Section 41. Interrupts (Part IV)

HIGHLIGHTS

This section of the manual contains the following major topics:

41.1 Introduction ... 41-2
41.2 Non-Maskable Traps ... 41-6
41.3 Interrupt Processing Timing .. 41-11
41.4 Interrupt Control and Status Registers ... 41-14
41.5 Interrupt Setup Procedures ... 41-50
41.6 Register Maps .. 41-53
41.7 Design Tips .. 41-54
41.8 Related Application Notes ... 41-55
41.9 Revision History .. 41-56
41.1 INTRODUCTION

The dsPIC33F/PIC24H Interrupt Controller module reduces the numerous peripheral interrupt request (IRQ) signals to a single IRQ signal to the dsPIC33F/PIC24H CPU.

The primary features related to the Interrupt Controller module are:

• Up to eight processor exceptions and software traps
• Seven user-selectable priority levels
• Interrupt Vector Table (IVT) with up to 126 vector sources
• Unique vector for each interrupt or exception source
• Fixed priority within a specified user priority level
• Alternate Interrupt Vector Table (AIVT) for debugging support
• Fixed interrupt entry and return latencies
• Software can generate any peripheral interrupt

41.1.1 Interrupt Vector Table

The IVT illustrated in Figure 41-1 resides in program memory starting at location 0x000004. The IVT contains 126 vectors consisting of eight non-maskable trap vectors and up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains an address that is 24 bits wide. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

41.1.2 Alternate Interrupt Vector Table

The AIVT is located after the IVT, as illustrated in Figure 41-1. Access to the AIVT is provided by the Enable Alternate Interrupt Vector Table (ALTIVT) control bit in Interrupt Control Register 2 (INTCON2<15>). If the ALTIVT bit (INTCON2<15>) is set, all of the interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging by providing a means to switch between an application and a support environment without reprogramming the interrupt vector. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

41.1.3 Reset Sequence

A device Reset is not a true exception because the Interrupt Controller is not involved in the Reset process. The dsPIC33F/PIC24H device clears its registers in response to a Reset, which forces the Program Counter (PC) to zero. The processor then begins program execution at location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Table 41-1 provides the location of each interrupt source in the IVT.
Figure 41-1: Interrupt Vector Table

<table>
<thead>
<tr>
<th>Vector</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reset – GOTO Instruction</td>
<td>0x000000</td>
</tr>
<tr>
<td>Reset – GOTO Address</td>
<td>0x000002</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x000004</td>
</tr>
<tr>
<td>Oscillator Fail Trap Vector</td>
<td>0x000006</td>
</tr>
<tr>
<td>Address Error Trap Vector</td>
<td>0x000008</td>
</tr>
<tr>
<td>Stack Error Trap Vector</td>
<td>0x00000A</td>
</tr>
<tr>
<td>Math Error Trap Vector</td>
<td>0x00000C</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x00000E</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x000010</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x000012</td>
</tr>
<tr>
<td>Interrupt Vector 0</td>
<td>0x000014</td>
</tr>
<tr>
<td>Interrupt Vector 1</td>
<td>0x000016</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Interrupt Vector 52</td>
<td>0x00007C</td>
</tr>
<tr>
<td>Interrupt Vector 53</td>
<td>0x00007E</td>
</tr>
<tr>
<td>Interrupt Vector 54</td>
<td>0x000080</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Interrupt Vector 116</td>
<td>0x0000FC</td>
</tr>
<tr>
<td>Interrupt Vector 117</td>
<td>0x0000FE</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x000100</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x000102</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x000104</td>
</tr>
<tr>
<td>Oscillator Fail Trap Vector</td>
<td>0x000106</td>
</tr>
<tr>
<td>Address Error Trap Vector</td>
<td>0x000108</td>
</tr>
<tr>
<td>Stack Error Trap Vector</td>
<td>0x00010A</td>
</tr>
<tr>
<td>Math Error Trap Vector</td>
<td>0x00010C</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x00010E</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x000110</td>
</tr>
<tr>
<td>Reserved</td>
<td>0x000112</td>
</tr>
<tr>
<td>Interrupt Vector 0</td>
<td>0x000114</td>
</tr>
<tr>
<td>Interrupt Vector 1</td>
<td>0x000116</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Interrupt Vector 52</td>
<td>0x00017C</td>
</tr>
<tr>
<td>Interrupt Vector 53</td>
<td>0x00017E</td>
</tr>
<tr>
<td>Interrupt Vector 54</td>
<td>0x000180</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Interrupt Vector 116</td>
<td>0x0001FC</td>
</tr>
<tr>
<td>Interrupt Vector 117</td>
<td>0x0001FE</td>
</tr>
<tr>
<td>START OF CODE</td>
<td>0x000200</td>
</tr>
</tbody>
</table>

See Table 41-1 for Interrupt Vector details.
<table>
<thead>
<tr>
<th>Vector Number</th>
<th>IRQ Number</th>
<th>IVT Address</th>
<th>AIVT Address</th>
<th>Interrupt Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>0x000014</td>
<td>0x000114</td>
<td>INT0 – External Interrupt 0</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>0x000016</td>
<td>0x000116</td>
<td>IC1 – Input Capture 1</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>0x000018</td>
<td>0x000118</td>
<td>OC1 – Output Compare 1</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>0x00001A</td>
<td>0x00011A</td>
<td>T1 – Timer1</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>0x00001C</td>
<td>0x00011C</td>
<td>Reserved</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>0x00001E</td>
<td>0x00011E</td>
<td>IC2 – Input Capture 2</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>0x000020</td>
<td>0x000120</td>
<td>OC2 – Output Compare 2</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>0x000022</td>
<td>0x000122</td>
<td>T2 – Timer2</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>0x000024</td>
<td>0x000124</td>
<td>T3 – Timer3</td>
</tr>
<tr>
<td>17</td>
<td>9</td>
<td>0x000026</td>
<td>0x000126</td>
<td>SPI1E – SPI1 Fault</td>
</tr>
<tr>
<td>18</td>
<td>10</td>
<td>0x000028</td>
<td>0x000128</td>
<td>SPI1 – SPI1 Transfer Done</td>
</tr>
<tr>
<td>19</td>
<td>11</td>
<td>0x00002A</td>
<td>0x00012A</td>
<td>U1RX – UART1 Receiver</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>0x00002C</td>
<td>0x00012C</td>
<td>U1TX – UART1 Transmitter</td>
</tr>
<tr>
<td>21</td>
<td>13</td>
<td>0x00002E</td>
<td>0x00012E</td>
<td>ADC – ADC Group Convert Done</td>
</tr>
<tr>
<td>22-23</td>
<td>14-15</td>
<td>0x000030-0x000032</td>
<td>0x000130-0x000132</td>
<td>Reserved</td>
</tr>
<tr>
<td>24</td>
<td>16</td>
<td>0x000034</td>
<td>0x000134</td>
<td>SI2C1 – I2C1 Slave Event</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td>0x000036</td>
<td>0x000136</td>
<td>MI2C1 – I2C1 Master Event</td>
</tr>
<tr>
<td>26</td>
<td>18</td>
<td>0x000038</td>
<td>0x000138</td>
<td>CMP1 – Analog Comparator 1 Interrupt</td>
</tr>
<tr>
<td>27</td>
<td>19</td>
<td>0x00003A</td>
<td>0x00013A</td>
<td>CN – Input Change Notification Interrupt</td>
</tr>
<tr>
<td>28</td>
<td>20</td>
<td>0x00003C</td>
<td>0x00013C</td>
<td>INT1 – External Interrupt 1</td>
</tr>
<tr>
<td>29-36</td>
<td>21-28</td>
<td>0x00003E-0x00004C</td>
<td>0x00013E-0x00014C</td>
<td>Reserved</td>
</tr>
<tr>
<td>37</td>
<td>29</td>
<td>0x00004E</td>
<td>0x00014E</td>
<td>INT2 – External Interrupt 2</td>
</tr>
<tr>
<td>38-64</td>
<td>30-56</td>
<td>0x000050-0x000084</td>
<td>0x000150-0x000184</td>
<td>Reserved</td>
</tr>
<tr>
<td>65</td>
<td>57</td>
<td>0x000086</td>
<td>0x000186</td>
<td>PWM PSEM Special Event Match</td>
</tr>
<tr>
<td>66-72</td>
<td>58-64</td>
<td>0x000088-0x000094</td>
<td>0x000188-0x000194</td>
<td>Reserved</td>
</tr>
<tr>
<td>73</td>
<td>65</td>
<td>0x000096</td>
<td>0x000196</td>
<td>U1E – UART1 Error Interrupt</td>
</tr>
<tr>
<td>74-87</td>
<td>66-79</td>
<td>0x000098-0x0000B2</td>
<td>0x000198-0x0001B2</td>
<td>Reserved</td>
</tr>
<tr>
<td>88</td>
<td>80</td>
<td>0x0000B4</td>
<td>0x0001B4</td>
<td>JTAG – Data Ready</td>
</tr>
<tr>
<td>89-101</td>
<td>81-93</td>
<td>0x0000B6-0x0000CE</td>
<td>0x0001B6-0x0001CE</td>
<td>Reserved</td>
</tr>
<tr>
<td>102</td>
<td>94</td>
<td>0x0000D0</td>
<td>0x0001D0</td>
<td>PWM 1 – PWM1 Interrupt</td>
</tr>
<tr>
<td>103</td>
<td>95</td>
<td>0x0000D2</td>
<td>0x0001D2</td>
<td>PWM 2 – PWM2 Interrupt</td>
</tr>
<tr>
<td>104</td>
<td>96</td>
<td>0x0000D4</td>
<td>0x0001D4</td>
<td>PWM 3 – PWM3 Interrupt</td>
</tr>
<tr>
<td>105</td>
<td>97</td>
<td>0x0000D6</td>
<td>0x0001D6</td>
<td>PWM 4 – PWM4 Interrupt</td>
</tr>
<tr>
<td>106-110</td>
<td>98-102</td>
<td>0x0000D8-0x0000E0</td>
<td>0x0001D8-0x0001E0</td>
<td>Reserved</td>
</tr>
<tr>
<td>111</td>
<td>103</td>
<td>0x0000E2</td>
<td>0x0001E2</td>
<td>CMP2 – Analog Comparator 2</td>
</tr>
<tr>
<td>112</td>
<td>104</td>
<td>0x0000E4</td>
<td>0x0001E4</td>
<td>CMP3 – Analog Comparator 3</td>
</tr>
<tr>
<td>113</td>
<td>105</td>
<td>0x0000E6</td>
<td>0x0001E6</td>
<td>CMP4 – Analog Comparator 4</td>
</tr>
<tr>
<td>114-117</td>
<td>106-109</td>
<td>0x0000E8-0x0000EE</td>
<td>0x0001E8-0x0001EE</td>
<td>Reserved</td>
</tr>
<tr>
<td>118</td>
<td>110</td>
<td>0x0000F0</td>
<td>0x0001F0</td>
<td>ADC Pair 0 Convert Done</td>
</tr>
<tr>
<td>119</td>
<td>111</td>
<td>0x0000F2</td>
<td>0x0001F2</td>
<td>ADC Pair 1 Convert Done</td>
</tr>
<tr>
<td>120</td>
<td>112</td>
<td>0x0000F4</td>
<td>0x0001F4</td>
<td>ADC Pair 2 Convert Done</td>
</tr>
<tr>
<td>121</td>
<td>113</td>
<td>0x0000F6</td>
<td>0x0001F6</td>
<td>ADC Pair 3 Convert Done</td>
</tr>
<tr>
<td>122</td>
<td>114</td>
<td>0x0000F8</td>
<td>0x0001F8</td>
<td>ADC Pair 4 Convert Done</td>
</tr>
<tr>
<td>123</td>
<td>115</td>
<td>0x0000FA</td>
<td>0x0001FA</td>
<td>ADC Pair 5 Convert Done</td>
</tr>
<tr>
<td>124</td>
<td>116</td>
<td>0x0000FC</td>
<td>0x0001FC</td>
<td>ADC Pair 6 Convert Done</td>
</tr>
<tr>
<td>125</td>
<td>117</td>
<td>0x0000FE</td>
<td>0x0001FE</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

Highest Natural Order Priority

Lowest Natural Order Priority
41.1.4 CPU Priority Status

The CPU can operate at one of the 16 priority levels that range from 0 to 15. An interrupt or trap source must have a priority level greater than the current CPU priority to initiate an exception process. Users can program the peripheral and external interrupt sources for levels 0 through 7. The CPU priority levels 8 through 15 are reserved for trap sources.

A trap is a non-maskable interrupt source intended to detect hardware and software issues (see 41.2 “Non-Maskable Traps”). The priority level for each trap source is fixed. Only one trap is assigned to a priority level. An interrupt source programmed to priority level 0 is effectively disabled, since it can never be greater than the CPU priority.

The current CPU priority level is indicated by the following status bits:

- CPU Interrupt Priority Level Status bits (IPL<2:0>) in the CPU Status register (SR<7:5>)
- CPU Interrupt Priority Level 3 Status bit (IPL3) in the Core Control register (CORCON<3>)

The IPL<2:0> status bits are readable and writable. Therefore, the user application can modify these bits to disable all sources of interrupts below a given priority level. For example, if IPL<2:0> = 011, the CPU is not interrupted by any source with a programmed priority level of 0, 1, 2, or 3.

Trap events have higher priority than any user interrupt source. When the IPL3 bit is set, a trap event is in progress. The IPL3 bit can be cleared, but not set, by the user application. In some applications, the user might need to clear the IPL3 bit when a trap has occurred and branch to an instruction other than the original instruction that caused the trap to occur.

All user interrupt sources can be disabled by setting IPL<2:0> = 111.

Note: The IPL<2:0> bits become read-only bits when interrupt nesting is disabled. For more information, refer to 41.2.4.2 “Interrupt Nesting”.

41.1.5 Interrupt Priority

Each peripheral interrupt source can be assigned to one of seven priority levels. The user application-assignable interrupt priority control bits for each individual interrupt are located in the Least Significant 3 bits of each nibble within the IPCx registers. Bit 3 of each nibble is not used and is read as a ‘0’. These bits define the priority level assigned to a particular interrupt. The usable priority levels are 1 (lowest priority) to 7 (highest priority). If the IPC bits associated with an interrupt source are all cleared, the interrupt source is effectively disabled.

Note: The application program must disabled the interrupts while reconfiguring the interrupt priority levels “on-the-fly”. Failure to disable interrupts can produce unexpected results.

More than one interrupt request source can be assigned to a specific priority level. To resolve priority conflicts within a given user application-assigned level, each source of interrupt has a natural order priority based on its location in the IVT. Table 41-1 shows the location of each interrupt source in the IVT. The lower numbered interrupt vectors have higher natural priority, while the higher numbered vectors have lower natural priority. The overall priority level for any pending source of interrupt is determined first by the user application-assigned priority of that source in the IPCx register, and then by the natural order priority within the IVT.

Natural order priority is used only to resolve conflicts between simultaneous pending interrupts with the same user application-assigned priority level. Once the priority conflict is resolved and the exception process begins, the CPU can be interrupted only by a source with higher user application-assigned priority. Interrupts with the same user application-assigned priority, but a higher natural order priority that becomes pending during the exception process, and remains pending until the current exception process completes.

Assigning each interrupt source to one of seven priority levels enables the user application to give an interrupt with a low natural order priority and a very high overall priority level. For example, the UART1 RX Interrupt can be given a priority of 7, and the External Interrupt 0 (INT0) can be assigned to priority level 1, thus giving it a very low effective priority.

Note: The peripherals and sources of interrupt available in the IVT vary depending on the specific dsPIC33F/PIC24H device. The sources of interrupt provided in this document represent a comprehensive listing of all interrupt sources found on dsPIC33F/PIC24H devices. Refer to the specific device data sheet for more information.
41.2 NON-MASKABLE TRAPS

Traps are non-maskable, nestable interrupts that adhere to a fixed priority structure. Traps provide a means to correct erroneous operation during debugging and operation of the application. If the user application does not intend to correct a trap error condition, these vectors must be loaded with the address of a software routine to reset the device. Otherwise, the user application programs the trap vector with the address of a service routine that corrects the trap condition.

The dsPIC33F/PIC24H consists of four implemented sources of non-maskable traps:
- Oscillator Failure Trap
- Stack Error Trap
- Address Error Trap
- Math Error Trap

For most trap conditions, the instruction that caused the trap is allowed to complete before the exception processing begins. Therefore, the user application may have to correct the action of the instruction that caused the trap.

Each trap source has a fixed priority as defined by its position in the IVT. An Oscillator Failure trap has the highest priority, while a math error trap has the lowest priority (see Figure 41-1). In addition, trap sources are classified into two distinct categories: soft traps and hard traps.

41.2.1 Soft Traps

The math error trap (priority level 11) and stack error trap (priority level 12) are categorized as soft trap sources. Soft traps can be treated like non-maskable sources of interrupt that adhere to the priority assigned by their position in the IVT. Soft traps are processed like interrupts and require two cycles to be sampled and acknowledged prior to exception processing. Therefore, additional instructions may be executed before a soft trap is acknowledged.

41.2.1.1 STACK ERROR TRAP (SOFT TRAP, LEVEL 12)

The stack is initialized to 0x0800 during a reset. A stack error trap is generated, if the stack pointer address is less than 0x0800.

A Stack Limit (SPLIM) register associated with the stack pointer is not initialized at reset. The stack overflow check is not enabled until a word is written to the SPLIM register.

All Effective Addresses (EAs) generated using W15 as a source or destination pointer are compared against the value in the SPLIM register. If the EA is greater than the contents of the SPLIM register, a stack error trap is generated. In addition, a stack error trap is generated if the EA calculation wraps over the end of data space (0xFFFF).

A stack error can be detected in the software by polling the STKERR bit (INTCON1<2>). To avoid re-entering the TSR, the STKERR status flag must be cleared in the software with a Return From Interrupt (RETFIE) instruction before the program returns from the trap.

41.2.1.2 MATH ERROR TRAP (SOFT TRAP, LEVEL 11)

Any of the following events will generate a math error trap:
- Accumulator A overflow
- Accumulator B overflow
- Catastrophic accumulator overflow
- Divide-by-zero
- Shift Accumulator (SFTAC) operation that exceeds ±16 bits
These three bits in the INTCON1 register enable the following types of accumulator overflow traps:

- The Accumulator A Overflow Trap Flag (OVATE) Control bit (INTCON1<10>) enables traps for an Accumulator A overflow event.
- The Accumulator B Overflow Trap Flag (OVBTE) Control bit (INTCON1<9>) enables traps for an Accumulator B overflow event.
- The Catastrophic Overflow Trap Enable (COVTE) Control bit (INTCON1<8>) enables traps for a catastrophic overflow of either accumulator. When this trap is detected, these corresponding ERROR bits are set in the INTCON1 register:
 - Accumulator A Overflow Trap Flag (OVAERR)
 - Accumulator B Overflow Trap Flag (OVBERR)
 - Accumulator A Catastrophic Overflow Trap Enable (COVAERR)
 - Accumulator B Catastrophic Overflow Trap Enable (COVBERR)

An Accumulator A or Accumulator B overflow event is defined as a carry-out from bit 31. The accumulator overflow cannot occur, if the 31-bit Saturation mode is enabled for the accumulator. A catastrophic accumulator overflow is defined as a carry-out from bit 39 of either accumulator. The catastrophic overflow cannot occur, if the accumulator saturation (31-bit or 39-bit) is enabled.

Divide-by-zero traps cannot be disabled. The divide-by-zero check is performed during the first iteration of the \texttt{REPEAT} loop that executes the divide instruction. The DIV0ERR bit (INTCON1<6>) is set when this trap is detected.

Accumulator shift traps cannot be disabled. The \texttt{SFTAC} instruction can be used to shift the accumulator by a literal value or a value in one of the W registers. If the shift value exceeds \pm 16 bits, an arithmetic trap is generated and the SFTACERR bit (INTCON1<7>) is set. The \texttt{SFTAC} instruction executes, but the results of the shift are not written to the target accumulator.

A math error trap can be detected in the software by polling the MATHERR bit (INTCON1<4>). To avoid re-entering the TSR, the MATHERR status flag must be cleared in the software with a \texttt{RETFIE} instruction before the program returns from the trap. Before clearing the MATHERR bit (INTCON1<4>), all conditions that caused the trap to occur must be cleared. If the trap was due to an accumulator overflow, the Accumulator Overflow (OA and OB) Status bits (SR<15:14>) must be cleared. The OA and OB Status bits are read-only. Therefore, the user software must perform dummy operation on the overflowed accumulator (such as adding '0'), which will cause the hardware to clear the OA or OB Status bit.

41.2.2 Hard Traps

Hard traps include exceptions of priority levels from 13 to 15. The address error (level 13) and oscillator error (level 14) traps are into this category.

Like soft traps, hard traps are non-maskable sources of interrupt. The difference between hard traps and soft traps is that hard traps force the CPU to stop code execution after the instruction causing the trap to complete. Normal program execution flow does not resume until the trap has been acknowledged and processed.

41.2.2.1 TRAP PRIORITY AND HARD TRAP CONFLICTS

If a higher-priority trap occurs while any lower-priority trap is in progress, processing of the lower-priority trap is suspended, and then the higher-priority trap is acknowledged and processed. The lower-priority trap remains pending until processing of the higher-priority trap completes.

Each hard trap that occurs must be acknowledged before code execution of any type can continue. If a lower-priority hard trap occurs while a higher-priority trap is pending, acknowledged or is being processed, a hard-trap conflict occurs because the lower-priority trap cannot be acknowledged until processing for the higher-priority trap completes.

The device is automatically reset in a hard-trap conflict condition. The Trap Reset Flag (TRAPR) Status bit (RCON<15>) in the Reset module, is set when a reset occurs so that the condition can be detected by software.
41.2.2.2 OSCILLATOR FAILURE TRAP (HARD TRAP, LEVEL 14)

An oscillator failure trap event is generated for any of the following reasons:

- The Fail-Safe Clock Monitor (FSCM) is enabled and has detected a loss of the system clock source
- A loss of PLL lock has been detected during normal operation using the PLL
- The FSCM is enabled and the PLL fails to achieve lock at a Power-on Reset (POR)

An oscillator failure trap event can be detected in the software by polling the OSCFAIL bit (INTCON1<1>), or the CF bit (OSCCON<3>) in the Oscillator module. To avoid re-entering the TSR, the OSCFAIL status flag must be cleared in the software with a RETFI instruction before the program returns from the trap.

41.2.2.3 ADDRESS ERROR TRAP (HARD TRAP, LEVEL 13)

Operating conditions that can generate an address error trap include:

- A misaligned data word fetch is attempted. This condition occurs when an instruction performs a word access with the Least Significant bit (LSb) of the EA set to ‘1’. The dsPIC33F/PIC24H CPU requires all word accesses to be aligned to an even address boundary.
- A bit manipulation instruction uses the Indirect Addressing mode with the LSb of the EA set to ‘1’
- A data fetch is attempted from unimplemented data address space
- Execution of a BRA #literal instruction or a GOTO #literal instruction, where literal is an unimplemented program memory address
- Execution of instructions after the PC has been modified to point to unimplemented program memory addresses. The PC can be modified by loading a value into the stack and executing a RETURN instruction.

When an address error trap occurs, data space writes are inhibited so that data is not overwritten. An address error can be detected in the software by polling the ADDRERR bit (INTCON1<3>). To avoid re-entering the TSR, the ADDRERR status flag must be cleared in the software with a RETFI instruction before the program returns from the trap.

Note: In the MAC class of instructions, the data space is split into X and Y spaces. In these instructions, unimplemented X space includes all of Y space and unimplemented Y space includes all of X space.

41.2.3 Disable Interrupts Instruction

The Disable Interrupts (DISI) instruction can disable interrupts for up to 16384 instruction cycles. This instruction is useful for executing time-critical code segments. The DISI instruction only disables the interrupts with priority levels 1 to 6. Priority level 7 interrupts and all trap events can still interrupt the CPU when the DISI instruction is active.

The DISI instruction works in conjunction with the Disable Interrupts Count (DISICNT) register in the CPU. When the DISICNT register is non-zero, priority level 1 to 6 interrupts are disabled. The DISICNT register is decremented on each subsequent instruction cycle. When the DISICNT register counts down to zero, priority level 1 to 6 interrupts are re-enabled. The value specified in the DISI instruction includes all cycles due to Program Space Visibility (PSV) accesses, instruction stalls, and so on.

The DISICNT register is both readable and writable. The user application can terminate the effect of a previous DISI instruction early by clearing the DISICNT register. The time that interrupts are disabled can also be increased by writing to or adding to the DISICNT register.

If the DISICNT register is zero, interrupts cannot be disabled by simply writing a non-zero value to the register. Interrupts must first be disabled by using the DISI instruction. Once the DISI instruction has executed and DISICNT holds a non-zero value, the application can extend the interrupt disable time by modifying the contents of DISICNT.

The DISI Instruction DISI bit (INTCON2<14>) is set whenever interrupts are disabled as a result of the DISI instruction.

Note: The DISI instruction can be used to quickly disable all user interrupt sources, if no source is assigned to CPU priority level 7.
41.2.4 Interrupt Operation

All interrupt event flags are sampled during each instruction cycle. A pending IRQ is indicated by the flag bit = 1 in an IFSx register. The IRQ causes an interrupt if the corresponding bit in the Interrupt Enable (IECx) registers is set. For the rest of the instruction cycle in which the IRQ is sampled, the priorities of all pending interrupt requests are evaluated.

No instruction is aborted when the CPU responds to the IRQ. The instruction, which is in progress when the IRQ is sampled and completed before the ISR is executed.

If there is a pending IRQ with a user application-assigned priority level greater than the current processor priority level that is indicated by the IPL<2:0> bits (SR<7:5>), an interrupt is presented to the processor. The processor then saves the following information on the software stack:

- Current PC value
- Low byte of the Processor Status register (SRL)
- IPL3 status bit (CORCON<3>)
- Stack Frame Active (CORCON<3>)

These four values allow the return PC address value, the MCU status bits, and the current processor priority level to be automatically saved.

After this information is saved on the stack, the CPU writes the priority level of the pending interrupt into the IPL<2:0> bit locations. This action disables all interrupts of lower or equal priority until the ISR is terminated using the RETFIE instruction. Figure 41-2 illustrates the stack operation for interrupt event.

Figure 41-2: Stack Operation for Interrupt Event

<table>
<thead>
<tr>
<th>Stack Grows Toward Higher Address</th>
<th>15</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC<15:1></td>
<td>W15 (before IRQ)</td>
<td>PC<15:1></td>
</tr>
<tr>
<td>SR<7:0></td>
<td>PC<22:16></td>
<td>W15 (after IRQ)</td>
</tr>
<tr>
<td><Free Word></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

41.2.4.1 RETURN FROM INTERRUPT

The RETFIE instruction unstacks the PC return address, the IPL3 status bit and the SRL register, to return the processor to the state and priority level that existed before the interrupt sequence.

41.2.4.2 INTERRUPT NESTING

Interrupts are nestable by default. Any ISR in progress can be interrupted by another source of interrupt with a higher user application-assigned priority level. Interrupt nesting can be disabled by setting the NSTDIS bit (INTCON1<15>). When the NSTDIS bit (INTCON1<15>) is set, all interrupts in progress force the CPU priority to level 7 by setting IPL<2:0> = 111. This action effectively masks all other sources of interrupt until a RETFIE instruction is executed. When interrupt nesting is disabled, the user application-assigned interrupt priority levels have no effect except to resolve conflicts between simultaneous pending interrupts.

The IPL<2:0> bits (SR<7:5>) become read-only when interrupt nesting is disabled. This prevents the user software from setting IPL<2:0> to a lower value, and that effectively re-enables the interrupt nesting.
41.2.5 Wake-Up from Sleep and Idle

Any source of interrupt that is individually enabled, using its corresponding control bit in the IECx registers, can wake-up the processor from Sleep mode or Idle mode. When the interrupt status flag for a source is set and the interrupt source is enabled by the corresponding bit in the IEC Control registers, a wake-up signal is sent to the dsPIC33F/PIC24H CPU. When the device wakes from Sleep mode or Idle mode, one of the following actions occur:

- If the interrupt priority level for that source is greater than the current CPU priority level, the processor will process the interrupt and branch to the ISR for the interrupt source.
- If the user application-assigned interrupt priority level for the source is lower than or equal to the current CPU priority level, the processor will continue execution, starting with the instruction immediately following the `PWRSAV` instruction that previously put the CPU in Sleep mode or Idle mode.

Note: User interrupt sources that are assigned to CPU priority level 0 cannot wake the CPU from Sleep mode or Idle mode, because the interrupt source is effectively disabled. To use an interrupt as a wake-up source, the program must assign the CPU priority level for the interrupt to level 1 or greater.

41.2.6 Analog-to-Digital Converter External Conversion Request

The INT0 external interrupt request pin is shared with the Analog-to-Digital Converter (ADC) as an external conversion request signal. The INT0 interrupt source has programmable edge polarity, which is also available to the ADC external conversion request feature.

41.2.7 External Interrupt Support

The dsPIC33F/PIC24H supports up to three external interrupt pin sources (INT0 to INT2). Each external interrupt pin has edge detection circuitry to detect the interrupt event. The INTCON2 register has three control bits (INT0EP to INT2EP) that select the polarity of the edge detection circuitry. Each external interrupt pin can be programmed to interrupt the CPU on a rising edge or falling edge event. Refer to Register 41-4 for more information.
41.3 INTERRUPT PROCESSING TIMING

41.3.1 Interrupt Latency for One-Cycle Instructions

Figure 41-3 shows the sequence of events when a peripheral interrupt is asserted during a one-cycle instruction. The interrupt process takes four instruction cycles. Each cycle is numbered in Figure 41-3 for reference.

The interrupt flag status bit is set during the instruction cycle after the peripheral interrupt occurs. The current instruction completes during this instruction cycle. In the second instruction cycle after the interrupt event, the contents of the PC and Lower-byte Status (SRL) registers are saved into a temporary buffer register. The second cycle of the interrupt process is executed as a NOP instruction to maintain consistency with the sequence taken during a two-cycle instruction (see 41.3.2 “Interrupt Latency for Two-Cycle Instructions”). In the third cycle, the PC is loaded with the vector table address for the interrupt source and the starting address of the ISR is fetched. In the fourth cycle, the PC is loaded with the ISR address. The fourth cycle is executed as a NOP while the first instruction in the ISR is fetched.

Figure 41-3: Interrupt Timing During a One-Cycle Instruction
41.3.2 Interrupt Latency for Two-Cycle Instructions

The interrupt latency during a two-cycle instruction is the same as during a one-cycle instruction. The first and second cycle of the interrupt process allow the two-cycle instruction to complete the execution. The timing diagram in Figure 41-4 illustrates the peripheral interrupt event occurring in the instruction cycle prior to execution of the two-cycle instruction.

Figure 41-5 illustrates the interrupt timing when a peripheral interrupt coincides with the first cycle of a two-cycle instruction. In this case, the interrupt process completes for a one-cycle instruction (see 41.3.1 “Interrupt Latency for One-Cycle Instructions”).
41.3.3 Returning from Interrupt

To return from an interrupt, the program must call the `RETFIE` instruction. During the first two cycles of a `RETFIE` instruction, the contents of the PC and the SRL register are popped (that is, removed) from the stack. The third instruction cycle is used to fetch the instruction addressed by the updated program counter. This cycle executes as a `NOP` instruction. On the fourth cycle, program execution resumes at the point where the interrupt occurred. Figure 41-6 illustrates the timing sequence returning from interrupt.

Figure 41-6: Return from Interrupt Timing

41.3.4 Special Conditions for Interrupt Latency

The dsPIC33F/PIC24H allows the current instruction to complete when a peripheral interrupt source becomes pending. The interrupt latency is the same for both one-cycle and two-cycle instructions. However, certain conditions can increase interrupt latency by one cycle, depending on when the interrupt occurs. If a fixed latency is critical to the application, the following conditions should be avoided:

- Executing a `MOV.D` instruction that uses PSV to access a value in program memory space
- Appending an instruction stall cycle to any two-cycle instruction
- Appending an instruction stall cycle to any one-cycle instruction that performs a PSV access
- A bit test and skip instruction (`BTSC, BTSS`) that uses PSV to access a value in the program memory space
41.4 INTERRUPT CONTROL AND STATUS REGISTERS

The following registers are associated with the Interrupt Controller:

- **INTCON1: Interrupt Control Register 1**
 The INTCON1 register, which controls the global interrupt functions, contains the NSTDIS bit, as well as the control and status flags for the processor trap sources.

- **INTCON2: Interrupt Control Register 2**
 The INTCON2 register, which controls the global interrupt functions, also controls the external interrupt request signal behavior and use of the alternate vector table.

- **IFSx: Interrupt Flag Status Registers** (see Register 41-5 to Register 41-11)
 All interrupt request flags are maintained in the IFSx registers, where ‘x’ denotes the register number. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and cleared by the software.

- **IECx: Interrupt Enable Control Registers** (see Register 41-12 to Register 41-18)
 All Interrupt Enable Control bits are maintained in the IECx registers, where ‘x’ denotes the register number. These control bits are used to individually enable interrupts from the peripherals or external signals.

- **IPCx: Interrupt Priority Control Registers** (see Register 41-19 to Register 41-35)
 Each user interrupt source can be assigned to one of eight priority levels. The IPC registers set the interrupt priority level for each source of interrupt.

- **SR: CPU Status Register**
 The SR register is not a specific part of the interrupt controller hardware, but it contains the IPL<2:0> status bits (SR<7:5>), which indicates the current CPU priority level. The user application can change the current CPU priority level by writing to the IPL bits.

- **CORCON: Core Control Register**
 The CORCON register is not specifically part of the interrupt controller hardware, but it contains the IPL3 status bit, which indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

- **INTTREG: Interrupt Control and Status Register**
 The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into the Vector Number (VECNUM<6:0>) and Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

Each register is described in detail in the following sections.

Note: The total number and type of interrupt sources depend on the device variant. Refer to the specific device data sheet for more information.

41.4.1 Assignment of Interrupts to Control Registers

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 41-1. For example, the INT0 (External Interrupt 0) source has vector number and natural order priority 0. Therefore, the INT0IF bit is found in IFS0<0>. The INT0 interrupt uses bit 0 of the IEC0 register as its Enable bit. The IPC0<2:0> bits assign the interrupt priority level for the INT0 interrupt.
Register 41-1: SR: CPU Status Register

<table>
<thead>
<tr>
<th>R-0</th>
<th>R-0</th>
<th>R/C-0</th>
<th>R/C-0</th>
<th>R-0</th>
<th>R/C-0</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA</td>
<td>OB</td>
<td>SA</td>
<td>SB</td>
<td>OAB</td>
<td>SAB</td>
<td>DA</td>
<td>DC</td>
</tr>
</tbody>
</table>

bit 15

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPL<2:0>(1,2)</td>
<td>RA</td>
<td>N</td>
<td>OV</td>
<td>Z</td>
<td>C</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 7

Legend:
- **C** = Clearable bit
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 15-8 Not used by the Interrupt Controller

Refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for the bit descriptions of the SR register.

bit 7-5 **IPL<2:0>:** CPU Interrupt Priority Level Status bits(1,2)

- 111 = CPU interrupt priority level is 7 (15). User interrupts disabled
- 110 = CPU interrupt priority level is 6 (14)
- 101 = CPU interrupt priority level is 5 (13)
- 100 = CPU interrupt priority level is 4 (12)
- 011 = CPU interrupt priority level is 3 (11)
- 010 = CPU interrupt priority level is 2 (10)
- 001 = CPU interrupt priority level is 1 (9)
- 000 = CPU interrupt priority level is 0 (8)

bit 4-0 Not used by the Interrupt Controller

Refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for the bit descriptions of the SR register.

Note 1: The IPL<2:0> bits are concatenated with the IPL bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if the IPL bit = 1.

2: The IPL<2:0> status bits are read-only when NSTDIS = 1 (INTCON1<15>).
dsPIC33F/PIC24H Family Reference Manual

Register 41-2: CORCON: Core Control Register

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R-0</td>
<td>R-0</td>
<td>R-0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>EDT</td>
<td></td>
<td></td>
<td>DL<1:0></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- C = Clearable bit
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 15-4 Not used by the Interrupt Controller

Refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for the bit descriptions of the SR register.

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3(1)

1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less

bit 2-0 Not used by the Interrupt Controller

Refer to the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for the bit descriptions of the SR register.

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.
Register 41-3: INTCON1: Interrupt Control Register 1

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-0</td>
<td>NSTDIS</td>
<td>OVAERR</td>
<td>OVBERR</td>
<td>COVAERR</td>
<td>COVBERR</td>
<td>OVATE</td>
<td>OVBTE</td>
<td>COVTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/W-0</td>
<td></td>
</tr>
<tr>
<td>bit 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NSTDIS</td>
<td></td>
<td>R/W-0</td>
<td>U-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>bit 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OVAERR</td>
<td></td>
<td>OVBERR</td>
<td></td>
<td>COVAERR</td>
<td>COVBERR</td>
<td>OVATE</td>
</tr>
<tr>
<td>bit 7</td>
<td>SFTACERR</td>
<td>DIV0ERR</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

- **bit 15**
 - **NSTDIS**: Interrupt Nesting Disable bit
 - 1 = Interrupt nesting is disabled
 - 0 = Interrupt nesting is enabled

- **bit 14**
 - **OVAERR**: Accumulator A Overflow Trap Flag bit
 - 1 = Trap was caused by overflow of Accumulator A
 - 0 = Trap was not caused by overflow of Accumulator A

- **bit 13**
 - **OVBERR**: Accumulator B Overflow Trap Flag bit
 - 1 = Trap was caused by overflow of Accumulator B
 - 0 = Trap was not caused by overflow of Accumulator B

- **bit 12**
 - **COVAERR**: Accumulator A Catastrophic Overflow Trap Flag bit
 - 1 = Trap was caused by catastrophic overflow of Accumulator A
 - 0 = Trap was not caused by catastrophic overflow of Accumulator A

- **bit 11**
 - **COVBERR**: Accumulator B Catastrophic Overflow Trap Flag bit
 - 1 = Trap was caused by catastrophic overflow of Accumulator B
 - 0 = Trap was not caused by catastrophic overflow of Accumulator B

- **bit 10**
 - **OVATE**: Accumulator A Overflow Trap Enable bit
 - 1 = Trap overflow of Accumulator A
 - 0 = Trap disabled

- **bit 9**
 - **OVBTE**: Accumulator B Overflow Trap Enable bit
 - 1 = Trap overflow of Accumulator B
 - 0 = Trap disabled

- **bit 8**
 - **COVTE**: Catastrophic Overflow Trap Enable bit
 - 1 = Trap on catastrophic overflow of Accumulator A or B enabled
 - 0 = Trap disabled

- **bit 7**
 - **SFTACERR**: Shift Accumulator Error Status bit
 - 1 = Math error trap was caused by an invalid accumulator shift
 - 0 = Math error trap was not caused by an invalid accumulator shift

- **bit 6**
 - **DIV0ERR**: Divide-by-Zero Error Status bit
 - 1 = Divide-by-zero error trap was caused by a divide by zero
 - 0 = Divide-by-zero error trap was not caused by a divide by zero

- **bit 5**
 - **Unimplemented**: Read as ‘0’

- **bit 4**
 - **MATHERR**: Math Error Status bit
 - 1 = Math error trap has occurred
 - 0 = Math error trap has not occurred

- **bit 3**
 - **ADDRERR**: Address Error Trap Status bit
 - 1 = Address error trap has occurred
 - 0 = Address error trap has not occurred
Register 41-3: INTCON1: Interrupt Control Register 1 (Continued)

bit 2 STKERR: Stack Error Trap Status bit
 1 = Stack error trap has occurred
 0 = Stack error trap has not occurred

bit 1 OSCFAIL: Oscillator Failure Trap Status bit
 1 = Oscillator failure trap has occurred
 0 = Oscillator failure trap has not occurred

bit 0 Unimplemented: Read as ‘0’
Section 41. Interrupts (Part IV)

Register 41-4: INTCON2: Interrupt Control Register 2

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value on POR</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 15</td>
<td>ALTIVT: Enable Alternate Interrupt Vector Table bit</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bit 14</td>
<td>DISI: DISI Instruction Status bit</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bit 13-3</td>
<td>Unimplemented: Read as ‘0’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 2</td>
<td>INT2EP: External Interrupt 2 Edge Detect Polarity Select bit</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bit 1</td>
<td>INT1EP: External Interrupt 1 Edge Detect Polarity Select bit</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>bit 0</td>
<td>INT0EP: External Interrupt 0 Edge Detect Polarity Select bit</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

- **ALTIVT**: Enable Alternate Interrupt Vector Table bit
 - 1 = Use alternate vector table
 - 0 = Use standard (default) vector table

- **DISI**: DISI Instruction Status bit
 - 1 = DISI instruction is active
 - 0 = DISI instruction is not active

- **INT2EP**: External Interrupt 2 Edge Detect Polarity Select bit
 - 1 = Interrupt on negative edge
 - 0 = Interrupt on positive edge

- **INT1EP**: External Interrupt 1 Edge Detect Polarity Select bit
 - 1 = Interrupt on negative edge
 - 0 = Interrupt on positive edge

- **INT0EP**: External Interrupt 0 Edge Detect Polarity Select bit
 - 1 = Interrupt on negative edge
 - 0 = Interrupt on positive edge
Register 41-5: IFS0: Interrupt Flag Status Register 0

Bit 15-14	Unimplemented: Read as '0'
Bit 13	ADIF: ADC Group Conversion Complete Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 12	U1TXIF: UART1 Transmitter Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 11	U1RXIF: UART1 Receiver Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 10	SPI1IF: SPI1 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 9	SPI1EIF: SPI1 Fault Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 8	T3IF: Timer3 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 7	T2IF: Timer2 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 6	OC2IF: Output Compare Channel 2 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 5	IC2IF: Input Capture Channel 2 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 4	Unimplemented: Read as '0'
Bit 3	T1IF: Timer1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
Bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-5: IFS0: Interrupt Flag Status Register 0

bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred

bit 0 INT0IF: External Interrupt 0 Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-6: IFS1: Interrupt Flag Status Register 1

<table>
<thead>
<tr>
<th>bit 15-8</th>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>R/W-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

- bit 15-14: **Unimplemented**: Read as ‘0’
- bit 13: **INT2IF**: External Interrupt 2 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 12-5: **Unimplemented**: Read as ‘0’
- bit 4: **INT1IF**: External Interrupt 1 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 3: **CNIF**: Input Change Notification Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 2: **AC1IF**: Analog Comparator 1 Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 1: **MI2C1IF**: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0: **SI2C1IF**: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-7: IFS3: Interrupt Flag Status Register 3

<table>
<thead>
<tr>
<th>bit 15-8</th>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>U-0</td>
<td>—</td>
</tr>
<tr>
<td>PSEMIF</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **’1’** = Bit is set
- **’0’** = Bit is cleared
- **x** = Bit is unknown

- **bit 15-10** Unimplemented: Read as ‘0’
- **bit 9**
 PSEMIF: PWM Special Event Match Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred

- **bit 8-0** Unimplemented: Read as ‘0’

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.

Register 41-8: IFS4: Interrupt Flag Status Register 4

<table>
<thead>
<tr>
<th>bit 15-8</th>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>U-0</td>
<td>—</td>
</tr>
<tr>
<td>U1 EIF</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- **’1’** = Bit is set
- **’0’** = Bit is cleared
- **x** = Bit is unknown

- **bit 15-2** Unimplemented: Read as ‘0’
- **bit 1**
 U1 EIF: UART1 Error Interrupt Flag Status bit
 1 = Interrupt request has occurred
 0 = Interrupt request has not occurred

- **bit 0** Unimplemented: Read as ‘0’

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-9: IFS5: Interrupt Flag Status Register 5

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM2IF</td>
<td>PWM1IF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 15

bit 14

bit 13-1

bit 0

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as '0'
- **-n** = Value at POR
- **‘1’** = Bit is set
- **‘0’** = Bit is cleared
- **x** = Bit is unknown

PWM2IF: PWM 2 Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

PWM1IF: PWM 1 Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

Unimplemented: Read as '0'

JTAGIF: JTAG Interrupt Flag Status bit

- 1 = Interrupt request has occurred
- 0 = Interrupt request has not occurred

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-10: IFS6: Interrupt Flag Status Register 6

<table>
<thead>
<tr>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13-10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6-2</th>
<th>Bit 1</th>
<th>Bit 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>R/W-0</td>
<td>R/W-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>ADCP1IF</td>
<td>ADCP0IF</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>AC4IF</td>
<td>AC3IF</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as '0'
-n = Value at POR
'1' = Bit is set
'0' = Bit is cleared
x = Bit is unknown

bit 15 ADCP1IF: ADC Pair 1 Conversion Done Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 14 ADCP0IF: ADC Pair 0 Conversion Done Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 9 AC4IF: Analog Comparator 4 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 8 AC3IF: Analog Comparator 3 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 7 AC2IF: Analog Comparator 2 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 6-2 Unimplemented: Read as '0'
bit 1 PWM4IF: PWM 4 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 0 PWM3IF: PWM 3 Interrupt Flag Status bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-11: IFS7: Interrupt Flag Status Register 7

bit 15-5	Unimplemented: Read as ‘0’
bit 4	ADCP6IF: ADC Pair 6 Conversion Done Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 3	ADCP5IF: ADC Pair 5 Conversion Done Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 2	ADCP4IF: ADC Pair 4 Conversion Done Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	ADCP3IF: ADC Pair 3 Conversion Done Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	ADCP2IF: ADC Pair 2 Conversion Done Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-12: IEC0: Interrupt Enable Control Register 0

<table>
<thead>
<tr>
<th></th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>ADIE</td>
<td>U1TXIE</td>
<td>U1RXIE</td>
<td>SPI1IE</td>
<td>SPI1EIE</td>
<td>T3IE</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U1TXIE</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U1RXIE</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T3IE</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T2IE</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OC2IE</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>IC2IE</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>U-0</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

- **Unimplemented:** Read as ‘0’
- **ADIE:** ADC1 Conversion Complete Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **U1TXIE:** UART1 Transmitter Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **U1RXIE:** UART1 Receiver Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **SPI1IE:** SPI1 Event Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **SPI1EIE:** SPI1 Event Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **T3IE:** Timer3 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **T2IE:** Timer2 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **OC2IE:** Output Compare Channel 2 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **IC2IE:** Input Capture Channel 2 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **Unimplemented:** Read as ‘0’
- **T1IE:** Timer1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- **OC1IE:** Output Compare Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

Note:
Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-12: IEC0: Interrupt Enable Control Register 0 (Continued)

bit 1 **IC1IE**: Input Capture Channel 1 Interrupt Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled

bit 0 **INT0IE**: External Interrupt 0 Enable bit
 1 = Interrupt request enabled
 0 = Interrupt request not enabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-13: IEC1: Interrupt Enable Control Register 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>R/W</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>INT2IE</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

<table>
<thead>
<tr>
<th>bit 15-14</th>
<th>Unimplemented: Read as ‘0’</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 13</td>
<td>INT2IE: External Interrupt 2 Enable bit</td>
</tr>
<tr>
<td></td>
<td>1 = Interrupt request enabled</td>
</tr>
<tr>
<td></td>
<td>0 = Interrupt request not enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 12-5</th>
<th>Unimplemented: Read as ‘0’</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 4</td>
<td>INT1IE: External Interrupt 1 Enable bit</td>
</tr>
<tr>
<td></td>
<td>1 = Interrupt request enabled</td>
</tr>
<tr>
<td></td>
<td>0 = Interrupt request not enabled</td>
</tr>
</tbody>
</table>

bit 3	**CNIE**: Input Change Notification Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

bit 2	**AC1IE**: Analog Comparator 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

bit 1	**MI2C1IE**: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

bit 0	**SI2C1IE**: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-14: IEC3: Interrupt Enable Control Register 3

<table>
<thead>
<tr>
<th></th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

Unimplemented: Read as ‘0’

PSEMIE: PWM Special Event Match Interrupt Enable bit
- **1** = Interrupt request enabled
- **0** = Interrupt request not enabled

U1EIE: UART1 Error Interrupt Enable bit
- **1** = Interrupt request enabled
- **0** = Interrupt request not enabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.

Register 41-15: IEC4: Interrupt Enable Control Register 4

<table>
<thead>
<tr>
<th></th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

Unimplemented: Read as ‘0’

U1EIE: UART1 Error Interrupt Enable bit
- **1** = Interrupt request enabled
- **0** = Interrupt request not enabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Section 41. Interrupts (Part IV)

Register 41-16: IEC5: Interrupt Enable Control Register 5

<table>
<thead>
<tr>
<th>Bit</th>
<th>Description</th>
<th>Value at POR</th>
<th>R/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>PWM2IE: PWM2 Interrupt Enable bit</td>
<td>0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>14</td>
<td>PWM1IE: PWM1 Interrupt Enable bit</td>
<td>0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>13-1</td>
<td>Unimplemented</td>
<td>0</td>
<td>U-0</td>
</tr>
<tr>
<td>0</td>
<td>JTAGIE: JTAG Interrupt Enable bit</td>
<td>0</td>
<td>R/W-0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

- **PWM2IE**: PWM2 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

- **PWM1IE**: PWM1 Interrupt Enable bit
 - 1 = Interrupt request is enabled
 - 0 = Interrupt request is not enabled

- **JTAGIE**: JTAG Interrupt Enable bit
 - 1 = Interrupt request occurred
 - 0 = Interrupt request not occurred

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-17: IEC6: Interrupt Enable Control Register 6

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCP1IE</td>
<td>ADCP0IE</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>AC4IE</td>
<td>AC3IE</td>
</tr>
</tbody>
</table>

bit 15

R/W-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

AC2IE — — — — — — — PWM4IE PWM3IE

bit 7

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 ADCP1IE: ADC Pair 1 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 14 ADCP0IE: ADC Pair 0 Conversion Done Interrupt Enable bit

1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 13-10 Unimplemented: Read as ‘0’

bit 9 AC4IE: Analog Comparator 4 Interrupt Enable bit

1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 8 AC3IE: Analog Comparator 3 Interrupt Enable bit

1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 7 AC2IE: Analog Comparator 2 Interrupt Enable bit

1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 6-2 Unimplemented: Read as ‘0’

bit 1 PWM4IE: PWM4 Interrupt Enable bit

1 = Interrupt request is enabled
0 = Interrupt request is not enabled

bit 0 PWM3IE: PWM3 Interrupt Enable bit

1 = Interrupt request is enabled
0 = Interrupt request is not enabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-18: IEC7: Interrupt Enable Control Register 7

<table>
<thead>
<tr>
<th>bit 15-0</th>
<th>Unimplemented: Read as '0'</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>bit 15-4</th>
<th>Unimplemented: Read as '0'</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>bit 3</th>
<th>ADCP5IE: ADC Pair 5 Conversion Done Interrupt Enable bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interrupt request is enabled</td>
</tr>
<tr>
<td>0</td>
<td>Interrupt request is not enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 2</th>
<th>ADCP4IE: ADC Pair 4 Conversion Done Interrupt Enable bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interrupt request is enabled</td>
</tr>
<tr>
<td>0</td>
<td>Interrupt request is not enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 1</th>
<th>ADCP3IE: ADC Pair 3 Conversion Done Interrupt Enable bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interrupt request is enabled</td>
</tr>
<tr>
<td>0</td>
<td>Interrupt request is not enabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bit 0</th>
<th>ADCP2IE: ADC Pair 2 Conversion Done Interrupt Enable bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Interrupt request is enabled</td>
</tr>
<tr>
<td>0</td>
<td>Interrupt request is not enabled</td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-19: IPC0: Interrupt Priority Control Register 0

<table>
<thead>
<tr>
<th>Bit 15-8</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1IP<2:0></td>
<td>Timer1 Interrupt Priority bits</td>
</tr>
<tr>
<td>OC1IP<2:0></td>
<td>Output Compare Channel 1 Interrupt Priority bits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 7-4</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC1IP<2:0></td>
<td>Input Capture Channel 1 Interrupt Priority bits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit 3-0</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT0IP<2:0></td>
<td>External Interrupt 0 Priority bits</td>
</tr>
</tbody>
</table>

Legend:

R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 15
Unimplemented: Read as ‘0’

bit 14-12
T1IP<2:0>: Timer1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 11
Unimplemented: Read as ‘0’

bit 10-8
OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 7
Unimplemented: Read as ‘0’

bit 6-4
IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 3
Unimplemented: Read as ‘0’

bit 2-0
INT0IP<2:0>: External Interrupt 0 Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
001 = Interrupt is priority 1
000 = Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-20: IPC1: Interrupt Priority Control Register 1

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 14-12</th>
<th>bit 11</th>
<th>bit 10-8</th>
<th>bit 7</th>
<th>bit 6-4</th>
<th>bit 3-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>R/W-1</td>
<td>R/W-0</td>
<td>R/W-0</td>
<td>U-0</td>
<td>R/W-1</td>
<td>R/W-0</td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>T2IP<2:0></td>
<td>—</td>
<td>—</td>
<td>OC2IP<2:0></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

- **bit 15** Unimplemented: Read as ‘0’
- **bit 14-12** T2IP<2:0>: Timer2 Interrupt Priority bits
 - 111 = Interrupt is priority 7 (highest priority interrupt)
 - 000 = Interrupt source is disabled
- **bit 11** Unimplemented: Read as ‘0’
- **bit 10-8** OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits
 - 111 = Interrupt is priority 7 (highest priority interrupt)
 - 000 = Interrupt source is disabled
- **bit 7** Unimplemented: Read as ‘0’
- **bit 6-4** IC2IP<2:0>: Input Capture Channel 2 Interrupt Priority bits
 - 111 = Interrupt is priority 7 (highest priority interrupt)
 - 000 = Interrupt source is disabled
- **bit 3-0** Unimplemented: Read as ‘0’

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-21: IPC2: Interrupt Priority Control Register 2

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 14-12</th>
<th>bit 11</th>
<th>bit 10-8</th>
<th>bit 7</th>
<th>bit 6-4</th>
<th>bit 3</th>
<th>bit 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>R/W-1</td>
<td>R/W-0</td>
<td>U-0</td>
<td>R/W-1</td>
<td>R/W-0</td>
<td>U-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td>—</td>
<td>U1RXIP<2:0></td>
<td>—</td>
<td>SPI1IP<2:0></td>
<td>—</td>
<td>SPI1EIP<2:0></td>
<td>—</td>
<td>T3IP<2:0></td>
</tr>
</tbody>
</table>

Legend:

R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 15 Unimplemented: Read as ‘0’

bit 14-12 U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 11 Unimplemented: Read as ‘0’

bit 10-8 SPI1IP<2:0>: SPI1 Event Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 7 Unimplemented: Read as ‘0’

bit 6-4 SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

bit 3 Unimplemented: Read as ‘0’

bit 2-0 T3IP<2:0>: Timer3 Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

001 = Interrupt is priority 1

000 = Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-22: IPC3: Interrupt Priority Control Register 3

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
</tbody>
</table>

Legend:
- U: Unimplemented bit, read as '0'
- R: Readable bit
- W: Writable bit
- x: Bit is unknown
- 0: Bit is cleared
- 1: Bit is set
- -n: Value at POR

bit 6-4: ADC1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits
- 111 = Interrupt is priority 7 (highest priority interrupt)
- 000 = Interrupt source is disabled
- 001 = Interrupt source is disabled

bit 3: Unimplemented: Read as '0'

bit 2-0: U1TXIP<2:0>: UART1 Transmitter Interrupt Priority bits
- 111 = Interrupt is priority 7 (highest priority interrupt)
- 000 = Interrupt source is disabled
- 001 = Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-23: IPC4: Interrupt Priority Control Register 4

<table>
<thead>
<tr>
<th>bit 15</th>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CNIP<2:0></td>
<td></td>
<td></td>
<td></td>
<td>AC1IP<2:0></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

- **bit 15**
 Unimplemented: Read as ‘0’

- **bit 14-12**
 CNIP<2:0>: Change Notification Interrupt Priority bits

 111 = Interrupt is priority 7 (highest priority interrupt)

 -

 001 = Interrupt is priority 1

 000 = Interrupt source is disabled

- **bit 11**
 Unimplemented: Read as ‘0’

- **bit 10-8**
 AC1IP<2:0>: Analog Comparator 1 Interrupt Priority bits

 111 = Interrupt is priority 7 (highest priority interrupt)

 -

 001 = Interrupt is priority 1

 000 = Interrupt source is disabled

- **bit 7**
 Unimplemented: Read as ‘0’

- **bit 6-4**
 MI2C1IP<2:0>: I2C1 Master Events Interrupt Priority bits

 111 = Interrupt is priority 7 (highest priority interrupt)

 -

 001 = Interrupt is priority 1

 000 = Interrupt source is disabled

- **bit 3**
 Unimplemented: Read as ‘0’

- **bit 2-0**
 SI2C1IP<2:0>: I2C1 Slave Events Interrupt Priority bits

 111 = Interrupt is priority 7 (highest priority interrupt)

 -

 001 = Interrupt is priority 1

 000 = Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-24: IPC5: Interrupt Priority Control Register 5

bit 15-3	Unimplemented: Read as ‘0’
bit 2-0	INT1IP<2:0>: External Interrupt 1 Priority bits
111	Interrupt is priority 7 (highest priority interrupt)
.	.
001	Interrupt is priority 1
000	Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.

Register 41-25: IPC7: Interrupt Priority Control Register 7

bit 15-7	Unimplemented: Read as ‘0’
bit 6-4	INT2IP<2:0>: External Interrupt 2 Priority bits
111	Interrupt is priority 7 (highest priority interrupt)
.	.
001	Interrupt is priority 1
000	Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-26: IPC14: Interrupt Priority Control Register 14

<table>
<thead>
<tr>
<th>bit 15-8</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- -n = Value at POR
- '1' = Bit is set
- '0' = Bit is cleared
- x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'
bit 6-4 PSEMIP<2:0>: PWM Special Event Match Interrupt Priority bits
111 = Interrupt is priority 7 (highest priority interrupt)
110
101
100
011 = Interrupt is priority 1
010
001 = Interrupt source is disabled
000

bit 3-0 Unimplemented: Read as '0'

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-27: IPC16: Interrupt Priority Control Register 16

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

Legend for U1EIP<2:0>:
- **111** = Interrupt is priority 7 (highest priority interrupt)
- **001** = Interrupt is priority 1
- **000** = Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.

Register 41-28: IPC20: Interrupt Priority Control Register 20

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
</tbody>
</table>

Legend:
- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’

Legend for JTAGIP<2:0>:
- **111** = Interrupt is priority 7 (highest priority interrupt)
- **001** = Interrupt is priority 1
- **000** = Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-29: IPC23: Interrupt Priority Control Register 23

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 14-12</th>
<th>bit 11</th>
<th>bit 10-8</th>
<th>bit 7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>R/W-1</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>—</td>
<td>PWM2IP<2:0></td>
<td>—</td>
<td>PWM1IP<2:0></td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

bit 15: **Unimplemented:** Read as ‘0’

bit 14-12: **PWM2IP<2:0>:** PWM2 Interrupt Priority bits

- 111 = Interrupt is priority 7 (highest priority)
- 110 = Interrupt is priority 6
- 101 = Interrupt is priority 5
- 100 = Interrupt is priority 4
- 011 = Interrupt is priority 3
- 010 = Interrupt is priority 2
- 001 = Interrupt is priority 1
- 000 = Interrupt source is disabled

bit 11: **Unimplemented:** Read as ‘0’

bit 10-8: **PWM1IP<2:0>:** PWM1 Interrupt Priority bits

- 111 = Interrupt is priority 7 (highest priority)
- 110 = Interrupt is priority 6
- 101 = Interrupt is priority 5
- 100 = Interrupt is priority 4
- 011 = Interrupt is priority 3
- 010 = Interrupt is priority 2
- 001 = Interrupt is priority 1
- 000 = Interrupt source is disabled

bit 7-0: **Unimplemented:** Read as ‘0’

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-30: IPC24: Interrupt Priority Control Register 24

bit 15-7	Unimplemented: Read as ‘0’
bit 6-4	PWM4IP<2:0>: PWM4 Interrupt Priority bits
111	Interrupt is priority 7 (highest priority)
110	
100	
001	Interrupt is priority 1
000	Interrupt source is disabled
bit 3	Unimplemented: Read as ‘0’
bit 2-0	PWM3IP<2:0>: PWM3 Interrupt Priority bits
111	Interrupt is priority 7 (highest priority)
110	
100	
001	Interrupt is priority 1
000	Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-31: IPC25: Interrupt Priority Control Register 25

<table>
<thead>
<tr>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 15 : Unimplemented: Read as ‘0’

bit 14-12 : AC2IP<2:0>: Analog Comparator 2 Interrupt Priority bits

- 111 = Interrupt is priority 7 (highest priority)
- 110 = Interrupt is priority 6
- 101 = Interrupt is priority 5
- 100 = Interrupt is priority 4
- 011 = Interrupt is priority 3
- 010 = Interrupt is priority 2
- 001 = Interrupt is priority 1
- 000 = Interrupt source is disabled

bit 11-0 : Unimplemented: Read as ‘0’

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-32: IPC26: Interrupt Priority Control Register 26

<table>
<thead>
<tr>
<th>bit 15-7</th>
<th>bit 6-4</th>
<th>bit 3</th>
<th>bit 2-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimplemented: Read as '0'</td>
<td>AC4IP<2:0>: Analog Comparator 4 Interrupt Priority bits</td>
<td>Unimplemented: Read as '0'</td>
<td>AC3IP<2:0>: Analog Comparator 3 Interrupt Priority bits</td>
</tr>
<tr>
<td>111 = Interrupt is priority 7 (highest priority)</td>
<td>•</td>
<td>111 = Interrupt is priority 7 (highest priority)</td>
<td>•</td>
</tr>
<tr>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>001 = Interrupt is priority 1</td>
<td>000 = Interrupt source is disabled</td>
<td>001 = Interrupt is priority 1</td>
<td>000 = Interrupt source is disabled</td>
</tr>
<tr>
<td>000 = Interrupt source is disabled</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as '0'
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-33: IPC27: Interrupt Priority Control Register 27

<table>
<thead>
<tr>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td></td>
<td>—</td>
<td></td>
<td>ADCP1IP<2:0></td>
<td>—</td>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

bit 15

<table>
<thead>
<tr>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented**: Read as ‘0’
bit 14-12 **ADCP1IP<2:0>**: ADC Pair 1 Conversion Done Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 11 **Unimplemented**: Read as ‘0’
bit 10-8 **ADCP0IP<2:0>**: ADC Pair 0 Conversion Done Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)
•
•
001 = Interrupt is priority 1
000 = Interrupt source is disabled

bit 7-0 **Unimplemented**: Read as ‘0’

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-34: IPC28: Interrupt Priority Control Register 28

<table>
<thead>
<tr>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

- **bit 15**: ADCP5IP<2:0>
- **bit 8**: ADCP4IP<2:0>

<table>
<thead>
<tr>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
<th>R/W-1</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

- **bit 7**: ADCP3IP<2:0>
- **bit 0**: ADCP2IP<2:0>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- **-n** = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

- **bit 15**: **Unimplemented**: Read as ‘0’
- **bit 14-12**: ADCP5IP<2:0>: ADC Pair 5 Conversion Done Interrupt Priority bits
 - **111** = Interrupt is priority 7 (highest priority interrupt)
 - **001** = Interrupt is priority 1
 - **000** = Interrupt source is disabled
- **bit 11**: **Unimplemented**: Read as ‘0’
- **bit 10-8**: ADCP4IP<2:0>: ADC Pair 4 Conversion Done Interrupt Priority bits
 - **111** = Interrupt is priority 7 (highest priority interrupt)
 - **001** = Interrupt is priority 1
 - **000** = Interrupt source is disabled
- **bit 7**: **Unimplemented**: Read as ‘0’
- **bit 6-4**: ADCP3IP<2:0>: ADC Pair 3 Conversion Done Interrupt Priority bits
 - **111** = Interrupt is priority 7 (highest priority interrupt)
 - **001** = Interrupt is priority 1
 - **000** = Interrupt source is disabled
- **bit 3**: **Unimplemented**: Read as ‘0’
- **bit 2-0**: ADCP2IP<2:0>: ADC Pair 2 Conversion Done Interrupt Priority bits
 - **111** = Interrupt is priority 7 (highest priority interrupt)
 - **001** = Interrupt is priority 1
 - **000** = Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-35: IPC29: Interrupt Priority Control Register 29

<table>
<thead>
<tr>
<th>bit 15</th>
<th>bit 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>U-0</td>
<td>U-0</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ’1’ = Bit is set ’0’ = Bit is cleared x = Bit is unknown

bit 15-3 **Unimplemented**: Read as ‘0’
bit 2-0 **ADCP6IP<2:0>**: ADC Pair 6 Conversion Done Interrupt 1 Priority bits\(^{(1)}\)

- 111 = Interrupt is priority 7 (highest priority interrupt)
- 001 = Interrupt is priority 1
- 000 = Interrupt source is disabled

Note: Not all bits are available on all devices. Refer to the specific device data sheet for availability.
Register 41-36: INTTREG: Interrupt Control and Status Register

<table>
<thead>
<tr>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
<th>R-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 15 - bit 8

ILR<3:0>

Legend:

- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- ‘-n’ = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 15-12 Unimplemented: Read as ‘0’

bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits

1111 = CPU Interrupt Priority Level is 15
0001 = CPU Interrupt Priority Level is 1
0000 = CPU Interrupt Priority Level is 0

bit 7 Unimplemented: Read as ‘0’

bit 6-0 VECNUM<6:0>: Vector Number of Pending Interrupt bits

0111111 = Interrupt Vector pending is number 135
0000001 = Interrupt Vector pending is number 9
0000000 = Interrupt Vector pending is number 8
41.5 INTERRUPT SETUP PROCEDURES

41.5.1 Initialization

To configure an interrupt source, do the following:

1. If you do not plan to use nested interrupts, set the NSTDIS bit (INTCON1<15>).
2. Select the user application-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx Control register. The priority level depends on the specific application and the type of interrupt source. If you do not plan to use multiple priority levels, program the IPCx register control bits for all enabled interrupt sources to the same non-zero value.

3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx Status register.
4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx control register.

41.5.2 Interrupt Service Routine

The method used to declare an ISR and initialize the IVT with the correct vector address, depends on the programming language, (C or Assembly), and the language development tool suite used to develop the application. In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the application will immediately enter the ISR after it exits the routine. If the ISR is coded in an Assembly language, it must be terminated using a RETFI instruction to unstack the saved PC value, SRL value and old CPU priority level.

41.5.3 Trap Service Routine

A TSR is coded like an ISR, except that the code must clear the appropriate trap status flag in the INTCON1 register to avoid re-entry into the TSR.

41.5.4 Interrupt Disable

To disable the interrupts:

1. Push the current SR value onto the software stack using the PUSH instruction.
2. Force the CPU to priority level 7 by inclusive ORing the value 0xE0 with the value of the SRL register.

To enable user interrupts, the user can use the POP instruction to restore the previous SR register value.

Note: Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8 to level 15) cannot be disabled.

The DISI instruction disables interrupts of priority levels from 1 to 6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

41.5.5 Code Example

Example 41-1 illustrates the code that enables nested interrupts and sets up Timer1, Timer2, Timer3, Timer4 and change notice peripherals to priority levels 2, 5, 6 and 4, respectively. It also illustrates how interrupts can be enabled or disabled using the Status register. Sample ISRs illustrate interrupt clearing.

Note: At a device Reset, the IPC registers are initialized with all user interrupt sources assigned to priority level 4.

Note: Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (level 8 to level 15) cannot be disabled.
Example 41-1: Interrupt Setup Code Example

```c
void enableInterrupts(void)
{
    /* Set CPU IPL to 0, enable level 1-7 interrupts */
    /* No restoring of previous CPU IPL state performed here */
    SRbits.IPL = 0;
    return;
}

void disableInterrupts(void)
{
    /* Set CPU IPL to 7, disable level 1-7 interrupts */
    /* No saving of current CPU IPL setting performed here */
    SRbits.IPL = 7;
    return;
}

void initInterrupts(void)
{
    /* Interrupt nesting enabled here */
    INTCON1bits.NSTDIS = 0;

    /* Set Timer3 interrupt priority to 6 (level 7 is highest) */
    IPC2bits.T3IP = 6;

    /* Set Timer2 interrupt priority to 5 */
    IPC1bits.T2IP = 5;

    /* Set Change Notice interrupt priority to 4 */
    IPC4bits.CNIP = 4;

    /* Set Timer1 interrupt priority to 2 */
    IPC0bits.T1IP = 2;

    /* Reset Timer1 interrupt flag */
    IFS0bits.T1IF = 0;

    /* Reset Timer2 interrupt flag */
    IFS0bits.T2IF = 0;

    /* Reset Timer3 interrupt flag */
    IFS0bits.T3IF = 0;

    /* Enable CN interrupts */
    IEC1bits.CNIE = 1;

    /* Enable Timer1 interrupt */
    IEC0bits.T1IE = 1;

    /* Enable Timer2 interrupt (PWM time base) */
    IEC0bits.T2IE = 1;

    /* Enable Timer3 interrupt */
    IEC0bits.T3IE = 1;

    /* Reset change notice interrupt flag */
    IFS1bits.CNIF = 0;
    return;
}
```
Example 41-1: Interrupt Setup Code Example (Continued)

```c
void __attribute__((__interrupt__, no_auto_psv)) _T1Interrupt(void)
{
    /* Insert ISR Code Here*/
    /* Clear Timer1 interrupt */
    IFS0bits.T1IF = 0;
}

void __attribute__((__interrupt__, no_auto_psv)) _T2Interrupt(void)
{
    /* Insert ISR Code Here*/
    /* Clear Timer2 interrupt */
    IFS0bits.T2IF = 0;
}

void __attribute__((__interrupt__, no_auto_psv)) _T3Interrupt(void)
{
    /* Insert ISR Code Here*/
    /* Clear Timer3 interrupt */
    IFS0bits.T3IF = 0;
}

void __attribute__((__interrupt__, no_auto_psv)) _CNInterrupt(void)
{
    /* Insert ISR Code Here*/
    /* Clear CN interrupt */
    IFS1bits.CNIF = 0;
}
```
41.6 REGISTER MAPS

A summary of the Special Function Registers (SFRs) associated with the Interrupts (Part IV) module is provided in Table 41.2.

Table 41.2: Interrupt Controller Register Map

<table>
<thead>
<tr>
<th>File Name</th>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>All Resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTCON1</td>
<td>NSTDIS</td>
<td>OVAERR</td>
<td>OVBERR</td>
<td>COVERR</td>
<td>C0VBER</td>
<td>OVATE</td>
<td>OVTBE</td>
<td>CV0TE</td>
<td>SPTCERR</td>
<td>DIV0ERR</td>
<td>—</td>
<td>MATHERR</td>
<td>ADDRERR</td>
<td>STKERR</td>
<td>OSCF0I</td>
<td>—</td>
<td>00000000</td>
</tr>
<tr>
<td>INTCON2</td>
<td>ALTIVT</td>
<td>DISI</td>
<td></td>
<td>00000000</td>
</tr>
<tr>
<td>IFS0</td>
<td></td>
<td></td>
<td></td>
<td>ADIF</td>
<td>U1TXIF</td>
<td>U1RXIF</td>
<td>SPI1IF</td>
<td>SPI1EIF</td>
<td>T3IF</td>
<td>T2IF</td>
<td>OC2IF</td>
<td>IC2F</td>
<td>—</td>
<td>T1F</td>
<td>OC1I</td>
<td>C1I</td>
<td>INT0IF</td>
</tr>
<tr>
<td>IFS1</td>
<td></td>
<td></td>
<td></td>
<td>INT2IF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>INT1IF</td>
<td>CNIF</td>
<td>AC1F</td>
<td>MI2C1IF</td>
</tr>
<tr>
<td>IFS2</td>
<td></td>
<td>—</td>
<td>U1EIF</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IFS3</td>
<td></td>
<td>—</td>
<td>—</td>
<td>PWM4IF</td>
<td>PWM3IF</td>
<td>—</td>
</tr>
<tr>
<td>IFS4</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IFS5</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IFS6</td>
<td></td>
<td>—</td>
<td>—</td>
<td>PWM4IF</td>
<td>PWM3IF</td>
<td>—</td>
</tr>
<tr>
<td>IFS7</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IEC0</td>
<td></td>
<td></td>
<td></td>
<td>ADIE</td>
<td>U1TXIE</td>
<td>U1RXIE</td>
<td>SPI1IE</td>
<td>SPI1EIE</td>
<td>T3IE</td>
<td>T2IE</td>
<td>OC2IE</td>
<td>IC2IE</td>
<td>—</td>
<td>T1IE</td>
<td>OC1IE</td>
<td>IC1IE</td>
<td>INT0IE</td>
</tr>
<tr>
<td>IEC1</td>
<td></td>
<td></td>
<td></td>
<td>INT2IE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>—</td>
<td>INT1IE</td>
<td>C1IE</td>
<td>AC1IE</td>
<td>MI2C1IE</td>
</tr>
<tr>
<td>IEC2</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IEC3</td>
<td></td>
<td>—</td>
<td>—</td>
<td>JTAGIE</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IEC4</td>
<td></td>
<td>—</td>
<td>—</td>
<td>PWM4IE</td>
<td>PWM3IE</td>
<td>—</td>
</tr>
<tr>
<td>IEC5</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IEC6</td>
<td></td>
<td>—</td>
<td>—</td>
<td>PWM4IE</td>
<td>PWM3IE</td>
<td>—</td>
</tr>
<tr>
<td>IEC7</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPC0</td>
<td></td>
<td>—</td>
<td>IC1IP<2;0></td>
<td>IC1IE<2;0></td>
<td>INT0IP<2;0></td>
<td>00000000</td>
</tr>
<tr>
<td>IPC1</td>
<td></td>
<td>—</td>
<td>IC2IP<2;0></td>
<td>IC2IE<2;0></td>
<td>—</td>
<td>00000000</td>
</tr>
<tr>
<td>IPC2</td>
<td></td>
<td>—</td>
<td>SP1IP<2;0></td>
<td>SP1IEIP<2;0></td>
<td>T3IP<2;0></td>
<td>00000000</td>
</tr>
<tr>
<td>IPC3</td>
<td></td>
<td>—</td>
<td>AC1IP<2;0></td>
<td>M1C1IP<2;0></td>
<td>U1TXIP<2;0></td>
<td>00000000</td>
</tr>
<tr>
<td>IPC4</td>
<td></td>
<td>—</td>
<td>AC1IP<2;0></td>
<td>M1C1IP<2;0></td>
<td>U1TXIP<2;0></td>
<td>00000000</td>
</tr>
<tr>
<td>IPC5</td>
<td></td>
<td>—</td>
<td>INT1IP<2;0></td>
<td>—</td>
<td>—</td>
<td>00000000</td>
</tr>
<tr>
<td>IPC6</td>
<td></td>
<td>—</td>
<td>PSEMIP<2;0></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPC14</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPC16</td>
<td></td>
<td>—</td>
<td>U1E1IP<2;0></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPC20</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>JTAGIP<2;0></td>
<td>—</td>
</tr>
<tr>
<td>IPC23</td>
<td></td>
<td>—</td>
<td>PWM1IP<2;0></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPC24</td>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>PWM4IP<2;0></td>
<td>—</td>
</tr>
<tr>
<td>IPC25</td>
<td></td>
<td>—</td>
<td>AC2IP<2;0></td>
<td>AC2IE<2;0></td>
<td>—</td>
<td>00000000</td>
</tr>
<tr>
<td>IPC26</td>
<td></td>
<td>—</td>
<td>AC4IP<2;0></td>
<td>AC3IE<2;0></td>
<td>—</td>
<td>00000000</td>
</tr>
<tr>
<td>IPC27</td>
<td></td>
<td>—</td>
<td>ADCCP1IP<2;0></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPC28</td>
<td></td>
<td>—</td>
<td>ADCCP6IP<2;0></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IPC29</td>
<td></td>
<td>—</td>
<td>ADCCP1IP<2;0></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>INTTREG</td>
<td></td>
<td>—</td>
<td>ILR<3;0></td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Legend:
- = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note:
Not all bits are available for all devices. Refer to the specific device data sheet for availability.
41.7 DESIGN TIPS

Question 1: What happens when two sources of interrupt become pending at the same time and have the same user application-assigned priority level?

Answer: The interrupt source with the highest natural order priority will take precedence. The natural order priority is determined by the IVT address for that interrupt source. Interrupt sources with a lower IVT address have a higher natural order priority.

Question 2: Can the DISI instruction be used to disable all sources of interrupt and traps?

Answer: The DISI instruction does not disable traps or priority level 7 interrupt sources. However, the DISI instruction can be used as a convenient way to disable all interrupt sources, if no priority level 7 interrupt sources are enabled in the user’s application.
41.8 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the dsPIC33F/PIC24H device family, but the concepts are pertinent and could be used with modification and possible limitations. The current application notes related to the Interrupts (Part IV) module are:

<table>
<thead>
<tr>
<th>Title</th>
<th>Application Note #</th>
</tr>
</thead>
<tbody>
<tr>
<td>No related application notes at this time.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Please visit the Microchip web site (www.microchip.com) for additional Application Notes and code examples for the dsPIC33F/PIC24H device families.
41.9 REVISION HISTORY

Revision A (November 2007)
This is the initial released version of this document.

Revision B (August 2008)
This revision incorporates the following updates:

• Examples:
 - The term “External Interrupt 0 (INT0)” in the example, in 41.1.5 “Interrupt Priority” has been corrected as “UART1 RX Interrupt”
 - The term “External Interrupt 0 (INT1)” in the example, in 41.1.5 “Interrupt Priority” has been corrected as “External Interrupt 0 (INT0)”

• Notes:
 - Added a note on interrupt priority bits to all the IPC registers (see Register 41-19 through Register 41-35)
 - Removed incorrect note references in IPC28: Interrupt Priority Control Register 28 (see Register 41-34)

• Registers:
 - Added cross references to register definitions in 41.4 “Interrupt Control and Status Registers” section
 - The bit descriptions for bit 11 and bit 12 in the (INTCON1): Interrupt Control Register 1 have been corrected (see Register 41-3)

• Tables:
 - Updated the IVT Address and AIVT Address for the IRQ numbers 38-64, 66-72 and 74-101 in Table 41-1
 - Additional minor corrections such as language and formatting updates were incorporated throughout the document

Revision C (September 2011)
This revision incorporates the following updates:

• Figures:
 - Updated Figure 41-2

• Notes:
 - Added a note in Register 41-5 and Register 41-6, Register 41-8 and Register 41-9, Register 41-10 through Register 41-13, and Register 41-15 through Register 41-18
 - Added a note in Table 41-2

• Registers:
 - Updated Register 41-1
 - Updated Register 41-9
 - Updated Register 41-16
 - Added Register 41-28

• Sections:
 - Updated the module features in 41.1 “Introduction”
 - Updated the information saved on the software stack by the processor, in 41.2.4 “Interrupt Operation”

• Tables:
 - Updated Table 41-1
 - Updated Table 41-2 and removed SFR Addr. column in the same table

• Additional minor corrections such as text and formatting updates were incorporated throughout the document.
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://www.microchip.com/support
Web Address: www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8569-7055

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

08/02/11