Section 9. Watchdog Timer and Power-up Timer

HIGHLIGHTS

This section of the manual contains the following major topics:

9.1 Introduction ... 9-2
9.2 Watchdog Timer and Power-up Timer Control Registers ... 9-3
9.3 Operation .. 9-6
9.4 Interrupt and Reset Generation ... 9-10
9.5 I/O Pins ... 9-12
9.6 Operation in Debug and Power-Saving Modes .. 9-12
9.7 Effects of Various Resets ... 9-12
9.8 Related Application Notes ... 9-13
9.9 Revision History ... 9-14
9.1 INTRODUCTION

The PIC32 Watchdog Timer (WDT) and Power-up Timer (PWRT) modules are described in this section. Refer to Figure 9-1 for a block diagram of the WDT and PWRT.

The WDT, when enabled, operates from the internal Low-Power RC (LPRC) Oscillator clock source. The WDT can be used to detect system software malfunctions by resetting the device if the WDT is not cleared periodically in software. The WDT can be configured in Windowed mode or non-Windowed mode. Various WDT time-out periods can be selected using the WDT postscaler. The WDT can also be used to wake the device from Sleep or Idle mode.

The PWRT, when enabled, holds the device in Reset for a 64 millisecond period after the normal Power-on Reset (POR) start-up period is complete. This allows additional time for the Primary Oscillator (PoSC) clock source and the power supply to stabilize. Like the WDT, the PWRT also uses the LPRC as its clock source. For more information, refer to Figure 9-1.

Following are some of the key features of the WDT and PWRT modules:

- Configuration or software controlled
- User-configurable time-out period
- Can wake the device from Sleep or Idle

Figure 9-1: Watchdog Timer and Power-up Timer Block Diagram
Section 9. Watchdog Timer and Power-up Timer

9.2 WATCHDOG TIMER AND POWER-UP TIMER CONTROL REGISTERS

The WDT and PWRT modules consist of the following Special Function Registers (SFRs):

- **WDTCON**: Watchdog Timer Control Register
- **RCON**: Resets Control Register

The following table provides a brief summary of the related WDT module and PWRT module registers. Corresponding registers appear after the summary, followed by a detailed description of each register.

<table>
<thead>
<tr>
<th>Name</th>
<th>Bit 31/23/15/7</th>
<th>Bit 30/22/14/6</th>
<th>Bit 29/21/13/5</th>
<th>Bit 28/20/12/4</th>
<th>Bit 27/19/11/3</th>
<th>Bit 26/18/10/2</th>
<th>Bit 25/17/9/1</th>
<th>Bit 24/16/8/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WDTCON(^{1,2,3})</td>
<td>31:24 — — — —</td>
<td>23:16 — — — —</td>
<td>15:8 ON — — — —</td>
<td>7:0 SWDTPS<4:0> — WDTWINEN — WDTCLR — —</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCON(^{1,2,3})</td>
<td>31:24 — — — —</td>
<td>23:16 — — — —</td>
<td>15:8 — — — —</td>
<td>7:0 EXTR(^4) SWR(^4) — WDTO SLEEP IDLE BOR(^4) POR(^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: — = unimplemented, read as ‘0’.

Note 1: This register has an associated Clear register at an offset of 0x4 bytes. These registers have the same name with CLR appended to the end of the register name (e.g., WDTCONCLR). Writing a ‘1’ to any bit position in the Clear register will clear valid bits in the associated register. Reads from the Clear register should be ignored.

Note 2: This register has an associated Set register at an offset of 0x8 bytes. These registers have the same name with SET appended to the end of the register name (e.g., WDTCONSET). Writing a ‘1’ to any bit position in the Set register will set valid bits in the associated register. Reads from the Set register should be ignored.

Note 3: This register has an associated Invert register at an offset of 0xC bytes. These registers have the same name with INV appended to the end of the register name (e.g., WDTCONINV). Writing a ‘1’ to any bit position in the Invert register will invert valid bits in the associated register. Reads from the Invert register should be ignored.

Note 4: These bits are not associated with the WDT or PWRT modules. For complete register details, see **Register 7-1**: “RCON: Resets Control Register” in Section 6. “Resets” (DS61118) of the “PIC32 Family Reference Manual”.

© 2007-2011 Microchip Technology Inc. DS61114F-page 9-3
Register 9-1: WDTCON: Watchdog Timer Control Register

<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Bit 31/23/15/7</th>
<th>Bit 30/22/14/6</th>
<th>Bit 29/21/13/5</th>
<th>Bit 28/20/12/4</th>
<th>Bit 27/19/11/3</th>
<th>Bit 26/18/10/2</th>
<th>Bit 25/17/9/1</th>
<th>Bit 24/16/8/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:24</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>23:16</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>15:8</td>
<td>R/W-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
<td>U-0</td>
</tr>
<tr>
<td>7:0</td>
<td>U-0</td>
<td>R-y</td>
<td>R-y</td>
<td>R-y</td>
<td>R-y</td>
<td>R-y</td>
<td>R/W-0</td>
<td>R/W-0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- y = Value from Configuration bit on POR
- R = Readable bit
- W = Writable bit
- U = Unimplemented bit, read as ‘0’
- -n = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- x = Bit is unknown

bit 31-16 **Unimplemented:** Read as ‘0’

bit 15 **ON:** Watchdog Timer Enable bit\(^{(1,2)}\)
- 1 = Enables the Watchdog Timer if it is not enabled by the device configuration
- 0 = Disable the Watchdog Timer if it was enabled in software

bit 14-7 **Unimplemented:** Read as ‘0’

bit 6-2 **SWDTPS<4:0>:** Shadow Copy of Watchdog Timer Postscaler Value from Device Configuration bits
- On reset, these bits are set to the values of the WDTPS<4:0> Configuration bits.

bit 1 **WDTWINEN:** Watchdog Timer Window Enable bit
- 1 = Enable windowed Watchdog Timer
- 0 = Disable windowed Watchdog Timer

bit 0 **WDTCLR:** Watchdog Timer Reset bit
- 1 = Writing a ‘1’ will clear the WDT
- 0 = Software cannot force this bit to a ‘0’

Note 1: A read of this bit will result in a ‘1’ if the WDT is enabled by the device configuration or by software.

Note 2: When using the 1:1 PBCLK divisor, the user’s software should not read or write the peripheral’s SFRs in the SYSCLK cycle immediately following the instruction that clears the module’s ON bit.
Section 9. Watchdog Timer and Power-up Timer

Register 9-2: RCON: Resets Control Register

<table>
<thead>
<tr>
<th>Bit Range</th>
<th>Bit 31/23/15/7</th>
<th>Bit 30/22/14/6</th>
<th>Bit 29/21/13/5</th>
<th>Bit 28/20/12/4</th>
<th>Bit 27/19/11/3</th>
<th>Bit 26/18/10/2</th>
<th>Bit 25/17/9/1</th>
<th>Bit 24/16/8/0</th>
</tr>
</thead>
<tbody>
<tr>
<td>31:24</td>
<td>U-0 U-0 U-0 U-0</td>
</tr>
<tr>
<td>23:16</td>
<td>U-0 U-0 U-0 U-0</td>
</tr>
<tr>
<td>15:8</td>
<td>U-0 U-0 U-0 U-0</td>
</tr>
<tr>
<td>7:0</td>
<td>R/W-0 R/W-0 U-0 R/W-0</td>
</tr>
<tr>
<td></td>
<td>EXTR(1) SWR(1)</td>
<td>—</td>
<td>WDTO</td>
<td>SLEEP</td>
<td>IDLE</td>
<td>BOR(1)</td>
<td>POR(1)</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- **R** = Readable bit
- **W** = Writable bit
- **U** = Unimplemented bit, read as ‘0’
- ‘-n’ = Value at POR
- ‘1’ = Bit is set
- ‘0’ = Bit is cleared
- **x** = Bit is unknown

Note 1: These bits are not associated with the WDT or PWRT modules. For complete register details, see *Register 7-1: “RCON: Resets Control Register” in Section 6. “Resets” (DS61118) of the “PIC32 Family Reference Manual”.*
9.3 OPERATION

If enabled, the WDT will increment until it overflows or “times out”. A WDT time-out will force a device Reset, except during Sleep or Idle modes. To prevent a WDT time-out Reset, the user application must periodically clear the WDT by setting the WDTCLR bit (WDTCON<0>).

The WDT module uses the LPRC Oscillator for reliability.

Note: The LPRC Oscillator is enabled whenever the WDT is enabled.

9.3.1 Modes of Operation

The WDT has two modes of operation: Windowed and Programmable Windowed.

The Programmable Windowed mode can be enabled by setting the Watchdog Window Enable (WDTWINEN) bit (WDTCON<1>). In Programmable Windowed mode, software can clear the WDT only when the counter is in its final window before a period match occurs. There are four window size options. This window is active when the timer counter is greater than a predetermined value for each option. Any attempts to clear the WDT when the window is not active will cause a device Reset. In Windowed mode, software can clear the WDT anytime before the period match occurs.

9.3.2 Enabling and Disabling the WDT

The WDT is enabled or disabled by the device configuration or controlled through software by writing to the WDTCON register (Register 9-1).

9.3.3 Device Configuration Controlled WDT

If the FWDTEN Configuration bit is set, the WDT is always enabled. The ON control bit (WDTCON<15>) will reflect this by reading a ‘1’. In this mode, the ON bit cannot be cleared in software. The FWDTWINEN and FWDTEN Configuration bits will not be cleared by any form of reset. To disable the WDT, the configuration must be rewritten to the device.

Note: The WDT is enabled by default on an unprogrammed device.

The FWDTWINEN Configuration bit can be used to enable or disable the Programmable Windowed mode. The window size for the WDT Windowed mode can be configured using the FWDTWINSZ Configuration bits.

9.3.4 Software Controlled WDT

If the FWDTEN Configuration bit is a ‘0’, the WDT module can be enabled or disabled (the default condition) by software. In this mode, the ON bit (WDTCON<15>) reflects the status of the WDT under software control. A ‘1’ indicates the WDT module is enabled and a ‘0’ indicates it is disabled. If the FWDTWINEN Configuration bit is a ‘0’, the WDT Programmable Windowed mode can be enabled or disabled by software. The Programmable Windowed mode can be configured using the WDTWINEN bit (WDTCON<2>). A ‘1’ indicates that Programmable Windowed mode is enabled and ‘0’ indicates it is disabled. The window sizes can be configured by setting the FWDTWINSZ configuration bits only, and cannot be set in software.

The WDT is enabled in software by setting the WDT ON control bit. The ON control bit is cleared on any device Reset. The bit is not cleared upon a wake from Sleep or exit from Idle mode. The software WDT option allows the user to enable the WDT for critical code segments and disable the WDT during noncritical segments for maximum power savings. This bit can also be used to disable the WDT while the device is awake to eliminate the need for WDT servicing, and then re-enable it before the device is put into Idle or Sleep to wake the device at a later time. Example 9-1 shows the WDT initialization and servicing sample.

Example 9-1: Sample WDT Initialization and Servicing

//This code fragment assumes the WDT was not enabled by the device configuration // The Postscaler value must be set with the device configuration
WDTCONSET = 0x8000; // Turn on the WDT
main
{
 WDTCONSET = 0x01; // Service the WDT
 ... User code goes here ...
}
9.3.4.1 WATCHDOG TIMER PROGRAMMABLE WINDOW

The window size is determined by the Configuration bits, FWDTWINSZ and WDTPS. In the Programmable Windowed mode (WDTWINEN = 1), the WDT should be cleared based on the setting of the Window Size Configuration bits (FWDTWINSZ<1:0>) (see Figure 9-3). These bit settings are:

- 11 = WDT window is 25% of the WDT period
- 10 = WDT window is 37.5% of the WDT period
- 01 = WDT window is 50% of the WDT period
- 00 = WDT window is 75% of the WDT period

If the WDT is cleared before the allowed window, a system Reset is immediately generated.

The Windowed mode is useful for resetting the device during unexpected quick or slow execution of a critical portion of the code.

Figure 9-2: Windowed WDT

![Figure 9-2: Windowed WDT](image)

Figure 9-3: Programmable Windowed WDT

![Figure 9-3: Programmable Windowed WDT](image)

Note: The programmable windowed WDT feature is available on selected devices. Refer to the specific device data sheet for availability of this feature.

9.3.5 WDT Operation in Power-Saving Modes

The WDT, if enabled, will continue operation in Sleep or Idle modes. The WDT module may be used to wake the device from Sleep or Idle mode. When the WDT times out in a power-saving mode, a Non-Maskable Interrupt (NMI) is generated and the WDTO bit (RCON<4>) is set. The NMI vectors execution to the CPU start-up address, but does not reset registers or peripherals.

If the device was in Sleep, the SLEEP status bit (RCON<3>) will also be set. If the device was in Idle, the IDLE status bit (RCON<2>) will also be set. These bits allow the start-up code to determine the cause of the wake-up.

9.3.6 Time Delays on Wake

There will be a time delay between the WDT event in Sleep and the beginning of code execution. The duration of this delay consists of the start-up time for the oscillator in use and the power-up timer delay, if it is enabled.

Unlike a wake-up from Sleep mode, there are no time delays associated with wake-up from Idle mode. The system clock is running during Idle mode; therefore, no start-up delays are required at wake-up.
9.3.7 Resetting the WDT

The WDT is cleared by any of the following:

- On any device Reset
- By a `WDTCONSET = 0x01` or equivalent instruction during normal execution
- Execution of a `DEBUG` command
- Exiting from Idle or Sleep due to an interrupt

Note: The WDT is not reset when the device enters a power-saving mode. The WDT module should be serviced prior to entering a power-saving mode.

9.3.8 WDT Period Selection

The WDT clock source is the internal LPRC Oscillator, which has a nominal frequency of 32 kHz. This creates a nominal time-out period for the WDT (\(T_{WDT}\)) of 1 millisecond when no postscaler is used.

Note: The WDT module time-out period is directly related to the frequency of the LPRC Oscillator. The frequency of the LPRC Oscillator will vary as a function of device operating voltage and temperature. Please refer to the specific device data sheet for LPRC clock frequency specifications.

9.3.9 WDT Postscalers

The WDT has a 5-bit postscaler to create a wide variety of time-out periods. This postscaler provides 1:1 through 1:1048576 divider ratios (see Table 9-2). Time-out periods that range between 1 ms and 1048.576 seconds (nominal) can be achieved using the postscaler.

The postscaler settings are selected using the `WDTPS<4:0>` Configuration bits in the `DEVCFG1` register. The time-out period of the WDT is calculated as follows:

Equation 9-1: WDT Time-out Period Calculation

\[
WDT\ Period = 1\ ms \cdot 2^{\text{Prescaler}}
\]
Table 9-2: WDT Time-out Period versus Postscaler Settings^(1,2)

<table>
<thead>
<tr>
<th>WDTPS<4:0></th>
<th>Postscaler Ratio</th>
<th>Time-out Period (Windowed Mode)</th>
<th>Time-out Period (Programmable Windowed mode)<sup>(3)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>1:1</td>
<td>1 ms</td>
<td>0.75 ms</td>
</tr>
<tr>
<td>00001</td>
<td>1:2</td>
<td>2 ms</td>
<td>1.5 ms</td>
</tr>
<tr>
<td>00010</td>
<td>1:4</td>
<td>4 ms</td>
<td>3 ms</td>
</tr>
<tr>
<td>00011</td>
<td>1:8</td>
<td>8 ms</td>
<td>6 ms</td>
</tr>
<tr>
<td>00100</td>
<td>1:16</td>
<td>16 ms</td>
<td>12 ms</td>
</tr>
<tr>
<td>00101</td>
<td>1:32</td>
<td>32 ms</td>
<td>24 ms</td>
</tr>
<tr>
<td>00110</td>
<td>1:64</td>
<td>64 ms</td>
<td>48 ms</td>
</tr>
<tr>
<td>00111</td>
<td>1:128</td>
<td>128 ms</td>
<td>96 ms</td>
</tr>
<tr>
<td>01000</td>
<td>1:256</td>
<td>256 ms</td>
<td>192 ms</td>
</tr>
<tr>
<td>01001</td>
<td>1:512</td>
<td>512 ms</td>
<td>384 ms</td>
</tr>
<tr>
<td>01010</td>
<td>1:1024</td>
<td>1.024s</td>
<td>0.768s</td>
</tr>
<tr>
<td>01011</td>
<td>1:2048</td>
<td>2.048s</td>
<td>1.536s</td>
</tr>
<tr>
<td>01100</td>
<td>1:4096</td>
<td>4.096s</td>
<td>3.072s</td>
</tr>
<tr>
<td>01101</td>
<td>1:8192</td>
<td>8.192s</td>
<td>6.144s</td>
</tr>
<tr>
<td>01110</td>
<td>1:16384</td>
<td>16.384s</td>
<td>12.228s</td>
</tr>
<tr>
<td>01111</td>
<td>1:32768</td>
<td>32.768s</td>
<td>24.576s</td>
</tr>
<tr>
<td>10000</td>
<td>1:65536</td>
<td>65.536s</td>
<td>49.152s</td>
</tr>
<tr>
<td>10001</td>
<td>1:131072</td>
<td>131.072s</td>
<td>98.304s</td>
</tr>
<tr>
<td>10010</td>
<td>1:262144</td>
<td>262.144s</td>
<td>196.608s</td>
</tr>
<tr>
<td>10011</td>
<td>1:524288</td>
<td>524.288s</td>
<td>393.216s</td>
</tr>
<tr>
<td>10100</td>
<td>1:1045876</td>
<td>1048.576s</td>
<td>786.432s</td>
</tr>
</tbody>
</table>

Note 1: All other combinations will result in operation as if the prescaler was set to '10100'.

Note 2: The periods listed are based on a 32 kHz (nominal) input clock.

Note 3: In this case, FWDTWINSZ = 00. The WDT window is 75% of the selected WDT period.
9.4 INTERRUPT AND RESET GENERATION

The WDT will cause an NMI or a device Reset when it expires. The power-saving mode of the device determines which event occurs. The PWRT does not generate interrupts or resets.

9.4.1 Watchdog Timer Reset

When the WDT module expires and the device is not in Sleep or Idle mode, a device Reset is generated. The CPU code execution jumps to the device reset vector and the registers and peripherals are forced to their reset values.

To detect a WDT Reset, the WDTO bit (RCON<4>), SLEEP bit (RCON<3>) and IDLE bit (RCON<2>) must be tested. If the WDTO bit is a ‘1’, the event was due to a WDT time-out. The SLEEP and IDLE bits can then be tested to determine if the WDT event occurred while the device was awake or if it was in Sleep or Idle.

9.4.2 Watchdog Timer NMI

When the WDT module expires in Sleep or Idle, a NMI is generated. The NMI causes the CPU code execution to jump to the device reset vector. Although the NMI shares the same vector as a device Reset, registers and peripherals are not reset.

To detect a wake from a power-saving mode by the WDT, the WDTO bit (RCON<4>), SLEEP bit (RCON<3>) and IDLE bit (RCON<2>) must be tested. If the WDTO bit is a ‘1’, the event was caused by a WDT time-out. The SLEEP and IDLE bits can then be tested to determine if the WDT event occurred in Sleep or Idle modes.

To cause a WDT time-out in Sleep mode to act like an interrupt, a return from interrupt instruction (RETFIE) may be used in the start-up code after the event was determined to be a WDT wake-up. This will cause code execution to continue with the opcode following the WAIT instruction that put the device into the power-saving mode (see Example 9-2).

Example 9-2: Sample Code to Determine the Cause of a WDT Event

// sample code to determine the cause of a WDT event

// Unlock the OSCCON register
SYSKEY = 0x12345678; //write invalid key to force lock
SYSKEY = 0xAA996655; //write Key1 to SYSKEY
SYSKEY = 0x556699AA; //write Key2 to SYSKEY
// OSCCON is now unlocked
OSCCONSET = 0x10; // set power save mode to Sleep
// Alternate relock code in ‘C’
SYSREG = 0x33333333;
// OSCCON is relocked
WDTCONSET = 0x8000; //Enable WDT
while (1)
{
 ... user code ...
 WDTCONSET = 0x01; // service the WDT
 asm volatile ("wait"); // put device into selected power-saving mode
 // code execution will resume here after wake
 ... user code ...
}

// The following code fragment is at the top of the device start-up code
if ((RCON & 0x18) == 0x18)
{
 // The WDT caused a wake from sleep
 asm volatile ("eret"); // return from interrupt
}
if ((RCON & 0x14) == 0x14)
{
 // The WDT caused a wake from idle
 asm volatile ("eret"); // return from interrupt
}
if ((RCON & 0x10) == 0x10)
{
 // WDT timed out (device may have been awake or may have been in Sleep/Idle mode)
9.4.3 Determining Device Status When a WDT Event Has Occurred

To detect a WDT Reset, the WDTO bit (RCON<4>), SLEEP bit (RCON<3>), and IDLE bit (RCON<2>) must be tested. If the WDTO bit is a ‘1’, the event was due to a WDT time-out. The SLEEP and IDLE bits can then be tested to determine whether the WDT event occurred while the device was awake or if it was in Sleep or Idle mode. The user should clear the WDTO, SLEEP, and IDLE bits in the Interrupt Service Routine (ISR) to allow software to correctly determine the source of a subsequent WDT event.

9.4.4 Wake From a Power-Saving Mode By a non-WDT Event

When the device is awakened from a power-saving mode by an interrupt, the WDT is cleared. Practically, this extends the time until the next WDT generated device Reset occurs, so that an unintended WDT event does not occur too soon after the interrupt that woke the device.
9.5 I/O PINS

The PWRT is disabled when the internal voltage regulator is enabled. A device without an internal voltage regulator will always have the PWRT enabled. A device with an internal voltage regulator will enable the PWRT when the VREG pin is tied to ground (to disable the regulator).

9.6 OPERATION IN DEBUG AND POWER-SAVING MODES

9.6.1 WDT Operation in Power-Saving Modes

The WDT can be used to wake the device from Sleep or Idle modes. The WDT continues to operate in power-saving modes. A time-out can then be used to wake the device. This allows the device to remain in Sleep mode until the WDT expires or another interrupt wakes the device.

If the device does not re-enter Sleep or Idle mode following a wake-up, the WDT must be disabled or periodically serviced to prevent a device Reset.

9.6.2 WDT Operation in Sleep Mode

The WDT, if enabled, will continue operation in Sleep mode. The WDT may be used to wake the device from Sleep mode. When the WDT times out in Sleep, a NMI is generated and the WDTO bit (RCON<4>) is set. The NMI vectors execution to the CPU start-up address, but does not reset registers or peripherals. The Sleep status bit (RCON<3>) will be set indicating the device was in Sleep mode. These bits allow the start-up code to determine the cause of the wake-up.

9.6.3 WDT Operation in Idle Mode

The WDT, if enabled, will continue operation in Idle mode. The WDT may be used to wake the device from Idle mode. When the WDT times out in Idle, a NMI is generated and the WDTO bit (RCON<4>) is set. The NMI vectors execution to the CPU start-up address, but does not reset registers or peripherals. The IDLE status bit (RCON<2>) will be set indicating the device was in Idle mode. These bits allow the start-up code to determine the cause of the wake-up.

9.6.4 Time Delays During Wake-up

The delay between a WDT time-out and the beginning of code execution depends on the power-saving mode.

There will be a time delay between the WDT event in Sleep mode and the beginning of code execution. The duration of this delay consists of the start-up time for the oscillator in use and the PWRT delay, if it is enabled.

Unlike a wake-up from Sleep mode, there are no time delays associated with wake-up from Idle mode. The system clock is running during Idle mode; therefore, no start-up delays are required at wake-up.

9.6.5 WDT Operation in Debug Mode

The WDT is always suspended in Debug mode, and therefore does not time-out.

9.7 EFFECTS OF VARIOUS RESETS

Any form of device Reset will clear the WDT. The reset will return the WDTCON register to the default value and the WDT will be disabled unless it is enabled by the device configuration.

Note: After a device Reset, the WDT ON bit (WDTCON<15>) will reflect the state of the FWDTEN bit (DEVCFG1<23>).
9.8 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These application notes may not be written specifically for the PIC32 device family, but the concepts are pertinent and could be used with modification and possible limitations. The current application notes related to the Watchdog Timer and Power-up Timer module are:

<table>
<thead>
<tr>
<th>Title</th>
<th>Application Note #</th>
</tr>
</thead>
<tbody>
<tr>
<td>No related application notes at this time.</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: Visit the Microchip web site (www.microchip.com) for additional application notes and code examples for the PIC32 family of devices.
9.9 REVISION HISTORY

Revision A (October 2007)
This is the initial released version of this document.

Revision B (October 2007)
Updated document to remove Confidential status.

Revision C (April 2008)
Revised status to Preliminary; Revised U-0 to r-x.

Revision D (June 2008)
Revised Registers 29-1, bit 14; Revised Registers 29-26, 29-27, Footnote; Revised Examples 29-1 and 29-9; Change Reserved bits from "Maintain as" to "Write"; Added Note to ON bit (RTCCON Register).

Revision E (November 2010)
This revision includes the following updates:
- Added information to 9.3.7 "Resetting the WDT", which states that the Watchdog Timer can be cleared by executing a DEBUG command
- Added a Note at the beginning of the section, which provides information on complementary documentation
- Added a Note regarding the shaded bit names in Register 9-2
- Added Notes describing the Clear, Set and Invert registers associated with the WDTCON and RCON registers in Table 9-1
- Revised Register 9-1 and Register 9-2
- The following registers were removed:
 - RCONCLR, RCONSET, RCONINV
 - WDTCONCLR, WDTCONSET, WDTCONINV
 - DEVCFG1
- Updated the FWDTPOS bit as WDTPS bit throughout the document
- Minor changes to the text and formatting have been incorporated throughout the document

Revision F (July 2011)
This revision includes the following updates:
- Added the WDTWINEN bit to the SFR summary table and the Watchdog Timer Control Register (see Table 9-1 and Register 9-1)
- Updated the reset value definition for the SWDTPOS<4:0> bits in the Watchdog Timer Control Register (see Register 9-1)
- Removed the Notes describing the Clear, Set and Invert register from the WDTCON and RCON registers (see Register 9-1 and Register 9-2)
- Updated Note 1 in the RCON register (see Register 9-2)
- Updated 9.3 “Operation” to clarify the windowed modes of operation
- Added 9.3.1 “Modes of Operation”, which introduces information on windowed modes of operation
- Updated 9.3.2 “Enabling and Disabling the WDT” and 9.3.3 “Device Configuration Controlled WDT” with information on windowed modes of operation
- Added 9.3.4.1 “Watchdog Timer Programmable Window” with information on configuring Windowed mode
- Added a new column, Time-out Period (Programmable Windowed mode), to the WDT Time-out Period versus Postscaler Settings (see Table 9-2)
- Removed 9.8 “Design Tips”
- Modifications to register formatting and minor text updates have been incorporated throughout the document
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOG, KEELOG logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and Uni/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPicWorks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICKit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

Printed on recycled paper.

ISBN: 978-1-61341-404-0

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOG® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-447-0087
Fax: 774-447-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8233
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3180
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2398130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Yokohama
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370

Taiwan - Kaohsiung
Tel: 886-7-213-7830
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393

Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

05/02/11