INTRODUCTION

History has shown that consumers have an almost insatiable appetite for even greater computing horsepower. If you're old enough to remember, the mere thought of cryptic DOS software programs creeping along on your 286 platform just 16 years ago forces an almost irrepressible grin. However, as greater computing horsepower became available, our needs grew in direct proportion: the more capable the system, the more it could perform, and the more we depended on it. With this dependence came even greater demands for portability to match the life style of our highly mobile society. System manufacturers quickly realized that their next generation of equipment must be faster, more versatile and smaller. But increasing performance while reducing system size is a paradox in and of itself and creates other problems.

Increasing system performance requires both advanced digital chip architectures and faster system clock rates. More advanced architectures result in a greater amount of circuitry on-chip. Higher system clock rates cause chips to run hotter (primarily because of energy losses from parasitic circuit effects). As a result, thermal problems arise from a larger amount of circuitry on each chip running considerably faster (and therefore hotter) than ever before. This problem is exacerbated by the small physical space in which modern systems are packaged (e.g. notebook form factor). Since the heat cannot be removed quickly, careful thermal management techniques must be incorporated into every modern system design.

THEN AND NOW

Removing heat from the system was once a "hammer and chisel" exercise: the average system was packaged in an aluminum enclosure with lots of surface area for adequate heat sinking. Even if that wasn't enough, a finned heat sink or muffin fan could be added to increase the effective heatsink area. The system designer paid only moderate attention to thermal design and always knew he could brute force heatsink area in most cases. There was also plenty of air space in most systems, so airflow was free and unrestricted. Compare this to the present day notebook computer where the designer has neither the luxury of a large heatsink surface area, nor the "wide open spaces" of uncluttered circuit assemblies. If that's not enough, the designer now also has to contend with CPU chips that get hot enough to vaporize water during normal operation (though not recommended). Thermal management in systems of this kind is a far departure from that of the past. It's a delicate science where attention must be paid to thermal issues throughout all mechanical and electrical design. System temperature design points must be carefully picked and thermal balance designed with the precision and skill of a watchmaker. Thermal response of these systems are profiled during acceptance testing to assure they meet the design criteria. In addition, system thermal safeguards (insurance policies) are installed to prevent against thermal runaway in the event the system is placed in a hot environment, or suffers a catastrophic malfunction. Among these safeguards are special temperature sensing components collectively referred to as Temperature Sensors.

ENTER THE TEMPERATURE SENSOR

Early Temperature Sensors were electromechanical devices consisting of a switch composed of two dissimilar metals. Each metal had a different rate of expansion with temperature. When heat was applied, the difference in expansion rates caused an unbalanced force to be generated causing the switch to open. As the switch cooled off, the forces equalized and the switch closed. This approach was both crude and unreliable because continuous temperature cycling caused the metal switch to fatigue and ultimately break resulting in sensor failure. However, because there were no viable alternatives, use of this technology was widespread. In later years, several companies offered simple solid state temperature sensors that relied on the electrical changes of materials with increasing temperature. These devices (among them: thermistors, RTDs and simple semiconductor temperature sensors) were superior to their electromechanical predecessors. However, they required external circuitry to linearize and translate the voltage or current outputs into electronic signals usable in the system. The board space consumed by the added circuitry and the added cost of manual calibration made these solutions less attractive to the design community at large. It wasn't until the last decade that semiconductor manufacturers began to combine solid state temperature sensing and application-specific peripheral circuitry into a single device, thus, providing a total system solution in a single small package. Temperature Sensors of this type are commonly referred to as Smart Temperature Sensors.
SMART TEMPERATURE SENSOR MARKET

The Smart Temperature Sensor's ability to translate a measured temperature into an electronic signal directly usable by the system has fueled their popularity. Today, application-optimized Smart Temperature Sensors are used across a wide range of applications. They safeguard expensive CPU chips in high performance computers, protect the output drivers of linear power amplifiers and perform a wide variety of cooling system control and other thermal protection and management functions. Smart Temperature Sensors with linear outputs (i.e. those that produce a voltage, current or digital code directly proportional to measured temperature) are used as sensing elements in process control equipment, laboratory instruments and other direct measurement applications. They offer the intrinsic benefits of small size, reliable and accurate operation, minimum external components and low installed cost. Most Smart Temperature Sensors are supplied in packages so small that they can be mounted in proximity of the devices they protect. This combination of features has fueled an explosive growth of these devices into the market.

THE TC623 SMART TEMPERATURE SENSOR

Recent mandates calling for more power efficient, "green" PCs have caused many of the power-saving techniques learned in developing notebook computers to be applied to desktop computers as well. Among these techniques is the reduction of system power dissipation by lowering power supply voltage from 5V to 3.3V. This helps to reduce the amount of heat generated by the system, increases system power efficiency and helps to extend operating time in battery-powered systems. Although newer processors, like the Pentium® run at 3.3V, they still get hot enough to require careful thermal design and system safeguards, even in desktop PC applications.

The internals of modern desktop and notebook PCs have specific thermal profiles over normal system operating conditions. That is, the temperatures of the internal components will rise only so high because the thermal characteristics of the system are "fixed" by the system design itself. Thermal safeguards are installed by the system designer only to warn the system when temperatures exceed the thermal design. This can be caused by a malfunction or by operating the system at too high an ambient temperature. The TC623 is a Smart Temperature Sensor designed specifically to warn the system of an impending thermal overload situation.

The TC623 consists of a user-programmable temperature detector and built-in temperature sensor in a 0.150 wide, 8-pin surface mount package (see Figure 1). It is specifically designed to operate at power supply voltages as low as 2.7V for easy hookup to state-of-the-art CPU power supplies. Its small size and low operating voltage capability allows the TC623 to be mounted under (or near) the system CPU chip, the hottest component in the system (Figure 2). In some cases, a second TC623 is mounted on the motherboard to measure the internal ambient temperature of the system.

The TC623 furnishes three digital outputs: LOW LIMIT, HIGH LIMIT and CONTROL. The LOW LIMIT and HIGH LIMIT outputs become active when measured temperature exceeds the temperature trip points determined by the resistors on the LOW SET and HIGH SET inputs. The CONTROL output provides the correct logic for driving a cooling fan. It becomes active when temperature equals the HIGH SET value and inactive when temperature reaches the LOW SET value (Figure 3). In actual use, the TC623 is used as a temperature monitor in a holistic thermal protection scheme. Its outputs are connected to a microcontroller, ASIC or other piece of control logic dedicated to responding to an active output from the TC623. An example of a typical thermal safeguard design using the TC623 might go like this: assume a desktop computer having a normal CPU operating temperature of 65°C and a maximum allowable CPU temperature of 85°C. The TC623 is installed in close physical contact with the CPU chip (see Figure 2).

The TC623 LOW SET input is programmed at a trip point temperature of 70°C (5°C above normal) and the HIGH SET input for a trip point of 80°C (5°C below maximum). Under normal operating conditions, the CPU operating temperature never exceeds 70°C and the TC623 outputs remain off. Now assume the user relocates his computer to a very tight location with inadequate airflow for cooling. The internal temperature of the computer begins rising and the CPU temperature increases. When CPU temperature reaches 70°C, the TC623 LOW LIMIT becomes active and the system responds by reducing the CPU clock speed, thereby lowering power dissipation and reducing the rate of temperature increase. If temperature continues to rise, more aggressive steps must be taken. When the CPU temperature reaches the HIGH SET setting of 80°C, the HIGH LIMIT and CONTROL outputs both become active. The CONTROL output starts a CPU cooling fan while the HIGH LIMIT output reduces CPU clock speed even further. At this point, the system might notify the user that his system is running over temperature. If the HIGH LIMIT output persists after a given time interval, a very serious problem is indicated and the system might respond by powering down all but the DRAM (to save the user's work).
FIGURE 1:
TC623 Smart Temperature Sensor

FIGURE 2:
TC623 Direct PC Board Mounting

FIGURE 3: Using resistors, the TC623 can be set to give an output from 0°C to 125°C
SUMMARY

To satisfy demand for smaller, more powerful PCs, system designers have aggressively reduced enclosures and designed in faster processors. However, all that power stuffed into cramped quarters produces heat that threatens not only the processor, but also the entire system.

Microchip’s Smart Temperature Sensors are low cost devices that safeguard against this problem. For more information on effective thermal management products, contact your nearest Microchip sales office listed on the back of this publication or visit our website at www.microchip.com.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELQ0, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Magratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerTool, rPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4670 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-2950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Marketing Support Division
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Beihai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-87667100 Fax: 86-28-8766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroploza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd.,
Room 701, Bldg. D
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd.,
Shenzhen Liaison Office
Rm. 1812, 18/F, Building A, United Plaza
Shenzhen 518033, China
Tel: 86-755-82961380 Fax: 86-755-82966626

China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Microchip Technology Inc.
India Liaison Office
Marketing Support Division
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnesssey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-982
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoej 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-089-627-144-39 Fax: 49-089-627-144-399

Italy
Microchip Technology SRL
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611 Fax: 39-0331-466781

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921-5869 Fax: 44-118 921-5820

02/12/03