1 + R_2$ can be rounded to the nearest standard value and plugged into the equation shown in Figure 5-5 to calculate values for R_1 and R_2. 1% tolerance resistors are recommended.

\[
V_{SOURCE} \times \frac{R_1}{R_1 + R_2} = V_{TRIP}
\]

Where:

- V_{SOURCE} = Voltage to be monitored
- V_{TRIP} = Threshold Voltage setting

Note: In this example, V_{SOURCE} must be greater than V_{TRIP}.

5.5 MOSFET Low-Drive Protection

Low operating power and small physical size make the TC1270AN series ideal for many voltage detector applications. Figure 5-6 shows a low-voltage gate drive protection circuit that prevents the logic-level MOSFET from overheating due to insufficient gate voltage. When the input signal is below the threshold of the TC1270AN, its output grounds the gate of the MOSFET.

FIGURE 5-5: Modifying Trip-Point using External Resistor Divider.

FIGURE 5-6: MOSFET Low-Drive Protection.
5.6 Controllers and Processors With Bidirectional I/O Pins

Some microcontrollers have bidirectional Reset pins. Depending on the current drive capability of the controller pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 kΩ resistor in series with the output of the TC127XA (Figure 5-7). If there are other components in the system that require a Reset signal, they should be buffered so as not to load the Reset line. If the other components are required to follow the Reset I/O of the microcontroller, the buffer should be connected as shown with the solid line.

FIGURE 5-7: Interfacing the TC1270A or TC1271A Push-Pull Output to a Bidirectional Reset I/O pin.

5.7 Migration Paths

Figure 5-8 shows the 5-pin SOT-23 footprint of the TC1270A, TC1270AN and TC1271A devices. Devices that are in the 3-pin SOT-23 package could be used in that circuit with the loss of manual Reset functionality. Examples of compatible footprint devices in the SOT-23-3 package are the MCP111, MCP112, TC54 and TC51 devices. This allows the system to be designed to offer a “base” functionality and a higher end system with the “enhanced” functionality, which includes a manual Reset.

FIGURE 5-8: SOT-23 5-pin to 3-pin Comparison.

5.8 Reset Signal Integrity During Power-Down

The TC1270A and TC1271A Reset output is valid down to V_{DD} = 1.0V. Below this voltage the output becomes an “open circuit” and does not sink current. This means CMOS logic inputs to the microcontroller will be floating at an undetermined voltage. Most digital systems are completely shut down well above this voltage. However, in situations where the Reset signal must be maintained valid to V_{DD} = 0V, external circuitry is required.

For devices where the Reset signal is active-low, a pull-down resistor must be connected from the TC1270A RST pin to ground to discharge stray capacitances and hold the output low (Figure 5-9).

Similarly for devices where the Reset signal is active-high, a pull-up resistor to V_{DD} is required to ensure a valid high RST signal for V_{DD} below 1.0V (Figure 5-10).

This resistor value, though not critical, should be chosen such that it does not appreciably load the Reset pin under normal operation (100 kΩ should be suitable for most applications).

FIGURE 5-9: Ensuring a valid active-low Reset pin output state as V_{DD} approaches 0V.

FIGURE 5-10: Ensuring a valid active-high Reset pin output state as V_{DD} approaches 0V.
6.0 STANDARD DEVICES

Table 6-1 shows the standard devices, with order numbers, as well as the corresponding configurations.

<table>
<thead>
<tr>
<th>Device</th>
<th>Reset Threshold (V)</th>
<th>Package</th>
<th>Order Number</th>
<th>Replaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1270A</td>
<td>Minimum 4.50 4.63 4.75</td>
<td>SOT-23-5</td>
<td>TC1270ALVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270A</td>
<td>2.55 2.63 2.70</td>
<td>SOT-23-5</td>
<td>TC1270ARVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270A</td>
<td>2.85 2.93 3.00</td>
<td>SOT-23-5</td>
<td>TC1270ASVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270A</td>
<td>3.00 3.08 3.15</td>
<td>SOT-23-5</td>
<td>TC1270ATVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270A</td>
<td>4.25 4.38 4.50</td>
<td>SOT-23-5</td>
<td>TC1270AMVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270A</td>
<td>4.50 4.63 4.75</td>
<td>SOT-23-5</td>
<td>TC1270ALVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270AN</td>
<td>Minimum 4.50 4.63 4.75</td>
<td>SOT-23-5</td>
<td>TC1270ANLVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270AN</td>
<td>2.55 2.63 2.70</td>
<td>SOT-23-5</td>
<td>TC1270ANRVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270AN</td>
<td>2.85 2.93 3.00</td>
<td>SOT-23-5</td>
<td>TC1270ANSVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270AN</td>
<td>3.00 3.08 3.15</td>
<td>SOT-23-5</td>
<td>TC1270ANTVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270AN</td>
<td>4.25 4.38 4.50</td>
<td>SOT-23-5</td>
<td>TC1270AMVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1270AN</td>
<td>4.50 4.63 4.75</td>
<td>SOT-23-5</td>
<td>TC1270ALVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1271A</td>
<td>Minimum 4.50 4.63 4.75</td>
<td>SOT-23-5</td>
<td>TC1271ALVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1271A</td>
<td>2.55 2.63 2.70</td>
<td>SOT-23-5</td>
<td>TC1271ARVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1271A</td>
<td>2.85 2.93 3.00</td>
<td>SOT-23-5</td>
<td>TC1271ASVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1271A</td>
<td>3.00 3.08 3.15</td>
<td>SOT-23-5</td>
<td>TC1271ATVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1271A</td>
<td>4.25 4.38 4.50</td>
<td>SOT-23-5</td>
<td>TC1271AMVCTTR</td>
<td>—</td>
</tr>
<tr>
<td>TC1271A</td>
<td>4.50 4.63 4.75</td>
<td>SOT-23-5</td>
<td>TC1271ALVCTTR</td>
<td>—</td>
</tr>
</tbody>
</table>

Note 1: “A” time-out delay options are only standard in the SOT-23-5 package. SOT-143 package is a custom request.
7.0 CUSTOM CONFIGURATIONS

The following Custom Reset Trip Point is available (see Table 7-1).

TABLE 7-1: CUSTOM TRIP POINT

<table>
<thead>
<tr>
<th>Trip Voltage Selection</th>
<th>$V_{TRIP(MAX)} / V_{TRIP(MIN)}$</th>
<th>- % From Regulated Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3.0V</td>
</tr>
<tr>
<td>(1)</td>
<td>2.85V</td>
<td>5.0%</td>
</tr>
<tr>
<td></td>
<td>2.70V</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Note 1: Contact your local Microchip sales office for additional information.

Table 7-2 shows the codes that specify the desired Reset time out (t_{RST}) for custom devices.

TABLE 7-2: DELAY TIME OUT ORDERING CODES

<table>
<thead>
<tr>
<th>Code</th>
<th>Reset Delay Time (Typ) (ms)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>35</td>
<td>Note 1</td>
</tr>
<tr>
<td>B</td>
<td>2.19</td>
<td>Note 1</td>
</tr>
<tr>
<td>"blank"</td>
<td>280</td>
<td>Delay timings for standard device offerings</td>
</tr>
</tbody>
</table>

Note 1: This delay timing option is not the standard offering. For information on ordering devices with these delay times, contact your local Microchip sales office. Minimum purchase volumes are required.
8.0 DEVELOPMENT TOOLS

8.1 Evaluation/Demonstration Boards

The SOT-23-5/6 Evaluation Board (VSUPEV2) can be used to evaluate the characteristics of the TC127XA devices.

This blank PCB has footprints for:
- Pull-up Resistor
- Pull-down Resistor
- Loading Capacitor
- In-line Resistor

There is also a power supply filtering capacitor.

For evaluating the TC127XA devices, the selected device should be installed into the Option A footprint.

The SOIC-14 Evaluation Board (SOIC14EV) has a SOT-23-6 footprint that can be jumpered into any portion of the circuit. This will allow any footprint that the TC1270A requires in the SOT-23-5 package.

The PCB number, 102-00094, appears on the lower left side of the board. These evaluation boards can be purchased directly from the Microchip web site at www.microchip.com.
9.0 PACKAGING INFORMATION

9.1 Package Marking Information

5-Pin SOT-23

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Code</th>
<th>Part Number</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1270ALVCCTR</td>
<td>F1NN</td>
<td>TC1271ALVCCTR</td>
<td>J1NN</td>
</tr>
<tr>
<td>TC1270AMVCCTR</td>
<td>F2NN</td>
<td>TC1271AMVCCTR</td>
<td>J2NN</td>
</tr>
<tr>
<td>TC1270ATVCCTR</td>
<td>F3NN</td>
<td>TC1271ATVCCTR</td>
<td>J3NN</td>
</tr>
<tr>
<td>TC1270ASVCCTR</td>
<td>F4NN</td>
<td>TC1271ASVCCTR</td>
<td>J4NN</td>
</tr>
<tr>
<td>TC1270ARVCCTR</td>
<td>F5NN</td>
<td>TC1271ARVCCTR</td>
<td>J5NN</td>
</tr>
<tr>
<td>TC1270ANLVCCTR</td>
<td>FSNN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC1270ANMVCCTR</td>
<td>FTNN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC1270ANTVCCTR</td>
<td>FUNN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC1270ANSVCCTR</td>
<td>FVNN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC1270ANRVCCTR</td>
<td>FWNN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

Legend:

- **XX...X** Customer-specific information
- **Y** Year code (last digit of calendar year)
- **YY** Year code (last 2 digits of calendar year)
- **WW** Week code (week of January 1 is week ‘01’)
- **NN** Alphanumeric traceability code
- **(E3)** Pb-free JEDEC designator for Matte Tin (Sn)
- ***** This package is Pb-free. The Pb-free JEDEC designator (**E3**) can be found on the outer packaging for this package.

4-Lead SOT-143

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Code</th>
<th>Part Number</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1270ALVRCTR</td>
<td>D1NN</td>
<td>TC1271ALVRCTR</td>
<td>C1NN</td>
</tr>
<tr>
<td>TC1270AMVRCTR</td>
<td>D2NN</td>
<td>TC1271AMVRCTR</td>
<td>C2NN</td>
</tr>
<tr>
<td>TC1270ATVRCTR</td>
<td>D3NN</td>
<td>TC1271ATVRCTR</td>
<td>C3NN</td>
</tr>
<tr>
<td>TC1270ASVRCTR</td>
<td>D4NN</td>
<td>TC1271ASVRCTR</td>
<td>C4NN</td>
</tr>
<tr>
<td>TC1270ARVRCTR</td>
<td>D5NN</td>
<td>TC1271ARVRCTR</td>
<td>C5NN</td>
</tr>
<tr>
<td>TC1270ANLVRCTR</td>
<td>E1NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC1270ANMVRCTR</td>
<td>E2NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC1270ANTVRCTR</td>
<td>E3NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC1270ANSVRCTR</td>
<td>E4NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC1270ANRVRCTR</td>
<td>E5NN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:

Legend:

- **XX...X** Customer-specific information
- **Y** Year code (last digit of calendar year)
- **YY** Year code (last 2 digits of calendar year)
- **WW** Week code (week of January 1 is week ‘01’)
- **NN** Alphanumeric traceability code
- **(E3)** Pb-free JEDEC designator for Matte Tin (Sn)

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Lead Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Outside Lead Pitch</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.127 mm per side.
2. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-091B
5-Lead Plastic Small Outline Transistor (CT) [SOT-23]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Recommended Land Pattern Diagram]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>Limits</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X5)</td>
<td>X</td>
</tr>
<tr>
<td>Contact Pad Length (X5)</td>
<td>Y</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G</td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>GX</td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2091A
4-Lead Plastic Small Outline Transistor (RC) [SOT-143]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Lead 1 Offset</td>
<td>e1</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff $|$</td>
<td>A1</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>ϕ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead 1 Width</td>
<td>b1</td>
</tr>
<tr>
<td>Leads 2, 3 & 4 Width</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:
1. § Significant Characteristic.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-031B
4-Lead Plastic Small Outline Transistor (RC) [SOT-143]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Recommended Land Pattern

<table>
<thead>
<tr>
<th>Units</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Pitch</td>
<td>E1</td>
<td>1.90 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E2</td>
<td>1.60 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Width</td>
<td>X1</td>
<td>0.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Width</td>
<td>X2</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Length</td>
<td>Y</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td>2.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
2. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2031A
9.2 Product Tape and Reel Specifications

FIGURE 9-1: EMBOSSED CARRIER DIMENSIONS (8 MM TAPE ONLY)

![diagram](image1)

TABLE 1: CARRIER TAPE/CAVITY DIMENSIONS

<table>
<thead>
<tr>
<th>Case Outline</th>
<th>Package Type</th>
<th>Carrier Dimensions</th>
<th>Cavity Dimensions</th>
<th>Output Quantity</th>
<th>Reel Diameter in mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>W mm</td>
<td>P mm</td>
<td>A0 mm</td>
<td>B0 mm</td>
</tr>
<tr>
<td>CT</td>
<td>SOT-23</td>
<td>8</td>
<td>4</td>
<td>3.23</td>
<td>3.17</td>
</tr>
<tr>
<td>RC</td>
<td>SOT-143</td>
<td>8</td>
<td>4</td>
<td>3.1</td>
<td>2.69</td>
</tr>
</tbody>
</table>

FIGURE 9-2: 5-LEAD SOT-23 DEVICE TAPE AND REEL SPECIFICATIONS

![diagram](image2)
FIGURE 9-3: 4-LEAD SOT-143 DEVICE TAPE AND REEL SPECIFICATIONS

Component Taping Orientation for 4-Pin SOT-143 Devices

<table>
<thead>
<tr>
<th>Package</th>
<th>Carrier Width (W)</th>
<th>Pitch (P)</th>
<th>Part Per Full Reel</th>
<th>Reel Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-Pin SOT-143</td>
<td>8 mm</td>
<td>4 mm</td>
<td>3000</td>
<td>7 in.</td>
</tr>
</tbody>
</table>
APPENDIX A: REVISION HISTORY

Revision D (August 2011)
The following is the list of modifications:
1. Added the SOT-143 package to the TC1270AN device and related information throughout the document.

Revision C (October 2010)
The following is the list of modifications:
1. Modified the Product Identification System section to reflect the custom manufacturing code used for devices with a Reset Delay time out of 35 ms (was a “C”, now is an “A”).
2. Clarified information presented in Section 4.2 “Voltage Detect Circuit” (page 21).

Revision B (June 2007)
The following is the list of modifications:
1. Added new options:
 - Open-Drain output
 - New Reset Delay time outs.
2. Updated Package Outline Drawings
3. Updated Revision History
4. Added new options to Product Identification System

Revision A (March 2007)
• Original Release of this Document.
PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Device: TC1270A: Voltage Supervisor with Manual Reset
TC1270AN: Voltage Supervisor with Manual Reset
TC1271A: Voltage Supervisor with Manual Reset

V_Trip Options:
R = 2.55V (min.) / 2.63V (typ.) / 2.70V (max.)
S = 2.85V (min.) / 2.93V (typ.) / 3.00V (max.)
T = 3.00V (min.) / 3.08V (typ.) / 3.15V (max.)
M = 4.25V (min.) / 4.38V (typ.) / 4.50V (max.)
L = 4.50V (min.) / 4.63V (typ.) / 4.75V (max.)

Time-Out Options:
“blank” = t_RST = 280 ms (typ)
A = t_RST = 35 ms (typ)
B = t_RST = 2.19 ms (typ)

Temperature Range: V = -40°C to +125°C

Package: CT = Plastic Small Outline Transistor, SOT-23, 5-lead
RC = Plastic Small Outline Transistor, SOT-143, 4-lead

Tape/Reel Option: TR = Tape and Reel

Examples:

a) TC1270ASVCTTR:
2.85V min./2.93V typ./3.00V max. voltage trip point,
Push-pull active-low Reset,
Reset Delay Timer = 280 ms,
5-LD SOT-23, Tape and Reel,
-40°C to +125°C

b) TC1270ANLVRCTR:
4.50V min./4.63V typ./4.75V max. voltage trip point,
Push-pull active-low Reset,
Reset Delay Timer = 280 ms,
4-LD SOT-143, Tape and Reel,
-40°C to +125°C

c) TC1270ANMBVCTTR:
4.25V min./4.38V typ./4.50V max. Open-drain active-low Reset,
Reset Delay Timer = 2.19 ms,
5-Lead SOT-23, Tape and Reel,
-40°C to +125°C

d) TC1270ANLAVCT:
3.00V min./3.08V typ./3.15V max. Open-drain active-low Reset,
Reset Delay Timer = 35 ms,
5-Lead SOT-23,
-40°C to +125°C

e) TC1271ARVCTR:
2.55V min./2.63V typ./2.70V max. voltage trip point,
Push-pull active-high Reset,
Reset Delay Timer = 280 ms,
5-LD SOT-23, Tape and Reel,
-40°C to +125°C

f) TC1271ATRVCCTR:
3.00V min./3.08V typ./3.15V max. voltage trip point,
Push-pull active-high Reset,
Reset Delay Timer = 280 ms,
4-LD SOT-143, Tape and Reel,
-40°C to +125°C
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rflAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

Printed on recycled paper.

ISBN: 978-1-61341-466-8

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Microchip Technology Inc.

Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support: http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suits 3707-14, 37th Floor
Tower 6, The Gateway Harbour City, Kowloon Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-352-2388138
Fax: 86-352-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-741-6166
Fax: 81-45-741-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/02/11