HIGHLIGHTS

This section of the manual contains the following major topics:

19.1 Introduction .............................................................................................................. 19-2
19.2 Comparator Control Registers ................................................................................. 19-3
19.3 Comparator Operation ............................................................................................. 19-7
19.4 Interrupts ................................................................................................................ 19-11
19.5 Operation in Power-Saving and Debug Modes ..................................................... 19-13
19.6 Effects of a Reset .................................................................................................. 19-13
19.7 Related Application Notes ..................................................................................... 19-14
19.8 Revision History ..................................................................................................... 19-15
19.1 INTRODUCTION

The PIC32MX family Analog Comparator module contains one or more comparator(s) that can be configured in a variety of ways.

Following are some of the key features of this module:

- Selectable inputs available include:
  - Analog inputs multiplexed with I/O pins
  - On-Chip Internal Absolute Voltage Reference (IVREF)
  - Comparator Voltage Reference (CVREF)
- Outputs can be inverted
- Selectable interrupt generation

A block diagram of the comparator module is illustrated in Figure 19-1.

Figure 19-1: Comparator Block Diagram

Note 1: On devices with a USB module, and when the module is enabled, this pin is controlled by the USB module, and therefore, is not available as a comparator input.

Note 2: Internally connected.
19.2 COMPARATOR CONTROL REGISTERS

Note: Each PIC32MX device variant may have one or more Comparator modules. An ‘x’ used in the names of pins, control/status bits and registers denotes the particular module. Refer to the specific device data sheet for more information.

A Comparator module consists of the following Special Function Registers (SFRs):

- **CMxCON**: Comparator Control Register\(^{(1,2,3)}\)
- **CMSTAT**: Comparator Status Register\(^{(1,2,3)}\)

The following table provides a brief summary of all Comparator-related registers. Corresponding registers appear after the summary, followed by a detailed description of each register.

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit 31/23/15/7</th>
<th>Bit 30/22/14/6</th>
<th>Bit 29/21/13/5</th>
<th>Bit 28/20/12/4</th>
<th>Bit 27/19/11/3</th>
<th>Bit 26/18/10/2</th>
<th>Bit 25/17/9/1</th>
<th>Bit 24/16/8/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMxCON(^{(1,2,3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31:24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23:16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMSTAT(^{(1,2,3)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31:24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23:16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15:8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: — = unimplemented, read as ‘0’.

Note 1: This register has an associated Clear register at an offset of 0x4 bytes. These registers have the same name with CLR appended to the end of the register name (e.g., CMxCONCLR). Writing a ‘1’ to any bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register should be ignored.

2: This register has an associated Set register at an offset of 0x8 bytes. These registers have the same name with SET appended to the end of the register name (e.g., CMxCONSET). Writing a ‘1’ to any bit position in the Set register will set valid bits in the associated register. Reads from the Set register should be ignored.

3: This register has an associated Invert register at an offset of 0xC bytes. These registers have the same name with INV appended to the end of the register name (e.g., CMxCONINV). Writing a ‘1’ to any bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert register should be ignored.
Register 19-1: CMxCON: Comparator Control Register

<table>
<thead>
<tr>
<th>Bit</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-16</td>
<td>Unimplemented: Read as '0'</td>
</tr>
<tr>
<td>15</td>
<td><strong>ON</strong>: Comparator ON bit</td>
</tr>
<tr>
<td>14</td>
<td><strong>COE</strong>: Comparator Output Enable bit</td>
</tr>
<tr>
<td>13</td>
<td><strong>CPOL</strong>: Comparator Output Inversion bit</td>
</tr>
<tr>
<td>12-9</td>
<td>Unimplemented: Read as '0'</td>
</tr>
</tbody>
</table>

**Legend:**

R = Readable bit  
W = Writable bit  
P = Programmable bit  
r = Reserved bit  
U = Unimplemented bit  
-n = Bit Value at POR: ('0', '1', x = Unknown)

### bit 31-16
Unimplemented: Read as '0'

### bit 15
**ON**: Comparator ON bit

- **1**: Module is enabled. Setting this bit does not affect the other bits in this register.
- **0**: Module is disabled and does not consume current. Clearing this bit does not affect the other bits in this register.

**Note:** When using the 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.

### bit 14
**COE**: Comparator Output Enable bit

- **1**: Comparator output is driven on the output CxOUT pin
- **0**: Comparator output is not driven on the output CxOUT pin

### bit 13
**CPOL**: Comparator Output Inversion bit

- **1**: Output is inverted
- **0**: Output is not inverted

**Note:** Setting this bit will invert the signal to the comparator interrupt generator as well. This will result in an interrupt being generated on the opposite edge from the one selected by EVPOL<1:0>.

### bit 12-9
Unimplemented: Read as '0'

**Note 1:** This register has an associated Clear register (CMxCONCLR) at an offset of 0x4 bytes. Writing a '1' to any bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register should be ignored.

**Note 2:** This register has an associated Set register (CMxCONSET) at an offset of 0x8 bytes. Writing a '1' to any bit position in the Set register will set valid bits in the associated register. Reads from the Set register should be ignored.

**Note 3:** This register has an associated Invert register (CMxCONINV) at an offset of 0xC bytes. Writing a '1' to any bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert register should be ignored.

**Note 4:** For x=1/y=2 or x=2/y=1.
Register 19-1: CMxCON: Comparator Control Register\(^{(1,2,3)}\) (Continued)

bit 8  
COUT: Comparator Output bit  
\(1\) = Output of the Comparator is a ‘1’  
\(0\) = Output of the Comparator is a ‘0’

bit 7-6  
EVPOL<1:0>: Interrupt Event Polarity Select bits  
\(11\) = Comparator interrupt is generated on a low-to-high or high-to-low transition of the comparator output  
\(10\) = Comparator interrupt is generated on a high-to-low transition of the comparator output  
\(01\) = Comparator interrupt is generated on a low-to-high transition of the comparator output  
\(00\) = Comparator interrupt generation is disabled

bit 5  
Unimplemented: Read as ‘0’

bit 4  
CREF: Comparator Positive Input Configure bit  
\(1\) = Comparator non-inverting input is connected to the internal CVREF  
\(0\) = Comparator non-inverting input is connected to the CXIN+ pin

bit 3-2  
Unimplemented: Read as ‘0’

bit 1-0  
CCH<1:0>: Comparator Negative Input Select bits for Comparator  
\(11\) = Comparator inverting input is connected to the IVREF  
\(10\) = Comparator inverting input is connected to the CIYN+ pin\(^{(4)}\)  
\(01\) = Comparator inverting input is connected to the CxIN+ pin\(^{(4)}\)  
\(00\) = Comparator inverting input is connected to the CxIN- pin\(^{(4)}\)

Note 1: This register has an associated Clear register (CMxCONCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register should be ignored.

2: This register has an associated Set register (CMxCONSET) at an offset of 0x8 bytes. Writing a ‘1’ to any bit position in the Set register will set valid bits in the associated register. Reads from the Set register should be ignored.

3: This register has an associated Invert register (CMxCONINV) at an offset of 0xC bytes. Writing a ‘1’ to any bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert register should be ignored.

4: For \(x=1/y=2\) or \(x=2/y=1\).
Register 19-2: CMSTAT: Comparator Status Register\(^{(1,2,3)}\)

<table>
<thead>
<tr>
<th>Bit 31-15</th>
<th>Unimplemented: Read as ‘0’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 14</td>
<td>FRZ: Freeze Control bit</td>
</tr>
<tr>
<td></td>
<td>1 = Freeze operation when CPU enters Debug Exception mode</td>
</tr>
<tr>
<td></td>
<td>0 = Continue operation when CPU enters Debug Exception mode</td>
</tr>
<tr>
<td>Note:</td>
<td>FRZ is writable in Debug Exception mode only. It always reads ‘0’ in Normal mode.</td>
</tr>
<tr>
<td>Bit 13</td>
<td>SIDL: Stop in IDLE Control bit</td>
</tr>
<tr>
<td></td>
<td>1 = All Comparator modules are disabled in IDLE mode</td>
</tr>
<tr>
<td></td>
<td>0 = All Comparator modules continue to operate in the IDLE mode</td>
</tr>
<tr>
<td>Bit 12-2</td>
<td>Unimplemented: Read as ‘0’</td>
</tr>
<tr>
<td>Bit 1</td>
<td>C2OUT: Comparator Output bit</td>
</tr>
<tr>
<td></td>
<td>1 = Output of Comparator 2 is a ‘1’</td>
</tr>
<tr>
<td></td>
<td>0 = Output of Comparator 2 is a ‘0’</td>
</tr>
<tr>
<td>Bit 0</td>
<td>C1OUT: Comparator Output bit</td>
</tr>
<tr>
<td></td>
<td>1 = Output of Comparator 1 is a ‘1’</td>
</tr>
<tr>
<td></td>
<td>0 = Output of Comparator 1 is a ‘0’</td>
</tr>
</tbody>
</table>

Note 1: This register has an associated Clear register (CMSTATCLR) at an offset of 0x4 bytes. Writing a ‘1’ to any bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register should be ignored.

Note 2: This register has an associated Set register (CMSTATSET) at an offset of 0x8 bytes. Writing a ‘1’ to any bit position in the Set register will set valid bits in the associated register. Reads from the Set register should be ignored.

Note 3: This register has an associated Invert register (CMSTATINV) at an offset of 0xC bytes. Writing a ‘1’ to any bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert register should be ignored.
19.3 COMPARATOR OPERATION

19.3.1 Comparator Configuration

The Comparator module has a flexible input and output configuration to allow the module to be tailored to the needs of the application. The PIC32MX family Comparator module has individual control over the enable, output inversion, output on I/O pin and input selections. The VIN+ pin of each comparator can select from an input pin or the CVREF. The VIN- input of the Comparator module can select from one of three input pins or the IVREF. In addition, the Comparator module has two individual comparator event generation control bits. These control bits can be used for detecting when the output of an individual comparator changes to a desired state or changes states.

If the comparator mode is changed, the comparator output level may not be valid for the specified mode change delay (refer to the specific device data sheet for more information).

Note: Comparator interrupts should be disabled during a comparator mode change; otherwise, a false interrupt may be generated.

A single comparator is illustrated in the upper portion of Figure 19-2. The lower portion represents the relationship between the analog input levels and the digital output. When the analog input at VIN+ is less than the analog input at VIN-, the output of the comparator is a digital low level. When the analog input at VIN+ is greater than the analog input VIN-, the output of the comparator is a digital high level. The shaded areas of the output of the comparator in the lower portion of Figure 19-2 illustrates the uncertainty that is due to input offsets and the response time of the comparator.

19.3.2 Comparator Inputs

Depending on the comparator operating mode, the inputs to the comparators may be from two input pins or a combination of an input pin and one of two internal voltage references. The analog signal present at VIN- is compared to the signal at VIN+ and the digital output of the comparator is set or cleared according to the result of the comparison, as illustrated in Figure 19-2.

Figure 19-2: Single Comparator

19.3.2.1 EXTERNAL REFERENCE SIGNAL

An external voltage reference may be used with the comparator by using the output of the reference as an input to the comparator. Refer to the specific device data sheet for input voltage limits.
19.3.2.2 INTERNAL REFERENCE SIGNALS

The CVREF module and the IVREF can be used as inputs to the comparator, as illustrated in Figure 19-1. The CVREF provides a user-selectable voltage for use as a comparator reference. For more information on this module, refer to Section 20, “Comparator Voltage Reference” (DS61109) in the “PIC32MX Family Reference Manual”. The IVREF has a fixed 1.2V output that does not change with the device supply voltage. Refer to the specific device data sheet for details and accuracy of this reference.

19.3.3 Comparator Response Time

Response time is the minimum amount of time that elapses from the moment a change is made in the input voltage of a comparator to the moment the output reflects the new level. If the internal reference is changed, the maximum delay of the internal voltage reference must be considered, when using the comparator outputs. Otherwise, the maximum delay of the comparators should be used. For more information, refer to the specific device data sheet.

19.3.4 Comparator Outputs

The comparator output is read through the CMSTAT register and the COUT bit (CM2CON<8> or CM1CON<8>). This bit is read-only. The comparator output may also be directed to an I/O pin via the CxOUT bit; however, the COUT bit is still valid when the signal is routed to a pin. For the comparator output to be available on the CxOUT pin, the associated TRIS bit for the output pin must be configured as an output. When the COUT signal is routed to a pin the signal is the unsynchronized output of the comparator.

The output of the comparator has a degree of uncertainty. The uncertainty of each of the comparators is related to the input offset voltage and the response time, as stated in the specifications. The lower portion of Figure 19-2 provides a graphical representation of this uncertainty.

The comparator output bit, COUT, provides the latched sampled value of the comparator’s output when the register was read. There are two common methods used to detect a change in the comparator output:

• Software polling
• Interrupt generation

19.3.4.1 SOFTWARE POLLING METHOD OF COMPARATOR EVENT DETECTION

Software polling of COUT is performed by periodically reading the COUT bit. This allows the output to be read at uniform time intervals. A change in the comparator output is not detected until the next read of the COUT bit. If the input signal changes at a rate faster than the polling, a brief change in output may not be detected.

19.3.4.2 INTERRUPT GENERATION METHOD OF COMPARATOR EVENT DETECTION

Interrupt generation is the other method for detecting a change in the comparator output. The Comparator module can be configured to generate an interrupt when the COUT bit changes. An interrupt will be generated when the comparator’s output changes (subject to the interrupt priorities). This method responds more rapidly to changes than the software polling method; however, rapidly changing signals will cause an equally large number of interrupts. This can cause interrupt loading and potentially undetected interrupts due to new interrupts being generated while the previous interrupt is still being serviced or even before the interrupt can be serviced. If the input signal changes rapidly, reading the COUT bit in the Interrupt Service Routine (ISR) may yield a different result than the one that generated the Interrupt. This is due to the COUT bit representing the value of the comparator output when the bit was read and not the value that caused the interrupt.

Comparator output and interrupt generation is illustrated in Figure 19-4.
19.3.4.3 CHANGING THE POLARITY OF COMPARATOR OUTPUTS

The polarity of the comparator outputs can be changed using the CPOL bit (CMxCON<13>). CPOL appears below the comparator Cx on the left side of Figure 19-3.

Figure 19-3: Comparator Output Block Diagram
19.3.5 Analog Input Connection Considerations

A simplified circuit for an analog input is illustrated in Figure 19-4. A maximum source impedance of 10 kΩ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current. Refer to the specific device data sheet for input voltage limits. If a pin is to be shared by two or more analog inputs that are to be used simultaneously, the loading effects of all the modules involved must be taken into consideration. This loading may reduce the accuracy of one or more of the modules connected to the common pin. This may also require a lower source impedance than is stated for a single module with exclusive use of a pin in Analog mode.

**Note:** When reading the PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert an analog input according to the Schmitt Trigger input specification.

Analog levels on any pin defined as a digital input may cause the input buffer to consume more current than is specified.

Figure 19-4: Comparator Analog Input Model

![Comparator Analog Input Model Diagram](image)

**Legend:**
- CPIN = Input Capacitance
- ILEAKAGE = Leakage Current at the pin due to various junctions
- RIC = Interconnect Resistance
- Rs = Source Impedance
- VA = Analog Voltage
19.4 INTERRUPTS

Each of the available comparators has a dedicated interrupt bit, CMPxIF (IFS1<3> or IFS1<4>), and a corresponding interrupt enable/mask bit, CMPxIE (IEC1<3> or IEC1<4>). These bits are used to determine the source of an interrupt and to enable or disable an individual interrupt source. The priority level of each of the channels can also be set independently of the other channels.

The CMPxIF bit is set when the CMPx channel detects a predefined match condition that is defined as an event generating an interrupt. The CMPxIF bit will then be set without regard to the state of the corresponding CMPxIE bit. The CMPxIF bit can be polled by software if desired.

The CMPxIE bit controls the interrupt generation. If the CMPxIE bit is set, the CPU will be interrupted whenever a comparator interrupt event occurs and the corresponding CMPxIF bit will be set (subject to the priority and subpriority as outlined below).

It is the responsibility of the user’s software routine that services a particular interrupt, to clear the appropriate interrupt flag bit before the service routine is complete.

The priority of each comparator channel can be set independently through the CMPxIP<2:0> bits. This priority defines the priority group to which the interrupt source will be assigned. The priority groups range from a value of 7 (the highest priority), to a value of 0 (which does not generate an interrupt). An interrupt being serviced will be preempted by an interrupt in a higher priority group.

The subpriority bits allow setting the priority of an interrupt source within a priority group. The values of the subpriority bit OCxIS<1:0> range from 3 (the highest priority), to 0 (the lowest priority). An interrupt within the same priority group but having a higher subpriority value will preempt a lower subpriority interrupt that is in progress.

The priority group and subpriority bits allow more than one interrupt source to share the same priority and subpriority. If simultaneous interrupts occur in this configuration, the natural order of the interrupt sources within a priority/subgroup pair determine the interrupt generated. The natural priority is based on the vector numbers of the interrupt sources. The lower the vector number, the higher the natural priority of the interrupt. Any interrupts that were overridden by natural order will then generate their respective interrupts based on priority, subpriority, and natural order, after the interrupt flag for the current interrupt is cleared.

After an enabled interrupt is generated, the CPU will jump to the vector assigned to that interrupt. The vector number for the interrupt is the same as the natural order number. The CPU will then begin executing code at the vector address. The user’s code at this vector address should perform any application-specific operations required, such as reloading the duty cycle, clear the interrupt flag CMPxIF, and then exit. For more information on interrupts, refer to the vector address table details in Section 8, “Interrupts” (DS61108).
Example 19-1: Comparator Initialization with Interrupts Enabled Code Example

```c
// Configure both comparators to generate an interrupt on any output transition
CM1CON = 0xC0D0;   // Initialize Comparator 1
// Comparator enabled, output enabled, interrupt on any output change, inputs: CVref, C1IN-
CM2CON = 0xA0C2;   // Initialize Comparator 2
// Comparator enabled, output enabled, interrupt on any output change, inputs: C2IN+, C1IN+

// Enable interrupts for Comparator modules and set priorities
// Set priority to 7 and subpriority to 3
IPC7SET = 0x00000000; // Set CMP1 interrupt subpriority
IFS1CLR = 0x00000000; // Clear the CMP1 interrupt flag
IEC1SET = 0x00000000; // Enable CMP1 interrupt
IPC7SET = 0x00000000; // Set CMP2 interrupt sub priority
IFS1CLR = 0x00000000; // Clear the CMP2 interrupt flag
IEC1SET = 0x00000000; // Enable CMP2 interrupt
```

Example 19-2: Comparator ISR Code Example

```c
// Insert user code here

void__ISR(_COMPARATOR_2_VECTOR, ipl4) Cmp2_IntHandler(void)
{
    // Insert user code here
    IFS1CLR = 0x00000000; // Clear the CMP2 interrupt flag
}

void__ISR(_COMPARATOR_1_VECTOR, ipl4) Cmp1_IntHandler(void)
{
    // Insert code user here
    IFS1CLR = 0x00000000; // Clear the CMP1 interrupt flag
}
```
19.5  OPERATION IN POWER-SAVING AND DEBUG MODES

19.5.1  Comparator Operation During Idle Mode

When a comparator is active and the device is placed in Idle mode, the comparator remains active and interrupts are generated (if enabled); if SIDL = 1 (CMSTAT<13>), the comparators are disabled in Idle mode.

19.5.2  Comparator Operation During Sleep Mode

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional (if enabled). This interrupt will wake up the device from Sleep mode (when enabled). Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators: ON = 0 (CMxCON<15>), prior to entering Sleep mode. If the device wakes up from Sleep mode, the contents of the CMxCON register are not affected. For additional information on Sleep mode, refer to Section 10. “Power-Saving Modes” (DS61130).

19.5.3  Comparator Operation in Debug Mode

The FRZ bit (CMSTAT<14>) determines whether the Comparator module will run or stop while the CPU is executing debug exception code (i.e., application is halted) in Debug mode. When FRZ = 0, the Comparator module continues to run even when application is halted in Debug mode. When FRZ = 1 and application is halted in Debug mode, the module will freeze its operations and make no changes to the state of the Comparator module. The module will resume its operation after the CPU resumes execution.

Note: The FRZ bit is readable and writable only when the CPU is executing in Debug Exception mode. In all other modes, the FRZ bit reads as ‘0’. If the FRZ bit is changed during Debug mode, the new value does not take effect until the current Debug Exception mode is exited and re-entered. During the Debug Exception mode, the FRZ bit reads the state of the peripheral when entering Debug mode.

19.6  EFFECTS OF A RESET

All Resets force the CMxCON registers to its Reset state, causing the comparator modules to be turned off (CMxCON<15> = 0). However, the input pins multiplexed with analog input sources are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting the AD1PCFG register.
19.7 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the PIC32MX device family, but the concepts are pertinent and could be used with modification and possible limitations. The current application notes related to the Comparator module are:

<table>
<thead>
<tr>
<th>Title</th>
<th>Application Note #</th>
</tr>
</thead>
<tbody>
<tr>
<td>No related application notes at this time</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Please visit the Microchip web site (www.microchip.com) for additional application notes and code examples for the PIC32MX family of devices.
Section 19. Comparator

19.8 REVISION HISTORY

Revision A (October 2007)
This is the initial released version of this document.

Revision B (October 2007)
Updated document to remove Confidential status.

Revision C (April 2008)
Revised status to Preliminary; Revised U-0 to r-x.

Revision D (May 2008)
Revised Figure 19-1; Revised Registers 19-1, 19-5, 19-13, 19-14, 19-15; Revised Example 19-2;
Revised Section 19.5, pin names; Change Reserved bits from “Maintain as” to “Write”; Added
Note to ON bit (CM1CON/CM2CON Registers).

Revision E (November 2010)
This revision includes the following updates:
• Notes:
  - Added a note at the beginning of the section, which provides information on
    complementary documentation.
  • Updated all Reserved bits as Unimplemented bits in Register 19-1 and Register 19-2.
  • Changed Figure 19-1.
  • Removed CMxCON and CMSTAT registers along with their corresponding CLR, SET and
    INV registers and added the following Note in Table 19-1
    - All registers in this table have corresponding CLR, SET and INV registers at their
      virtual addresses, plus offset of 0X04, 0X08 and 0X0C respectively.
  • Removed IFS1, IEC1, IPC1 registers and their corresponding CLR, SET and INV registers.
  • Removed Table 19-2 from 19.4 “Interrupts”.
  • Removed section 19.5 “I/O Pin Control”.
  • Minor changes to the text and formatting have been incorporated throughout the document.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
## AMERICAS

**Corporate Office**  
2355 West Chandler Blvd.  
Chandler, AZ 85224-6199  
Tel: 480-792-7200  
Fax: 480-792-7277  
Technical Support:  
http://support.microchip.com  
Web Address:  
www.microchip.com

**Atlanta**  
Duluth, GA  
Tel: 678-957-9614  
Fax: 678-957-1455

**Boston**  
Westborough, MA  
Tel: 774-760-0087  
Fax: 774-760-0088

**Chicago**  
Itasca, IL  
Tel: 630-285-0071  
Fax: 630-285-0075

**Cleveland**  
Independence, OH  
Tel: 216-447-0464  
Fax: 216-447-0643

**Dallas**  
Addison, TX  
Tel: 972-818-7423  
Fax: 972-818-2924

**Detroit**  
Farmington Hills, MI  
Tel: 248-538-2250  
Fax: 248-538-2260

**Kokomo**  
Kokomo, IN  
Tel: 765-864-8360  
Fax: 765-864-8387

**Los Angeles**  
Mission Viejo, CA  
Tel: 949-462-9523  
Fax: 949-462-9608

**Santa Clara**  
Santa Clara, CA  
Tel: 408-961-6444  
Fax: 408-961-6445

**Toronto**  
Mississauga, Ontario, Canada  
Tel: 905-673-0699  
Fax: 905-673-6509

## ASIA/PACIFIC

**Asia Pacific Office**  
Suites 3707-14, 37th Floor  
Tower 6, The Gateway  
Harbour City, Kowloon  
Hong Kong  
Tel: 852-2401-1200  
Fax: 852-2401-3431

**Australia - Sydney**  
Tel: 61-2-9868-6733  
Fax: 61-2-9868-6755

**China - Beijing**  
Tel: 86-10-8528-2100  
Fax: 86-10-8528-2104

**China - Chengdu**  
Tel: 86-28-8665-5611  
Fax: 86-28-8665-7889

**China - Chongqing**  
Tel: 86-23-8980-9588  
Fax: 86-23-8980-9500

**China - Hong Kong SAR**  
Tel: 852-2401-1200  
Fax: 852-2401-3431

**China - Nanjing**  
Tel: 86-25-8473-2460  
Fax: 86-25-8473-2470

**China - Qingdao**  
Tel: 86-532-8502-7355  
Fax: 86-532-8502-7205

**China - Shanghai**  
Tel: 86-21-5407-5533  
Fax: 86-21-5407-5066

**China - Shenyang**  
Tel: 86-24-2334-2829  
Fax: 86-24-2334-2393

**China - Shenzhen**  
Tel: 86-755-8203-2660  
Fax: 86-755-8203-1760

**China - Wuhan**  
Tel: 86-27-5980-5300  
Fax: 86-27-5980-5118

**China - Xiamen**  
Tel: 86-592-2388138  
Fax: 86-592-2388130

**China - Zhuhai**  
Tel: 86-756-3210040  
Fax: 86-756-3210049

## ASIA/PACIFIC

**India - Bangalore**  
Tel: 91-80-3090-4444  
Fax: 91-80-3090-4123

**India - New Delhi**  
Tel: 91-11-4160-8631  
Fax: 91-11-4160-8632

**India - Pune**  
Tel: 91-20-2566-1512  
Fax: 91-20-2566-1513

**Japan - Yokohama**  
Tel: 81-45-471-6166  
Fax: 81-45-471-6122

**Korea - Daegu**  
Tel: 82-53-744-4301  
Fax: 82-53-744-4302

**Korea - Seoul**  
Tel: 82-2-554-7200  
Fax: 82-2-558-5932 or 82-2-558-5934

**Malaysia - Kuala Lumpur**  
Tel: 60-3-6201-9857  
Fax: 60-3-6201-9859

**Malaysia - Penang**  
Tel: 60-4-227-8870  
Fax: 60-4-227-4068

**Philippines - Manila**  
Tel: 63-2-634-9065  
Fax: 63-2-634-9069

**Singapore**  
Tel: 65-6334-8870  
Fax: 65-6334-8850

**Taiwan - Hsin Chu**  
Tel: 886-3-6578-300  
Fax: 886-3-6578-370

**Taiwan - Kaohsiung**  
Tel: 886-7-213-7830  
Fax: 886-7-330-9305

**Taiwan - Taipei**  
Tel: 886-2-2500-6610  
Fax: 886-2-2500-6502

**Thailand - Bangkok**  
Tel: 66-2-694-1351  
Fax: 66-2-694-1350

## EUROPE

**Austria - Wels**  
Tel: 43-7242-2244-39  
Fax: 43-7242-2244-393

**Denmark - Copenhagen**  
Tel: 45-4450-2828  
Fax: 45-4485-2829

**France - Paris**  
Tel: 33-1-69-53-63-20  
Fax: 33-1-69-30-90-79

**Germany - Munich**  
Tel: 49-89-627-144-0  
Fax: 49-89-627-144-44

**Italy - Milan**  
Tel: 39-0331-742611  
Fax: 39-0331-466781

**Netherlands - Drunen**  
Tel: 31-416-690399  
Fax: 31-416-690340

**Spain - Madrid**  
Tel: 34-91-708-08-90  
Fax: 34-91-708-08-91

**UK - Wokingham**  
Tel: 44-118-921-5869  
Fax: 44-118-921-5820

08/04/10