INTRODUCTION

This Technical Brief describes the creation of a USB device that can enumerate as a mouse or as a keyboard, depending on which PS/2 peripheral is plugged into it. The Soft Detach provision of the PIC16C745/765 support firmware makes the creation of such a device possible. Technical Briefs, TB055 and TB056, describe in detail the implementation of a PS/2 to USB mouse translator and a PS/2 to USB keyboard translator, respectively. This Brief will not discuss the translation of either of these two devices. It focuses on the Soft Detach function and modifying the descriptor jump table for a device with multiple sets of descriptors.

SOFT DETACH

The SoftDetachUSB command enables the PICmicro microcontroller (MCU) to have control when it is enumerated by the host. Several things occur during the Soft Detach process. The microcontroller turns off the pull-up resistor to V_USB. The firmware does this by clearing the DEV_ATT bit. Turning the pull-up resistor off has the effect of removing the microcontroller from the bus. After approximately 50 ms or enough time for the host to see the device disconnect, the firmware sets DEV_ATT and "reconnects" the microcontroller to the bus. Soft Detach then calls the InitUSB command and waits for the host to re enumerate the PICmicro MCU.

Implementation of Soft Detach

The PICmicro MCU determines the type of device it will enumerate as based on the PS/2 device currently plugged into the translator circuit. For instance, if a PS/2 mouse is plugged into the translator, the PIC16C745/765 will enumerate as a USB mouse (see Figure 1 for the circuit diagram). The translator detects what type of device is attached through the following sequence of events, beginning with a PS/2 device being unplugged.

1. An interrupt is generated when the PS/2 data line goes low.
2. The receive routine is initiated because it is assumed that the data line dropping low is the result of a Start bit being sent by the PS/2 device or the PS/2 device has been unplugged.
3. The receive routine times out indicating that the data line is staying low due to the device being unplugged.
4. The PIC16C745/765 waits for a PS/2 device to be attached.
5. The clock and data lines both go high indicating a device has been plugged in.
6. The PICmicro MCU firmware asks the PS/2 device to identify itself. (See PS/2 commands and responses in the Appendix).
7. Based on the PS/2 device’s response, the firmware will perform a Soft Detach and re enumerate as the corresponding USB device.

Demonstrating the Soft Detach Function With a PS/2 to USB Translator Example

Note: This Technical Brief is the fifth in a series of five technical briefs. The intent of this series is to familiarize developers with USB. For the best understanding of USB, read the briefs in order: TB054, TB055, TB056, TB057 and TB058.
MULTIPLE DESCRIPTOR SETS

The PICmicro enumerates as either a USB mouse or keyboard by sending one of two sets of descriptors to the host. All `Get_Descriptor` routines, other than `Get_String_Descriptor`, use the `Descriptions` routine to look up a descriptor in the program memory. The following sections will show how the `Get_Descriptor` routines were modified for multiple descriptor sets. All of these modifications require the use of a flag that indicates what PS/2 device is attached. This flag is `KYBD_ATT` (keyboard attached). `KYBD_ATT` is high when the keyboard is attached and low otherwise.

`Get_Device_Descriptor`
`Get_Configuration_Descriptor`
`Get_Report_Descriptor`

Each of the above descriptor routines look up the starting address of the descriptor before calling `Descriptions` for the first time. The routines increment the starting address and call `Descriptions` repeatedly until every byte of the descriptor has been sent to the host. In order to accommodate for multiple descriptor sets, code was added to each `Get_Descriptor` routine which ensures the starting address of the corresponding descriptor (mouse or keyboard) is returned based on the status of `KYBD_ATT`. Figure 2 shows a block diagram of the `Get_Device_Descriptor` function. `Get_Configuration_Descriptor` and `Get_Report_Descriptor` are modified in the same manner as shown in Figure 2.

FIGURE 1: TRANSLATOR CIRCUIT DIAGRAM

```plaintext
Note 1: C1 and C2 values selected according to crystal load capacitance.
```
No modifications to the Get_String_Descriptor routine are needed. The reason for this is that string descriptors are indexed. In other words, all descriptors (other than string descriptors) have fields where string indexes are specified. For a device descriptor, for instance, the iProduct field may be specified as a 3. This means that String 3 contains product information. This field could have easily been assigned an 8 as long as String 8 contains the product information. Therefore, for multiple descriptor sets, the first set can use strings 0 through 5 and the second set 6 through 10.

CONCLUSION

The PS/2 to USB translator demonstrates the Soft Detach function by enumerating as either a USB mouse or keyboard depending on which PS/2 device is plugged into it. Soft Detach is a useful feature included in the PIC16C745/765 support firmware because it allows developers to emulate connecting and disconnecting their peripheral while the device is plugged into the host. This characteristic makes it possible for developers to change the entire descriptor set of their device on-the-fly.

MEMORY USAGE

In the PIC16C765, the following memory was used:
- Data Memory: 50 bytes
- Program Memory: 2910 bytes

REFERENCES

2. *Device Class Definition for Human Interface Devices* (located at www.usb.org)
3. *HID Usage Tables* (located at www.usb.org)
6. *PS/2® Mouse/Keyboard Protocol*, Adam Chapweske,
8. TB054: *An Introduction to USB Descriptors with a Game Port to USB Game Pad Translator* (DS91054)
9. TB055: *PS/2® to USB Mouse Translator* (DS91055)
10. TB056: *Demonstrating the Set_Report Request with a PS/2® to USB Keyboard Translator Example* (DS91056)
11. TB057: *USB Combination Devices Demonstrated by a Combination Mouse and Game Pad Device* (DS91057)
APPENDIX A: PS/2® COMMANDS

TABLE 1: HOST TO PS/2® KEYBOARD COMMANDS

<table>
<thead>
<tr>
<th>Hex Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td>Turns on/off LEDs. Keyboard replies with ACK (FA) and waits for another byte to be sent. Next byte sent determines the state of the LEDs (Bits 0-2 correspond to LEDs 1, 2 and 3. Bits 3-7 should always be 0).</td>
</tr>
<tr>
<td>EE</td>
<td>Echo. Keyboard should respond with Echo (EE).</td>
</tr>
<tr>
<td>F0</td>
<td>Set Scan Code Set. Responds with ACK (FA) and waits for another byte to be sent. Next byte sent will be either 01, 02 or 03 (corresponding to scan code sets 1, 2 and 3). If 00 is sent (instead of 01, 02 or 03) keyboard will respond with ACK (FA) followed by the current scan code set (again, 01, 02 or 03).</td>
</tr>
<tr>
<td>F2</td>
<td>Get ID. Responds with ACK (FA) followed by an ID (A3, AB). This also enables scanning.</td>
</tr>
<tr>
<td>F3</td>
<td>Get repeat rate. Keyboard replies with ACK (FA) and waits for another byte to be sent. Next byte sent will determine the typematic repeat rate for the keyboard. SEE NOTE BELOW. After this byte is sent, keyboard responds with another ACK (FA).</td>
</tr>
<tr>
<td>F4</td>
<td>Enable keyboard. Clears the buffer and starts scanning for data; Replies with ACK (FA).</td>
</tr>
<tr>
<td>F5</td>
<td>Disable keyboard. Disables scanning and replies with ACK (FA). Does not affect indicator LEDs.</td>
</tr>
<tr>
<td>F6</td>
<td>Restore default values. Does not affect indicator LEDs.</td>
</tr>
<tr>
<td>F7</td>
<td>Set all keys typematic. Responds with ACK (FA).</td>
</tr>
<tr>
<td>F8</td>
<td>Set all keys make/break. Responds with ACK (FA).</td>
</tr>
<tr>
<td>F9</td>
<td>Set all keys make. Responds with AK (FA).</td>
</tr>
<tr>
<td>FA</td>
<td>Set all keys typematic/make/break. Responds with ACK (FA).</td>
</tr>
<tr>
<td>FB</td>
<td>Set key type typematic.</td>
</tr>
<tr>
<td>FC</td>
<td>Set key type make/break.</td>
</tr>
<tr>
<td>FD</td>
<td>Set key type make.</td>
</tr>
<tr>
<td>FE</td>
<td>Resend. Keyboard responds by retransmitting the last command it sent.</td>
</tr>
<tr>
<td>FF</td>
<td>Reset. Resets the keyboard.</td>
</tr>
</tbody>
</table>

TABLE 2: PS/2® KEYBOARD TO HOST COMMANDS

<table>
<thead>
<tr>
<th>Hex Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Key detection error/keyboard buffer overflow (if set, 6 or 3 scan codes are enabled).</td>
</tr>
<tr>
<td>83,AB</td>
<td>Keyboard ID.</td>
</tr>
<tr>
<td>AA</td>
<td>Self-test passed.</td>
</tr>
<tr>
<td>EE</td>
<td>Echo. Sent to Host after receiving “Echo” command from host.</td>
</tr>
<tr>
<td>FA</td>
<td>Acknowledge (ACK).</td>
</tr>
<tr>
<td>FC</td>
<td>Self-test failed.</td>
</tr>
<tr>
<td>FE</td>
<td>Resend. Host responds by re-transmitting the last command sent.</td>
</tr>
<tr>
<td>FF</td>
<td>Key detection error/keyboard buffer overflow (if set 1 scan codes are enabled).</td>
</tr>
<tr>
<td>Hex Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>FF</td>
<td>Reset. This command causes the mouse to enter the Reset mode and do an internal self-reset.</td>
</tr>
<tr>
<td>FE</td>
<td>Resend. Any time the mouse receives an invalid command, it returns a Resend command to the host system. The host system, in turn, sends this command when it detects any error in any transmission from the mouse. When the mouse receives the Resend command, it retransmits the last packet of data sent.</td>
</tr>
<tr>
<td>F6</td>
<td>Set Default – This command re-initializes all conditions to the power-on default state.</td>
</tr>
<tr>
<td>F5</td>
<td>Disable – This command is used in the Stream mode to stop transmissions initiated by the mouse. The mouse responds to all other commands while disabled. If the mouse is in the Stream mode, it must be disabled before sending it any command that requires a response.</td>
</tr>
<tr>
<td>F4</td>
<td>Enable – This command is used in the Stream mode to begin transmission.</td>
</tr>
<tr>
<td>F3, XX</td>
<td>Set sampling rate – In the Stream mode, this command sets the sampling rate to the value indicated by byte XX (Hex)/sec.</td>
</tr>
<tr>
<td>F2</td>
<td>Read Device Type – This command always receives a response of 0x00 from the mouse.</td>
</tr>
<tr>
<td>F0</td>
<td>Set Remote mode – Sets the mouse to Remote mode. Data values are reported on in response to a Read Data command.</td>
</tr>
<tr>
<td>EE</td>
<td>Set Wrap mode – Sets the mouse to Wrap mode. The mode remains until 0xFF or 0xEC is received.</td>
</tr>
<tr>
<td>EC</td>
<td>Reset Wrap mode – The mouse returns to the previous mode of operation after receiving this command.</td>
</tr>
<tr>
<td>EB</td>
<td>Read data – This command requests that all data defined in the data packet format be transmitted. This command is executed in either Remote or Stream mode. This data is transmitted even if there has been no movement since the last report or the switch status is unchanged.</td>
</tr>
<tr>
<td>EA</td>
<td>Set Stream mode – this command sets the mouse to Stream mode.</td>
</tr>
<tr>
<td>E9</td>
<td>Status request – When this command is issued by the system, the mouse responds with a 3-byte status report, same as Data Report.</td>
</tr>
<tr>
<td>E8, XX</td>
<td>Set resolution – The mouse provides 4 resolutions, selected by the second byte of the command.</td>
</tr>
<tr>
<td>E7</td>
<td>Set scaling 2:1 – Scaling is used to provide a course/fine tracking response. At the end of a sample interval in the Stream mode, the current X and Y data value are converted to new values. The sign bits are not involved in the conversion. 2:1 scaling is performed only in Stream mode. In response to a Read Data command, the current value before conversion is sent.</td>
</tr>
<tr>
<td>E6</td>
<td>Reset scaling – This command restores scaling to 1:1.</td>
</tr>
</tbody>
</table>
APPENDIX B: SOURCE CODE

Due to the length of the source code for the PS/2 to USB Translator, the source code is available separately. The complete source code is available as a single WinZip archive file, tb058sc.zip, which may be downloaded from the Microchip corporate web site at:

www.microchip.com
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
AMERICAS
Corporate Office
2356 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0037

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104

China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDJU Street
Chengdu 610016, China
Tel: 86-28-88768200
Fax: 86-28-88766599

China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
233 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Room 701, Bldg. D
Far East International Plaza
No. 317 Xian Xing Road
Shanghai, 200051, China
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393

Korea
188-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 189980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels, Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Regus Business Centre
Lautrup høj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9985 Fax: 45-4420-9910

France
Parc d’Activité du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Via Quasimodo, 12
20025 Legnano (MI)
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
P. A. De Biesbosch 10
D-85737 Ismaning, Germany
Tel: 39-0710-742611
Fax: 39-0331-466781

United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

02/17/04