Microchip Development Kit Sample Format for the MCRF355/360 Devices

Users can program all 154 bits of the MCRF355/360. The array can be programmed in any custom format and with any combination of bits.

The format presented here is used for Microchip microID™ Development Systems (DV103003 and DV103006) and can be ordered as production material with a unique customer number.

See TB032 for information on ordering custom programmed production material.

The Microchip Development System (DV103003) uses nine 1's (111111111) as header.

The preprogrammed tag samples in the development kit have hex 11 (= 0001 0001) as the customer number.

For the development system, users can program the customer number (1 byte) plus the 13 bytes of user data or they can deselect the "Microchip Format" option in the microID™ rfLAB™ and program all 154 bits in any format.

When users program the samples using the microID rfLAB, the rfLAB calculates the checksum (2 bytes) automatically by adding up all 14 bytes (customer number + 13 bytes of user data), and put into the checksum field in the device memory. See Example 1 for details.

When the programmed tag is energized by the reader field, the tag outputs all 154 bits of data.

When the demo reader detects data from the tag, it reports the 14 bytes of the data (customer number plus 13 bytes of user data) to the host computer if the header and checksum are correct. The reader does not send the header and checksum to the host computer.

The "microID rfLAB" or a simple terminal program such as "terminal.exe" can be used to read the reader’s output (28 hex digits) on the host computer.

When the demo reader is used in the Terminal mode ("terminal.exe"), the tag’s data appear after the first two dummy ASCII characters (GG). See Example 2 for details.

EXAMPLE 1: CHECKSUM

<table>
<thead>
<tr>
<th>Header</th>
<th>13 Bytes of User Data</th>
<th>16-Bit Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>111111111</td>
<td>0 Customer Number</td>
<td>0 Byte 13 0 Byte 12 0 … 0 Byte 2 0 Byte 1</td>
</tr>
</tbody>
</table>

Total: 154 bits

Notes:

- Users can program all 154 bits of the MCRF355/360. The array can be programmed in any custom format and with any combination of bits.
- The format presented here is used for Microchip microID™ Development Systems (DV103003 and DV103006) and can be ordered as production material with a unique customer number.
- See TB032 for information on ordering custom programmed production material.
- The Microchip Development System (DV103003) uses nine 1's (111111111) as header.
- The preprogrammed tag samples in the development kit have hex 11 (= 0001 0001) as the customer number.
- For the development system, users can program the customer number (1 byte) plus the 13 bytes of user data or they can deselect the "Microchip Format" option in the microID™ rfLAB™ and program all 154 bits in any format.
- When users program the samples using the microID rfLAB, the rfLAB calculates the checksum (2 bytes) automatically by adding up all 14 bytes (customer number + 13 bytes of user data), and put into the checksum field in the device memory. See Example 1 for details.
- When the programmed tag is energized by the reader field, the tag outputs all 154 bits of data.
- When the demo reader detects data from the tag, it reports the 14 bytes of the data (customer number plus 13 bytes of user data) to the host computer if the header and checksum are correct. The reader does not send the header and checksum to the host computer.
- The "microID rfLAB" or a simple terminal program such as "terminal.exe" can be used to read the reader’s output (28 hex digits) on the host computer.
- When the demo reader is used in the Terminal mode ("terminal.exe"), the tag’s data appear after the first two dummy ASCII characters (GG). See Example 2 for details.

EXAMPLE 2: READER’S OUTPUT IN TERMINAL MODE ("TERMINAL.EXE")

The demo reader outputs GG+28 hex digits (i.e., GG 12345678901234567890ABCDEF). The first two ASCII characters (GG) are dummy characters.

The tag’s data are the next 28 hex digits (112 bits) after the first two ASCII characters (GG).
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, Application Maestro, dsPICDEM, dsPICDEM.net, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerMate, PowerTool, rFLAB, rFPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.