Precision Temperature Measurement Using a TC1046/1047 Sensor and a PIC16F872 MCU

Author: Chris Valenti
Microchip Technology Inc.

This Technical Brief gives a description of interfacing a TC1046 temperature sensor to a PIC16F872 microcontroller. A 2 x 20 dot matrix LCD is included in the design to provide additional functionality.

THEORY OF OPERATION

The Microchip TC1046 is a linear output temperature sensor with an output voltage that is proportional to the temperature of its environment. The TC1046 has a temperature range of -40°C to +125°C (±2°C), equivalent to 165 steps of 1°C at 6.25 mV per step. The output voltage ranges from 174 mV (-40°C) to 1205 mV (125°C). There is no need for a negative pull-down voltage for temperatures below 0°C.

Microchip also offers the TC1047 temperature sensor. This is identical in range and operation to the TC1046, with two major differences:

- The voltage steps are 10 mV/°C
- The voltage range is 100 mV to 1750 mV

Both devices are available only in SOT-23B packages.

A sample schematic for the application is shown in Figure 1. The microcontroller’s speed is determined by an RC oscillator with a frequency of approximately 2.7 MHz. Timer1 is configured as a real-time clock which establishes the temperature measurement interval. Between measurements, the sensor is turned off to conserve battery power. The microcontroller provides power to the sensor via I/O pin RA5, and samples the output voltage using the A/D converter via pin AN0. The LCD displays the current temperature, as well as the maximum and minimum temperature for the previous 24 hour period.
Note the following details of the code protection feature on PICmicro® MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microID, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

© 2001 Microchip Technology Inc.