Section 33. Charge Time Measurement Unit (CTMU)

HIGHLIGHTS

This section of the manual contains the following major topics:

33.1 Introduction ... 33-2
33.2 Registers.. 33-4
33.3 CTMU Operation.. 33-8
33.4 CTMU Module Initialization .. 33-10
33.5 Calibrating the CTMU Module ... 33-11
33.6 Measuring Capacitance with the CTMU ... 33-16
33.7 Measuring Time with the CTMU Module ... 33-18
33.8 Creating a Delay with the CTMU Module .. 33-19
33.9 Measuring On-chip Temperature with the CTMU .. 33-20
33.10 Operation During Sleep or Idle Mode ... 33-21
33.11 Effects of a Reset on CTMU .. 33-21
33.12 Register Maps ... 33-22
33.13 Related Application Notes .. 33-23
33.14 Revision History .. 33-24
33.1 INTRODUCTION

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources and asynchronous pulse generation. By working with other on-chip analog modules, the CTMU can be used to precisely measure time, capacitance, relative changes in capacitance or generate output pulses with a specific time delay. The CTMU is ideal for interfacing with capacitive-based sensors.

The CTMU module includes the following key features:
• Up to 16 channels available for capacitive or time measurement input
• On-chip precision current source
• Four-edge input trigger sources
• Polarity control for each edge source
• Control of edge sequence
• Control of response to edges
• High precision time measurement
• Time delay of external or internal signal asynchronous to system clock

The CTMU module works in conjunction with the Analog-to-Digital Converter (ADC) module to provide input channels for time or charge measurement. When configured for time delay, and depending on the device variant, the CTMU is connected to one of the analog comparators. The level-sensitive input edge sources can be selected from the following sources: two external inputs, Timers, Output Compare, Input Capture, and Comparator modules. For device-specific information on available input sources, refer to the specific device data sheet.

A block diagram of the CTMU is illustrated in Figure 33-1.
Section 33. Charge Time Measurement Unit (CTMU)

Figure 33-1: CTMU Block Diagram

Note 1: Refer to the specific device data sheet to determine the inputs that are available on your device.
2: Refer to the specific device data sheet to determine the number of available edge trigger inputs for your device.
33.2 REGISTERS

Depending on the device variant, there are up to three control registers available for the CTMU: CMTUCON1, CMTUCON2, and CTMUICON.

The CMTUCON1 and CMTUCON2 registers (Register 33-1 and Register 33-2) contain control bits for configuring the CTMU module edge source selection, edge source polarity selection, edge sequencing, analog-to-digital trigger, analog circuit capacitor discharge and enables. The CTMUICON register (Register 33-3) has bits for selecting the current source range and current source trim.

Register 33-1: CMTUCON1: CTMU Control Register 1(1)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>CTMUEN</td>
<td>CTMU Enable bit</td>
</tr>
<tr>
<td>14</td>
<td>Unimplemented</td>
<td>Read as ‘0’</td>
</tr>
<tr>
<td>13</td>
<td>CTMUSIDL</td>
<td>Stop in Idle Mode bit</td>
</tr>
<tr>
<td>12</td>
<td>TGEN</td>
<td>Time Generation Enable bit</td>
</tr>
<tr>
<td>11</td>
<td>EDGEN</td>
<td>Edge Enable bit</td>
</tr>
<tr>
<td>10</td>
<td>EDGSEQEN</td>
<td>Edge Sequence Enable bit</td>
</tr>
<tr>
<td>9</td>
<td>IDISSEN</td>
<td>Analog Current Source Control bit</td>
</tr>
<tr>
<td>8</td>
<td>CTTRIG</td>
<td>Trigger Control bit</td>
</tr>
<tr>
<td>7-0</td>
<td>Unimplemented</td>
<td>Read as ‘0’</td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

Note 1: Refer to the specific device data sheet to determine whether this register is available on your particular device.
Section 33. Charge Time Measurement Unit (CTMU)

Register 33-2: CTMUCON2: CTMU Control Register 2

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDG1MOD</td>
<td>EDG1POL</td>
<td>EDG1SEL<3:0></td>
<td>EDG2STAT</td>
<td>EDG1STAT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

bit 15

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15 EDG1MOD: Input mode selection bit
1 = Input is edge-sensitive
0 = Input is level-sensitive

bit 14 EDG1POL: Edge 1 Polarity Select bit
1 = Edge 1 programmed for a positive level response
0 = Edge 1 programmed for a negative level response

bit 13-10 EDG1SEL<3:0>: Edge 1 Source Select bits(1)
1111 = Edge 1 Source 15 selected
1110 = Edge 1 Source 14 selected
1101 = Edge 1 Source 13 selected
1100 = Edge 1 Source 12 selected
1011 = Edge 1 Source 11 selected
1010 = Edge 1 Source 10 selected
1001 = Edge 1 Source 9 selected
1000 = Edge 1 Source 8 selected
0111 = Edge 1 Source 7 selected
0110 = Edge 1 Source 6 selected
0101 = Edge 1 Source 5 selected
0100 = Edge 1 Source 4 selected
0011 = Edge 1 Source 3 selected
0010 = Edge 1 Source 2 selected
0001 = Edge 1 Source 1 selected
0000 = Edge 1 Source 0 selected

bit 9 EDG2STAT: Edge 2 Status bit
1 = Edge 2 event has occurred
0 = Edge 2 event has not occurred

bit 8 EDG1STAT: Edge 1 Status bit
1 = Edge 1 event has occurred
0 = Edge 1 event has not occurred

bit 7 EDG2MOD: Input Mode Selection bit
1 = Input is edge-sensitive
0 = Input is level-sensitive

bit 6 EDG2POL: Edge 2 Polarity Select bit
1 = Edge 2 programmed for a positive level response
0 = Edge 2 programmed for a negative level response

Note 1: Refer to the specific device data sheet for edge source types and assignments.
Register 33-2: CTMUCON2: CTMU Control Register (Continued)2

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Bit Description</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-2</td>
<td>EDG2SEL<3:0>: Edge 2 Source Select bits(^{(1)})</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>= Edge 2 Source 15 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>= Edge 2 Source 14 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1101</td>
<td>= Edge 2 Source 13 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>= Edge 2 Source 12 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1011</td>
<td>= Edge 2 Source 11 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1010</td>
<td>= Edge 2 Source 10 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1001</td>
<td>= Edge 2 Source 9 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1000</td>
<td>= Edge 2 Source 8 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0111</td>
<td>= Edge 2 Source 7 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0110</td>
<td>= Edge 2 Source 6 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0101</td>
<td>= Edge 2 Source 5 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0100</td>
<td>= Edge 2 Source 4 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0011</td>
<td>= Edge 2 Source 3 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0010</td>
<td>= Edge 2 Source 2 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0001</td>
<td>= Edge 2 Source 1 selected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000</td>
<td>= Edge 2 Source 0 selected</td>
<td></td>
</tr>
<tr>
<td>1-0</td>
<td>Unimplemented: Read as '0'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Refer to the specific device data sheet for edge source types and assignments.
Section 33. Charge Time Measurement Unit (CTMU)

Register 33-3: CTMUICON: CTMU Current Control Register

<table>
<thead>
<tr>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
<th>R/W-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ITRIM<5:0></td>
<td>IRNG<1:0></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 15</td>
<td></td>
<td>bit 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
<th>U-0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bit 7</td>
<td></td>
<td>bit 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
x = Bit is unknown

bit 15-10 ITRIM<5:0>: Current Source Trim bits
011111 = Maximum positive change from nominal current
000000 = Nominal current output specified by IRNG<1:0>
111111 = Minimum negative change from nominal current

bit 9-8 IRNG<1:0>: Current Source Range Select bits
11 = 100 × base current
10 = 10 × base current
01 = Base current level (0.55 μA nominal)
00 = Reserved

bit 7-0 Unimplemented: Read as ‘0’

Note 1: Refer to the specific device data sheet to determine which setting is available on your particular device.
33.3 CTMU OPERATION

The CTMU works by using a fixed current source to charge a circuit. The type of circuit depends on the type of measurement is made. In the case of charge measurement, the current and the amount of time the current is applied to the circuit is fixed. The amount of voltage read by the ADC is then a measurement of the capacitance of the circuit. In the case of time measurement, the current and the capacitance of the circuit is fixed. In this case, the voltage read by the ADC is then representative of the amount of time elapsed from the time the current source starts and stops charging the circuit.

If the CTMU is used as a time delay, both capacitance and current source are fixed, and the voltage supplied to the comparator circuit also fixed. The delay of a signal is determined by the amount of time it takes the voltage to charge to the comparator threshold voltage.

33.3.1 Theory of Operation

The operation of the CTMU is based on the equation for charge, as shown in Equation 33-1.

Equation 33-1:

\[I = C \cdot \frac{dV}{dT} \]

The amount of charge measured in coulombs in a circuit is defined as current in amperes \(I \) multiplied by the amount of time in seconds that the current flows \(t \). Charge is also defined as the capacitance in farads \(C \) multiplied by the voltage of the circuit \(V \), as shown in Equation 33-2.

Equation 33-2:

\[I \cdot t = C \cdot V \]

The CTMU module provides a constant current source. The ADC is used to measure \(V \) in the equation, leaving two unknowns: capacitance \(C \) and time \(t \). **Equation 33-2** can be used to calculate capacitance or time either using the known fixed capacitance of the circuit, as shown in **Equation 33-3**, or using a fixed time that the current source is applied to the circuit, as shown in **Equation 33-4**.

Equation 33-3:

\[t = \frac{C \cdot V}{I} \]

Equation 33-4:

\[C = \frac{(I \cdot t)}{V} \]

33.3.2 Current Source

At the core of the CTMU is a precision current source, designed to provide a constant reference for measurements. The level of current is user-selectable across three ranges or a total of two orders of magnitude, with the ability to trim the output in ±2% increments (nominal). The current range is selected by the IRNG<1:0> bits (CTMUICON<9:8>), with a value of ‘00’ representing the lowest range.

Current trim is provided by the ITRIM<5:0> bits (CTMUICON<15:10>). These six bits allow trimming of the current source in steps of approximately 2% per step. One half of the range adjusts the current source positively and the other half reduces the current source. A value of ‘000000’ is the neutral position (no change). A value of ‘100000’ is the maximum negative adjustment (approximately -62%), and ‘011111’ is the maximum positive adjustment (approximately +62%).
Section 33. Charge Time Measurement Unit (CTMU)

33.3.3 Edge Selection and Control

CTMU measurements are controlled by edge events occurring on the module’s input channels. Each channel, referred to as Edge 1 and Edge 2, can be configured to receive input pulses from one of the edge input pins (CTEDx), and from some peripherals such as Timers, Output Compare Module, Input Capture, and Comparators. Refer to the specific device data sheet to determine which setting is available on each particular device. The input channels are level-sensitive, responding to the instantaneous level on the channel rather than a transition between levels. The inputs are selected using the EDG1SEL and EDG2SEL bit pairs (CTMUCON2<5:2> and CTMUCON2<13:9>).

In addition to source, each channel can be configured for event polarity using the EDGE2POL and EDGE1POL bits (CTMUCON2<14:6>). The input channels can also be filtered for an edge event sequence (Edge 1 occurring before Edge 2) by setting the EDGSEQEN bit (CTMUCON1<10>).

33.3.4 Edge Status

The CTMUCON register also contains two status bits, EDG2STAT and EDG1STAT (CTMUCON2<9:8>). Their primary function is to show if an edge response has occurred on the corresponding channel. The CTMU automatically sets a bit when an edge response is detected on its channel. The level-sensitive nature of the input channels also means that the status bits become set immediately if the channel’s configuration is changed and the input channels remain at their current state.

The module uses the edge status bits to control the current source output to external analog modules like ADC. Current is supplied to external modules only when one (but not both) of the status bits is set, and shuts current off when both the bits are either set or cleared. This allows the CTMU to measure current only during the interval between edges. After both status bits are set, it is necessary to clear them before another measurement is taken. If possible, both the bits should be cleared simultaneously to avoid re-enabling the CTMU current source.

In addition to being set by the CTMU hardware, the edge status bits can also be set by software. This is also the user’s application to manually enable or disable the current source. Setting either one (but not both) of the bits enables the current source. Setting or clearing both bits at once disables the source.

33.3.5 Interrupts

The CTMU sets its interrupt flag, CTMUIF (IFS4<13>), whenever the current source is enabled and disabled. An interrupt is generated only if the corresponding interrupt enable bit, CTMUIE (IEC4<13>), is also set. If edge sequencing is not enabled (that is Edge 1 must occur before Edge 2), it is necessary to monitor the edge status bits and determine which edge occurred last and caused the interrupt.
33.4 CTMU MODULE INITIALIZATION

The following sequence is a general guideline that can be used to initialize the CTMU module:

1. Select the current source range using the IRNG<1:0> bits (CTMUICON<9:8>).
2. Adjust the current source trim using the ITRIM<5:0> bits (CTMUICON<15:10>).
3. Configure the edge input sources for Edge 1 and Edge 2 by setting the EDG1SEL and EDG2SEL bits (CTMUCON2<13:10> and CTMUCON2<5:2>).
4. Configure the input polarities for the edge inputs using the EDG1POL and EDG2POL bits (CTMUCON2<14:6>). The default configuration is for negative edge polarity (high-to-low transitions).
5. Enable edge sequencing using the EDGSEQEN bit (CTMUCON1<10>). By default, edge sequencing is disabled.
6. Select the operating mode (Measurement or Time Delay) with the TGEN bit (CTMUCON1<12>). The default mode is Time/Capacitance Measurement.
7. Configure the module to automatically trigger an analog-to-digital conversion when the second edge event has occurred using the CTTRIG bit (CTMUCON1<8>). The conversion trigger is disabled by default.
8. Discharge the connected circuit by setting the IDISSEN bit (CTMUCON1<9>); after waiting a sufficient time for the circuit to discharge, clear IDISSEN.
9. Disable the module by clearing the CTMUEN bit (CTMUCON1<15>).
10. Clear the Edge Status bits, EDG2STAT and EDG1STAT (CTMUCON2<9:8>).
11. Enable both edge inputs by setting the EDGEN bit (CTMUCON1<11>).
12. Enable the module by setting the CTMUEN bit (CTMUCON1<15>).

Depending on the type of measurement or pulse generation being performed, one or more additional modules may also need to be initialized and configured with the CTMU module:

- **Edge Source Generation:** In addition to the external edge input pins, other peripherals such as Timers, Output Compare, Input Capture, and Comparators can be used as edge sources for the CTMU.
- **Capacitance or Time Measurement:** The CTMU module uses the ADC to measure the voltage across a capacitor that is connected to one of the analog input channels.
- **Pulse Generation:** When generating system clock independent output pulses, the CTMU module uses one analog Comparator module and the associated comparator voltage reference.

For specific information on initializing these modules, refer to the applicable chapter of the "dsPIC33E/PIC24E Family Reference Manual" for the appropriate module.
33.5 CALIBRATING THE CTMU MODULE

The CTMU requires calibration for precise measurements of capacitance and time, and also for accurate time delay. If the application only requires measurement of a relative change in capacitance or time, calibration is usually not necessary. An example of this type of application would include a capacitive touch switch, in which the touch circuit has a baseline capacitance, and the added capacitance of the human body changes the overall capacitance of a circuit.

If actual capacitance or time measurement is required, two hardware calibrations must take place: the current source needs calibration to set it to a precise current, and the circuit being measured needs calibration to measure and/or nullify all other capacitance other than that to be measured.

33.5.1 Current Source Calibration

The current source onboard the CTMU module has a range of ±62% nominal for each of three current ranges. Therefore, for precise measurements, it is possible to measure and adjust this current source by placing a high precision resistor, R_{CAL}, on the analog channel ANx. An example circuit is illustrated in Figure 33-2. The current source measurement is performed using the following steps:

1. Initialize the ADC.
2. Initialize the CTMU by configuring the module for Pulse Generation mode (TGEN = 1).
3. Enable the current source by setting EDG1STAT (CTMUCON1<8>).
4. Issue settling time delay.
5. Perform analog-to-digital conversion.
6. Calculate the current source current using $I = V/R_{CAL}$, where R_{CAL} is a high precision resistance and V is measured by performing an analog-to-digital conversion.

The CTMU current source may be trimmed with the trim bits in CTMUICON using an iterative process to get an exact desired current. Alternatively, the nominal value without adjustment may be used and it may be stored by the software for use in all subsequent capacitive or time measurements.

When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON1<12>), the internal current source is connected to one of the inputs of a Comparator module. Figure 33-2 illustrates the external connections for current source calibration and the relationship of the different analog modules required.

To calculate the value for R_{CAL}, the nominal current must be chosen, and then the resistance can be calculated. For example, if the ADC reference voltage is 3.3V, use 70% of full scale, or 2.31V as the desired approximate voltage to be read by the ADC. If the range of the CTMU current source is selected to be 0.55 μA, the resistor value needed is calculated as $R_{CAL} = 2.31V/0.55 \, \mu A$, for a value of 4.2 MΩ. Similarly, if the current source is chosen to be 5.5 μA, R_{CAL} will be 420,000 Ω, and 42,000 Ω if the current source is set to 55 μA.

Figure 33-2: CTMU Current Source Calibration Circuit
A value of 70% full-scale voltage is chosen to ensure that the ADC was in a range that is well above the noise floor. If an exact current is chosen that is to incorporate the trimming bits from CTMUICON, the resistor value of RCAL may need to be adjusted accordingly. RCAL may be adjusted to allow for available resistor values. RCAL should be of the highest precision available, the amount of precision required for the circuit that the CTMU will be used to measure. A recommended minimum precision will be 0.1% tolerance.

The following examples show a typical method for performing a CTMU current calibration. Example 33-1 shows how to initialize the ADC and the CTMU; this routine is typical for the applications using both the modules. Example 33-2 shows one method for the actual calibration routine. This method manually triggers the ADC and it is performed to demonstrate the entire stepwise process. It is also possible to automatically trigger the conversion by setting the CTTRIG bit (CTMUCON1<8>).

Example 33-1: Setup for CTMU Calibration Routines for Devices with CTMUICON1 and CTMUICON2 Registers

```
#include "p33Exxxx.h"

/*******************
* Set up CTMU *************************************************************/
/*******************

void setup(void)
{
    //CTMUCON - CTMU Control register
    CTMUCON1 = 0x1000; //make sure CTMU is disabled
    CTMUCON2 = 0xC0C0;
    //CTMU continues to run when emulator is stopped, CTMU continues
    //to run in idle mode, Time Generation mode enabled, Edges are
    //blocked. No edge sequence order, Analog current source not
    //grounded, trigger output disabled, Edge 2 polarity = positive level,
    //Edge 2 source = source 0, Edge 1 polarity = positive level,
    //Edge 1 source = source 0, Set Edge status bits to zero

    //CTMUICON - CTMU Current Control Register
    CTMUICON = 0x0100; // 0.55uA, Nominal - No Adjustment

    //Set up Analog-to-Digital Converter ************************************
    TRISBbits.TRISB0 = 1; //Set channel 2 as an input
    AD1PCFG0bits.PCFG2 = 0;
    AD1CHS0 = 0x002; //Select the analog channel(2)
    AD1CSSL = 0x0000;
    AD1CON1 = 0x8000; //Turn On ADC, continue in Idle mode,
    //unsigned fractional format, Clear SAMP
    //bit to start conversion, Sample when
    //SAMP bit is set, sampling on hold
    AD1CON2 = 0x0000; //VR+ = AVDD, V- = AVSS, Don't scan,
    //always use MUX A inputs
    AD1CON3 = 0x0000; //ADC uses system clock,
    //conversion clock = 1xTcy
}
```
Example 33-2: Current Calibration Routine for Devices with CTMUCON1 and CTMUCON2 Registers

```c
#include "p33Exxxx.h"

#define COUNT 459 // 7.37 MHz = 125us.
#define DELAY asm("repeat #459");Nop(); // (459+2)/(7.37/2) = 125us
// the repeat count and the COUNT define must be identical
#define RCAL .027 // R value is 4200000 (4.2M)
// scaled so that result is in 1/100th of uA
#define ADSCALE 1023 // for unsigned conversion 10 sig bits
#define ADREF 3.3 // Vdd connected to ADC Vr+

int main(void) {
    int i;
    int j = 0; // index for loop
    unsigned int Vread = 0;
    double VTot = 0;
    float Vavg=0, Vcal=0, CTMUISrc = 0; // float values stored for calcs

    // Initialize the ADC and CTMU module. See Example 33-1.
    setup();

    CTMUCON1bits.CTMUEN = 1; // Enable the CTMU

    for(j=0; j<10; j++) {
        AD1CON1bits.SAMP = 1; // Manual sampling start
        CTMUCON1bits.IDISSEN = 1; // drain charge on the circuit
        DELAY; // wait 125us
        CTMUCON1bits.IDISSEN = 0; // end drain of circuit

        CTMUCON2bits.EDG1STAT = 1; // Begin charging the circuit
        DELAY; // wait for 125us
        CTMUCON2bits.EDG1STAT = 0; // Stop charging circuit

        ifs0bits.AD1IF = 0; // make sure ADC Interrupt is not set
        AD1CON1bits.SAMP = 0; // begin Analog-to-Digital conversion
        while(!ifs0bits.AD1IF); // Wait for conversion to complete
        AD1CON1bits.DONE = 0;
        Vread = ADC1BUF0; // Get the value from the ADC
        VTot += Vread; // Add the reading to the total
    }

    Vavg = (float)(VTot/10.000); // Average of 10 readings
    Vcal = (float)(Vavg/ADSCALE*ADREF); // Vcal is in 100ths of uA
    CTMUISrc = Vcal/RCAL; // CTMUISrc is in 1/100ths of uA
}
```
33.5.2 Capacitance Calibration

A small amount of capacitance from the internal ADC sample capacitor and stray capacitance from the circuit board traces and pads that affect the precision of capacitance measurements. A measurement of the stray capacitance can be taken to ensure the desired capacitance to be measured is removed. The measurement is then performed using the following steps:

1. Initialize the ADC and the CTMU.
2. Set EDG1STAT (= 1).
3. Wait for a fixed delay of time t.
4. Clear EDG1STAT.
5. Perform an analog-to-digital conversion.
6. Calculate the stray and analog-to-digital sample capacitances using Equation 33-5.

Equation 33-5:

$$ C_{OFFSET} = C_{STRAY} + C_{AD} = \frac{(I \cdot t)}{V} $$

where I is known from the current source measurement step, t is a fixed delay and V is measured by performing an analog-to-digital conversion.

This measured value is then stored and used for calculations of time measurement, or subtracted for capacitance measurement. For calibration, it is expected that the capacitance of $C_{STRAY} + C_{AD}$ is approximately known. C_{AD} is approximately 4 pF.

An iterative process must be used to adjust the time t, that the circuit is charged to obtain a reasonable voltage reading from the ADC. The value of t may be determined by setting C_{OFFSET} to a theoretical value, then solving for t. For example, if C_{STRAY} is theoretically calculated to be 11 pF, and V is expected to be 70% of V_{DD}, or 2.31V, t would be equal to Equation 33-6 or 63 μs.

Equation 33-6:

$$ (4 \, pF + 11 \, pF) \cdot \frac{2.31 \, V}{0.55 \, \mu A} $$

A typical routine for CTMU capacitance calibration is shown in Example 33-3.
Section 33. Charge Time Measurement Unit (CTMU)

Example 33-3: Capacitance Calibration Routine for Devices with CTMUCON1 and CTMUCON2 Registers

```c
#include "p33Exxxx.h"
#define COUNT 28  //@ 7.37 MHz INTFRC = 62.5 us.
#define ETIME (COUNT+2)/7.37*2 //time in uS
#define DELAY asm("repeat #228");Nop(); //(228+2)/(7.37/2) = 62.5us
#define ADSCALE 1023 //for unsigned conversion 10 sig bits
#define ADREF 3.3 //Vdd connected to ADC Vr+

int main(void)
{
    int i;
    int j = 0; //index for loop
    unsigned int Vread = 0;
    float CTMUISrc, CTMUCap, Vavg, VTot, Vcal;

    //Initialize the ADC and CTMU module. See Example 33-1.
    setup();

    CTMUCON1bits.CTMUEN = 1; //Enable the CTMU

    for(j=0;j<10;j++)
    {
        AD1CON1bits.SAMP = 1; //Manual sampling start
        CTMUCON1bits.IDISSEN = 1; //drain any charge on the circuit
        DELAY; //wait 62.5 us
        CTMUCON1bits.IDISSEN = 0; //end drain of circuit
        CTMUCON2bits.EDG1STAT = 1; //Begin charging the circuit
        DELAY; //wait for 62.5 us for circuit to charge
        CTMUCON2bits.EDG1STAT = 0; //Stop charging circuit and begin Analog-to-Digital conversion
        AD1CON1bits.SAMP = 0;
        while(!IFS0bits.AD1IF); //Wait for conversion to complete
        Vread = ADC1BUF0; //Get the value from the ADC
        Vcal = ADC1BUF0; //Clear ADIF
        VTot += Vread; //Add the reading to the total
    }

    Vavg = (VTot/10); //Average of 10 readings
    Vcal = (Vavg/ADSCALE*ADREF); //CTMUISrc is in 1/100ths of uA
    CTMUISrc = 5.5; //use the nominal value or the value calculated in Example 33-2

    CTMUCap = (CTMUISrc*ETIME/Vcal)/100; //time is in us
    //CTMUCap is in pF
}
```
33.6 MEASURING CAPACITANCE WITH THE CTMU

The two methods of measuring capacitance with the CTMU are:

- Absolute Capacitance Measurement: The actual capacitance value is required
- Relative Charge Measurement: The actual capacitance value is not required instead an indication of change in capacitance is required.

33.6.1 Absolute Capacitance Measurement

For absolute capacitance measurements, both the current and capacitance calibration steps found in 33.5 “Calibrating the CTMU Module” should be followed. Capacitance measurements are then performed using the following steps:

1. Initialize the ADC.
2. Initialize the CTMU.
3. Set EDG1STAT.
4. Wait for a fixed delay, T.
5. Clear EDG1STAT.
7. Calculate the total capacitance, \(C_{\text{TOTAL}} = (I \times T)/V \), where I is known from the current source measurement step (33.5.1 “Current Source Calibration”), T is a fixed delay and I is measured by performing an analog-to-digital conversion.
8. Subtract the stray and analog-to-digital capacitance (COFFSET from 33.5.2 “Capacitance Calibration”) from \(C_{\text{TOTAL}} \) to determine the measured capacitance.

33.6.2 Relative Charge Measurement

An application may not require precise capacitance measurements. For example, when detecting a valid press of a capacitance-based switch, detecting a relative change of capacitance is of interest. In this application, when the switch is open (or not touched), the total capacitance is the capacitance of the combination of the board traces, the ADC, etc. A larger voltage will be measured by the ADC. When the switch is closed (or is touched), the total capacitance is larger due to the addition of the capacitance of the human body to the above listed capacitances, and a smaller voltage will be measured by the ADC.

Detecting capacitance changes can be done with the CTMU using these steps:

1. Initialize the ADC and the CTMU.
2. Set EDG1STAT.
3. Wait for a fixed delay.
4. Clear EDG1STAT.
5. Perform an analog-to-digital conversion.

The voltage measured by performing the analog-to-digital conversion is an indication of the relative capacitance. In this case, no calibration of the current source or circuit capacitance measurement is required. A sample software routine for a capacitive touch switch is shown in Example 33-4.
Example 33-4: Routine for Capacitive Touch Switch for Devices with CTMUCON1 and CTMUCON2 Registers

```c
#include "p33Exxxx.h"
#define COUNT 459  //@ 7.37 MHz = 125uS.
#define DELAY asm("repeat #459");Nop(); //(459+2)/(7.37/2) = 125us
//the repeat count and the COUNT
//define must be identical
#define OPENSW 1000 //Unpressed switch value
#define TRIP 300  //Difference between pressed
//and unpressed switch
#define HYST 65  //Amount to change
//from pressed to unpressed
#define PRESSED 1
#define UNPRESSED 0

int main(void)
{
    unsigned int Vread; //storage for reading
    unsigned int switchState;
    int i;

    //Initialize the ADC and CTMU module. See Example 33-1.
    setup();
    CTMUCON1bits.CTMUEN = 1; //Enable the CTMU
    AD1CON1bits.SAMP = 1; //Manual sampling start
    CTMUCON1bits.IDISSEN = 1; //drain charge on the circuit
    DELAY; //wait 125us
    CTMUCON1bits.IDISSEN = 0; //end drain of circuit
    CTMUCON2bits.EDG1STAT = 1;//Begin charging the circuit
    //using CTMU current source
    DELAY; //wait for 125us
    CTMUCON2bits.EDG1STAT = 0; //Stop charging circuit
    IFS0bits.AD1IF = 0; //make sure ADC Interrupt is not set
    AD1CON1bits.SAMP = 0; //and begin Analog-to-Digital conversion
    while(AD1CON1bits.AD1IF);
    AD1CON1bits.DONE = 0;
    Vread = ADC1BUF0; //Get the value from the ADC
    if(Vread < OPENSW - TRIP)
    {
        switchState = PRESSED;
    }
    else if(Vread > OPENSW - TRIP + HYST)
    {
        switchState = UNPRESSED;
    }
    } //end main
```
33.7 MEASURING TIME WITH THE CTMU MODULE

Time can be precisely measured after the ratio \(C/I \) is measured from the current and capacitance calibration step by following these steps:

1. Initialize the ADC and the CTMU.
2. Set EDG1STAT.
3. Set EDG2STAT.
5. Calculate the time between edges as \(T = (C/I) \times V \), where \(I \) is calculated in the current calibration step (33.5.1 “Current Source Calibration”), \(C \) is calculated in the capacitance calibration step (33.5.2 “Capacitance Calibration”) and \(V \) is measured by performing the analog-to-digital conversion.

It is assumed that the time measured is small enough that the capacitance \(COFFSET \) provides a valid voltage to the ADC. For the smallest time measurement, set the ADC Channel Select register (AD1CHS0) to an unused ADC channel; the corresponding pin for which is not connected to any circuit board trace. This minimizes added stray capacitance by keeping the total circuit capacitance close to the ADC (4-5 pF). To measure longer time intervals, an external capacitor may be connected to an ADC channel, and this channel is selected when making a time measurement.
33.8 CREATING A DELAY WITH THE CTMU MODULE

A unique feature of the CTMU module is to generate system clock independent output pulses based on an external capacitor value. This is accomplished using the internal comparator voltage reference module, the Comparator module input pin, and an external capacitor. The pulse is output onto the CTPLS pin. To enable this mode, you need to set the TGEN bit (CTMUCON<12>).

An example circuit is illustrated in Figure 33-3. CPULSE is chosen by the user to determine the output pulse width on CTPLS. The pulse width is calculated by \(T = \frac{CPULSE}{I} \times V \), where \(I \) is known from the current source measurement step (33.5.1 “Current Source Calibration”) and \(V \) is the internal reference voltage (CVREF).

An example use of this feature is for interfacing with variable capacitive-based sensors like a humidity sensor. As the humidity varies, the pulse-width output on CTPLS will vary. The CTPLS output pin can be connected to an input capture pin and the varying pulse width is measured to determine the humidity in the application.

Follow these steps to use this feature:

1. Initialize the Comparator module.
2. Initialize the comparator voltage reference.
3. Initialize the CTMU and enable time delay generation by setting the TGEN bit.
4. Set EDG1STAT.
5. When CPULSE charges to the value of the voltage reference trip point, an output pulse is generated on CTPLS.

![Figure 33-3: Typical Connections and Internal Configuration for Pulse Delay Generation](image)

Note 1: Refer to the specific device data sheet for information related to the comparator input used in this mode.
33.9 MEASURING ON-CHIP TEMPERATURE WITH THE CTMU

The CTMU module can be used to measure the internal temperature of the device through an internal diode that is available for such purposes. When EDGE 1 is not equal to EDGE 2 and TGEN = 0, the current is steered into the temperature sensing diode. The voltage across the diode is available as an input to the ADC module. Refer to the specific device data sheet for information on the analog channel on which the diode is connected.

Figure 33-4 illustrates how this module can be used for temperature measurement. As the temperature rises, the voltage across the diode will drop by about 300 mV over a 150°C range. Selecting a higher current drive strength will raise the voltage value by a few 100 mV.

Figure 33-4: CTMU Temperature Measurement Circuit

![CTMU Temperature Measurement Circuit Diagram]

At 25°C, the forward voltage of the temperature diode is 0.83V. The rate of change between the forward voltage of the diode and its temperature is 1.87 mV per degree Celsius. The formula shown in Equation 33-7 can be used to calculate the forward voltage.

Equation 33-7: Voltage versus Temperature

\[
V_f \text{ (in mV)} = 783.24 mV + 1.87 mV \cdot T
\]

Where:

- \(V_f\) = Forward voltage of temperature diode
- \(T\) = Temperature in degrees Celsius
33.10 OPERATION DURING SLEEP OR IDLE MODE

33.10.1 Sleep Mode

When the device enters Sleep mode, the CTMU module current source is always disabled. If the CTMU is performing an operation that depends on the current source when Sleep mode is invoked, the operation may not terminate correctly. Capacitance and time measurements may return erroneous values.

33.10.2 Idle Mode

The behavior of the CTMU in Idle mode is determined by the CTMUSIDL bit (CTMUCON1<13>). If CTMUSIDL is cleared, the module will continue to operate in Idle mode. If CTMUSIDL is set, the CTMU module’s current source is disabled when the device enters Idle mode. If the CTMU module is performing an operation when Idle mode is invoked, the results will be similar to those with Sleep mode.

33.11 EFFECTS OF A RESET ON CTMU

Upon Reset, all registers of the CTMU are cleared. This leaves the CTMU module disabled, its current source is turned off and all configuration options return to their default settings. The module needs to be reinitialized following any Reset.

If the CTMU is in the process of taking a measurement at the time of Reset, the measurement will be lost. A partial charge may exist on the circuit that was being measured, and should be properly discharged before the CTMU makes subsequent attempts to make a measurement. The circuit is discharged by setting and then clearing the IDISSEN bit (CTMUCON1<9>) while the ADC is connected to the appropriate channel.
33.12 REGISTER MAPS

A summary of the registers associated with the dsPIC33E/PIC24E CTMU is given in Table 33-1.

Table 33-1: CTMU Register Map

<table>
<thead>
<tr>
<th>File Name</th>
<th>Bit Name</th>
<th>Bit 15</th>
<th>Bit 14</th>
<th>Bit 13</th>
<th>Bit 12</th>
<th>Bit 11</th>
<th>Bit 10</th>
<th>Bit 9</th>
<th>Bit 8</th>
<th>Bit 7</th>
<th>Bit 6</th>
<th>Bit 5</th>
<th>Bit 4</th>
<th>Bit 3</th>
<th>Bit 2</th>
<th>Bit 1</th>
<th>Bit 0</th>
<th>All Resets</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTMUON1(1)</td>
<td>CTMUEN</td>
<td>—</td>
<td>CTMUIDL</td>
<td>TGEN</td>
<td>EDGEN</td>
<td>EDGSEQEN</td>
<td>IDISSEN</td>
<td>CTTRIG</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0000</td>
</tr>
<tr>
<td>CTMUON2(1)</td>
<td>EDGIN</td>
<td>0000</td>
</tr>
<tr>
<td>CTMUICON</td>
<td>ITRIM<5:0></td>
<td>—</td>
<td>0000</td>
</tr>
</tbody>
</table>

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Refer to the specific device data sheet to determine whether this register is available on your particular device.
33.13 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the dsPIC33E/PIC24E device family, but the concepts are pertinent and could be used with modification and possible limitations. The current application notes related to the Charge Time Measurement Unit (CTMU) module are:

<table>
<thead>
<tr>
<th>Title</th>
<th>Application Note #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microchip CTMU for Capacitive Touch Applications</td>
<td>AN1250</td>
</tr>
<tr>
<td>Water-Resistant Capacitive Sensing</td>
<td>AN1286</td>
</tr>
<tr>
<td>mTouch™ Conducted Noise Immunity Techniques for the CTMU</td>
<td>AN1317</td>
</tr>
<tr>
<td>Techniques for Robust Touch Sensing Design</td>
<td>AN1334</td>
</tr>
</tbody>
</table>

Note: Visit the Microchip web site (www.microchip.com) for additional application notes and code examples for the dsPIC33E/PIC24E family of devices.
33.14 REVISION HISTORY

Revision A (May 2011)
This is the initial released version of this document.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscent Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PicKit, PICtail, REAL ICE, rILAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KlixLoc® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277

Technical Support:
http://www.microchip.com/support

Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455

- **Boston**
 Westborough, MA
 Tel: 774-447-0087
 Fax: 774-447-0088

- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075

- **Cleveland**
 Independence, OH
 Tel: 216-447-0087
 Fax: 216-447-0083

- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924

- **Detroit**
 Farmington Hills, MI
 Tel: 248-538-2250
 Fax: 248-538-2260

- **Indianapolis**
 Noblesville, IN
 Tel: 317-773-9323
 Fax: 317-773-5453

- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608

- **Santa Clara**
 Santa Clara, CA
 Tel: 408-961-6444
 Fax: 408-961-6445

- **Toronto**
 Mississauga, Ontario, Canada
 Tel: 905-673-0699
 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

- **Australia - Sydney**
 Tel: 61-2-8868-6733
 Fax: 61-2-8868-6755

- **China - Beijing**
 Tel: 86-10-8569-7000
 Fax: 86-10-8528-2104

- **China - Chengdu**
 Tel: 86-28-8665-5511
 Fax: 86-28-8665-7889

- **China - Chongqing**
 Tel: 86-23-8980-9588
 Fax: 86-23-8980-9500

- **China - Hangzhou**
 Tel: 86-571-2819-3180
 Fax: 86-571-2819-3189

- **China - Hong Kong SAR**
 Tel: 852-2401-1200
 Fax: 852-2401-3431

- **China - Nanjing**
 Tel: 86-25-8473-2460
 Fax: 86-25-8473-2470

- **China - Qingdao**
 Tel: 86-532-8502-7355
 Fax: 86-532-8502-7205

- **China - Shanghai**
 Tel: 86-21-5407-5533
 Fax: 86-21-5407-5066

- **China - Shenyang**
 Tel: 86-24-2334-2829
 Fax: 86-24-2334-2393

- **China - Shenzhen**
 Tel: 86-755-8203-2660
 Fax: 86-755-8203-1760

- **China - Wuhan**
 Tel: 86-27-5980-5300
 Fax: 86-27-5980-5118

- **China - Xian**
 Tel: 86-29-8833-7252
 Fax: 86-29-8833-7256

- **China - Xiamen**
 Tel: 86-592-2388138
 Fax: 86-592-2388130

- **China - Zhuhai**
 Tel: 86-756-3210040
 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-53-60-97

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

05/02/11