
Section 2. CPU for Devices with M4K® Core
C
P

U
 fo

r D
evices

w
ith

 M
4K

®
 C

o
re

2

HIGHLIGHTS

This section of the manual contains the following topics:

2.1 Introduction..2-2

2.2 Architecture Overview ... 2-3

2.3 PIC32 CPU Details .. 2-6

2.4 Special Considerations When Writing to CP0 Registers ... 2-11

2.5 Architecture Release 2 Details .. 2-12

2.6 Split CPU bus .. 2-12

2.7 Internal System Busses... 2-13

2.8 Set/Clear/Invert.. 2-13

2.9 ALU Status Bits.. 2-14

2.10 Interrupt and Exception Mechanism .. 2-14

2.11 Programming Model .. 2-14

2.12 Coprocessor 0 (CP0) Registers... 2-21

2.13 MIPS16e® Execution ... 2-55

2.14 Memory Model ... 2-55

2.15 CPU Instructions, Grouped By Function.. 2-56

2.16 CPU Initialization ... 2-59

2.17 Effects of a Reset .. 2-60

2.18 Related Application Notes ... 2-61

2.19 Revision History... 2-62
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-1

PIC32 Family Reference Manual
2.1 INTRODUCTION

The PIC32 MCU is a complex system-on-chip (SoC) that is based on the M4K® Microprocessor
core from MIPS® Technologies. The M4K® is a state-of-the-art, 32-bit, low-power, RISC proces-
sor core with the enhanced MIPS32® Release 2 Instruction Set Architecture (ISA).

This chapter provides an overview of the CPU features and system architecture of the PIC32
family of microcontrollers that are based on the M4K® processor core.

2.1.1 Key Features

• Up to 1.5 DMIPS/MHz of performance

• Programmable prefetch cache memory to enhance execution from Flash memory (not
available on all devices; refer to the specific device data sheet to determine availability)

• 16-bit Instruction mode (MIPS16e®) for compact code

• Vectored interrupt controller with up to 96 interrupt sources

• Programmable User and Kernel modes of operation

• Atomic bit manipulations on peripheral registers (Single cycle)

• Multiply-Divide unit with a maximum issue rate of one 32 x 16 multiply per clock

• High-speed Microchip ICD port with hardware-based non-intrusive data monitoring and
application data streaming functions

• EJTAG debug port allows extensive third party debug, programming and test tools support

• Instruction controlled power management modes

• Five-stage pipelined instruction execution

• Internal code protection to help protect intellectual property

2.1.2 Related MIPS® Documentation

• MIPS32® M4K® Processor Core Software User’s Manual – MD00249-2B-M4K-SUM

• MIPS® Instruction Set – MD00086-2B-MIPS32BIS-AFP

• MIPS16e® – MD00076-2B-MIPS1632-AFP

• MIPS32® Privileged Resource Architecture – MD00090-2B-MIPS32PRA-AFP

Note: This family reference manual section is meant to serve as a complement to device
data sheets. Depending on the device variant, this manual section may not apply to
all PIC32 devices.

Please consult the note at the beginning of the “CPU” chapter in the current device
data sheet to check whether this document supports the device you are using.

Device data sheets and family reference manual sections are available for
download from the Microchip Worldwide Web site at: http://www.microchip.com
DS61113E-page 2-2 © 2007-2012 Microchip Technology Inc.

http://www.microchip.com

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.2 ARCHITECTURE OVERVIEW

The PIC32 family of devices are complex systems-on-a-chip that contain many features.
Included in all processors of the PIC32 family is a high-performance RISC CPU, which can be
programmed in 32-bit and 16-bit modes, and even mixed modes. PIC32 devices contain a
high-performance interrupt controller, DMA controller, USB controller, in-circuit debugger,
high-performance switching matrix for high-speed data accesses to the peripherals, and on-chip
data RAM memory that holds data and programs. The unique prefetch cache and prefetch buffer
for the Flash memory, which hides the latency of the Flash, provides zero Wait state equivalent
performance.

Figure 2-1: PIC32 Block Diagram

JTAG/BSCAN
Priority Interrupt

Controller LDO VREG

DMAC ICDPIC32 CPU

IS DS

EJTAG INT

Bus Matrix

Prefetch Cache Data RAM

Peripheral

Flash Memory

F
la

sh
 C

on
tr

ol
le

r

Clock Control/
 Generation Reset Generation

PMP/PSP

PORTS

ADC

RTCC

Timers

Input Capture

PWM/Output
Compare

Dual Compare

SSP/SPI

I2C™

UART

128-bit

USB

Bridge

CAN(1)

Motor Control
PWM(1)

DAC(1)

CTMU(1)

Note 1: This peripheral is not available on all devices. Refer to the specific device data sheet for
availability.

ETH(1)
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-3

PIC32 Family Reference Manual
There are two internal busses in PIC32 devices for connection to all peripherals. The main
peripheral bus connects most of the peripheral units to the bus matrix through a peripheral
bridge. There is also a high-speed peripheral bridge that connects the interrupt controller, DMA
controller, in-circuit debugger, and USB peripherals.

The M4K® CPU core is the heart of some PIC32 MCUs. The CPU performs operations under
program control. Instructions are fetched by the CPU, decoded and executed synchronously.
Instructions exist in either Program Flash memory or Data RAM memory.

The PIC32 CPU is based on a load/store architecture and performs most operations on a set of
internal registers. Specific load and store instructions are used to move data between these
internal registers and the outside world.

Figure 2-2: M4K® Microprocessor Core Block Diagram

2.2.1 Busses

There are two separate busses on PIC32 devices. One bus is responsible for the fetching of
instructions to the CPU, and the other is the data path for load and store instructions. Both the
instruction, or I-side bus, and the data, or D-side bus, are connected to the bus matrix unit. The
bus matrix is a switch that allows multiple accesses to occur concurrently in a system. The bus
matrix allows simultaneous accesses between different bus masters that are not attempting
accesses to the same target. The bus matrix serializes accesses between different masters to
the same target through an arbitration algorithm.

Since the CPU has two different data paths to the bus matrix, the CPU is effectively two different
bus masters to the system. When running from Flash memory, load and store operations to
SRAM and the internal peripherals will occur in parallel to instruction fetches from Flash memory.

In addition to the CPU, and depending on the device variant, there are other bus masters in
PIC32 devices:

• DMA controller

• In-Circuit Debugger (ICD) unit

• USB controller

• CAN controller

• Ethernet controller

System
Co-processor

MDU

FMT

MMU

TAP

EJTAG

 Power
Management

 Off-Chip
Debug I/F

 Execution
Core

(RF/ALU/Shift)

O
n-

C
h

ip

M
em

or
y

Trace

 Off-Chip
Trace I/F

Memory
Interface Dual Memory

I/F
DS61113E-page 2-4 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.2.2 Introduction to the Programming Model

The PIC32 processor has the following features:

• 5-stage pipeline

• 32-bit Address and Data Paths

• DSP-like Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)

• Targeted multiply instruction (MUL)

• Zero and One detect instructions (CLZ, CLO)

• Wait instruction (WAIT)

• Conditional move instructions (MOVZ, MOVN)

• Implements MIPS32® Enhanced Architecture (Release 2)

• Vectored interrupts

• Programmable exception vector base

• Atomic interrupt enable/disable

• General Purpose Register (GPR) shadow sets

• Bit field manipulation instructions

• MIPS16e® Application Specific Extension improves code density

• Special PC-relative instructions for efficient loading of addresses and constants

• Data type conversion instructions (ZEB, SEB, ZEH, SEH)

• Compact jumps

• Stack frame set-up and tear-down SAVE and RESTORE macro instructions

• Memory Management Unit with simple Fixed Mapping Translation (FMT)

• Processor to/from Coprocessor register data transfers

• Direct memory to/from Coprocessor register data transfers

• Performance-optimized Multiply-Divide Unit (High-performance build-time option)

• Maximum issue rate of one 32 x 16 multiply per clock

• Maximum issue rate of one 32 x 32 multiply every other clock

• Early-in divide control – 11 to 34 clock latency

• Low-Power mode (triggered by WAIT instruction)

• Software breakpoints via the SDBBP instruction

2.2.3 Core Timer

The PIC32 architecture includes a core timer that is available to application programs. This
timer is implemented in the form of two co-processor registers: the Count register, and the
Compare register. The Count register is incremented every two system clock (SYSCLK) cycles.
The incrementing of Count can be optionally suspended during Debug mode. The Compare
register is used to cause a timer interrupt if desired. An interrupt is generated when the
Compare register matches the Count register. An interrupt is taken only if it is enabled in the
Interrupt Controller module.

For more information on the core timer, see 2.12 “Coprocessor 0 (CP0) Registers” and
Section 8. “Interrupts.” (DS61108) in the “PIC32 Family Reference Manual”.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-5

PIC32 Family Reference Manual
2.3 PIC32 CPU DETAILS

2.3.1 Pipeline Stages

The pipeline consists of five stages:

• Instruction (I) Stage

• Execution (E) Stage

• Memory (M) Stage

• Align (A) Stage

• Writeback (W) Stage

2.3.1.1 I STAGE – INSTRUCTION FETCH

During I stage:

• An instruction is fetched from the instruction SRAM

• MIPS16e® instructions are converted into instructions that are similar to MIPS32®
instructions

2.3.1.2 E STAGE – EXECUTION

During E stage:

• Operands are fetched from the register file

• Operands from the M and A stage are bypassed to this stage

• The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for
register-to-register instructions

• The ALU calculates the data virtual address for load and store instructions and the MMU
performs the fixed virtual-to-physical address translation

• The ALU determines whether the branch condition is true and calculates the virtual branch
target address for branch instructions

• Instruction logic selects an instruction address and the MMU performs the fixed
virtual-to-physical address translation

• All multiply divide operations begin in this stage

2.3.1.3 M STAGE – MEMORY FETCH

During M stage:

• The arithmetic or logic ALU operation completes

• The data SRAM access is performed for load and store instructions

• A 16 x 16 or 32 x 16 MUL operation completes in the array and stalls for one clock in the M
stage to complete the carry-propagate-add in the M stage

• A 32 x 32 MUL operation stalls for two clocks in the M stage to complete the second cycle
of the array and the carry-propagate-add in the M stage

• Multiply and divide calculations proceed in the MDU. If the calculation completes before the
IU moves the instruction past the M stage, then the MDU holds the result in a temporary
register until the IU moves the instructions to the A stage (and it is consequently known that
it will not be killed).

2.3.1.4 A STAGE – ALIGN

During A stage:

• A separate aligner aligns loaded data with its word boundary

• A MUL operation makes the result available for writeback. The actual register writeback is
performed in the W stage

• From this stage, load data or a result from the MDU are available in the E stage for
bypassing
DS61113E-page 2-6 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.3.1.5 W STAGE – WRITEBACK

During W stage:

For register-to-register or load instructions, the result is written back to the register file.

The M4K® Microprocessor core implements a “bypass” mechanism that allows the result of an
operation to be sent directly to the instruction that needs it without having to write the result to
the register, and then read it back.

Figure 2-3: Simplified PIC32 CPU Pipeline

The results of using instruction pipelining in the PIC32 core is a fast, single-cycle instruction
execution environment.

Figure 2-4: Single-Cycle Execution Throughput

I Stage E Stage M Stage

A to E Bypass

M to E Bypass

A Stage W Stage

Load Data, HI/LO Data
or CP0 Data

ALU
MStage

ALU

EStage

Bypass
Multiplexers

Rt Read
Rd Write

Reg File

Rt Address

Rs Read

Rs Address

Instruction

EI M A W

EI M A W

EI M A W

EI M A W

EI M A W

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-7

PIC32 Family Reference Manual
2.3.2 Execution Unit

The PIC32 Execution Unit is responsible for carrying out the processing of most of the instruc-
tions of the MIPS® instruction set. The Execution Unit provides single-cycle throughput for most
instructions by means of pipelined execution. Pipelined execution, sometimes referred to as
“pipelining”, is where complex operations are broken into smaller pieces called stages. Operation
stages are executed over multiple clock cycles.

The Execution Unit contains the following features:

• 32-bit adder used for calculating the data address

• Address unit for calculating the next instruction address

• Logic for branch determination and branch target address calculation

• Load aligner

• Bypass multiplexers used to avoid stalls when executing instructions streams where data
producing instructions are followed closely by consumers of their results

• Leading Zero/One detect unit for implementing the CLZ and CLO instructions

• Arithmetic Logic Unit (ALU) for performing bit-wise logical operations

• Shifter and Store Aligner

2.3.3 MDU

The Multiply/Divide unit performs multiply and divide operations. The MDU consists of a 32 x 16
multiplier, result-accumulation registers (HI and LO), multiply and divide state machines, and all
multiplexers and control logic required to perform these functions. The high-performance, pipe-
lined MDU supports execution of a 16 x 16 or 32 x 16 multiply operation every clock cycle;
32 × 32 multiply operations can be issued every other clock cycle. Appropriate interlocks are
implemented to stall the issue of back-to-back 32 x 32 multiply operations. Divide operations are
implemented with a simple 1 bit per clock iterative algorithm and require 35 clock cycles in worst
case to complete. Early-in to the algorithm detects sign extension of the dividend, if it is actual
size is 24, 16, or 8 bit. the divider will skip 7, 15, or 23 of the 32 iterations. An attempt to issue a
subsequent MDU instruction while a divide is still active causes a pipeline stall until the divide
operation is completed.

The M4K® Microprocessor core implements an additional multiply instruction, MUL, which
specifies that lower 32-bits of the multiply result be placed in the register file instead of the HI/LO
register pair. By avoiding the explicit move from LO (MFLO) instruction, required when using the
LO register, and by supporting multiple destination registers, the throughput of multiply-intensive
operations is increased. Two instructions, multiply-add (MADD/MADDU) and multiply-subtract
(MSUB/MSUBU), are used to perform the multiply-add and multiply-subtract operations. The MADD
instruction multiplies two numbers and then adds the product to the current contents of the HI
and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the
product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU operations are
commonly used in Digital Signal Processor (DSP) algorithms.

2.3.4 Shadow Register Sets

The PIC32 processor implements a copy of the General Purpose Registers (GPR) for use by
high-priority interrupts. This extra bank of registers is known as a shadow register set. When a
high-priority interrupt occurs the processor automatically switches to the shadow register set
without software intervention. This reduces overhead in the interrupt handler and reduces
effective latency.

The shadow register set is controlled by registers located in the System Coprocessor (CP0) as
well as the interrupt controller hardware located outside of the CPU core.

For more information on shadow register sets, see Section 8. “Interrupts” (DS61108).
DS61113E-page 2-8 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.3.5 Pipeline Interlock Handling

Smooth pipeline flow is interrupted when an instruction in a pipeline stage can not advance due
to a data dependency or a similar external condition. Pipeline interruptions are handled entirely
in hardware. These dependencies, are referred to as “interlocks”. At each cycle, interlock
conditions are checked for all active instructions. An instruction that depends on the result of a
previous instruction is an example of an interlock condition.

In general, MIPS® processors support two types of hardware interlocks:

• Stalls – These interlocks are resolved by halting the entire pipeline. All instructions currently
executing in each pipeline stage are affected by a stall

• Slips – These interlocks allow one part of the pipeline to advance while another part of the
pipeline is held static

In the PIC32 processor core, all interlocks are handled as slips. These slips are minimized by
grabbing results from other pipeline stages by using a method called register bypassing, which
is described below.

As shown in Figure 2-5, the sub instruction has a source operand dependency on register r3 with
the previous add instruction. The sub instruction slips by two clocks waiting until the result of the
add is written back to register r3. This slipping does not occur on the PIC32 family of processors.

Figure 2-5: Pipeline Slip (If Bypassing Was Not Implemented)

Note: To illustrate the concept of a pipeline slip, the following example is what would
happen if the PIC32 core did not implement register bypassing.

EI M W

ESLIPI M A WE

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

A

ESLIP

Add r3, r2, r1
(r3  r2 + r1

Sub r4, r3, r7
(r4  r3 – r7
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-9

PIC32 Family Reference Manual
2.3.6 Register Bypassing

As mentioned previously, the PIC32 processor implements a mechanism called register bypass-
ing that helps reduce pipeline slips during execution. When an instruction is in the E stage of the
pipeline, the operands must be available for that instruction to continue. If an instruction has a
source operand that is computed from another instruction in the execution pipeline, register
bypassing allows a shortcut to get the source operands directly from the pipeline. An instruction
in the E stage can retrieve a source operand from another instruction that is executing in either
the M stage or the A stage of the pipeline. As seen in Figure 2-6, a sequence of three instructions
with interdependencies does not slip at all during execution. This example uses both A to E, and
M to E register bypassing. Figure 2-7 shows the operation of a load instruction utilizing A to E
bypassing. Since the result of load instructions are not available until the A pipeline stage, M to
E bypassing is not needed.

The performance benefit of register bypassing is that instruction throughput is increased to the
rate of one instruction per clock for ALU operations, even in the presence of register
dependencies.

Figure 2-6: IU Pipeline M to E Bypass

Figure 2-7: IU Pipeline A to E Data Bypass

EI M W

EI WA

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

A

M

Add1
r3 = r2 + r1

Sub2
r4 = r3 – r7

Add3
r5 = r3 + r4 EI AM

M to E Bypass A to E Bypass

M to E Bypass

EI M W

EI WA

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

One
Cycle

A

M

Load Instruction

Consumer of Load Data Instruction EI AM

Data Bypass from A to E

One Clock
Load Delay
DS61113E-page 2-10 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.4 SPECIAL CONSIDERATIONS WHEN WRITING TO CP0 REGISTERS

In general, the PIC32 core ensures that instructions are executed following a fully sequential pro-
gram model. Each instruction in the program sees the results of the previous instruction. There
are some deviations to this model. These deviations are referred to as “hazards”.

In privileged software, there are two different types of hazards:

• Execution Hazards

• Instruction Hazards

2.4.0.1 EXECUTION HAZARDS

Execution hazards are those created by the execution of one instruction, and seen by the
execution of another instruction. Table 2-1 lists execution hazards.

Table 2-1: Execution Hazards

2.4.0.2 INSTRUCTION HAZARDS

Instruction hazards are those created by the execution of one instruction, and seen by the
instruction fetch of another instruction. Table 2-2 lists the instruction hazard.

Table 2-2: Instruction Hazards

Created By Seen By Hazard On
Spacing

(Instructions)

MTC0 Coprocessor instruction
execution depends on the new
value of the CU0 bit (Status<28>)

CU0 bit (Status<28>) 1

MTC0 ERET EPC, DEPC, ErrorEPC 1

MTC0 ERET Status 0

MTC0, EI, DI Interrupted Instruction IE bit (Status<0>) 1

MTC0 Interrupted Instruction IP1 and IP0 bits
(Cause<1> and <0>)

3

MTC0 RDPGPR, WRPGPR PSS<3:0> bits
(SRSCtl<9:6>)

1

MTC0 Instruction is not seeing a Core
Timer interrupt

Compare update that
clears Core Timer Interrupt

4

MTC0 Instruction affected by change Any other CP0 register 2

Created By Seen By Hazard On

MTC0 Instruction fetch seeing the new value (including a change to
ERL followed by an instruction fetch from the useg segment)

Status
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-11

PIC32 Family Reference Manual
2.5 ARCHITECTURE RELEASE 2 DETAILS

The PIC32 CPU utilizes Release 2 of the MIPS® 32-bit processor architecture, and implements
the following Release 2 features:

• Vectored interrupts using and external-to-core interrupt controller:

Provide the ability to vector interrupts directly to a handler for that interrupt.

• Programmable exception vector base:

Allows the base address of the exception vectors to be moved for exceptions that occur
when StatusBEV is ‘0’. This allows any system to place the exception vectors in memory that
is appropriate to the system environment.

• Atomic interrupt enable/disable:

Two instructions have been added to atomically enable or disable interrupts, and return the
previous value of the Status register.

• The ability to disable the Count register for highly power-sensitive applications

• GPR shadow registers:

Provides the addition of GPR shadow registers and the ability to bind these registers to a
vectored interrupt or exception.

• Field, Rotate and Shuffle instructions:

Add additional capability in processing bit fields in registers.

• Explicit hazard management:

Provides a set of instructions to explicitly manage hazards, in place of the cycle-based
SSNOP method of dealing with hazards.

2.6 SPLIT CPU BUS

The PIC32 CPU core has two distinct busses to help improve system performance over a sin-
gle-bus system. This improvement is achieved through parallelism. Load and store operations
occur at the same time as instruction fetches. The two busses are known as the I-side bus which
is used for feeding instructions into the CPU, and the D-side bus used for data transfers.

The CPU fetches instructions during the I pipeline stage. A fetch is issued to the I-side bus and
is handled by the bus matrix unit. Depending on the address, the BMX will do one of the following:

• Forward the fetch request to the Prefetch Cache unit

• Forward the fetch request to the DRM unit or

• Cause an exception

Instruction fetches always use the I-side bus independent of the addresses being fetched. The
BMX decides what action to perform for each fetch request based on the address and the values
in the BMX registers. See 3.5 “Bus Matrix” in Section 3. “Memory Organization” (DS61115).

The D-side bus processes all load and store operations executed by the CPU. When a load or
store instruction is executed the request is routed to the BMX by the D-side bus. This operation
occurs during the M pipeline stage and is routed to one of several targets devices:

• Data Ram

• Prefetch Cache/Flash Memory

• Fast Peripheral Bus (Interrupt controller, DMA, Debug unit, USB, Ethernet, GPIO Ports)

• General Peripheral Bus (UART, SPI, Flash Controller, EPMP/EPSP, RTCC Timers, Input
Capture, PWM/Output Compare, ADC, Dual Compare, I2C, Clock, and Reset)
DS61113E-page 2-12 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.7 INTERNAL SYSTEM BUSSES

The internal busses of the PIC32 processor connect the peripherals to the bus matrix unit. The
bus matrix routes bus accesses from different initiators to a set of targets utilizing several data
paths throughout the device to help eliminate performance bottlenecks.

Some of the paths that the bus matrix uses serve a dedicated purpose, while others are shared
between several targets.

The data RAM and Flash memory read paths are dedicated paths, allowing low-latency access
to the memory resources without being delayed by peripheral bus activity. The high-bandwidth
peripherals are placed on a high-speed bus. These include the Interrupt controller, debug unit,
DMA engine, the USB host/peripheral unit, and other high-bandwidth peripherals (i.e., CAN,
Ethernet engines).

Peripherals that do not require high-bandwidth are located on a separate peripheral bus to save
power.

2.8 SET/CLEAR/INVERT

To provide single-cycle bit operations on peripherals, the registers in the peripheral units can be
accessed in three different ways depending on peripheral addresses. Each register has four dif-
ferent addresses. Although the four different addresses appear as different registers, they are
really just four different methods to address the same physical register.

Figure 2-8: Four Addresses for a Single Physical Register

The base register address provides normal Read/Write access, while the other three provide
special write-only functions.

• Normal access

• Set bit atomic RMW access

• Clear bit atomic RMW access

• Invert bit atomic RMW access

Peripheral reads must occur from the base address of each peripheral register. Reading from a
Set/Clear/Invert address has an undefined meaning, and may be different for each peripheral.

Writing to the base address writes an entire value to the peripheral register. All bits are written.
For example, assume a register contains 0xAAAA5555 before a write of 0x000000FF. After the
write, the register will contain 0x000000FF (assuming that all bits are R/W bits).

Writing to the Set address for any peripheral register causes only the bits written as ‘1’s to be set
in the destination register. For example, assume that a register contains 0xAAAA5555 before a
write of 0x000000FF to the set register address. After the write to the Set register address, the
value of the peripheral register will contain 0xAAAA55FF.

Writing to the Clear address for any peripheral register causes only the bits written as ‘1’s to be
cleared to ‘0’s in the destination register. For example, assume that a register contains
0xAAAA5555 before a write of 0x000000FF to the Clear register address. After the write to the
Clear register address, the value of the peripheral register will contain 0xAAAA5500.

Writing to the Invert address for any peripheral register causes only the bits written as ‘1’s to be
inverted, or toggled, in the destination register. For example, assume that a register contains
0xAAAA5555 before a write of 0x000000FF to the invert register address. After the write to the
Invert register, the value of the peripheral register will contain 0xAAAA55AA.

Peripheral RegisterRegister Address

Register Address + 4

Register Address + 8

Register Address + 12

Clear Bits

Set Bits

Invert Bits
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-13

PIC32 Family Reference Manual
2.9 ALU STATUS BITS

Unlike most other PIC® microcontrollers, the PIC32 processor does not use Status register flags.
Condition flags are used on many processors to help perform decision making operations during
program execution. Flags are set based on the results of comparison operations or some arith-
metic operations. Conditional branch instructions on these machines then make decisions based
on the values of the single set of condition codes.

Instead, the PIC32 processor uses instructions that perform a comparison and stores a flag or
value into a General Purpose Register. A conditional branch is then executed with this general
purpose register used as an operand.

2.10 INTERRUPT AND EXCEPTION MECHANISM

The PIC32 family of processors implement an efficient and flexible interrupt and exception han-
dling mechanism. Interrupts and exceptions both behave similarly in that the current instruction
flow is changed temporarily to execute special procedures to handle an interrupt or exception.
The difference between the two is that interrupts are usually a result of normal operation, and
exceptions are a result of error conditions such as bus errors.

When an interrupt or exception occurs, the processor does the following:

1. The PC of the next instruction to execute after the handler returns is saved into a
co-processor register.

2. Cause register is updated to reflect the reason for exception or interrupt.

3. Status register EXL or ERL bit is set to cause Kernel mode execution.

4. Handler PC is calculated from Ebase and SPACING values.

5. Processor starts execution from new PC.

This is a simplified overview of the interrupt and exception mechanism. See Section 8.
“Interrupts” (DS61108) for more information regarding interrupt and exception handling.

2.11 PROGRAMMING MODEL

The PIC32 family of processors is designed to be used with a high-level language such as the C
programming language. It supports several data types and uses simple but flexible addressing
modes needed for a high-level language. There are 32 General Purpose Registers and two
special registers for multiplying and dividing.

There are three different formats for the machine language instructions on the PIC32 processor:

• Immediate or I-type CPU instructions

• Jump or J-type CPU instructions and

• Registered or R-type CPU instructions

Most operations are performed in registers. The register type CPU instructions have three
operands; two source operands and a destination operand.

Having three operands and a large register set allows assembly language programmers and
compilers to use the CPU resources efficiently. This creates faster and smaller programs by
allowing intermediate results to stay in registers rather than constantly moving data to and from
memory.

The immediate format instructions have an immediate operand, a source operand and a
destination operand. The jump instructions have a 26-bit relative instruction offset field that is
used to calculate the jump destination.

Note: Throughout this document, the terms “precise” and “imprecise” are used to describe
exceptions. A precise exception is one in which the EPC (CP0, Register 14, Select
0) can be used to identify the instruction that caused the exception. For imprecise
exceptions, the instruction that caused the exception cannot be identified. Most
exceptions are precise. Bus error exceptions may be imprecise.
DS61113E-page 2-14 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.11.1 CPU Instruction Formats

A CPU instruction is a single 32-bit aligned word. The CPU instruction formats are:

• Immediate (see Figure 2-9)

• Jump (see Figure 2-10)

• Register (see Figure 2-11)

Table 2-3 describes the fields used in these instructions.

Table 2-3: CPU Instruction Format Fields

Figure 2-9: Immediate (I-Type) CPU Instruction Format

Figure 2-10: Jump (J-Type) CPU Instruction Format

Figure 2-11: Register (R-Type) CPU Instruction Format

2.11.2 CPU Registers

The PIC32 architecture defines the following CPU registers:

• Thirty-two 32-bit General Purpose Registers (GPRs)

• Two special purpose registers to hold the results of integer multiply, divide, and
multiply-accumulate operations (HI and LO)

• A special purpose program counter (PC), which is affected only indirectly by certain
instructions; it is not an architecturally visible register

Field Description

opcode 6-bit primary operation code.

rd 5-bit specifier for the destination register.

rs 5-bit specifier for the source register.

rt 5-bit specifier for the target (source/destination) register or used to specify
functions within the primary opcode REGIMM.

immediate 16-bit signed immediate used for logical operands, arithmetic signed operands,
load/store address byte offsets, and PC-relative branch signed instruction
displacement.

instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of the jump
target address.

sa 5-bit shift amount.

function 6-bit function field used to specify functions within the primary opcode
SPECIAL.

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

31 26 25 21 20 16 15 11 10 6 5 0

opcode instr_index

6 26

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd sa function

6 5 5 5 5 6
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-15

PIC32 Family Reference Manual
2.11.2.1 CPU GENERAL PURPOSE REGISTERS

Two of the CPU General Purpose Registers have assigned functions:

• r0 – This register is hard-wired to a value of ‘0’, and can be used as the target register for
any instruction the result of which will be discarded. r0 can also be used as a source when
a ‘0’ value is needed.

• r31 – This is the destination register used by JAL, BLTZAL, BLTZALL, BGEZAL, and
BGEZALL, without being explicitly specified in the instruction word; otherwise, r31 is used
as a normal register

The remaining registers are available for general purpose use.

2.11.2.2 REGISTER CONVENTIONS

Although most of the registers in the PIC32 architecture are designated as General Purpose
Registers, as shown in Table 2-4, there are some recommended uses of the registers for correct
software operation with high-level languages such as the Microchip C compiler.

Table 2-4: Register Conventions

2.11.2.3 CPU SPECIAL PURPOSE REGISTERS

The CPU contains three special purpose registers:

• PC – Program Counter register

• HI – Multiply and Divide register higher result

• LO – Multiply and Divide register lower result:

- During a multiply operation, the HI and LO registers store the product of integer
multiply

- During a multiply-add or multiply-subtract operation, the HI and LO registers store the
result of the integer multiply-add or multiply-subtract

- During a division, the HI and LO registers store the quotient (in LO) and remainder (in
HI) of integer divide

- During a multiply-accumulate, the HI and LO registers store the accumulated result of
the operation

CPU
Register

Symbolic
Register

Usage

r0 zero Always ‘0’(1)

r1 at Assembler Temporary

r2 - r3 v0-v1 Function Return Values

r4 - r7 a0-a3 Function Arguments

r8 - r15 t0-t7 Temporary – Caller does not need to preserve contents

r16 - r23 s0-s7 Saved Temporary – Caller must preserve contents

r24 - r25 t8-t9 Temporary – Caller does not need to preserve contents

r26 - r27 k0-k1 Kernel temporary – Used for interrupt and exception handling

r28 gp Global Pointer – Used for fast-access common data

r29 sp Stack Pointer – Software stack

r30 s8 or fp Saved Temporary – Caller must preserve contents OR
Frame Pointer – Pointer to procedure frame on stack

r31 ra Return Address(1)

Note 1: Hardware enforced, not just convention.
DS61113E-page 2-16 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

Figure 2-12 shows the layout of the CPU registers.

Figure 2-12: CPU Registers

31 0 31 0

r0 (zero) HI

r1 (at) LO

r2 (v0)

r3 (v1)

r4 (a0)

r5 (a1)

r6 (a2)

r7 (a3)

r8 (t0)

r9 (t1)

r10 (t2)

r11 (t3)

r12 (t4)

r13 (t5)

r14 (t6)

r15 (t7)

r16 (s0)

r17 (s1)

r18 (s2)

r19 (s3)

r20 (s4)

r21 (s5)

r22 (s6)

r23 (s7)

r24 (t8)

r25 (t9)

r26 (k0)

r27 (k1)

r28 (gp)

r29 (sp)

r30 (s8 or fp) 31 0

r31 (ra) PC

General Purpose Registers Special Purpose Registers
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-17

PIC32 Family Reference Manual
Table 2-5: MIPS16e® Register Usage

Table 2-6: MIPS16e® Special Registers

2.11.3 How to Implement Stack/MIPS® Calling Conventions

The PIC32 CPU does not have hardware stacks. Instead, the processor relies on software to pro-
vide this functionality. Since the hardware does not perform stack operations itself, a convention
must exist for all software within a system to use the same mechanism. For example, a stack can
grow either toward lower address, or grow toward higher addresses. If one piece of software
assumes that the stack grows toward lower address, and calls a routine that assumes that the
stack grows toward higher address, the stack would become corrupted.

Using a system-wide calling convention prevents this problem from occurring. The Microchip C
compiler assumes the stack grows toward lower addresses.

2.11.4 Processor Modes

There are two operational modes and one special mode of execution in the PIC32 family CPUs;
User mode, Kernel mode, and Debug mode. The processor starts execution in Kernel mode, and
if desired, can stay in Kernel mode for normal operation. User mode is an optional mode that
allows a system designer to partition code between privileged and unprivileged software. Debug
mode is normally only used by a debugger or monitor.

One of the main differences between the modes of operation is the memory addresses that soft-
ware is allowed to access. Peripherals are not accessible in User mode. Figure 2-13 shows the
different memory maps for each mode. For more information on the processor’s memory map,
see Section 3. “Memory Organization” (DS61115).

MIPS16e®
Register
Encoding

32-bit MIPS®

Register
Encoding

 Symbolic
Name

Description

0 16 s0 General Purpose Register

1 17 s1 General Purpose Register

2 2 v0 General Purpose Register

3 3 v1 General Purpose Register

4 4 a0 General Purpose Register

5 5 a1 General Purpose Register

6 6 a2 General Purpose Register

7 7 a3 General Purpose Register

N/A 24 t8 MIPS16e® Condition Code register; implic-
itly referenced by the BTEQZ, BTNEZ, CMP,
CMPI, SLT, SLTU, SLTI, and SLTIU
instructions

N/A 29 sp Stack Pointer register

N/A 31 ra Return Address register

Symbolic
Name

Purpose

PC
Program counter. The PC-relative instructions can access this register as an
operand.

HI Contains high-order word of multiply or divide result.

LO Contains low-order word of multiply or divide result.
DS61113E-page 2-18 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

Figure 2-13: CPU Modes

useg kuseg kuseg

kseg0

kseg1

kseg2

kseg3

kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-19

PIC32 Family Reference Manual
2.11.4.1 KERNEL MODE

In order to access many of the hardware resources, the processor must be operating in Kernel
mode. Kernel mode gives software access to the entire address space of the processor as well
as access to privileged instructions.

The processor operates in Kernel mode when the DM bit in the Debug register is ‘0’ and the
Status register contains one, or more, of the following values:

• UM = 0

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter
Kernel mode. At the end of the exception handler routine, an Exception Return (ERET) instruction
is generally executed. The ERET instruction jumps to the Exception PC (EPC or ErrorPC
depending on the exception), clears ERL, and clears EXL if ERL= 0.

If UM = 1 the processor will return to User mode after returning from the exception when ERL
and EXL are cleared back to ‘0’.

2.11.4.2 USER MODE

When executing in User mode, software is restricted to use a subset of the processor’s
resources. In many cases it is desirable to keep application-level code running in User mode
where if an error occurs it can be contained and not be allowed to affect the Kernel mode code.

Applications can access Kernel mode functions through controlled interfaces such as the
SYSCALL mechanism.

As seen in Figure 2-13, User mode software has access to the USEG memory area.

To operate in User mode, the Status register must contain each the following bit values:

• UM = 1

• EXL = 0

• ERL = 0

2.11.4.3 DEBUG MODE

Debug mode is a special mode of the processor normally only used by debuggers and system
monitors. Debug mode is entered through a debug exception and has access to all the Kernel
mode resources as well as special hardware resources used to debug applications.

The processor is in Debug mode when the DM bit in the Debug register is ‘1’.

Debug mode is normally exited by executing a DERET instruction from the debug handler.
DS61113E-page 2-20 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12 COPROCESSOR 0 (CP0) REGISTERS

The PIC32 uses a special register interface to communicate status and control information
between system software and the CPU. This interface is called Coprocessor 0, or CP0. The
features of the CPU that are visible through Coprocessor 0 are:

• Core timer

• Interrupt and exception control

• Virtual memory configuration

• Shadow register set control

• Processor identification

• Debugger control

• Performance counters

System software accesses the registers in CP0 using coprocessor instructions such as MFC0
and MTC0. Table 2-7 describes the CP0 registers found on PIC32 devices.

Table 2-7: CP0 Registers

Register
Number

Register Name Function

0-6 Reserved Reserved in the M4K® Microprocessor core.

7 HWREna Enables access via the RDHWR instruction to selected
hardware registers in Non-privileged mode.

8 BadVAddr Reports the address for the most recent address-related
exception.

9 Count Processor cycle count.

10 Reserved Reserved in the M4K® Microprocessor core.

11 Compare Core timer interrupt control.

12 Status Processor status and control.

IntCtl Interrupt control of vector spacing.

SRSCtl Shadow register set control.

SRSMap Shadow register mapping control.

13 Cause Describes the cause of the last exception.

14 EPC Program counter at last exception.

15 PRID Processor identification and revision

Ebase Exception base address of exception vectors.

16 Config Configuration register.

Config1 Configuration register 1.

Config2 Configuration register 2.

Config3 Configuration register 3.

17-22 Reserved Reserved in the M4K® Microprocessor core.

23 Debug Debug control/exception status.

TraceControl EJTAG trace control.

TraceControl2 EJTAG trace control 2.

UserTraceData User format type trace record trigger.

TraceBPC Control tracing using an EJTAG Hardware breakpoint.

Debug2 Debug control/exception status 1.

24 DEPC Program counter at last debug exception.

25-29 Reserved Reserved in the M4K® Microprocessor core.

30 ErrorEPC Program counter at last error.

31 DeSAVE Debug handler scratchpad register.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-21

PIC32 Family Reference Manual
2.12.1 HWREna Register (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are
accessible via the RDHWR instruction.

Register 2-1: HWREna: Hardware Accessibility Register; CP0 Register 7, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0

— — — — MASK<3:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-4 Unimplemented: Read as ‘0’

bit 3-0 MASK<3:0>: Bit Mask bits

1 = Access is enabled to corresponding hardware register
0 = Access is disabled
Each of these bits enables access by the RDHWR instruction to a particular hardware register (which may not
be an actual register). See the RDHWR instruction for a list of valid hardware registers.
DS61113E-page 2-22 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.2 BadVAddr Register (CP0 Register 8, Select 0)

BadVAddr is a read-only register that captures the most recent virtual address that caused an
address error exception. Address errors are caused by executing load, store, or fetch operations
from unaligned addresses, and also by trying to access Kernel mode addresses from User mode.

BadVAddr does not capture address information for bus errors, because they are not addressing
errors.

Register 2-2: BadVAddr: Bad Virtual Address Register; CP0 Register 8, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R-x R-x R-x R-x R-x R-x R-x R-x

BadVAddr<31:24>

23:16
R-x R-x R-x R-x R-x R-x R-x R-x

BadVAddr<23:16>

15:8
R-x R-x R-x R-x R-x R-x R-x R-x

BadVAddr<15:8>

7:0
R-x R-x R-x R-x R-x R-x R-x R-x

BadVAddr<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 BadVAddr<31:0>: Bad Virtual Address bits

Captures the virtual address that caused the most recent address error exception.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-23

PIC32 Family Reference Manual
2.12.3 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction
is executed, retired, or any forward progress is made through the pipeline. The counter
increments every other clock, if the DC bit in the Cause register is ‘0’.

Count can be written for functional or diagnostic purposes, including at Reset or to synchronize
processors.

By writing the COUNTDM bit in the Debug register, it is possible to control whether Count
continues to increment while the processor is in Debug mode.

Register 2-3: Count: Interval Counter Register; CP0 Register 9, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNT<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNT<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNT<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COUNT<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 COUNT<31:0>: Interval Counter bits

This value is incremented every other clock cycle.
DS61113E-page 2-24 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.4 Compare Register (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer
interrupt function. Compare maintains a stable value and does not change on its own.

When the value of Count equals the value of Compare, the CPU asserts an interrupt signal to the
system interrupt controller. This signal will remain asserted until Compare is written.

Register 2-4: Compare: Interval Count Compare Register; CP0 Register 11, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COMPARE<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COMPARE<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COMPARE<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

COMPARE<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 COMPARE<31:0>: Interval Count Compare Value bits
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-25

PIC32 Family Reference Manual
2.12.5 Status Register (CP0 Register 12, Select 0)

The read/write Status register contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. The bits of this register combine to create operating modes for the
processor.

2.12.5.1 INTERRUPT ENABLE

Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, the settings of the IPL bits enable the interrupts.

2.12.5.2 OPERATING MODES

If the DM bit in the Debug register is ‘1’, the processor is in Debug mode; otherwise, the
processor is in either Kernel mode or User mode.

The CPU Status register bit settings shown in table determine User or Kernel mode:

Table 2-8: CPU Status Register Bits That Determine Processor Mode

Mode Bit/Setting

User (requires all of the following bits and values) UM = 1 EXL = 0 ERL = 0

Kernel (requires one or more of the following bit values) UM = 0 EXL = 1 ERL = 1

Note: The Status register CU0 bit (Status<28>) control coprocessor accessibility. If any
coprocessor is unusable, an instruction that accesses it generates an exception.

Register 2-5: Status: Status Register; CP0 Register 12, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 R/W-x R/W-0(1) U-0 R/W-x U-0

— — — CU0 RP — RE —

23:16
U-0 R/W-1 U-0 R/W-1 R/W-0 U-0 U-0 U-0

— BEV — SR NMI — — —

15:8
U-0 U-0 U-0 R/W-x R/W-x R/W-x U-0 U-0

— — — IPL<2:0> — —

7:0
U-0 U-0 U-0 R/W-x U-0 R/W-x R/W-x R/W-x

— — — UM — ERL EXL IE

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-29 Unimplemented: Read as ‘0’

bit 28 CU0: Coprocessor 0 Usable bit

Controls access to Coprocessor 0

1 = Access allowed
0 = Access not allowed
Coprocessor 0 is always usable when the processor is running in Kernel mode, independent of the state of
the CU0 bit.
DS61113E-page 2-26 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

bit 27 RP: Reduced Power bit

1 = Enables Reduced Power mode
0 = Disables Reduced Power mode

bit 26 Unimplemented: Read as ‘0’

bit 25 RE: Reverse-endian Memory Reference Enable bit

Used to enable reverse-endian memory references while the processor is running in User mode
1 = User mode uses reversed endianness
0 = User mode uses configured endianness
Debug, Kernel, or Supervisor mode references are not affected by the state of this bit.

bit 24-23 Unimplemented: Read as ‘0’

bit 22 BEV: Bootstrap Exception Vector Control bit

Controls the location of exception vectors.
1 = Bootstrap
0 = Normal

bit 21 Unimplemented: Read as ‘0’

bit 20 SR: Soft Reset bit

Indicates that the entry through the Reset exception vector was due to a Soft Reset.

1 = Soft Reset; this bit is always set for any type of reset on the PIC32 core
0 = Not used on PIC32
Software can only write a ‘0’ to this bit to clear it and cannot force a ‘0’ to ‘1’ transition.

bit 19 NMI: Non-Maskable Interrupt bit

Indicates that the entry through the reset exception vector was due to a NMI.

1 = NMI
0 = Not NMI (Soft Reset or Reset)
Software can only write a ‘0’ to this bit to clear it and cannot force a ‘0’ to ‘1’ transition.

bit 18-13 Unimplemented: Read as ‘0’

bit 12-10 IPL<2:0>: Interrupt Priority Level bits

This bit is the encoded (0-7) value of the current IPL. An interrupt will be signaled only if the requested IPL
is higher than this value.

bit 9-5 Unimplemented: Read as ‘0’

bit 4 UM: User Mode bit

This bit denotes the base operating mode of the processor. On the encoding of this bit is:
1 = Base mode is User mode
0 = Base mode in Kernel mode
The processor can also be in Kernel mode if ERL or EXL is set, regardless of the state of the UM bit.

bit 3 Unimplemented: Read as ‘0’

bit 2 ERL: Error Level bit

Set by the processor when a Reset, Soft Reset, NMI or Cache Error exception are taken.
1 = Error level
0 = Normal level

When ERL is set:

• Processor is running in Kernel mode

• Interrupts are disabled

• ERET instruction will use the return address held in the ErrorEPC register instead of the EPC register

• Lower 229 bytes of kuseg are treated as an unmapped and uncached region. This allows main
memory to be accessed in the presence of cache errors. The operation of the processor is undefined if
the ERL bit is set while the processor is executing instructions from kuseg.

Register 2-5: Status: Status Register; CP0 Register 12, Select 0 (Continued)
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-27

PIC32 Family Reference Manual
bit 1 EXL: Exception Level bit

Set by the processor when any exception other than Reset, Soft Reset, or NMI exceptions is taken.
1 = Exception level
0 = Normal level

When EXL is set:

• Processor is running in Kernel mode

• Interrupts are disabled

EPC, BD, and SRSCtl will not be updated if another exception is taken.

bit 0 IE: Interrupt Enable bit

Acts as the master enable for software and hardware interrupts:
1 = Interrupts are enabled
0 = Interrupts are disabled
This bit may be modified separately via the DI and EI instructions

Register 2-5: Status: Status Register; CP0 Register 12, Select 0 (Continued)
DS61113E-page 2-28 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.6 IntCtl: Interrupt Control Register (CP0 Register 12, Select 1)

The IntCtl register controls the vector spacing of the PIC32 architecture.

Register 2-6: IntCtl: Interrupt Control Register; CP0 Register 12, Select 1

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U=0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

— — — — — — VS<4:4>

7:0
R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 U-0 U-0

VS<2:0> — — — — —

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-10 Unimplemented: Read as ‘0’

bit 9-5 VS<4:0>: Vector Spacing bits

These bits specify the spacing between each interrupt vector.

All other values are reserved. The operation of the processor is undefined if a reserved value is written to
these bits.

bit 4-0 Unimplemented: Read as ‘0’

Encoding Spacing Between Vectors
(hex)

Spacing Between Vectors
(decimal)

0x00 0x000 0x 0

0x01 0x020 32

0x02 0x040 64

0x04 0x080 128

0x08 0x100 256

0x10 0x200 512
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-29

PIC32 Family Reference Manual
2.12.7 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

Table 2-9: Sources for New CSS on an Exception or Interrupt

Exception Type Bit Source Condition Comment

Exception ESS All —

Non-Vectored Interrupt ESS IV bit = 0 (Cause<23>) Treat as exception

Vectored EIC Interrupt EICSS IV bit = 1 (Cause<23>) and,
VEIC bit = 1 (Config3<6>)

Source is external interrupt controller.

Register 2-7: SRSCtl: Shadow Register Set Register; CP0 Register 12, Select 2

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 R-0 R-0 R-0 R-1 U-0 U-0

— — HSS<3:0> — —

23:16
U-0 U-0 R-x R-x R-x R-x U-0 U-0

— — EICSS<3:0> — —

15:8
R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0

ESS<3:0> — — PSS<3:2>

7:0
R/W-0 R/W-0 U-0 U-0 R-0 R-0 R-0 R-0

PSS<1:0> — — CSS<3:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-30 Unimplemented: Read as ‘0’

bit 29-26 HSS<3:0>: High Shadow Set bits

This bit contains the highest shadow set number that is implemented by this processor. A value of ‘0000’ in
these bits indicates that only the normal GPRs are implemented.
1111 = Reserved

•

•

•

0100 = Reserved
0011 = Four shadow sets are present
0010 = Reserved
0001 = Two shadow sets are present
0000 = One shadow set (normal GPR set) is present

The value in this bit also represents the highest value that can be written to the ESS<3:0>, EICSS<3:0>,
PSS<3:0>, and CSS<3:0> bits of this register, or to any of the bits of the SRSMap register. The operation
of the processor is undefined if a value larger than the one in this bit is written to any of these other bits.

bit 25-22 Unimplemented: Read as ‘0’

bit 21-18 EICSS<3:0>: External Interrupt Controller Shadow Set bits

EIC Interrupt mode shadow set. This bit is loaded from the external interrupt controller for each interrupt
request and is used in place of the SRSMap register to select the current shadow set for the interrupt.

bit 17-16 Unimplemented: Read as ‘0’
DS61113E-page 2-30 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

bit 15-12 ESS<3:0>: Exception Shadow Set bits

This bit specifies the shadow set to use on entry to Kernel mode caused by any exception other than a vec-
tored interrupt. The operation of the processor is undefined if software writes a value into this bit that is
greater than the value in the HSS<3:0> bits.

bit 11-10 Unimplemented: Read as ‘0’

bit 9-6 PSS<3:0>: Previous Shadow Set bits

Since GPR shadow registers are implemented, this bit is copied from the CSS bit when an exception or
interrupt occurs. An ERET instruction copies this value back into the CSS bit if the BEV bit (Status<22>) = 0.

This bit is not updated on any exception which sets the ERL bit (Status<2>) to ‘1’ (i.e., Reset, Soft Reset,
NMI, cache error), an entry into EJTAG Debug mode, or any exception or interrupt that occurs with the EXL
bit (Status<1>) = 1, or BEV = 1. This bit is not updated on an exception that occurs while ERL = 1.

The operation of the processor is undefined if software writes a value into this bit that is greater than the
value in the HSS<3:0> bits.

bit 5-4 Unimplemented: Read as ‘0’

bit 3-0 CSS<3:0>: Current Shadow Set bits

Since GPR shadow registers are implemented, this bit is the number of the current GPR set. This bit is
updated with a new value on any interrupt or exception, and restored from the PSS bit on an ERET.

Table 2-9 describes the various sources from which the CSS<3:0> bits are updated on an exception or
interrupt.

This bit is not updated on any exception which sets the ERL bit (Status<2>) to ‘1’ (i.e., Reset, Soft Reset,
NMI, cache error), an entry into EJTAG Debug mode, or any exception or interrupt that occurs with EXL bit
(Status<1>) = 1, or BEV = 1. Neither is it updated on an ERET with ERL = 1 or BEV = 1. This bit is not
updated on an exception that occurs while ERL = 1.

The value of the CSS<3:0> bits can be changed directly by software only by writing the PSS<3:0> bits and
executing an ERET instruction.

Register 2-7: SRSCtl: Shadow Register Set Register; CP0 Register 12, Select 2 (Continued)
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-31

PIC32 Family Reference Manual
2.12.8 SRSMap: Register (CP0 Register 12, Select 3)

The SRSMap register contains eight 4-bit bits that provide the mapping from an vector number
to the shadow set number to use when servicing such an interrupt. The values from this register
are not used for a non-interrupt exception, or a non-vectored interrupt (IV bit = 0, Cause<23> or
VS<4:0> bit = 0, IntCtl<9:5>). In such cases, the shadow set number comes from the ESS<3:0>
bits (SRSCtl<15:12>).

If the HSS<3:0> bits (SRSCTL29:26) are ‘0’, the results of a software read or write of this register
are unpredictable.

The operation of the processor is undefined if a value is written to any bit in this register that is
greater than the value of the HSS<3:0> bits.

The SRSMap register contains the shadow register set numbers for vector numbers 7-0. The
same shadow set number can be established for multiple interrupt vectors, creating a
many-to-one mapping from a vector to a single shadow register set number.

Register 2-8: SRSMap: Shadow Register Set Map Register; CP0 Register 12, Select 3

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSV7<3:0> SSV6<3:0>

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSV5<3:0> SSV4<3:0>

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSV3<3:0> SSV2<3:0>

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

SSV1<3:0> SSV0<3:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-28 SSV7<3:0>: Shadow Set Vector 7 bits

Shadow register set number for Vector Number 7

bit 27-24 SSV6<3:0>: Shadow Set Vector 6 bits

Shadow register set number for Vector Number 6

bit 23-20 SSV5<3:0>: Shadow Set Vector 5 bits

Shadow register set number for Vector Number 5

bit 19-16 SSV4<3:0>: Shadow Set Vector 4 bits

Shadow register set number for Vector Number 4

bit 15-12 SSV3<3:0>: Shadow Set Vector 3 bits

Shadow register set number for Vector Number 3

bit 11-8 SSV2<3:0>: Shadow Set Vector 2 bits

Shadow register set number for Vector Number 2

bit 7-4 SSV1<3:0>: Shadow Set Vector 1 bits

Shadow register set number for Vector Number 1

bit 3-0 SSV0<3:0>: Shadow Set Vector 0 bit

Shadow register set number for Vector Number 0
DS61113E-page 2-32 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.9 Cause Register (CP0 Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, bits
also control software interrupt requests and the vector through which interrupts are dispatched.
With the exception of the IP1, IP0, DC, and IV bits, all bits in the Cause register are read-only.

Table 2-10: Cause Register EXCCODE<4:0> Bits

Exception Code Value
Mnemonic Description

Decimal Hex

0 0x00 Int Interrupt

1-3 0x01 — Reserved

4 0x04 AdEL Address error exception (load or instruction fetch)

5 0x05 AdES Address error exception (store)

6 0x06 IBE Bus error exception (instruction fetch)

7 0x07 DBE Bus error exception (data reference: load or store)

8 0x08 Sys Syscall exception

9 0x09 Bp Breakpoint exception

10 0x0A RI Reserved instruction exception

11 0x0B CPU Coprocessor Unusable exception

12 0x0C Ov Arithmetic Overflow exception

13 0x0D Tr Trap exception

14-31 0x0E-0x1F — Reserved

Register 2-9: Cause: Exception Cause Register; CP0 Register 13, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R-x R-x R-x R-x R/W-0 U-0 U-0 U-0

BD TI CE<1:0> DC — — —

23:16
R/W-x U-0 U-0 U-0 U-0 U-0 U-0 U-0

IV — — — — — — —

15:8
U-0 U-0 U-0 R-x R-x R-x R/W-x R/W-x

— — — RIPL<2:0> IP1 IP0

7:0
U-0 R-x R-x R-x R-x R-x U-0 U-0

— EXCCODE<4:0> — —

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 BD: Branch Delay bit

Indicates whether the last exception taken occurred in a branch delay slot:
1 = In delay slot
0 = Not in delay slot
The processor updates BD only if the EXL bit (Status<1>) was ‘0’ when the exception occurred.

bit 30 TI: Timer Interrupt bit

Timer Interrupt. This bit denotes whether a timer interrupt is pending (analogous to the IP bits for other
interrupt types):
1 = Timer interrupt is pending
0 = No timer interrupt is pending

bit 29-28 CE<1:0>: Coprocessor Exception bits

Coprocessor unit number referenced when a Coprocessor Unusable exception is taken. This bit is loaded
by hardware on every exception, but is unpredictable for all exceptions except for Coprocessor Unusable.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-33

PIC32 Family Reference Manual
bit 27 DC: Disable Count Register bit

In some power-sensitive applications, the Count register is not used and can be stopped to avoid
unnecessary toggling.
1 = Disable counting of Count register
0 = Enable counting of Count register

bit 26-24 Unimplemented: Read as ‘0’

bit 23 IV: Interrupt Vector bit

Indicates whether an interrupt exception uses the general exception vector or a special interrupt vector
1 = Use the special interrupt vector (0x200)
0 = Use the general exception vector (0x180)
If the IV bit (Cause<23>) is ‘1’ and the BEV bit (Status<22>) is ‘0’, the special interrupt vector represents
the base of the vectored interrupt table.

bit 22-13 Unimplemented: Read as ‘0’

bit 12-10 RIPL<2:0>: Requested Interrupt Priority Level bits

This bit is the encoded (7-0) value of the requested interrupt. A value of ‘0’ indicates that no interrupt is
requested.

bit 9-8 IP<1:0>: Software Interrupt Request Control bits

Controls the request for software interrupts
1 = Request software interrupt
0 = No interrupt requested
These bits are exported to the system interrupt controller for prioritization in EIC Interrupt mode with other
interrupt sources.

bit 7 Unimplemented: Read as ‘0’

bit 6-2 EXCCODE<4:0>: Exception Code bits

See Table 2-10 for the list of Exception codes.

bit 1-0 Unimplemented: Read as ‘0’

Register 2-9: Cause: Exception Cause Register; CP0 Register 13, Select 0 (Continued)
DS61113E-page 2-34 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.10 EPC Register (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which
processing resumes after an exception has been serviced. All bits of the EPC register are
significant and are writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding BRANCH or JUMP instruction, when the
exception causing instruction is in a branch delay slot and the Branch Delay bit in the
Cause register is set

On new exceptions, the processor does not write to the EPC register when the EXL bit in the
Status register is set, however, the register can still be written via the MTC0 instruction.

Since the PIC32 family implements MIPS16e® or microMIPS™ ASE, a read of the EPC register
(via MFC0) returns the following value in the destination GPR:

GPR[rt]  ExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISA<1:0>
bits (Config3<15:14>) and are written to the GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes
that value to the exception PC and the ISA<1:0> bits (Config3<15:14>), as follows:

ExceptionPC  GPR[rt]31..1 || 0
ISAMode  2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the
lower bit of the exception PC is cleared. The upper bit of the ISA<1:0> bits (Config3<15:14>) is
cleared and the lower bit is loaded from the lower bit of the GPR.

Register 2-10: EPC: Exception Program Counter Register; CP0 Register 14, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EPC<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EPC<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EPC<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

EPC<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 EPC<31:0>: Exception Program Counter bits
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-35

PIC32 Family Reference Manual
2.12.11 PRID Register (CP0 Register 15, Select 0)

The Processor Identification (PRID) register is a 32-bit read-only register that contains
information identifying the manufacturer, manufacturer options, processor identification, and
revision level of the processor.

Register 2-11: PRID: Processor Identification Register; CP0 Register 15, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 R-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-1

COMPANYID<23:16>

15:8
R-x R-x R-x R-x R-x R-x R-x R-x

PROCESSORID<15:8>

7:0
R-x R-x R-x R-x R-x R-x R-x R-x

MAJORREV<2:0> MINORREV<2:0> PATCHREV<1:0>

Legend: Legend:

R = Readable bit W = Writable bit P = Programmable bit r = Reserved bit

U = Unimplemented bit n = Bit Value at POR: (‘0’, ‘1’, x = Unknown)

bit 31-24 Unimplemented: Read as ‘0’

bit 23-16 COMPANYID<7:0>: Company Identification bits

In PIC32 devices, these bits contain a value of ‘1’ to indicate MIPS® Technologies, Inc. as the processor
manufacturer/designer.

bit 15-8 PROCESSORID<7:0>: Processor Identification bits

These bits allow software to distinguish between the various types of MIPS® Technologies processors. For
PIC32 devices with the M4K® core, this value is 0x87.

bit 7-5 MAJORREV<2:0>: Processor Major Revision Identification bits

These bits allow software to distinguish between one revision and another of the same processor type. This
number is increased on major revisions of the processor core.

bit 4-2 MINORREV<2:0>: Processor Minor Revision Identification bits

This number is increased on each incremental revision of the processor and reset on each new major
revision.

bit 1-0 PATCHREV<1:0>: Processor Patch Level Identification bits

If a patch is made to modify an older revision of the processor, the value of these bits will be incremented.
DS61113E-page 2-36 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.12 Ebase Register (CP0 Register 15, Select 1)

The Ebase register is a read/write register containing the base address of the exception vectors
used when the BEV bit (Status<22>) equals ‘0’, and a read-only CPU number value that may be
used by software to distinguish different processors in a multi-processor system.

The Ebase register provides the ability for software to identify the specific processor within a
multi-processor system, and allows the exception vectors for each processor to be different,
especially in systems composed of heterogeneous processors. Bits 31-12 of the Ebase register
are concatenated with zeros to form the base of the exception vectors when the BEV bit is ‘0’.
The exception vector base address comes from the fixed defaults when the BEV bit is ‘1’, or for
any EJTAG Debug exception. The Reset state of bits 31-12 of the Ebase register initialize the
exception base register to 0x80000000.

Bits 31 and 30 of the Ebase Register are fixed with the value 2#10 to force the exception base
address to be in the kseg0 or kseg1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with the BEV bit
equal to ‘1’. The operation of the processor is undefined if the Ebase<17:0> bits are written with
a different value when the BEV bit (Status<22>) is ‘0’.

Combining bits 31-20 of the Ebase register allows the base address of the exception vectors to
be placed at any 4 KB page boundary.

Register 2-12: Ebase: Exception Base Register; CP0 Register 15, Select 1

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-1 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — EBASE<17:12>

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

EBASE<11:4>

15:8
R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 R-0 R-0

EBASE<3:0> — — CPUNUM<9:8>

7:0
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0

CPUNUM<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Unimplemented: Read as ‘1’

bit 30 Unimplemented: Read as ‘0’

bit 29-12 EBASE<17:0>: Exception Vector Base Address bits

In conjunction with bits 31-30, these bits specify the base address of the exception vectors when the BEV
bit (Status<22>) is ‘0’.

bit 11-10 Unimplemented: Read as ‘0’

bit 9-0 CPUNUM<9:0>: CPU Number bits

These bits specify the number of CPUs in a multi-processor system and can be used by software to
distinguish a particular processor from others. In a single processor system, this value is set to ‘0’.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-37

PIC32 Family Reference Manual
2.12.13 Config Register (CP0 Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields
in the Config register are initialized by hardware during the Reset exception process, or are
constant.

Table 2-11: Cache Coherency Attributes

K0<2:0> Value Cache Coherency Attribute

2 Uncached

3 Cacheable

Register 2-13: Config: Configuration Register; CP0 Register 16, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
r-1 R-0 R-1 R-0 R/W-0 R/W-1 R/W-0 U-0

— K23<2:0> KU<2:0> —

23:16
U-0 R-0 R-0 r-0 U-0 U-0 U-0 R-1

— UDI SB — — — — DS

15:8
R-0 R-0 R-0 R-0 R-0 R-1 R-0 R-1

BE AT<1:0> AR<2:0> MT<2:1>

7:0
R-1 U-0 U-0 U-0 U-0 R/W-0 R/W-1 R/W-0

MT<1> — — — — K0<2:0>

Legend: r = Reserved bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: This bit is hardwired to ‘1’ to indicate the presence of the Config1 register.

bit 30-28 K23<2:0>: kseg2 and kseg3 bits
These bits control the cacheability of the kseg2 and kseg3 address segments.
Refer to Table 2-11 for the bit encoding.

bit 27-25 KU<2:0>: kuseg and useg bits
These bits control the cacheability of the kuseg and useg address segments.
Refer to Table 2-11 for the bit encoding.

bit 24-23 Unimplemented: Read as ‘0’

bit 22 UDI: User-Defined bit

This bit indicates that CorExtend User-Defined Instructions have been implemented.
1 = User-defined Instructions are implemented
0 = No User-defined Instructions are implemented

bit 21 SB: SimpleBE bit

This bit indicates whether SimpleBE Bus mode is enabled.
1 = Only simple byte enables allowed on internal bus interface
0 = No reserved byte enables on internal bus interface

bit 20 Reserved: This bit is hardwired to ‘0’ to indicate the Fast, High-Performance Multiply/Divide Unit (MDU)

bit 19-17 Unimplemented: Read as ‘0’

bit 16 DS: Dual SRAM bit

1 = Dual instruction/data SRAM internal bus interfaces
0 = Unified instruction/data SRAM internal bus interface
PIC32 devices based on the M4K® core use Dual SRAM-style interfaces internally.
DS61113E-page 2-38 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

bit 15 BE: Big-Endian bit

Indicates the endian mode in which the processor is running, PIC32 is always little-endian.
1 = Big-endian
0 = Little-endian

bit 14-13 AT<1:0>: Architecture Type bits

Architecture type implemented by the processor. This bit is always ‘00’ to indicate the MIPS32®
architecture.

bit 12-10 AR<2:0>: Architecture Revision Level bits

Architecture revision level. This bit is always ‘001’ to indicate MIPS32® Release 2.
111 = Reserved
110 = Reserved
101 = Reserved
100 = Reserved
011 = Reserved
010 = Reserved
001 = Release 2
000 = Release 1

bit 9-7 MT<2:0>: MMU Type bits

111 = Reserved
110 = Reserved
101 = Reserved
100 = Reserved
011 = Fixed mapping
010 = Reserved
001 = Reserved
000 = Reserved

bit 6-3 Unimplemented: Read as ‘0’

bit 2-0 K0<2:0>: Kseg0 bits

Kseg0 coherency algorithm. Refer to Table 2-11 for the bit encoding.

Register 2-13: Config: Configuration Register; CP0 Register 16, Select 0 (Continued)
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-39

PIC32 Family Reference Manual
2.12.14 Config1 Register (CP0 Register 16, Select 1)

The Config1 register is an adjunct to the Config register and encodes additional information
about capabilities present on the core. All fields in the Config1 register are read-only.

Register 2-14: Config1: Configuration Register 1; CP0 Register 16, Select 1

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-0 U-0 R-1 R-x U-0

— — — — — CA EP —

Legend: r = Reserved bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: This bit is hardwired to a ‘1’ to indicate the presence of the Config2 register.

bit 30-3 Unimplemented: Read as ‘0’

bit 2 CA: Code Compression Implemented bit

1 = MIPS16e® is implemented
0 = No MIPS16e® present

bit 1 EP: EJTAG Present bit

This bit is always set to ‘1’ indicate that the core implements EJTAG.

bit 0 Unimplemented: Read as ‘0’
DS61113E-page 2-40 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.15 Config2 (CP0 Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional
capabilities information. Config2 is allocated for showing the configuration of level 2/3 caches.
These bits are reset to ‘0’ because L2/L3 caches are not supported by the PIC32 core. All bits in
the Config2 register are read-only.

Register 2-15: Config2: Configuration Register 2; CP0 Register 16, Select 2

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

Legend: r = Reserved bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: This bit is hardwired to a ‘1’ to indicate the presence of the Config3 register.

bit 30-0 Unimplemented: Read as ‘0’
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-41

PIC32 Family Reference Manual
2.12.16 Config3 Register (CP0 Register 16, Select 3)

The Config3 register encodes additional capabilities. All fields in the Config3 register are
read-only.

Register 2-16: Config3: Configuration Register 3; CP0 Register 16, Select 3

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 R-0

— — — — — — — ITL

7:0
U-0 R-1 R-1 U-0 U-0 U-0 U-0 U-0

— VEIC VINT — — — — —

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-9 Unimplemented: Read as ‘0’

bit 8 ITL: Indicates that iFlowTrace hardware is present

1 = The iFlowTrace is implemented in the core
0 = The iFlowTrace is not implemented in the core

bit 7 Unimplemented: Read as ‘0’

bit 6 VEIC: External Vectored Interrupt Controller bit
Support for an external interrupt controller is implemented.
1 = Support for EIC Interrupt mode is implemented
0 = Support for EIC Interrupt mode is not implemented
PIC32 devices internally implement a MIPS® “external interrupt controller”; therefore, this bit reads ‘1’.

bit 5 VINT: Vector Interrupt bit
Vectored interrupts implemented. This bit indicates whether vectored interrupts are implemented.
1 = Vector interrupts are implemented
0 = Vector interrupts are not implemented
On the PIC32 core, this bit is always a ‘1’ since vectored interrupts are implemented.

bit 4-0 Unimplemented: Read as ‘0’
DS61113E-page 2-42 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.17 Debug Register (CP0 Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the
cause of the debug exception and when re-entering at the debug exception vector due to a
normal exception in Debug mode. The read-only information bits are updated every time the
debug exception is taken or when a normal exception is taken when already in Debug mode.

Only the DM bit and the VER<2:0> bits are valid when read from non-Debug mode; the values
of all other bits and fields are unpredictable. Operation of the processor is undefined if the Debug
register is written from non-Debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in Debug
mode, as follows:

• DSS, DBP, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on
exceptions in debug modes

• DEXCCODE<4:0> are updated on exceptions in Debug mode, and are undefined after a
debug exception

• HALT and DOZE are updated on a debug exception, and are undefined after an exception
in Debug mode

• DBD is updated on both debug and on exceptions in debug modes

All bits are undefined when read from Normal mode, except VER<2:0> and DM.

Register 2-17: Debug: Debug Exception Register; CP0 Register 23, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R-0 R-0 R-0 R/W-0 U-0 U-0 R/W-1 R/W-0

DBD DM NODCR LSNM DOZE HALT COUNTDM IBUSEP

23:16
R-0 R-0 R/W-0 R/W-0 R-0 R-0 R-0 R-1

MCHECKP CACHEEP DBUSEP IEXI DDBSIMPR DDBLIMPR VER<2:1>

15:8
R-0 U-0 U-0 U-0 U-0 U-0 R-0 R/W-0

VER DEXCCODE<4:0> NOSST SST

7:0
U-0 R-x R-x R-x R-x R-x R-x R-x

— DIBIMPR DINT DIB DDBS DDBL DBP DSS

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 DBD: Branch Delay Debug Exception bit

Indicates whether the last debug exception or exception in Debug mode, occurred in a branch delay slot:
1 = In delay slot
0 = Not in delay slot

bit 30 DM: Debug Mode bit
Indicates that the processor is operating in Debug mode:
1 = Processor is operating in Debug mode
0 = Processor is operating in non-Debug mode

bit 29 NODCR: Debug Control Register bit
Indicates whether the dseg memory segment is present and the Debug Control Register is accessible:
1 = No dseg present
0 = dseg is present
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-43

PIC32 Family Reference Manual
bit 28 LSNM: Load Store Access Control bit
Controls access of load/store between dseg and main memory:
1 = Load/stores in dseg address range goes to main memory
0 = Load/stores in dseg address range goes to dseg

bit 27 DOZE: Low-Power Mode Debug Exception bit
Indicates that the processor was in any kind of low-power mode when a debug exception occurred.
1 = Processor was in a low-power mode when a debug exception occurred
0 = Processor was not in a low-power mode when debug exception occurred

bit 26 HALT: System Bus Clock Stop bit
Indicates that the internal system bus clock was stopped when the debug exception occurred.
1 = Internal system bus clock running
0 = Internal system bus clock stopped

bit 25 COUNTDM: Count Register Behavior bit

Indicates the Count register behavior in Debug mode.
1 = Count register is running in Debug mode
0 = Count register stopped in Debug mode

bit 24 IBUSEP: Instruction Fetch Bus Error Exception Pending bit
Set when an instruction fetch bus error event occurs or if a ‘1’ is written to the bit by software. Cleared when
a Bus Error exception on instruction fetch is taken by the processor, and by Reset. If IBUSEP is set when
IEXI is cleared, a Bus Error exception on instruction fetch is taken by the processor, and IBUSEP is cleared.

bit 23 MCHECKP: Machine Check Exception Pending bit
All Machine Check exceptions are precise on the PIC32 processor so this bit will always read as ‘0’.

bit 22 CACHEEP: Cache Error Pending bit
Cache Errors cannot be taken by the PIC32 core so this bit will always read as ‘0’.

bit 21 DBUSEP: Data Access Bus Error Exception Pending bit
Covers imprecise bus errors on data access, similar to behavior of IBUSEP for imprecise bus errors on an
instruction fetch.

bit 20 IEXI: Imprecise Error Exception Inhibit Control bit
Controls exceptions taken due to imprecise error indications. Set when the processor takes a debug excep-
tion or exception in Debug mode. Cleared by execution of the DERET instruction; otherwise modifiable by
Debug mode software. When IEXI is set, the imprecise error exception from a bus error on an instruction
fetch or data access, cache error, or machine check is inhibited and deferred until the bit is cleared.

bit 19 DDBSIMPR: Debug Data Break Store Exception bit
Indicates that an imprecise Debug Data Break Store exception was taken. All data breaks are precise on
the PIC32 core, so this bit will always read as ‘0’.

bit 18 DDBLIMPR: Debug Data Break Load Exception bit
Indicates that an imprecise Debug Data Break Load exception was taken. All data breaks are precise on the
PIC32 core, so this bit will always read as ‘0’.

bit 17-15 VER<2:0>: EJTAG Version bit
Contains the EJTAG version number.

bit 14-10 DEXCCODE<4:0>: Latest Exception in Debug Mode bit
Indicates the cause of the latest exception in Debug mode. The bit is encoded as the EXCCODE<4:0> bits
in the Cause register for those normal exceptions that may occur in Debug mode. Value is undefined after
a debug exception.

bit 9 NOSST: Singe-step Feature Control bit
Indicates whether the single-step feature controllable by the SST bit is available in this implementation.
1 = No single-step feature available
0 = Single-step feature available

bit 8 SST: Debug Single-step Control bit
Controls if debug single-step exception is enabled.
1 = Debug single step exception enabled
0 = No debug single-step exception enabled

Register 2-17: Debug: Debug Exception Register; CP0 Register 23, Select 0 (Continued)
DS61113E-page 2-44 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

bit 7 Unimplemented: Read as ‘0’

bit 6 DIBImpr: Imprecise Debug Instruction Break Exception bit
Indicates that an imprecise debug instruction break exception occurred (due to a complex breakpoint).
Cleared on exception in Debug mode.

bit 5 DINT: Debug Interrupt Exception bit
Indicates that a debug interrupt exception occurred. Cleared on exception in Debug mode.
1 = Debug interrupt exception
0 = No debug interrupt exception

bit 4 DIB: Debug Instruction Break Exception bit
Indicates that a debug instruction break exception occurred. Cleared on exception in Debug mode.
1 = Debug instruction exception
0 = No debug instruction exception

bit 3 DDBS: Debug Data Break Exception on Store bit
Indicates that a debug data break exception occurred on a store. Cleared on exception in Debug mode.
1 = Debug instruction exception on a store
0 = No debug data exception on a store

bit 2 DDBL: Debug Data Break Exception on Load bit
Indicates that a debug data break exception occurred on a load. Cleared on exception in Debug mode.
1 = Debug instruction exception on a load
0 = No debug data exception on a load

bit 1 DBP: Debug Software Breakpoint Exception bit
Indicates that a debug software breakpoint exception occurred. Cleared on exception in Debug mode.
1 = Debug software breakpoint exception
0 = No debug software breakpoint exception

bit 0 DSS: Debug Single-step Exception bit
Indicates that a debug single-step exception occurred. Cleared on exception in Debug mode.
1 = Debug single-step exception
0 = No debug single-step exception

Register 2-17: Debug: Debug Exception Register; CP0 Register 23, Select 0 (Continued)
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-45

PIC32 Family Reference Manual
2.12.18 TraceControl Register (CP0 Register 23, Select 1)

The TraceControl register enables software trace control and is only implemented on devices
with the EJTAG trace capability.

Register 2-18: TraceControl: Trace Control Register; CP0 Register 23, Select 1

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0

TS UT — — TB IO D(1) E(1)

23:16
R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0

K(1) — U(1) — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-1 R/W-0 R/W-0 R/W-0 R/W-0

— — — — MODE<2:0> IB

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 TS: Trace Select bit

This bit is used to select between the hardware and the software trace control bits.

1 = Selects the trace control bits
0 = Selects the external hardware trace block signals

bit 30 UT: User Type Select bit

This bit is used to indicate the type of user-triggered trace record.

1 = User type 2
0 = User type 1

bit 29-28 Unimplemented: Read as ‘0’

bit 27 TB: Trace Branch bit

1 = Trace the PC value for all taken branches
0 = Trace the PC value for branch targets with unpredictable static addresses

bit 26 IO: Inhibit Overflow bit

This signal is used to indicate to the core trace logic that slow but complete tracing is desired.

1 = Inhibit FIFO overflow or discard of trace data
0 = Allow FIFO overflow or discard of trace data

bit 25 D: Debug Mode Trace Enable bit(1)

1 = Enable tracing in Debug mode
0 = Disable tracing in Debug mode

bit 24 E: Exception Mode Trace Enable bit(1)

1 = Enable tracing in Exception mode
0 = Disable tracing in Exception mode

bit 23 K: Kernel Mode Trace Enable bit(1)

1 = Enable tracing in Kernel mode
0 = Disable tracing in Kernel mode

bit 22 Unimplemented: Read as ‘0’

Note 1: The ON bit must be set to ‘1’ to enable tracing.
DS61113E-page 2-46 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

bit 21 U: User Mode Trace Enable bit(1)

1 = Enable tracing in User mode
0 = Disable tracing in User mode

bit 20-5 Unimplemented: Read as ‘0’

bit 4 Unimplemented: Read as ‘1’

bit 3-1 MODE<2:0>: Trace Mode Control bits

111 = Trace PC and both load and store address and data

110 = Trace PC and store address and data

101 = Trace PC and load address and data

100 = Trace PC and load data

011 = Trace PC and both load and store addresses

010 = Trace PC and store address

001 = Trace PC and load address

000 = Trace PC

bit 0 ON: Master Trace Enable bit
1 = Tracing is enabled when another trace enable bit is set to ‘1’
0 = Tracing is disabled

Register 2-18: TraceControl: Trace Control Register; CP0 Register 23, Select 1 (Continued)

Note 1: The ON bit must be set to ‘1’ to enable tracing.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-47

PIC32 Family Reference Manual
2.12.19 TraceControl2 Register (CP0 Register 23, Select 2)

The TraceControl2 register provides additional control and status information. Note that some
fields in the TraceControl2 register are read-only, but have a reset state of “Undefined”. This is
because these values are loaded from the Trace Control Block (TCB). As such, these fields in
the TraceControl2 register will not have valid values until the TCB asserts these values.

Register 2-19: TraceControl2: Trace Control Register 2; CP0 Register 23, Select 2

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 R-1 R-0 R-x R-x R-x R-x R-x

— VALIDMODES<1:0> TBI TBU SYP<2:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-7 Unimplemented: Read as ‘0’

bit 6-5 VALIDMODES<1:0>: Valid Trace Mode Select bits
11 = Reserved
10 = PC, load and store address, and load and store data
01 = PC and load and store address tracing only
00 = PC tracing only

bit 4 TBI: Trace Buffers Implemented bit
1 = On-chip and off-chip trace buffers are implemented by the TCB
0 = Only one trace buffer is implemented

bit 3 TBU: Trace Buffers Used bit
1 = Trace data is being sent to an off-chip trace buffer
0 = Trace data is being sent to an on-chip trace buffer

bit 2-0 SYP<2:0>: Synchronization Period bits

The “On-chip” column value is used when the trace data is being written to an on-chip trace buffer (e.g,
TraceControl2TBU = 0). Conversely, the “Off-chip” column is used when the trace data is being written to an
off-chip trace buffer (e.g, TraceControl2TBU = 1).

Bit
Setting

On-chip Off-chip

111 = 22 27

110 = 23 28

101 = 24 29

100 = 25 210

011 = 26 211

010 = 27 212

001 = 28 213

000 = 29 214
DS61113E-page 2-48 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.20 UserTraceData Register (CP0 Register 23, Select 3)

A software write to any bits in the UserTraceData register will trigger a trace record to be written
indicating a type 1 or type 2 user format. The type is based on the UT bit in the TraceControl
register. This register cannot be written in consecutive cycles. The trace output data is
unpredictable if this register is written in consecutive cycles.

This register is only implemented on devices with the EJTAG trace capability.

Register 2-20: UserTraceData: User Trace Data Control Register; CP0 Register 23, Select 3

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<31:24>

23:16
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<23:10>

15:8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<15:6>

7:0
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

DATA<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 DATA: Software Readable/Writable Data bits

When written, this register triggers a user format trace record out of the PDtrace interface that transmits the
Data bit to trace memory.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-49

PIC32 Family Reference Manual
2.12.21 TraceBPC Register (CP0 Register 23, Select 4)

This register is used to control start and stop of tracing using an EJTAG Hardware breakpoint.
The Hardware breakpoint would then be set as a trigger source and optionally also as a Debug
exception breakpoint.

This register is only implemented on devices with both Hardware breakpoints and the EJTAG
trace capability.

Register 2-21: TraceBPC: Trace Breakpoint Control Register; CP0 Register 23, Select 4

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

DE — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0

— — — — — — DBPO1 DBPO0

15:8
R/W-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

IE — — — — — — —

7:0
U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

— — IBPO5 IBPO4 IBPO3 IBPO2 IBPO1 IBPO0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 DE: EJTAG Data Breakpoint Trigger Select bit

1 = Enable trigger signals from data breakpoints
0 = Disable trigger signals from data breakpoints

bit 15 IE: EJTAG Instruction Breakpoint Select bit

1 = Enable trigger signals from instruction breakpoints
0 = Disable trigger signals from instruction breakpoints

bit 14-6 Unimplemented: Read as ‘0’

bit 5 IBPO5: Instruction Breakpoint 6 bit

1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 4 IBPO4: Instruction Breakpoint 5 bit

1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 3 IBPO3: Instruction Breakpoint 4 bit

1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 2 IBPO2: Instruction Breakpoint 3 bit

1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 1 IBPO1: Instruction Breakpoint 2 bit

1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

bit 0 IBPO0: Instruction Breakpoint 1 bit

1 = Enable corresponding instruction breakpoint trigger to start tracing
0 = Disable tracing with the trigger signal

Note 1: Refer to the specific device data sheet for the list of available trigger sources.
DS61113E-page 2-50 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.22 Debug2 Register (CP0 Register 23, Select 5)

This register holds additional information about Complex Breakpoint exceptions. This register is
only implemented if complex hardware breakpoints are present.

Register 2-22: Debug2: Debug Breakpoint Exceptions Register; CP0 Register 23, Select 5

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
r-1 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

23:16
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

15:8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0

— — — — — — — —

7:0
U-0 U-0 U-0 U-0 R-x R-x R-x R-x

— — — — PRM DQ TUP PACO

Legend: r = Reserved bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31 Reserved: Read as ‘1’

bit 30-4 Unimplemented: Read as ‘0’

bit 3 PRM: Primed bit

Indicates whether a complex breakpoint with an active priming condition was seen on the last debug
exception.

bit 2 DQ: Data Qualified bit

Indicates whether a complex breakpoint with an active data qualifier was seen on the last debug exception.

bit 1 TUP: Tuple Breakpoint bit

Indicates whether a tuple breakpoint was seen on the last debug exception.

bit 0 PACO: Pass Counter bit

Indicates whether a complex breakpoint with an active pass counter was seen on the last debug exception.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-51

PIC32 Family Reference Manual
2.12.23 DEPC Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the
address at which processing resumes after a debug exception or Debug mode exception has
been serviced.

For synchronous (precise) debug and Debug mode exceptions, the DEPC register contains
either:

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the
debug exception causing instruction is in a branch delay slot, and the Debug Branch Delay
(DBD) bit in the Debug register is set.

For asynchronous debug exceptions (debug interrupt), the DEPC register contains the virtual
address of the instruction where execution should resume after the debug handler code is
executed.

Since some of the devices in the PIC32 family implement the MIPS16e® ASE, a read of the
DEPC register (via MFC0) returns the following value in the destination GPR:

GPR[rt] = DebugExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the
ISA<1:0> bits (Config3<15:14>)and are written to the GPR.

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes
that value to the debug exception PC and the ISA<1:0> bits (Config3<15:14>), as follows:

DebugExceptionPC = GPR[rt]31..1 || 0
ISAMode = 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC,
and the lower bit of the debug exception PC is cleared. The upper bit of the ISA<1:0> bits
(Config3<15:14>) is cleared and the lower bit is loaded from the lower bit of the GPR.

Register 2-23: DEPC: Debug Exception Program Counter Register; CP0 Register 24, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DEPC<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DEPC<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DEPC<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DEPC<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 DEPC<31:0>: Debug Exception Program Counter bits

The DEPC register is updated with the virtual address of the instruction that caused the debug exception. If
the instruction is in the branch delay slot, then the virtual address of the immediately preceding branch or jump
instruction is placed in this register.

Execution of the DERET instruction causes a jump to the address in the DEPC register.
DS61113E-page 2-52 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.12.24 ErrorEPC (CP0 Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC
is used on error exceptions. All bits of the ErrorEPC register are significant and must be writable.
It is also used to store the program counter on Reset, Soft Reset, and non-maskable interrupt
(NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume
after servicing an error. This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error
causing instruction is in a branch delay slot

Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC
register.

Since some of the devices in the PIC32 family implement the MIPS16e® ASE, a read of the
ErrorEPC register (via MFC0) returns the following value in the destination GPR:

GPR[rt] = ErrorExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the
ISA<1:0> bits (Config3<15:14>) and are written to the GPR.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and
distributes that value to the error exception PC and the ISA<1:0> bits (Config3<15:14>), as
follows:

ErrprExceptionPC = GPR[rt]31..1 || 0
ISAMode = 2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC,
and the lower bit of the error exception PC is cleared. The upper bit of the ISA<1:0> bits
(Config3<15:14>) is cleared and the lower bit is loaded from the lower bit of the GPR.

Register 2-24: ErrorEPC: Error Exception Program Counter Register; CP0 Register 30, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ErrorEPC<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ErrorEPC<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ErrorEPC<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

ErrorEPC<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 ErrorEPC<31:0>: Error Exception Program Counter bits
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-53

PIC32 Family Reference Manual
2.12.25 DeSAVE Register (CP0 Register 31, Select 0)

The DeSAVE register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then used to
save the rest of the context to a predetermined memory area (such as in the EJTAG Probe). This
register allows the safe debugging of exception handlers and other types of code where the
existence of a valid stack for context saving cannot be assumed.

Register 2-25: DeSAVE: Debug Exception Save Register; CP0 Register 31, Select 0

Bit
Range

Bit
31/23/15/7

Bit
30/22/14/6

Bit
29/21/13/5

Bit
28/20/12/4

Bit
27/19/11/3

Bit
26/18/10/2

Bit
25/17/9/1

Bit
24/16/8/0

31:24
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DESAVE<31:24>

23:16
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DESAVE<23:16>

15:8
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DESAVE<15:8>

7:0
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

DESAVE<7:0>

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 31-0 DESAVE<31:0>: Debug Exception Save bits

Scratch Pad register used by Debug Exception code.
DS61113E-page 2-54 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.13 MIPS16e® EXECUTION
When the core is operating in MIPS16e® mode, instruction fetches only require 16-bits of data to
be returned. However, for improved efficiency, the core will fetch 32-bits of instruction data when-
ever the address is word-aligned. Therefore, for sequential MIPS16e® code, fetches only occur
for every other instruction, resulting in better performance and reduced system power.

2.14 MEMORY MODEL
Virtual addresses used by software are converted to physical addresses by the memory
management unit (MMU) before being sent to the CPU busses. The PIC32 CPU uses a fixed
mapping for this conversion. For more information regarding the system memory model, see
Section 3. “Memory Organization” (DS61115).

Figure 2-14: Address Translation During SRAM Access

2.14.1 Cacheability

The CPU uses the virtual address of an instruction fetch, load or store to determine whether to
access the cache or not. Memory accesses within kseg0, or useg/kuseg can be cached, while
accesses within kseg1 are non-cacheable. The CPU uses the CCA bits in the Config register to
determine the cacheability of a memory segment. A memory access is cacheable if its
corresponding CCA = 0112. For more information on cache operation, see Section 4. “Prefetch
Cache Module” (DS61119).

2.14.1.1 LITTLE ENDIAN BYTE ORDERING

On CPUs that address memory with byte resolution, there is a convention for multi-byte data
items that specify the order of high-order to low-order bytes. Big-endian byte-ordering is where
the lowest address has the MSB. Little-endian ordering is where the lowest address has the LSB
of a multi-byte datum. The PIC32 CPU supports little-endian byte ordering.

Figure 2-15: Big-Endian Byte Ordering

Figure 2-16: Little-Endian Byte Ordering

SRAM
Interface

Instn
SRAM

Data
SRAM

FMT

Instruction
Address

Calculator

Data
Address

Calculator

Virtual
Address

Virtual
Address

Physical
Address

Physical
Address

Higher
Address Word

Address

Lower
Address

Bit #

} 1 word = 4 bytes

12

8

4

0

13

9

5

1

14

10

6

2

15

11

7

3

31 24 23 16 15 8 7 0
12

8

4

0

Higher
Address Word

Address

Lower
Address

Bit #

15

11

7

3

14

10

6

2

13

9

5

1

12

8

4

0

31 24 23 16 15 8 7 0
12

8

4

0

© 2007-2012 Microchip Technology Inc. DS61113E-page 2-55

PIC32 Family Reference Manual
2.15 CPU INSTRUCTIONS, GROUPED BY FUNCTION

CPU instructions are organized into the following functional groups:

• Load and store

• Computational

• Jump and branch

• Miscellaneous

• Coprocessor

Each instruction is 32 bits long.

2.15.1 CPU Load and Store Instructions

MIPS® processors use a load/store architecture; all operations are performed on operands held
in processor registers and main memory is accessed only through load and store instructions.

2.15.1.1 TYPES OF LOADS AND STORES

There are several different types of load and store instructions, each designed for a different
purpose:

• Transferring variously-sized fields (for example, LB, SW)

• Trading transferred data as signed or unsigned integers (for example, LHU)

• Accessing unaligned fields (for example, LWR, SWL)

• Atomic memory update (read-modify-write: for instance, LL/SC)

2.15.1.2 LIST OF CPU LOAD AND STORE INSTRUCTIONS

The following data sizes (as defined in the AccessLength field) are transferred by CPU load and
store instructions:

• Byte

• Half-word

• Word

Signed and unsigned integers of different sizes are supported by loads that either sign-extend or
zero-extend the data loaded into the register.

Unaligned words and double words can be loaded or stored in just two instructions by using a
pair of special instructions. For loads a LWL instruction is paired with a LWR instruction. The load
instructions read the left-side or right-side bytes (left or right side of register) from an aligned word
and merge them into the correct bytes of the destination register.

2.15.1.3 LOADS AND STORES USED FOR ATOMIC UPDATES

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic
read-modify-write of word or double word cached memory locations. These instructions are used
in carefully coded sequences to provide one of several synchronization primitives, including
test-and-set, bit-level locks, semaphores, and sequencers and event counts.

2.15.1.4 COPROCESSOR LOADS AND STORES

If a particular coprocessor is not enabled, loads and stores to that processor cannot execute and
the attempted load or store causes a Coprocessor Unusable exception. Enabling a coprocessor
is a privileged operation provided by the System Control Coprocessor, CP0.
DS61113E-page 2-56 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.15.2 Computational Instructions

Two’s complement arithmetic is performed on integers represented in 2s complement notation.
These are signed versions of the following operations:

• Add

• Subtract

• Multiply

• Divide

The add and subtract operations labelled “unsigned” are actually modulo arithmetic without
overflow detection.

There are also unsigned versions of multiply and divide, as well as a full complement of shift and
logical operations. Logical operations are not sensitive to the width of the register.

MIPS32® provides 32-bit integers and 32-bit arithmetic.

2.15.2.1 SHIFT INSTRUCTIONS

The ISA defines two types of shift instructions:

• Those that take a fixed shift amount from a 5-bit field in the instruction word (for instance,
SLL, SRL)

• Those that take a shift amount from the low-order bits of a general register (for instance,
SRAV, SRLV)

2.15.2.2 MULTIPLY AND DIVIDE INSTRUCTIONS

The multiply instruction performs 32-bit by 32-bit multiplication and creates either 64-bit or 32-bit
results. Divide instructions divide a 64-bit value by a 32-bit value and create 32-bit results. With
one exception, they deliver their results into the HI and LO special registers. The MUL instruction
delivers the lower half of the result directly to a GPR.

• Multiply produces a full-width product twice the width of the input operands; the low half is
loaded into LO and the high half is loaded into HI

• Multiply-Add and Multiply-Subtract produce a full-width product twice the width of the input
operations and adds or subtracts the product from the concatenated value of HI and LO.
The low half of the addition is loaded into LO and the high half is loaded into HI.

• Divide produces a quotient that is loaded into LO and a remainder that is loaded into HI

The results are accessed by instructions that transfer data between HI/LO and the general
registers.

2.15.3 Jump and Branch Instructions

2.15.3.1 TYPES OF JUMP AND BRANCH INSTRUCTIONS DEFINED BY THE ISA

The architecture defines the following jump and branch instructions:

• PC-relative conditional branch

• PC-region unconditional jump

• Absolute (register) unconditional jump

• A set of procedure calls that record a return link address in a general register

2.15.3.2 BRANCH DELAYS AND THE BRANCH DELAY SLOT

All branches have an architectural delay of one instruction. The instruction immediately following
a branch is said to be in the “branch delay slot”. If a branch or jump instruction is placed in the
branch delay slot, the operation of both instructions is undefined.

By convention, if an exception or interrupt prevents the completion of an instruction in the branch
delay slot, the instruction stream is continued by re-executing the branch instruction. To permit
this, branches must be restartable; procedure calls may not use the register in which the return
link is stored (usually GPR 31) to determine the branch target address.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-57

PIC32 Family Reference Manual
2.15.3.3 BRANCH AND BRANCH LIKELY

There are two versions of conditional branches; they differ in the manner in which they handle
the instruction in the delay slot when the branch is not taken and execution falls through.

• Branch instructions execute the instruction in the delay slot

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not
taken (they are said to nullify the instruction in the delay slot)

Although the Branch Likely instructions are included in this specification, software is strongly
encouraged to avoid the use of the Branch Likely instructions, as they will be removed from a
future revision of the MIPS® architecture.

2.15.4 Miscellaneous Instructions

2.15.4.1 INSTRUCTION SERIALIZATION (SYNC AND SYNCI)

In normal operation, the order in which load and store memory accesses appear to a viewer out-
side the executing processor (for instance, in a multiprocessor system) is not specified by the
architecture.

The SYNC instruction can be used to create a point in the executing instruction stream at which
the relative order of some loads and stores can be determined: loads and stores executed before
the SYNC are completed before loads and stores after the SYNC can start.

The SYNCI instruction synchronizes the processor caches with previous writes or other modifi-
cations to the instruction stream.

2.15.4.2 EXCEPTION INSTRUCTIONS

Exception instructions transfer control to a software exception handler in the kernel. There are
two types of exceptions, conditional and unconditional. Conditional exceptions are generated by
the trap instruction, based on the result of a comparison. Unconditional exceptions are gener-
ated using the syscall and break instructions.

2.15.4.3 CONDITIONAL MOVE INSTRUCTIONS

MIPS32® includes instructions to conditionally move one CPU general register to another, based
on the value in a third general register.

2.15.4.4 NOP INSTRUCTIONS

The NOP instruction is actually encoded as an all-zero instruction. MIPS® processors
special-case this encoding as performing no operation, and optimize execution of the instruction.
In addition, SSNOP instruction, takes up one issue cycle on any processor, including super-scalar
implementations of the architecture.

2.15.5 Coprocessor Instructions

2.15.5.1 WHAT COPROCESSORS DO

Coprocessors are alternate execution units, with register files separate from the CPU. In abstrac-
tion, the MIPS® architecture provides for up to four coprocessor units, numbered 0 to 3. Each
level of the ISA defines a number of these coprocessors. Coprocessor 0 is always used for sys-
tem control and coprocessor 1 and 3 are used for the floating point unit. Coprocessor 2 is
reserved for implementation-specific use.

A coprocessor may have two different register sets:

• Coprocessor general registers

• Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the
registers in either set.
DS61113E-page 2-58 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.15.5.2 SYSTEM CONTROL COPROCESSOR 0 (CP0)

The system controller for all MIPS® processors is implemented as coprocessor 0 (CP0), the
System Control Coprocessor. It provides the processor control, memory management, and
exception handling functions.

2.15.5.3 COPROCESSOR LOAD AND STORE INSTRUCTIONS

Explicit load and store instructions are not defined for CP0; for CP0 only, the move to and from
coprocessor instructions must be used to write and read the CP0 registers. The loads and stores
for the remaining coprocessors are summarized in 2.15.1.4 “Coprocessor Loads and Stores”.

2.16 CPU INITIALIZATION

Software is required to initialize the following parts of the device after a Reset event.

2.16.1 General Purpose Registers

The CPU register file powers up in an unknown state with the exception of r0 which is always ‘0’.
Initializing the rest of the register file is not required for proper operation in hardware. However,
depending on the software environment, several registers may need to be initialized. Some of
these are:

• sp – Stack pointer

• gp – Global pointer

• fp – Frame pointer

2.16.2 Coprocessor 0 State

Miscellaneous CP0 states need to be initialized prior to leaving the boot code. There are various
exceptions that are blocked by ERL = 1 or EXL = 1, and which are not cleared by Reset. These
can be cleared to avoid taking spurious exceptions when leaving the boot code.

Table 2-12: CPU Initialization

2.16.3 Bus Matrix

The BMX should be initialized before switching to User mode or before executing from DRM. The
values written to the bus matrix are based on the memory layout of the application to be run.

CP0 Register Action

Cause WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.

Config Typically, the K0, KU and K23 fields should be set to the desired Cache
Coherency Algorithm (CCA) value prior to accessing the corresponding
memory regions.

Count(1) Should be set to a known value if Timer Interrupts are used.

Compare(1) Should be set to a known value if Timer Interrupts are used. The write to
Compare will also clear any pending Timer Interrupts (Thus, Count should
be set before Compare to avoid any unexpected interrupts).

Status Desired state of the device should be set.

Other CP0 state Other registers should be written before they are read. Some registers are
not explicitly writable, and are only updated as a by-product of instruction
execution or a taken exception. Uninitialized bits should be masked off after
reading these registers.

Note 1: When the Count register is equal to the Compare register a timer interrupt is
signaled. There is a mask bit in the interrupt controller to disable passing this
interrupt to the CPU if desired.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-59

PIC32 Family Reference Manual
2.17 EFFECTS OF A RESET

2.17.1 Master Clear Reset

The PIC32 core is not fully initialized by a hardware Reset. Only a minimal subset of the
processor state is cleared. This is enough to bring the core up while running in unmapped and
uncached code space. All other processor state can then be initialized by software. Power-up
Reset brings the device into a known state. A Soft Reset can be forced by asserting the MCLR
pin. This distinction is made for compatibility with other MIPS® processors. In practice, both
resets are handled identically.

2.17.1.1 COPROCESSOR 0 STATE

Much of the hardware initialization occurs in Coprocessor 0, which are described in Table 2-13.

Table 2-13: Bits Cleared or Set by Reset

2.17.1.2 BUS STATE MACHINES

All pending bus transactions are aborted and the state machines in the SRAM interface unit are
reset when a Reset or Soft Reset exception is taken.

2.17.2 Fetch Address

Upon Reset/Soft Reset, unless the EJTAGBOOT option is used, the fetch is directed to VA
0xBFC00000 (PA 0x1FC00000). This address is in kseg1, which is unmapped and uncached.

2.17.3 Watchdog Timer Reset

The status of the CPU registers after a Watchdog Timer (WDT) event depends on the operational
mode of the CPU prior to the WDT event.

If the device was not in Sleep a WDT event will force registers to a Reset value.

Register Name Bit Name
Cleared
or Set

Value Cleared or Set By

Status BEV Cleared 1 Reset or Soft Reset

TS Cleared 0 Reset or Soft Reset

SR Set 1 Reset or Soft Reset

NMI Cleared 0 Reset or Soft Reset

ERL Set 1 Reset or Soft Reset

RP Cleared 0 Reset or Soft Reset

All Configuration
Registers:
Config
Config1
Config2
Config3

Configuration fields
related to static
inputs

Set Input value Reset or Soft Reset

Config K0 Set 010
(uncached)

Reset or Soft Reset

KU Set 010
(uncached)

Reset or Soft Reset

K23 Set 010
(uncached)

Reset or Soft Reset

Debug DM Cleared 0 Reset or Soft Reset(1)

LSNM Cleared 0 Reset or Soft Reset

IBUSEP Cleared 0 Reset or Soft Reset

IEXI Cleared 0 Reset or Soft Reset

SSt Cleared 0 Reset or Soft Reset

Note 1: Unless EJTAGBOOT option is used to boot into Debug mode.
DS61113E-page 2-60 © 2007-2012 Microchip Technology Inc.

Section 2. CPU for Devices with M4K® Core
C

P
U

 fo
r D

e
vice

s
w

ith
 M

4K
®

 C
o

re

2

2.18 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC32 device family, but the concepts are
pertinent and could be used with modification and possible limitations. The current application
notes related to the PIC32 CPU for Devices with M4K® Core include the following:

Title Application Note #

No related application notes at this time. N/A

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC32 family of devices.
© 2007-2012 Microchip Technology Inc. DS61113E-page 2-61

http://www.microchip.com
http://www.microchip.com

PIC32 Family Reference Manual
2.19 REVISION HISTORY

Revision A (October 2007)

This is the initial released version of this document.

Revision B (April 2008)

Revised status to Preliminary; Revised Section 2.1 (Key Features); Revised Figure 2-1; Revised
U-0 to r-x.

Revision C (May 2008)

Revise Figure 2-1; Added Section 2.2.3, Core Timer; Change Reserved bits from “Maintain as”
to “Write”.

Revision D (August 2011)

This revision includes the following updates:

The document was updated as follows to reflect the addition of the M14K™ Microprocessor core
to certain variants of the PIC32 device family:

• Sections:

- Updated 2.1.1 “Key Features”

- Updated 2.1.2 “Related MIPS® Documentation”

- Updated 2.2.2 “Introduction to the Programming Model”

- Updated 2.3.1.1 “I Stage – Instruction Fetch”

- Updated 2.10 “Interrupt and Exception Mechanism”

- Added 2.14 “microMIPS™ EXECUTION (M14K™ only)”

- Added 2.15 “MCU™ ASE EXTENSION (M14K™ only)”

• Figures:

- Updated Figure 2-1: PIC32 Block Diagram

- Updated Figure 2-2: M4K® and M14K™ Microprocessor Core Block Diagram

• Tables:

- Added Table 2-6: microMIPS™ 16-bit Instruction Register Usage (M14K™ Only)

- Updated Table 2-8: CP0 Registers

- Added Table 2-14: Performance Countable Events

- Added Table 2-15: Event Description

- Updated Table 2-17: Bits Cleared or Set by Reset

• Registers:

- Added Register 2-1, Register 2-10, Register 2-11, Register 2-13, Register 2-22,
Register 2-24, Register 2-25, Register 2-26, Register 2-27, Register 2-28,
Register 2-30, and Register 2-31

- Updated existing registers to reflect only those bits that are implemented for PIC32
devices with either the M4K® or M14K™ Microprocessor core

• Updates to formatting and minor text updates have been incorporated throughout the
document

Revision E (September 2012)

This revision includes the following updates:

• Document title has been changed

• All references to the M14K™ Microprocessor core were removed throughout the docu-
ment. This content will be available in a separate family reference manual section.

• Updates to formatting and minor text updates have been incorporated throughout the
document
DS61113E-page 2-62 © 2007-2012 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
 2007-2012 Microchip Technology Inc.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
PIC32 logo, rfPIC and UNI/O are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, BodyCom,
chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance,
TSHARC, UniWinDriver, WiperLock and ZENA are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007-2012, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

 Printed on recycled paper.

ISBN: 978-1-62076-539-5
DS61113E-page 2-63

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS61113E-page 2-64  2007-2012 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889

China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500

China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470

China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118

China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130

China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123

India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632

India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513

Japan - Osaka
Tel: 81-66-152-7160
Fax: 81-66-152-9310

Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859

Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068

Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-330-9305

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91

UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

Worldwide Sales and Service

11/29/11

http://support.microchip.com
http://www.microchip.com

	Section 2. CPU for Devices with M4K® Core
	2.1 Introduction
	2.1.1 Key Features
	2.1.2 Related MIPS® Documentation

	2.2 Architecture Overview
	Figure 2-1: PIC32 Block Diagram
	Figure 2-2: M4K® Microprocessor Core Block Diagram
	2.2.1 Busses
	2.2.2 Introduction to the Programming Model
	2.2.3 Core Timer

	2.3 PIC32 CPU Details
	2.3.1 Pipeline Stages
	Figure 2-3: Simplified PIC32 CPU Pipeline
	Figure 2-4: Single-Cycle Execution Throughput

	2.3.2 Execution Unit
	2.3.3 MDU
	2.3.4 Shadow Register Sets
	2.3.5 Pipeline Interlock Handling
	Figure 2-5: Pipeline Slip (If Bypassing Was Not Implemented)

	2.3.6 Register Bypassing
	Figure 2-6: IU Pipeline M to E Bypass
	Figure 2-7: IU Pipeline A to E Data Bypass

	2.4 Special Considerations When Writing to CP0 Registers
	Table 2-1: Execution Hazards
	Table 2-2: Instruction Hazards

	2.5 Architecture Release 2 Details
	2.6 Split CPU bus
	2.7 Internal System Busses
	2.8 Set/Clear/Invert
	Figure 2-8: Four Addresses for a Single Physical Register

	2.9 ALU Status Bits
	2.10 Interrupt and Exception Mechanism
	2.11 Programming Model
	2.11.1 CPU Instruction Formats
	Table 2-3: CPU Instruction Format Fields
	Figure 2-9: Immediate (I-Type) CPU Instruction Format
	Figure 2-10: Jump (J-Type) CPU Instruction Format
	Figure 2-11: Register (R-Type) CPU Instruction Format

	2.11.2 CPU Registers
	Table 2-4: Register Conventions
	Figure 2-12: CPU Registers
	Table 2-5: MIPS16e® Register Usage
	Table 2-6: MIPS16e® Special Registers

	2.11.3 How to Implement Stack/MIPS® Calling Conventions
	2.11.4 Processor Modes
	Figure 2-13: CPU Modes

	2.12 Coprocessor 0 (CP0) Registers
	Table 2-7: CP0 Registers
	2.12.1 HWREna Register (CP0 Register 7, Select 0)
	Register 2-1: HWREna: Hardware Accessibility Register; CP0 Register 7, Select 0

	2.12.2 BadVAddr Register (CP0 Register 8, Select 0)
	Register 2-2: BadVAddr: Bad Virtual Address Register; CP0 Register 8, Select 0

	2.12.3 Count Register (CP0 Register 9, Select 0)
	Register 2-3: Count: Interval Counter Register; CP0 Register 9, Select 0

	2.12.4 Compare Register (CP0 Register 11, Select 0)
	Register 2-4: Compare: Interval Count Compare Register; CP0 Register 11, Select 0

	2.12.5 Status Register (CP0 Register 12, Select 0)
	Table 2-8: CPU Status Register Bits That Determine Processor Mode
	Register 2-5: Status: Status Register; CP0 Register 12, Select 0 (Continued)

	2.12.6 IntCtl: Interrupt Control Register (CP0 Register 12, Select 1)
	Register 2-6: IntCtl: Interrupt Control Register; CP0 Register 12, Select 1

	2.12.7 SRSCtl Register (CP0 Register 12, Select 2)
	Table 2-9: Sources for New CSS on an Exception or Interrupt
	Register 2-7: SRSCtl: Shadow Register Set Register; CP0 Register 12, Select 2

	2.12.8 SRSMap: Register (CP0 Register 12, Select 3)
	Register 2-8: SRSMap: Shadow Register Set Map Register; CP0 Register 12, Select 3

	2.12.9 Cause Register (CP0 Register 13, Select 0)
	Table 2-10: Cause Register EXCCODE<4:0> Bits
	Register 2-9: Cause: Exception Cause Register; CP0 Register 13, Select 0

	2.12.10 EPC Register (CP0 Register 14, Select 0)
	Register 2-10: EPC: Exception Program Counter Register; CP0 Register 14, Select 0

	2.12.11 PRID Register (CP0 Register 15, Select 0)
	Register 2-11: PRID: Processor Identification Register; CP0 Register 15, Select 0

	2.12.12 Ebase Register (CP0 Register 15, Select 1)
	Register 2-12: Ebase: Exception Base Register; CP0 Register 15, Select 1

	2.12.13 Config Register (CP0 Register 16, Select 0)
	Table 2-11: Cache Coherency Attributes
	Register 2-13: Config: Configuration Register; CP0 Register 16, Select 0

	2.12.14 Config1 Register (CP0 Register 16, Select 1)
	Register 2-14: Config1: Configuration Register 1; CP0 Register 16, Select 1

	2.12.15 Config2 (CP0 Register 16, Select 2)
	Register 2-15: Config2: Configuration Register 2; CP0 Register 16, Select 2

	2.12.16 Config3 Register (CP0 Register 16, Select 3)
	Register 2-16: Config3: Configuration Register 3; CP0 Register 16, Select 3

	2.12.17 Debug Register (CP0 Register 23, Select 0)
	Register 2-17: Debug: Debug Exception Register; CP0 Register 23, Select 0

	2.12.18 TraceControl Register (CP0 Register 23, Select 1)
	Register 2-18: TraceControl: Trace Control Register; CP0 Register 23, Select 1

	2.12.19 TraceControl2 Register (CP0 Register 23, Select 2)
	Register 2-19: TraceControl2: Trace Control Register 2; CP0 Register 23, Select 2

	2.12.20 UserTraceData Register (CP0 Register 23, Select 3)
	Register 2-20: UserTraceData: User Trace Data Control Register; CP0 Register 23, Select 3

	2.12.21 TraceBPC Register (CP0 Register 23, Select 4)
	Register 2-21: TraceBPC: Trace Breakpoint Control Register; CP0 Register 23, Select 4

	2.12.22 Debug2 Register (CP0 Register 23, Select 5)
	Register 2-22: Debug2: Debug Breakpoint Exceptions Register; CP0 Register 23, Select 5

	2.12.23 DEPC Register (CP0 Register 24, Select 0)
	Register 2-23: DEPC: Debug Exception Program Counter Register; CP0 Register 24, Select 0

	2.12.24 ErrorEPC (CP0 Register 30, Select 0)
	Register 2-24: ErrorEPC: Error Exception Program Counter Register; CP0 Register 30, Select 0

	2.12.25 DeSAVE Register (CP0 Register 31, Select 0)
	Register 2-25: DeSAVE: Debug Exception Save Register; CP0 Register 31, Select 0

	2.13 MIPS16e® Execution
	2.14 Memory Model
	Figure 2-14: Address Translation During SRAM Access
	2.14.1 Cacheability
	Figure 2-15: Big-Endian Byte Ordering
	Figure 2-16: Little-Endian Byte Ordering

	2.15 CPU Instructions, Grouped By Function
	2.15.1 CPU Load and Store Instructions
	2.15.2 Computational Instructions
	2.15.3 Jump and Branch Instructions
	2.15.4 Miscellaneous Instructions
	2.15.5 Coprocessor Instructions

	2.16 CPU Initialization
	2.16.1 General Purpose Registers
	2.16.2 Coprocessor 0 State
	Table 2-12: CPU Initialization

	2.16.3 Bus Matrix

	2.17 Effects of a Reset
	2.17.1 Master Clear Reset
	Table 2-13: Bits Cleared or Set by Reset

	2.17.2 Fetch Address
	2.17.3 Watchdog Timer Reset

	2.18 Related Application Notes
	2.19 Revision History
	Corporate Office
	Atlanta
	Boston
	Chicago
	Cleveland
	Fax: 216-447-0643
	Dallas
	Detroit
	Indianapolis
	Toronto
	Fax: 852-2401-3431
	Australia - Sydney
	China - Beijing
	China - Shanghai
	India - Bangalore
	Korea - Daegu
	Korea - Seoul
	Singapore
	Taiwan - Taipei
	Fax: 43-7242-2244-393
	Denmark - Copenhagen
	France - Paris
	Germany - Munich
	Italy - Milan
	Spain - Madrid
	UK - Wokingham

	Worldwide Sales and Service

