
M TB045
KEELOQ® Manchester Encoding Receive Routines
OVERVIEW

All KEELOQ Encoders use a common code word format.
They all pack the bits of information in the same num-
ber and position in the transmission sequence. While
all the encoders offer a basic Pulse Width Modulation
(PWM) method to produce a signal that is suitable for
radio transmission, many Advanced KEELOQ Encoders
(HCS360 and higher) offer alternative methods. One
such alternative method is Manchester encoding. This
Technical Brief shows PICmicro® microcontrollers
(MCUs) assembly routines to receive Manchester
encoded transmissions.

MANCHESTER ENCODING

In Manchester Encoding, as in PWM, clock and data
are encoded in a single synchronous bit stream. In this
stream, each bit is represented by a transition. If the bit
is a ‘0’, the transition is from low to high. If the bit is a
‘1’, the transition is from high to low (see Figure 1).

FIGURE 1: MANCHESTER ENCODING

In a typical data stream, there will always be a transition
at the center of a bit (A), while at the beginning of a bit
there will be a transition depending only on the value of
the previous bit (B). The encoding may be alternatively
viewed as a phase encoding where each bit is encoded
by a positive 90 degree phase transition, or a negative
90 degree phase transition. Manchester code is there-
fore sometimes known as a bi-phase code.

A Manchester encoded signal contains frequent level
transitions which allow the receiver to extract the clock
signal easily and reliably. The penalty for introducing
frequent transitions, is that the Manchester coded sig-
nal consumes more bandwidth than the original signal
(sequence of logic ones and zeros or NRZ) but it still
compares well with the bandwidth requirements of
other encoding systems, such as PWM.

A MANCHESTER RECEIVER

The role of a Manchester receiver is that of separating
the clock information from the transmission stream in
order to properly extract the data. This can be done in
hardware by means of a Digital Phase Locked Loop
(DPLL) circuit or by means of software techniques, as
we will show in the following sections.

Many different approaches to the problem are possible.
This Technical Brief has the sole purpose of offering the
reader a starting point for the creation of an interrupt-
based Manchester receiver/decoder suitable for use
with KEELOQ Encoders.

KEELOQ MANCHESTER FORMAT

When operating in the Manchester mode, Advanced
KEELOQ Encoders build the code-word with a common
specific sequence. The elementary period (TE) will be
used in the following as the measurement unit. TE will
vary from 100 µs to 800 µs according to the selected
baud-rate.

As shown in Figure 2 , the code-word is composed of:

FIGURE 2: KEELOQ CODE-WORD

• Preamble, consisting of 32 transitions (32xTE)
• Synchronization Header, a pause low of 4xTE

duration
• Start bit, consisting of logic 1-bit encoding (2xTE)

• Packet of 65+ bits, the actual data bits (N x 2xTE)
• Stop bit, consisting of a logic 1-bit (2xTE)
• Guard Time, a pause before the whole code word

is repeated again (length can vary with encoder
models).

Authors: Lucio Di Jasio
Microchip Technology Inc.

0 0 1

TE TE

A B

Header Encrypt Fixed Guard

1 CODE-WORD

PreamblePreamble
 2001 Microchip Technology Inc. Preliminary DS91045A-page 1

TB045
FIGURE 3: MANCHESTER TRANSMISSION FORMAT

INTERRUPT RECEIVE TECHNIQUES

Interrupts are available on all Microchip 14-bit and 16-
bit core PICmicro microcontrollers. Interrupts can be
used to implement an efficient receiver for KEELOQ®

Manchester Encoded transmissions.

The example routine presented in Appendix A is based
on a simple principle. Timer0 is used to generate a con-
stant period interrupt multiple of the desired baud rate
TE. The multiplying (oversampling) factor RF_OVERS is
a user configurable parameter. The value of the param-
eter (typically in the range of 4 to 8) should be selected
as high as possible with the understanding that the
higher values will provide more accuracy and flexibility,
while causing the interrupt routine to use a larger por-
tion of the CPU processing power.

While the sampling techniques employed in polling and
interrupt receivers do not differ much, the whole archi-
tecture of a KEELOQ receiver/decoder contains certain
advantages and disadvantages. Interrupt-driven
receive routines work in the background, while the user
main code executes, just as a hardware peripheral
would. The only interface between the interrupt service
routine and the main program are the buffer that holds
the received data (Buffer) and the flag that signals
the completion of the receiving process (RF_FULL). A
significant advantage is that the code is cleaner and is
theoretically easier to maintain.

The main disadvantage of interrupt receiving routines
is reduced flexibility. The interrupt mechanism is actu-
ally stealing processing power from the CPU, and
resources from the microcontroller (Timer0). Therefore,
the routine length and complexity must be reduced to a
minimum.

Sharing resources with the interrupt routine is possible,
but requires some attention. For example, the main
program is not allowed to write/reset Timer0. However,
it is possible to make an effective use of it and the inter-
rupt timing itself to derive multiple software timers for
use in the main loop. Enabling other interrupt sources,
adding latency to the receiver interrupt servicing, might
cause the receiver sampling point to be misplaced and
is therefore to be considered very carefully. No timing

can be achieved in the Main Loop by means of simple
counters (loops) since the interrupt mechanism will
interfere slightly randomizing the loops duration.

These recommendations are common to all the appli-
cations that make use of interrupts.

CODE DESCRIPTION

The Interrupt Service Routine (ISR) samples the radio
receiver digital output and looks for transitions. The ISR
operates as a simple state machine capable of four
states (see Figure 4).

The sampling rate is determined by the continuous
reloading of Timer0 (with TIMER_VALUE). It provides a
fixed time base to schedule the execution of one of the
state routines according to the value of the variable RF
State. Each of these state routines is responsible for
the advancement of the process to a previous or sub-
sequent state according to a set of rules that determine
the actual receiver working mechanism. Each state
routine is responsible for loading a skip counter
(RFSkip) with a value of one, to make the execution
flow continuous. The skip counter may be loaded with
a value larger than one to add a delay and postpone the
execution of the next (same) state routine by a multiple
of the interrupt timer period, when required.

GuardPreamble Sync Encrypted Fixed Code

1 2

Start bit Stop bit

TimeData Data

16

 bit 0
 bit 1

 bit 2

1

DS91045A-page 2 Preliminary  2001 Microchip Technology Inc.

TB045
FIGURE 4: STATE MACHINE TRANSITION GRAPH

The following is a brief description of the workings of
the four state routines.

State 0 (label TRFReset) is used at start up and when-
ever an error or time-out occurs in any of the previous
states. Its role is simply that of repositioning the data
buffer pointer to the top of the buffer, and clearing the
bit counter.

State 1 (label RFSYNC) is where the receiver waits for
the SyncHeader (4 x TE pause) after the Preamble and
derives from it the value of TE (actually 1.5 x TE)
expressed in terms of interrupt periods count. This is
essentially the way the receiver tries to recalibrate with
the transmitter’s actual clock frequency, compensating
for the ample variations possible due to temperature
and battery voltage changes on the transmitters.

State 2 (label TRFTDetect) is where the receiver
waits for a transition to happen. This state is critical to
the clock extraction process, since the synchronization
of the data stream depends on the constant realign-
ment of the receiving process with the input signal tran-
sitions. When an edge is detected, a delay of 1.5 x TE

is set (RF_Skip = 1.5 x TE) before entering state (3) in
order to reach an optimal bit sampling point.

State 3 (label TRFSample), is where the actual data bit
is extracted. The action of state ‘1’ combined with the
delay of 1.5 x TE ensures that data sampling occurs at
the ideal place, i.e., at the center of the first half of a bit
period (see Figure 5).

FIGURE 5: SAMPLING POINTS

The data bit is then rolled in the buffer and the bit
counter advanced. When the required number of bits
(RF_NBITS) has been received, a flag is set
(RF_Full) and the receiver state machine loop idles,
making the receiver data buffer (Buffer) available to
the main program for decoding.

In order to re-enable the receiver, the main program
resets the same flag (RF_Full) releasing control of the
receive data buffer.

To complete the Interrupt Service Routine there are a
few lines of code dealing with the context saving (at the
top) and restoring (at the bottom). This code can be
processor dependent, meaning that different models of
PICmicro MCUs might actually require modifications to
these portions. It is recommended that the reader
refers to the specific PICmicro microcontroller
datasheet for the suggested implementation of such
code.

The InitRX routine shows an example of the portion
of the PICmicro MCU initialization code required for the
receiver start up, where the interrupt services are
enabled and the timer options are selected.

TRFSample
TRFTDetect

TRFSynch
TRFReset

Next bit

Receive Complete

Wait for Transitions

Detected

Time-out

Measure Synch.
Header

(0)

(3)
(2)

(1)

Transition

Wait for Buffer to be Emptied

Set Flag of Buffer Full

Rising Edge

Pulse Width Out-of-bounds

Reset

Complete

TE

1.5 x TE skip

T bit

1.5 x TE skip
edge detect

bit sampling

interrupt
period

bit sampling

edge detect
 2001 Microchip Technology Inc. Preliminary DS91045A-page 3

TB045
PERFORMANCE

The code presented in the appendix shows an imple-
mentation for a clock of 20 MHz and a baud rate corre-
sponding to a TE value of 200 µs. The following formula
is used to determine the interrupt timer period:

TIMER_VAL = (XTAL * BRATE/(4 * RF_OVERS)

Changing the parameters XTAL, BRATE, RF_OVERS
to fit different application requirements allows the user
to adapt the code to different clock speeds and baud
rates within the constraints of the available processing
power. It is good practice to keep the percentage of
time the processor spends in Interrupt Service Rou-
tines (ISR) to a minimum:

Pint% = Time spent in ISR / second *100

or

Pint% = ISR length/Interrupt timer period * 100

Such a percentage determines the equivalent average
clock speed of execution for the main program (running
in foreground) as per the following formula:

FEQ = FOSC * (1 - Pint% / 100)

The closer Pint% gets to 100% the slower the main pro-
gram will appear to execute (FEQ approaching zero),
affecting the responsiveness of the whole application.

The absolute limit Pint% = 100, is actually reached
when the interrupt timer period (determined by
TIMER_VAL) becomes equal or shorter than the Inter-
rupt Service Routine length (about 60 instruction cycles
in this case). In this situation, a new call to the interrupt
service routine is made as soon as the processor
returns from the previous one, and there is no time left
to execute the main program.

When selecting values for a specific application, typi-
cally the baud rate will be given, as well as a maximum
desired clock speed. The oversampling factor can be
used then to optimize the Pint%.

Refer to Table 1 for some possible values:

Note: It is important to verify that the value
derived from the formula for TIMER_VAL,
being a period for an 8-bit timer (Timer0),
must be smaller than (28 = 256). Compro-
mising with the other parameters allows
the user to obtain low use of CPU power
(ideally Pint% = 40% or less), while
achieving a satisfactory receiver perfor-
mance.

MEMORY USAGE

Program Memory Words Used: 133

File Registers Used: 22

REFERENCES

KEYWORDS

KEELOQ, Manchester, Mid-Range, Receiver, Interrupt

TABLE 1: SUGGESTED VALUES

XTAL 20 MHz 10 MHz 8 MHz 4 MHz 4 MHz

BRATE 200 µs 400 µs 800 µs 800 µs 400 µs

RF_OVERS 8 8 8 6 4

TIMER_VAL 125 125 200 133 100

Pint% 32% 32% 20% 30% 40%

Secure Learning RKE
Systems using KEELOQ
Encoders

TB001 DS91000

An Introduction to KEELOQ
Code Hopping

TB003 DS91002

KEELOQ CRC Verification
Routines

TB043 DS91043

Modular PICmicro Mid-
Range MCU Code Hopping
Decoder

AN742 DS00742

Modular Mid-Range
PICmicro KEELOQ Decoder
in C

AN744 DS00744
DS91045A-page 4 Preliminary  2001 Microchip Technology Inc.

TB045
APPENDIX A: SOURCE CODE

;**
; Manchester encoding interrupt driven receiver routines
;
; Uses: interrupt on TMR0
; Accepts: Keeloq code words Manchester encoding
;
; VERSION 1.00 1/16/01 Lucio Di Jasio
;
;**

#define XTAL .20 ; clock frequency (MHz)
#define BRATE .200 ; Te = 200 (us)
#define RF_OVERS .8 ; oversampling factor (4..8)

TIMER_VAL equ (XTAL * BRATE) / (4 * RF_OVERS)

 IF (TIMER_VAL > .256) || (TIMER_VAL < .60)
 error “ERROR: Timer period exceeds limits”
 ENDIF

; bit timing limits
#define SHORT_HEAD .3*RF_OVERS ; minimum synch header length accepted
#define LONG_HEAD .6*RF_OVERS ; maximum synch header length accepted
#define HIGH_TO .3*RF_OVERS ; bit timeout

#define RF_NBITS.69 ; number of bits to capture

 CBLOCK 0x20 ; omit the address (0x20) if this include module is
 ; not the first to allocate RAM
 W_TEMP ; context saving W reg.
 STATUS_TEMP ; “ “ STATUS reg.
 PCLATH_TEMP ; “ “ PCLATH reg.
 FSR_TEMP ; “ “ FSR reg.

 RFP ; receive buffer pointer
 RFbitc ; bit counter
 RFSkip ; skip sample counter
 RFsamp ; samples counter
 RFState ; state variable
 RXFlags ; various flags
 Te ; time unit = 1/baud rate

 Buffer0:9 ; receive data buffer

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is intended
and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller products.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 2001 Microchip Technology Inc. Preliminary DS91045A-page 5

TB045
; add here extra software timers
 XTMRH ; example 16 bit software timer
 XTMRL

 ENDC

; radio input
#define RFIN PORTB,0

; flags
#define RF_Full RXFlags,0 ; buffer full, receiver idle
#define LastBit RXFlags,1 ; used for transition detection

;--
; Async_ISR
;
; NOTE: place this routine at loc. 0x04
; context saving can be specific to the PICmicro model used
; (ref. to PICmicro datasheet for suggested implementation)
;
IntVector
 movwf W_TEMP ; context saving, save W first
 swapf STATUS,W
 bcf STATUS,RP0 ; assuming use of variables in bank0
 movwf STATUS_TEMP ; save status
 movf PCLATH,W
 movwf PCLATH_TEMP ; save PCLATH
 clrf PCLATH ; assuming Async_ISR located in page0

;--
Async_ISR
 movlw TIMER_VAL ; non disruptive timer reload
 subwf TMR0,F

 bcf INTCON,T0IF ; interrupt served

 btfsc RF_Full ; if buffer still full
 goto AsyncRFE ; idle (exit immediate)

 decfsz RFSkip,F ; count the skips
 goto AsyncRFE ; delay (exit immediate)

 movf RFState,W ; launch appropriate state routine
 andlw 03 ; limit to [0..3]
 addwf PCL,F ; offset in jump Table
RFTable
 goto TRFReset ; 0
 goto TRFSync ; 1
 goto TRFTDetect ; 2
 goto TRFSample ; 3
RFTableEnd

 IF HIGH(RFTable) != HIGH(RFTableEnd)
 error “RFTable crosses page border”
 ENDIF

;--
; State 1
; Waiting and measuring a Synch Header
DS91045A-page 6 Preliminary  2001 Microchip Technology Inc.

TB045
;
TRFSync
 btfsc RFIN ; wait for a rising edge
 goto TRFRise
 incf RFsamp,F ; while input low count the samples
 movf RFsamp,W
 btfsc STATUS,Z
 goto TRFReset ; check overflows
 incf RFSkip,F ; skip = 1
 goto AsyncRFE ; remain in state 0

TRFRise
 movlw SHORT_HEAD ; check minimum header length
 subwf RFsamp,W
 btfss STATUS,C
 goto TRFReset ; procede to reset if too short

 movlw LONG_HEAD ; check maximum header length
 subwf RFsamp,W
 btfsc STATUS,C
 goto TRFReset ; procede to reset if too long

TRCalibra
 bcf STATUS,C ; RFSamp measure THeader
 rrf RFsamp,F ; divide by two
 bcf STATUS,C
 rrf RFsamp,W ; divide by four
 movwf Te ; Te = 1/4 THeader
 movwf RFsamp
 bcf STATUS,C
 rrf RFsamp,W ; RFsamp = 1/8 THeader
 addwf Te,F ; Te = 1/4THeader + 1/8THeader (that is 1.5xTE)
 incf Te,F ; round it up

TRinit
 bsf LastBit ; init for detection of falling edges
 clrf RFsamp ; reset sample counter
 incf RFState,F ; move on to transition detection(2)
 incf RFSkip,F ; skip=1
 goto AsyncRFE ; done

;--
; State 2
;
; Transition Detection
;
TRFTDetect
 btfsc LastBit ; depending on last value of input
 goto TRFUSET

; last bit = 0
 btfsc RFIN ; detect a transition
 goto TRFTransition
 goto TRFNOTransition

; last bit = 1
TRFUSET
 btfss RFIN ; detect a transition
 goto TRFTransition
 2001 Microchip Technology Inc. Preliminary DS91045A-page 7

TB045
 goto TRFNOTransition

TRFTransition ; transition detected
 incf RFState,F ; move on to Sampling (State 3)
 clrf RFsamp
 movf Te,W ; skip = 1.5xTE
 movwf RFSkip
 goto AsyncRFE ; done

TRFNOTransition ; no transition detected
 incf RFSkip,F ; skip =1
 incf RFsamp,F ; keep counting time between transitions
 movlw HIGH_TO ; check against Timeout value
 subwf RFsamp,W
 btfss STATUS,C ; if timeout fall through Reset
 goto AsyncRFE ; done

;--
; State 0,
;
; Reset receiver
;
TRFReset
 movlw 1
 movwf RFState ; move on to TRFSync (1)
 clrf RFsamp ; reset sample counter
 movlw Buffer0 ; reset buffer pointer
 movwf RFP
 clrf RFbitc ; reset bit counter
 incf RFSkip,F ; skip =1
 goto AsyncRFE ; done

;--
; State 3,
;
; Data Sampling
;
TRFSample
 incf RFSkip,F ; skip = 1
 decf RFState,F ; next will be TDetect again (2)

 bcf LastBit ; update LastBit for next transition
 btfsc RFIN
 bsf LastBit

 movf FSR,W ; save FSR
 movwf FSR_TEMP
 movf RFP,W ; load current pointer
 movwf FSR ;

 bcf STATUS,C
 btfsc RFIN ; copy data bit in CARRY
 bsf STATUS,C
 rrf INDF,F ; roll in the buffer

 movf FSR_TEMP,W ; restore FSR
 movwf FSR
 incf RFbitc,F ; count the bit
DS91045A-page 8 Preliminary  2001 Microchip Technology Inc.

TB045
 movlw 07 ; every 8 bit
 andwf RFbitc,W
 btfsc STATUS,Z
 incf RFP,F ; increment the pointer

 movf RFbitc,W ; check all bit in already
 xorlw RF_NBITS
 btfss STATUS,Z
 goto AsyncRFE ; not yet, done

TRFFull ; received them all
 movlw TRFReset ; next state will be Reset
 movwf RFState
 bsf RF_Full ; set the buffer full flag
 goto AsyncRFE ; done
AsyncRFE

;--
; Example: how to use the interrupt period to derive more software timers
; showing a 16 bit TIMER that ticks at every interrupt period
; 1 tick (us) = 4 x TIMER_VAL / XTAL (MHz)
;
 incf XTMRH,F ; update 16 bit timer
 incfsz XTMRL,F
 decf XTMRH,F

;--
; Context Restore
;
ExitInt
 movf PCLATH_TEMP,W ; restore PCLATH (page)
 movwf PCLATH
 swapf STATUS_TEMP,W ; restore status and bank
 movwf STATUS
 swapf W_TEMP,F ; restore W reg.
 swapf W_TEMP,W
 retfie ; exit re-enabling interrupts

;--
; Init Receiver
;
; Example code for proper interrupt and timer set up
;
InitRX
 clrf RXFlags
 clrf INTCON ; disable interrupts
 clrf RFState ; init with Reset state
 clrf XTMRH ; init demo software timer
 clrf XTMRL
 movlw 1
 movwf RFSkip ; init skip

 bsf STATUS,RP0 ; bank 1
 movlw b’10001111’ ; init timer prescaler 1:1
 movwf OPTION_REG ; prescaler assigned to WDT 1:128
 bcf STATUS,RP1 ; bank 0

 movlw -TIMER_VAL ; init timer
 movwf TMR0
 2001 Microchip Technology Inc. Preliminary DS91045A-page 9

TB045
 bsf INTCON,T0IE ; enable interrupts on TMR0 overflow
 bsf INTCON,GIE ; global interrupt enable
 return
DS91045A-page 10 Preliminary  2001 Microchip Technology Inc.

TB045
“All rights reserved. Copyright © 2001, Microchip
Technology Incorporated, USA. Information contained
in this publication regarding device applications and the
like is intended through suggestion only and may be
superseded by updates. No representation or warranty
is given and no liability is assumed by Microchip
Technology Incorporated with respect to the accuracy
or use of such information, or infringement of patents or
other intellectual property rights arising from such use
or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized
except with express written approval by Microchip. No
licenses are conveyed, implicitly or otherwise, under
any intellectual property rights. The Microchip logo and
name are registered trademarks of Microchip
Technology Inc. in the U.S.A. and other countries. All
rights reserved. All other trademarks mentioned herein
are the property of their respective companies. No
licenses are conveyed, implicitly or otherwise, under
any intellectual property rights.”

Trademarks

The Microchip name, logo, PIC, PICmicro,
PICMASTER, PICSTART, PRO MATE, KEELOQ,
SEEVAL, MPLAB and The Embedded Control
Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and
other countries.

Total Endurance, ICSP, In-Circuit Serial Programming,
FilterLab, MXDEV, microID, FlexROM, fuzzyLAB,
MPASM, MPLINK, MPLIB, PICDEM, ICEPIC,
Migratable Memory, FanSense, ECONOMONITOR,
Select Mode and microPort are trademarks of
Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a
service mark of Microchip Technology Incorporated in
the U.S.A.

All other trademarks mentioned herein are property of
their respective companies.
© 2001, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.
 2001 Microchip Technology Inc. Preliminary DS91045A-page 11

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual
property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights
reserved. All other trademarks mentioned herein are the property of their respective companies.

DS91045A-page 12 Preliminary  2001 Microchip Technology Inc.

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 5/01 Printed on recycled paper.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456
Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Austin
Analog Product Sales
8303 MoPac Expressway North
Suite A-201
Austin, TX 78759
Tel: 512-345-2030 Fax: 512-345-6085
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Boston
Analog Product Sales
Unit A-8-1 Millbrook Tarry Condominium
97 Lowell Road
Concord, MA 01742
Tel: 978-371-6400 Fax: 978-371-0050
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Two Prestige Place, Suite 130
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
Mountain View
Analog Product Sales
1300 Terra Bella Avenue
Mountain View, CA 94043-1836
Tel: 650-968-9241 Fax: 650-967-1590

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Beijing Office
Unit 915
New China Hong Kong Manhattan Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Shanghai
Microchip Technology Shanghai Office
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
Hong Kong
Microchip Asia Pacific
RM 2101, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

ASIA/PACIFIC (continued)
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Germany
Analog Product Sales
Lochhamer Strasse 13
D-82152 Martinsried, Germany
Tel: 49-89-895650-0 Fax: 49-89-895650-22
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/30/01

WORLDWIDE SALES AND SERVICE

	TB045
	KeeLoq® Manchester Encoding Receive Routines

	FIGURE 1: MANCHESTER ENCODING
	FIGURE 2: KEELOQ CODE-WORD
	FIGURE 3: MANCHESTER TRANSMISSION FORMAT
	FIGURE 4: STATE MACHINE TRANSITION GRAPH
	FIGURE 5: SAMPLING POINTS
	TABLE 1: SUGGESTED VALUES
	APPENDIX A: SOURCE CODE
	WORLDWIDE SALES AND SERVICE

