MICROCHIP

Section 23. CAN Module

HIGHLIGHTS

This section of the manual contains the following major topics:

P22 Tt B [1 1o To [8 o7 1T o IS RSP RRRN 23-2
23.2 Control Registers for the CAN ModUIe...........ccoiiiiiiiirie e 23-2
23.3 REGISTEI IMPS ...ttt et e e 23-22
23.4 CAN MOAUIE FEALUMESeeiiiiiiiiiii e 23-28
23.5 CAN Module Implementationc.cooiiiiiiiie e 23-29
23.6 CAN Module Operation MOAEScovieiiiiiieieeieiiiee et 23-36
23.7 MeSSage RECEPHON e 23-39
PZAC R S B I =0 10 1571 o o PR 23-49
23.9 Error DEtECHONceei ettt e e 23-58
23.10 CAN BAUA RALE ...c.veiiiieiie ettt ettt e b e neenneeen 23-60
P22 B B 101 (=T 4 U o) PP PP PPPO 23-64
23.12 CAN CaPUE... ..ttt e e et e e e e et e e e e e s ee e e e s easbeeaeeeesbaeeaeean 23-65
2313 CAN MOAUIE 1O ...ttt ettt 23-65
23.14 Operation in CPU Power Saving MOAES.........ccccvieiiieaiiieeie e 23-66
23.15 CAN ProtoCOl OVEIVIEWco.ueeiiiie ettt e e e et e e e e eneaeeaaenn 23-68
23.16 Related Application NOES..........oiiiiiiiiii e 23-72

23.17 REVISION HISTOTY ...t ettt e s 23-73

© 2007 Microchip Technology Inc. DS70070D-page 23-1

SINPOIN NVO H

dsPIC30F Family Reference Manual

231 Introduction

The Controller Area Network (CAN) module is a serial interface useful for communicating with
other peripherals or microcontroller devices. This interface/protocol was designed to allow
communications within noisy environments. Figure 23-1 shows an example CAN bus network.

Figure 23-1: CAN Bus Network

dsPIC30F
with CAN
MCP2551
CAN Transceiver
Bus
> H <
MCP2551 MCP2551 MCP2551 MCP2551
Transceiver Transceiver Transceiver Transceiver
1
Microchip
MCP2510
SPI™ [T]]
Interface dsPIC30F dsPIC30F PIC MCU
PIC MCU with integrated with integrated with integrated
CAN CAN CAN

23.2 Control Registers for the CAN Module

There are many registers associated with the CAN module. Descriptions of these registers are
grouped into the following sections:

» Control and Status Registers

« Transmit Buffer Registers

* Receive Buffer Registers

» Baud Rate Control Registers

* Interrupt Status and Control Registers

Note 1: ‘i’ in the register identifier denotes the specific CAN module (CAN1 or CAN2).
2: ‘n’in the register identifier denotes the bulffer, filter or mask number.
3: ‘m’ in the register identifier denotes the word number within a particular CAN data
field.

DS70070D-page 23-2 © 2007 Microchip Technology Inc.

Section 23. CAN

23.21 CAN Control and Status Registers
Register 23-1: CiCTRL: CAN Module Control and Status Register
Upper Byte:
R/W-x uU-0 R/W-0 R/W-0 R/W-0 R/W-1 R/W-0 R/W-0
CANCAP — CSIDL ABAT CANCKS REQOP<2:0>
bit 15 bit 8
Lower Byte:
R-1 R-0 R-0 uU-0 R-0 R-0 R-0 uU-0
OPMODE<2:0> — ICODE<2:0> —
bit 7 bit 0
bit 15 CANCAP: CAN Message Receive Capture Enable bit
1 = Enable CAN capture
0 = Disable CAN capture
Note: CANCAP is always writable, regardless of CAN module Operating mode.
bit 14 Unimplemented: Read as ‘0’
bit 13 CSIDL: Stop in Idle Mode bit
1 = Discontinue CAN module operation when device enters Idle mode
0 = Continue CAN module operation in Idle mode
bit 12 ABAT: Abort All Pending Transmissions bit
1 = Abort pending transmissions in all Transmit Buffers
0 = No effect
Note: Module will clear this bit when all transmissions aborted.
bit 11 CANCKS: CAN Master Clock Select bit
1 = FcaN clock is Fcy
0 = FcaN clock is 4 Fcy
bit 10-8 REQOP<2:0>: Request Operation Mode bits
111 = Set Listen All Messages mode
110 = Reserved
101 = Reserved
100 = Set Configuration mode
011 = Set Listen Only mode
010 = Set Loopback mode
001 = Set Disable mode
000 = Set Normal Operation mode
bit 7-5 OPMODE<2:0>: Operation Mode bits
Note: These bits indicate the current Operating mode of the CAN module. See description for REQOP
bits (CiCTRL<10:8>).
bit 4 Unimplemented: Read as ‘0’

© 2007 Microchip Technology Inc.

DS70070D-page 23-3

SINPOIN NVO H

dsPIC30F Family Reference Manual

Register 23-1: CiCTRL: CAN Module Control and Status Register (Continued)

bit 3-1 ICODE<2:0>: Interrupt Flag Code bits

111 = Wake-up interrupt

110 = RXBO interrupt

101 = RXB1 interrupt

100 = TXBO interrupt

011 = TXB1 interrupt

010 = TXB2 interrupt

001 = Error interrupt

000 = No interrupt

bit 0 Unimplemented: Read as ‘0’
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown

DS70070D-page 23-4 © 2007 Microchip Technology Inc.

Section 23. CAN

23.2.2

Register 23-2:

CAN Transmit Buffer Registers

This subsection describes the CAN Transmit Buffer Register and the associated Transmit Buffer
Control Registers.

CiTXnCON: Transmit Buffer Status and Control Register

Upper Byte:
u-0 uU-0 u-0 uU-0 u-0 u-0 uU-0 uU-0
bit 15 bit 8
Lower Byte:
uU-0 R-0 R-0 R-0 R/W-0 uU-0 R/W-0 R/W-0
— TXABT TXLARB TXERR TXREQ — TXPRI<1:0>
bit 7 bit 0
bit 15-7 Unimplemented: Read as '0'
bit 6 TXABT: Message Aborted bit
1 = Message was aborted
0 = Message has not been aborted
Note: This bit is cleared when TXREQ is set.
bit 5 TXLARB: Message Lost Arbitration bit
1 = Message lost arbitration while being sent
0 = Message did not lose arbitration while being sent
Note: This bit is cleared when TXREQ is set.
bit 4 TXERR: Error Detected During Transmission bit
1 = A bus error occurred while the message was being sent
0 = A bus error did not occur while the message was being sent
Note: This bit is cleared when TXREQ is set.
bit 3 TXREQ: Message Send Request bit
1 = Request message transmission
0 = Abort message transmission if TXREQ already set, otherwise no effect
Note: The bit will automatically clear when the message is successfully sent.
bit 2 Unimplemented: Read as ‘0’
bit 1-0 TXPRI<1:0>: Message Transmission Priority bits

11 = Highest message priority
10 = High intermediate message priority
01 = Low intermediate message Priority
00 = Lowest message priority

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc.

DS70070D-page 23-5

SINPOIN NVO H

dsPIC30F Family Reference Manual

Register 23-3:

CiTXnSID: Transmit Buffer n Standard Identifier

Upper Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x uU-0 u-0 uU-0
SID<10:6> — — —
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
SID<5:0> SRR TXIDE
bit 7 bit 0
bit 15-11 SID<10:6>: Standard Identifier bits
bit 10-8 Unimplemented: Read as ‘0’
bit 7-2 SID<6:0>: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit
When TXIDE = 0
1 = Message will request a remote transmission
0 = Normal message
When TXIDE = 1, the SRR bit must be setto ‘1.
bit 0 TXIDE: Extended Identifier bit

Register 23-4:

1 = Message will transmit extended identifier
0 = Message will transmit standard identifier

Legend:
R = Readable bit W = Writable bit
-n = Value at POR ‘1’ = Bit is set

‘0’ = Bit is cleared

U = Unimplemented bit, read as ‘0’

X = Bit is unknown

CiTXnEID: Transmit Buffer n Extended Identifier

Upper Byte:
R/W-x R/W-x R/W-x R/W-x uU-0 uU-0 u-0 uU-0
EID<17:14> — — — _
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID<13:6>
bit 7 bit 0
bit 15-12 EID<17:14>: Extended Identifier bits 17-14
bit 11-8 Unimplemented: Read as ‘0’
bit 7-0 EID<13:6>: Extended Identifier bits 13-6
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

DS70070D-page 23-6

© 2007 Microchip Technology Inc.

Section 23. CAN

Register 23-5: CiTXnDLC: Transmit Buffer n Data Length Control

Upper Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID<5:0> TXRTR TXRB1
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x uU-0 uU-0 uU-0
TXRBO DLC<3:0> — — —
bit 7 bit 0
bit 15-10 EID<5:0>: Extended Identifier bits 5-0
bit 9 TXRTR: Remote Transmission Request bit
When TXIDE =1,
1 = Message will request a remote transmission
0 = Normal message
When TXIDE = 0, the TXRTR bit is ignored.
bit 8-7 TXRB<1:0>: Reserved Bits
Note: User must set these bits to ‘0’ according to CAN protocol.
bit6-3 DLC<3:0>: Data Length Code bits
bit 2-0 Unimplemented: Read as ‘0’

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = bit is cleared X = Bit is unknown

Register 23-6: CiTXnBm: Transmit Buffer n Data Field Word m

Upper Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CTXB<15:8>

bit 15 bit 8

Lower Byte:

R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CTXB<7:0>

bit 7 bit 0

bit 15-0 CTXB<15:0>: Data Field Buffer Word bits (2 bytes)

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = bit is cleared X = Bit is unknown

© 2007 Microchip Technology Inc. DS70070D-page 23-7

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.2.3 CAN Receive Buffer Registers

This subsection shows the Receive buffer registers with their associated control registers.

Register 23-7: CiRX0CON: Receive Buffer 0 Status and Control Register

Upper Byte:
uU-0 uU-0 uU-0 uU-0 uU-0 uU-0 u-0 u-0
bit 15 bit 8
Lower Byte:
R/C-0 uU-0 U-0 uU-0 R-0 R/W-0 R/W-0 R-0
RXFUL — — — RXRTRRO| DBEN JTOFF FILHITO
bit 7 bit 0

bit 15-8 Unimplemented: Read as ‘0’
bit 7 RXFUL: Receive Full Status bit

1 = Receive buffer contains a valid received message

0 = Receive buffer is open to receive a new message

Note: This bit is set by the CAN module and should be cleared by software after the buffer is read.

bit 6-4 Unimplemented: Read as ‘0’
bit 3 RXRTRRO: Received Remote Transfer Request bit (read only)

1 = Remote Transfer Request was received

0 = Remote Transfer Request not received

Note: This bit reflects the status of the last message loaded into Receive Buffer 0.

bit 2 DBEN: Receive Buffer 0 Double Buffer Enable bit

1 = Receive Buffer 0 overflow will write to Receive Buffer 1

0 = No Receive Buffer 0 overflow to Receive Buffer 1
bit 1 JTOFF: Jump Table Offset bit (read only copy of DBEN)

1 = Allows Jump Table offset between 6 and 7

0 = Allows Jump Table offset between 0 and 1
bit 0 FILHITO: Indicates Which Acceptance Filter Enabled the Message Reception bit

1 = Acceptance Filter 1 (RXF1)
0 = Acceptance Filter 0 (RXFO0)

Note: This bit reflects the status of the last message loaded into Receive Buffer 0.
Legend:
R = Readable bit W = Writable bit C = Bit can be cleared U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

DS70070D-page 23-8

© 2007 Microchip Technology Inc.

Section 23. CAN
Register 23-8: CiRX1CON: Receive Buffer 1 Status and Control Register
Upper Byte:
uU-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 15 bit 8
Lower Byte:
R/C-0 uU-0 uU-0 uU-0 R-0 R-0 R-0 R-0
RXFUL — — — RXRTRRO FILHIT<2:0>
bit 7 bit 0

bit 15-8 Unimplemented: Read as ‘0’
bit 7 RXFUL: Receive Full Status bit

1 = Receive buffer contains a valid received message

0 = Receive buffer is open to receive a new message

Note: This bit is set by the CAN module and should be cleared by software after the buffer is read.

bit 6-4 Unimplemented: Read as ‘0’
bit 3 RXRTRRO: Received Remote Transfer Request bit (read only)

1 = Remote transfer request was received

0 = Remote transfer request not received

Note: This bit reflects the status of the last message loaded into Receive Buffer 1.

bit 2-0 FILHIT<2:0>: Indicates Which Acceptance Filter Enabled the Message Reception bits

101 = Acceptance filter 5 (RXF5)
100 = Acceptance filter 4 (RXF4)
011 = Acceptance filter 3 (RXF3)
010 = Acceptance filter 2 (RXF2)
001 = Acceptance filter 1 (RXF1) (Only possible when DBEN bit is set)
000 = Acceptance filter 0 (RXFO0) (Only possible when DBEN bit is set)

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc.

DS70070D-page 23-9

SINPOIN NVO H

dsPIC30F Family Reference Manual

Register 23-9: CiRXnSID: Receive Buffer n Standard Identifier

Upper Byte:
U-0 U-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x
— — — SID<10:6>
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
SID<5:0> SRR RXIDE
bit 7 bit 0
bit 15-13 Unimplemented: Read as ‘0’
bit 12-2 SID<10:0>: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit (Only when RXIDE = 1)
When RXIDE = 0,
1 = Remote transfer request occured
0 = No remote transfer request occured
When RXIDE = 1, the SRR bit can be ignored.
bit 0 RXIDE: Extended Identifier Flag bit
1 = Received message is an extended data frame, SID<10:0> are EID<28:18>
0 = Received message is a standard data frame
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared X = Bit is unknown
Register 23-10: CiRXnEID: Receive Buffer n Extended Identifier
Upper Byte:
uU-0 uU-0 uU-0 U-0 R/W-x R/W-x R/W-x R/W-x
— — — — EID<17:14>
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID<13:6>
bit 7 bit 0

bit 15-12
bit 11-0

Unimplemented: Read as ‘0’
EID<17:6>: Extended Identifier bits 17-6

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared X = Bit is unknown

DS70070D-page 23-10

© 2007 Microchip Technology Inc.

Section 23. CAN

Register 23-11: CiRXnBm: Receive Buffer n Data Field Word m

Upper Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CRXB<15:8>
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
CRXB<7:0>
bit 7 bit 0
bit 15-0 CRXB<15:0>: Data Field Buffer Word bits (2 bytes)
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
Register 23-12: CiRXnDLC: Receive Buffer n Data Length Control
Upper Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID<5:0> RXRTR RB1
bit 15 bit 8
Lower Byte:
uU-0 uU-0 U-0 R/W-x R/W-x R/W-x R/W-x R/W-x
— — — RBO DLC<3:0>
bit 7 bit 0
bit 15-10 EID<5:0>: Extended Identifier bits
bit 9 RXRTR: Receive Remote Transmission Request Control bit
When RXIDE = 1,
1 = Remote transfer request
0 = No remote transfer request
When RXIDE = 0, the RXRTR bit can be ignored
Note: This bit reflects the status of the RTR bit in the last received message.
bit 8 RB1: Reserved bit 1
Reserved by CAN Spec and read as ‘0’
bit 4 RBO: Reserved bit 0
Reserved by CAN Spec and read as ‘0’
bit 3-0 DLC<3:0>: Data Length Code bits (Contents of Receive Buffer)
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc.

DS70070D-page 23-11

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.2.4 Message Acceptance Filters

This subsection describes the Message Acceptance filters.

Register 23-13: CiRXFnSID: Acceptance Filter n Standard Identifier

Upper Byte:
uU-0 uU-0 uU-0 R/W-x R/W-x R/W-x R/W-x R/W-x
— — — SID<10:6>
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x U-0 R/W-x
SID<5:0> — EXIDE
bit 7 bit 0
bit 15-13 Unimplemented: Read as ‘0’
bit 12-2 SID<10:0>: Standard Identifier bits
bit 1 Unimplemented: Read as ‘0’
bit 0 EXIDE: Extended Identifier Enable bits
If MIDE = 1, then
1 = Enable filter for extended identifier
0 = Enable filter for standard identifier
If MIDE = 0, then EXIDE is don’t care
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

Register 23-14: CiRXFnEIDH: Acceptance Filter n Extended Identifier High

Upper Byte:
u-0 U-0 u-0 U-0 R/W-x R/W-x R/W-x R/W-x
— — — — EID<17:14>
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID<13:6>
bit 7 bit 0
bit 15-12 Unimplemented: Read as ‘0’
bit 11-0 EID<17:6>: Extended Identifier bits 17-6
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

DS70070D-page 23-12

© 2007 Microchip Technology Inc.

Section 23. CAN

Register 23-15: CiRXFnEIDL: Acceptance Filter n Extended Identifier Low

Upper Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x U-0 u-0
EID<5:0> — _
bit 15 bit 8
Lower Byte:
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
bit 15-10 EID<5:0>: Extended Identifier bits
bit 9-0 Unimplemented: Read as ‘0’
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc.

DS70070D-page 23-13

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.2.5 Acceptance Filter Mask Registers

Register 23-16: CiRXMnSID: Acceptance Filter Mask n Standard Identifier

Upper Byte:
uU-0 uU-0 u-0 R/W-x R/W-x R/W-x R/W-x R/W-x
— — — SID<10:6>
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x uU-0 R/W-x
SID<5:0> — MIDE
bit 7 bit 0

bit 15-13 Unimplemented: Read as ‘0’
bit 12-2 SID<10:0>: Standard Identifier Mask bits
1 = Include bit in the filter comparison
0 = Don’t include bit in the filter comparison

bit 1 Unimplemented: Read as ‘0’

bit 0 MIDE: Identifier Mode Selection bit
1 = Match only message types (standard or extended address) as determined by EXIDE bit in filter
0 = Match either standard or extended address message if the filters match

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared X = Bit is unknown

Register 23-17: CiRXMnEIDH: Acceptance Filter Mask n Extended Identifier High

Upper Byte:
uU-0 u-0 U-0 u-0 R/W-x R/W-x R/W-x R/W-x
— — — — EID<17:14>
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
EID<13:6>
bit 7 bit 0
bit 15-12 Unimplemented: Read as ‘0’
bit 11-0 EID<17:6>: Extended Identifier Mask bits 17-6
1 = Include bit in the filter comparison
0 = Don’t include bit in the filter comparison
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

DS70070D-page 23-14 © 2007 Microchip Technology Inc.

Section 23. CAN

Register 23-18: CiRXMnEIDL: Acceptance Filter Mask n Extended Identifier Low

Upper Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x U-0 u-0
EID<5:0> — _
bit 15 bit 8
Lower Byte:
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0
bit 7 bit 0
bit 15-10 EID<5:0>: Extended Identifier bits
bit 9-0 Unimplemented: Read as ‘0’
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc.

DS70070D-page 23-15

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.2.6

CAN Baud Rate Registers

This subsection describes the CAN baud rate registers.

Register 23-19: CiCFG1: Baud Rate Configuration Register 1

Upper Byte:

u-0

u-0 u-0 u-0 u-0 u-0 u-0 u-0

bit 15

bit 15-8
bit 7-6

bit 5-0

Lower Byte:
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

R/W-0

SJW<1:0> BRP<5:0>

bit 7

bit 0

Unimplemented: Read as ‘0’

SJW<1:0>: Synchronized Jump Width bits

11 = Synchronized jump width time is 4 x TQ
10 = Synchronized jump width time is 3 x TQ
01 = Synchronized jump width time is 2 x TQ
00 = Synchronized jump width time is 1 x TQ

BRP<5:0>: Baud Rate Prescaler bits
11 1111 =Ta=2x (BRP + 1)/FCAN = 128/FCAN
11 1110 =Ta =2 x (BRP + 1)/FCAN = 126/FCAN

00 0001 =Ta=2x (BRP + 1)/FCAN = 4/FCAN
00 0000 =Ta=2x (BRP + 1)/FCAN = 2/FCAN
Note: FcANis Fcy or 4 Fcy, depending on the CANCKS bit setting.

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared X = Bit is unknown

DS70070D-page 23-16

© 2007 Microchip Technology Inc.

Section 23. CAN

Register 23-20: CiCFG2: Baud Rate Configuration Register 2

Upper Byte:
U-0 R/W-x u-0 uU-0 uU-0 R/W-x R/W-x R/W-x
— WAKFIL — — — SEG2PH<2:0>
bit 15 bit 8
Lower Byte:
R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x
SEG2PHT SAM SEG1PH<2:0> PRSEG<2:0>
S
bit 7 bit 0
bit 15 Unimplemented: Read as ‘0’
bit 14 WAKEFIL: Select CAN bus Line Filter for Wake-up bit
1 = Use CAN bus line filter for wake-up
0 = CAN bus line filter is not used for wake-up
bit 13-11 Unimplemented: Read as ‘0’
bit 10-8 SEG2PH<2:0>: Phase Buffer Segment 2 bits
111 =lengthis 8 x Ta
000 =lengthis 1 x TQ
bit 7 SEG2PHTS: Phase Segment 2 Time Select bit
1 = Freely programmable
0 = Maximum of SEG1PH or information processing time (3 TQ’s), whichever is greater
bit 6 SAM: Sample of the CAN bus Line bit
1 = Bus line is sampled three times at the sample point
0 = Bus line is sampled once at the sample point
bit 5-3 SEG1PH<2:0>: Phase Buffer Segment 1 bits
111 =lengthis 8 x Ta
000 =lengthis 1 x TQ
bit2-0 PRSEG<2:0>: Propagation Time Segment bits

111 =lengthis 8 x TQ

000 =lengthis 1 x TQ

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc.

DS70070D-page 23-17

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.2.7 CAN Module Error Count Register

This subsection describes the CAN Module Transmission/Reception Error Count register. The
various error status flags are present in the CAN Interrupt Flag Register.

Register 23-21: CiEC: Transmit/Receive Error Count

Upper Byte:
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
TERRCNT<7:0>
bit 15 bit 8
Lower Byte:
R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0
RERRCNT<7:0>
bit 7 bit 0
bit 15-8 TERRCNT<7:0>: Transmit Error Count bits
bit 7-0 RERRCNT<7:0>: Receive Error Count bits
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

DS70070D-page 23-18

© 2007 Microchip Technology Inc.

Section 23. CAN

23.2.8

CAN Interrupt Registers

This subsection describes the CAN Registers which are associated with interrupts.

Register 23-22: CiINTE: Interrupt Enable Register

u-0

Upper Byte:

u-0 u-0 u-0 u-0

bit 15

bit 15-8
bit 7

bit 6

bit 5

bit 4

bit 3

bit 2

bit 1

bit 0

Lower Byte:
R/W-0 R/W-0 R/W-0 R/W-0

R/W-0 R/W-0

R/W-0 R/W-0

IVRIE WAKIE ERRIE TX2IE

TX1IE TXOIE

RX1IE RXOIE

bit 7

bit 0

Unimplemented: Read as ‘0’

IVRIE: Invalid Message Received Interrupt Enable bit
1 = Enabled
0 = Disabled

WAKIE: Bus Wake Up Activity Interrupt Enable bit
1 = Enabled
0 = Disabled

ERRIE: Error Interrupt Enable bit
1 = Enabled
0 = Disabled

TX2IE: Transmit Buffer 2 Interrupt Enable bit
1 = Enabled
0 = Disabled

TX1IE: Transmit Buffer 1 Interrupt Enable bit
1 = Enabled
0 = Disabled

TXOIE: Transmit Buffer O Interrupt Enable bit
1 = Enabled
0 = Disabled

RX1IE: Receive Buffer 1 Interrupt Enable bit
1 = Enabled
0 = Disabled

RXOIE: Receive Buffer O Interrupt Enable bit
1 = Enabled

0 = Disabled

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

-n = Value at POR ‘1" = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

© 2007 Microchip Technology Inc.

DS70070D-page 23-19

SINPOIN NVO H

dsPIC30F Family Reference Manual

Register 23-23: CiINTF: Interrupt Flag Register

Upper Byte:
R/C-0 R/C-0 R-0 R-0 R-0 R-0 R-0 R-0
RX00OVR | RX10VR TXBO TXEP RXEP TXWAR | RXWAR | EWARN
bit 15 bit 8
Lower Byte:
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
IVRIF WAKIF ERRIF TX2IF TX1IF TXOIF RX1IF RXOIF
bit 7 bit 0

bit 15 RXO0OVR: Receive Buffer 0 Overflowed bit
1 = Receive buffer 0 overflowed
0 = Receive buffer 0 not overflowed

bit 14 RX10VR: Receive Buffer 1 Overflowed bit
1 = Receive buffer 1 overflowed
0 = Receive buffer 1 not overflowed

bit 13 TXBO: Transmitter in Error State, Bus Off bit
1 = Transmitter in error state, bus off
0 = Transmitter not in error state, bus off

bit 12 TXEP: Transmitter in Error State, Bus Passive bit
1 = Transmitter in error state, bus passive
0 = Transmitter not in error state, bus passive

bit 11 RXEP: Receiver in Error State, Bus Passive bit
1 = Receiver in error state, bus passive
0 = Receiver not in error state, bus passive

bit 10 TXWAR: Transmitter in Error State, Warning bit
1 = Transmitter in error state, warning
0 = Transmitter not in error state, warning

bit 9 RXWAR: Receiver in Error State, Warning bit
1 = Receiver in error state, warning
0 = Receiver not in error state, warning

bit 8 EWARN: Transmitter or Receiver is in Error State, Warning bit
1 = Transmitter or receiver is in error state, warning
0 = Transmitter and receiver are not in error state

bit 7 IVRIF: Invalid Message Received Interrupt Flag bit
1 = Some type of error occurred during reception of the last message
0 = Receive error has not occurred
bit 6 WAKIF: bus Wake-up Activity Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 5 ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<15:8> register)
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 4 TX2IF: Transmit Buffer 2 Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred
bit 3 TX1IF: Transmit Buffer 1 Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

DS70070D-page 23-20 © 2007 Microchip Technology Inc.

Section 23. CAN

Register 23-23: CiINTF: Interrupt Flag Register (Continued)

bit 2 TXOIF: Transmit Buffer O Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

bit 1 RX1IF: Receive Buffer 1 Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

bit 0 RXOIF: Receive Buffer 0 Interrupt Flag bit
1 = Interrupt request has occurred
0 = Interrupt request has not occurred

Legend:
R = Readable bit W = Writable bit C = Bit can be cleared
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared

U = Unimplemented bit, read as ‘0’
x = Bit is unknown

© 2007 Microchip Technology Inc.

DS70070D-page 23-21

SINPOIN NVO H

Zz-¢z 8bed-a02002Sa

-ou| ABojouyosa] diysoiolN €002 @

23.3 Register Maps

Table 23-1: CAN1 Register Map

File Name ADR | Bit15 | Bit14 | Bit13 | Bit12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 Bt 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit2 | Bit1 | Bit0 | Reset
CARXFOSID 300 — - — SID<10:6> SID<5:0> — | EXIDE | sxxx
C1RXFOEIDH 302 — — — —] EID<17:14> EID<13:6> wxxx
C1RXFOEIDL 304 EID<5:0> — — — — — — o
unused 306 — — — — | — | — — — — = — — XXXX
CIRXF1SID 308 — — — SID<10:6> SID<5:0> — | ExiDE | sxxx
C1RXF1EIDH 30A — — — —] EID<17:14> EID<13:6> e
C1RXF1EIDL 30C EID<5:0> — — — — — — wxxx
Unused 30E — — — — [=1 = — — — — — — s
CARXF2SID 310 — — — SID<10:6> SID<5:0> — | ExiDE |
C1RXF2EIDH 312 — — — — EID<17:14> EID<13:6> cxxx
C1RXF2EIDL 314 EID<5:0> — — — — — — xxx
Unused 316 — — — = == — — — — — — I
CIRXF3SID 318 — — — SID<10:6> SID<5:0> — | EXIDE | sxxx
C1RXF3EIDH 31A — — — —] EID<17:14> EID<13:6> i
C1RXF3EIDL 31C EID<5:0> — — — = = — xxxx
Unused 31E — _ — — | = | = — — — — — — st
CARXF4SID 320 — — — SID<10:6> SID<5:0> — | ExiDE | xxxx
C1RXF4EIDH 322 — — — — EID<17:14> EID<13:6> i
C1RXF4EIDL 324 EID<5:0> — — — — — — wxxx
Unused 326 —_ — —_ — [=1 = — — — — — — wxxx
CARXF5SID 328 — — — SID<10:6> SID<5:0> — | ExiDE |
C1RXF5EIDH 32A — — — —] EID<17:14> EID<13:6> wxxx
C1RXF5EIDL 32C EID<5:0> — — — — — — xxx
Unused 326 | — = = = == = = = = = = s
C1RXMOSID 330 — — — SID<10:6> SID<5:0> — MIDE | yxxx
C1RXMOEIDH 332 — — — —] EID<17:14> EID<13:6> xxx
C1RXMOEIDL 334 EID<5:0> = = = = = = o
Unused 336 — — — — [=1 = — — — — — — s
C1RXM1SID 338 — — — SID<10:6> SID<5:0> — MIDE | yxxx
C1RXM1EIDH 33A — — — — EID<17:14> EID<13:6> wxxx
C1RXM1EIDL 33C EID<5:0> — — — — — — wxxx
Unused 33E — — I =1 =1 =1 = — — — — — — s

Legend: x = Unknown

[ENURIA] UIJNY A[wre] JOSDIISP

-ou| ABojouydsa | diydoioin €002 ©

£z-cz ebed-q0,00.80a

Table 23-1: CAN1 Register Map (Continued)
File Name ADR Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 Bit 10 Bit9 Bit 8 Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 Bit 1 Bit 0 Reset
C1TX2SID 340 SID<10:6> — — SID<5:0> SRR TX KKKK
IDE
C1TX2EID 342 EID<17:14> | — — — EID<13:6> KXKX
C1TX2DLC 342 EID<5:0> TX TX TX DLC<3:0> — — — KRKK
RTR RB1 RBO
C1TX2B1 346 Transmit Buffer 0 Byte 1 Transmit Buffer 0 Byte 0 XKXKK
C1TX2B2 348 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 2 KXKXX
C1TX2B3 34A Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 4 XXXX
C1TX2B4 34C Transmit Buffer 0 Byte 7 Transmit Buffer 0 Byte 6 XKKKK
C1TX2CON 34E — — — — — — — — X X TX TX — TXPRI<1:0> 0000
ABT LARB ERR REQ
C1TX1SID 350 SID<10:6> — — SID<5:0> SRR TX KRKK
IDE
C1TX1EID 352 EID<17:14> — — — EID<13:6> KKKXK
C1TX1DLC 352 EID<5:0> X TX X DLC<3:0> — — — KKK
RTR RB1 RBO
C1TX1B1 356 Transmit Buffer 0 Byte 1 Transmit Buffer 0 Byte 0 KKK
C1TX1B2 358 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 2 XXKK
C1TX1B3 35A Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 4 XKXKK
C1TX1B4 35C Transmit Buffer 0 Byte 7 Transmit Buffer 0 Byte 6 KKK
C1TX1CON 35E — — — — — — — — TX TX TX TX — TXPRI<1:0> 0000
ABT LARB ERR REQ
C1TX0SID 360 SID<10:6> — — SID<5:0> SRR X KKK
IDE
C1TXO0EID 362 EID<17:14> — — — EID<13:6> KRKK
C1TX0DLC 362 EID<5:0> TX TX TX DLC<3:0> — — — XKKK
RTR RB1 RBO
C1TX0B1 366 Transmit Buffer 0 Byte 1 Transmit Buffer 0 Byte 0 XXKK
C1TX0B2 368 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 2 KRKXK
C1TX0B3 36A Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 4 XKKKK
C1TX0B4 36C Transmit Buffer 0 Byte 7 Transmit Buffer 0 Byte 6 XXKK
C1TXO0CON 36E — — — — — — — — TX TX TX TX — TXPRI<1:0> 0000
ABT LARB ERR REQ

Legend: x = Unknown

SINPOIN NVO

NV "¢€¢ uondds§

yz-¢z 86ed-a02002S0d

-ou| ABojouyosa] diysoiolN €002 @

Table 23-1: CAN1 Register Map (Continued)

File Name ADR Bit 15 Bit 14 Bit 13 Bit 12 | Bit 11 | Bit 10 | Bit 9 | Bit 8 Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 Bit 1 Bit 0 Reset
C1RX1SID 370 — — — SID<10:6> SID<5:0> SRR RX KKKX

IDE
C1RX1EID 372 — — — — | EID<17:14> EID<13:6> KKKX
C1RX1DLC 374 EID<0:5> RX RX — — — RX DLC<3:0> KKKX

RTR RB1 RBO
C1RX1B1 376 Receive Buffer 1 Byte 1 Receive Buffer 1 Byte 0 XKXKXX
C1RX1B2 378 Receive Buffer 1 Byte 3 Receive Buffer 1 Byte 2 XXX
C1RX1B3 37A Receive Buffer 1 Byte 5 Receive Buffer 1 Byte 4 XXXX
C1RX1B4 37C Receive Buffer 1 Byte 7 Receive Buffer 1 Byte 6 XKXKX
C1RX1CON 37E — — — — — — — RX — — RX RX FILHIT<2:0> 0000
FUL ERR RTR
RO

C1RX1SID 380 — — — SID<10:6> SID<5:0> SRR RX KKKX

IDE
C1RX1EID 382 — — — — EID<17:14> EID<13:6> KRKX
C1RX1DLC 384 EID<0:5> RX RX — — — RX DLC<3:0> KKKX

RTR RB1 RBO

C1RX0B1 386 Receive Buffer 0 Byte 1 Receive Buffer 0 Byte 0 XKXKXX
C1RX0B2 388 Receive Buffer 0 Byte 3 Receive Buffer 0 Byte 2 KXKK
C1RX0B3 38A Receive Buffer 0 Byte 5 Receive Buffer 0 Byte 4 KXXX
C1RX0B4 38C Receive Buffer 0 Byte 7 Receive Buffer 0 Byte 6 XKXKX
C1RX0CON 38E — — — — — — — — RX — — RX RX RXBO JTOFF FIL 0000

FUL ERR RTR DBEN HIT

RO 0
C1CTRL 390 CAN — (¢} ABAT CAN REQOP<2:0> OPMODE<2:0> — ICODE<2:0> — 0480
CAP SIDL CKS
C1CFG1 302 — — — — — — I =1 = SIW<1:0>S BRP<5:0> 0000
C1CFG2 394 — WAK — — — SEG2PH<2:0> SEG2 SAM SEG1PH<2:0> PRSEG<2:0> 0000
FIL PHTS

C1INTF 396 RXBO RXB1 TXBO TXBP RXBP TX RX E IVR WAK ERR TXB2 TXB1 TXBO RXB1 RXBO 0000

OVR OVR WARN | WARN | WARN IF IF IF IF IF IF IF IF
C1INTE 398 — — — — — — — — IVR WAK ERR TXB2 TXB1 TXBO RXB1 RXBO 0000

IE IE IE IE IE IE IE IE
C1EC 39A Transmit Error Counter Receive Error Counter 0000
Reserved 39C — — — — — — — — — — — — — — — — XXKX

3FE
Legend: x = Unknown

[ENURIA] UIJNY A[wre] JOSDIISP

-ou| ABojouydsa | diydoioin €002 ©

Gz-cz ebed-q0.,00.80a

Table 23-2: CAN2 Register Map
File Name ADR | Bit1s | Bit14 | Bit13 | Bit12 | Bit11 | Bit1o | mito | mits Bit7 | Bite | mits | mita | B3 | Bit2 | mit1 | Bito | Reset
C2RXFOSID 3C0 — — — SID<10:6> SID<5:0> — | EXIDE | sxxx
C2RXFOEIDH 3C2 — — — — EID<17:14> EID<13:6> xxxx
C2RXFOEIDL 3c4 EID<5:0> — — — — — — — — — xxxX
Unused 3C6 — — — — — | = — — — — — — — — — XXX
C2RXF1SID 3cs — — — SID<10:6> SID<5:0> — | ExiDE | xxxx
C2RXF1EIDH 3CA — — — — EID<17:14> EID<13:6> xxxx
C2RXF1EIDL 3cc EID<5:0> — — — — — — — — — XXX
Unused 3CE — — — — — | = — — — — — — — — — xxxX
C2RXF2SID 3D0 — — — SID<10:6> SID<5:0> — | ExiDE | xxxx
C2RXF2EIDH 3D2 — — — — EID<17:14> EID<13:6> xxxx
C2RXF2EIDL 3D4 EID<5:0> — — — — — — — — — xxxx
Unused 3D6 — — — — - | = — — — — — — — — — XXXX
C2RXF3SIDH 3D8 — — — SID<10:6> SID<5:0> — | ExibE | xxxx
C2RXF3EID 3DA — — — — EID<17:14> EID<13:6> xxxx
C2RXF3EIDL 3DC EID<5:0> — — — — — — — — — xxxX
Unused 3DE — — — — — | = — — — — — — — — — XXX
C2RXF4SID 3E0 — — — SID<10:6> SID<5:0> — | ExiDE | xxxx
C2RXF4EIDH 3E2 — — — — EID<17:14> EID<13:6> xxxx
C2RXFA4EIDL 3E4 EID<5:0> — — — — — — — — — XXX
Unused 3E6 — — — — — | = — — — — — — — — — xxxX
C2RXF5SID 3E8 — — — SID<10:6> SID<5:0> — | ExiDE | xxxx
C2RXF5EIDH 3EA — — — — EID<17:14> EID<13:6> xxxx
C2RXF5EIDL 3EC EID<5:0> — — — — — — — — — xxxx
Unused 3EE — — — — - | = — — — — — — — — — XXXX
C2RXMOSID 3F0 — — — SID<10:6> SID<5:0> — MIDE | s
C2RXMOEIDH 3F2 — — — — EID<17:14> EID<13:6> XXXX
C2RXMOEIDL 3F4 EID<5:0> — — — — — — — — — xxxX
Unused 3F6 — — — — — | = — — — — — — — — — XXX
C2RXM1SID 3F8 — — — SID<10:6> SID<5:0> — MIDE | s
C2RXM1EIDH 3FA — — — — EID<17:14> EID<13:6> xxxx
C2RXM1EIDL 3FC EID<5:0> — — — — — — — — — XXX
Unused 3FE — — | = 1 = — | = — — — — — — — — — wxxx

Legend: x = Unknown

SINPOIN NVO

NV "¢€¢ uondds§

9z-¢z 8bed-a02002S0

-ou| ABojouyosa] diysoiolN €002 @

Table 23-2: CAN2 Register Map (Continued)
File Name ADR Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 Bit 1 Bit 0 Reset
C2TX2SID 400 SID<10:6> — — SID<5:0> SRR TX XXXX
IDE
C2TX2EID 402 EID<17:14> | — — — EID<13:6> XXXX
C2TX2DLC 404 EID<5:0> TX TX TX DLC<3:0> — — XXXX
RTR RB1 RBO
C2TX2B1 406 Transmit Buffer 0 Byte 1 Transmit Buffer 0 Byte 0 XXXX
C2TX2B2 408 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 2 XXXX
C2TX2B3 40A Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 4 XXXX
C2TX2B4 40C Transmit Buffer 0 Byte 7 Transmit Buffer 0 Byte 6 XXXX
C2TX2CON 40E — — — — — — — — TX TX X TX TXPRI<1:0> 0000
ABT LARB ERR REQ
C2TX1SID 410 SID<10:6> — — SID<5:0> SRR X XXXX
IDE
C2TX1EID 412 EID<17:14> — — — EID<13:6> XXXX
C2TX1DLC 414 EID<5:0> TX TX TX DLC<3:0> — — XKXX
RTR RB1 RBO
C2TX1B1 416 Transmit Buffer 0 Byte 1 Transmit Buffer 0 Byte 0 XXXX
C2TX1B2 418 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 2 XXXX
C2TX1B3 41A Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 4 XXKX
C2TX1B4 41C Transmit Buffer 0 Byte 7 Transmit Buffer 0 Byte 6 XXXX
C2TX1CON 41E — — — — — — — — TX TX TX TX TXPRI<1:0> 0000
ABT LARB ERR REQ
C2TX0SID 420 SID<10:6> — — SID<5:0> SRR TX XXXX
IDE
C2TX0EID 422 EID<17:14> — — — EID<13:6> XXXX
C2TX0DLC 424 EID<5:0> TX TX TX DLC<3:0> — — XXXX
RTR RB1 RBO
C2TX0B1 426 Transmit Buffer 0 Byte 1 Transmit Buffer 0 Byte 0 XXXX
C2TX0B2 428 Transmit Buffer 0 Byte 3 Transmit Buffer 0 Byte 2 XXKX
C2TX0B3 42A Transmit Buffer 0 Byte 5 Transmit Buffer 0 Byte 4 XXXX
C2TX0B4 42C Transmit Buffer 0 Byte 7 Transmit Buffer 0 Byte 6 XXXX
C2TX0CON 42E — — — — — — — — TX TX TX TX TXPRI<1:0> 0000
ABT LARB ERR REQ

Legend: x = Unknown

[ENURIA] UIJNY A[wre] JOSDIISP

-ou| ABojouydsa | diydoioin €002 ©

/z-£z 8bed-a0,00.80a

Table 23-2: CAN2 Register Map (Continued)

File Name ADR Bit15 | Bit14 | Bit13 Bit 12 | Bit 11 | Bit 10 | Bit9 | Bit 8 Bit7 | Bit 6 | Bit5 | Bit 4 | Bit 3 | Bit 2 Bit 1 Bit 0 Reset
C2RX1SID 430 — — — SID<10:6> SID<5:0> SRR RX XKXX

IDE
C2RX1EID 432 — — — — | EID<17:14> EID<13:6> XKXX
C2RX1DLC 434 EID<0:5> RX RX — — — RX DLC<3:0> XKXX

RTR RB1 RBO
C2RX1B1 436 Receive Buffer 1 Byte 1 Receive Buffer 1 Byte 0 XXXX
C2RX1B2 438 Receive Buffer 1 Byte 3 Receive Buffer 1 Byte 2 XXXX
C2RX1B3 43A Receive Buffer 1 Byte 5 Receive Buffer 1 Byte 4 XXXX
C2RX1B4 43C Receive Buffer 1 Byte 7 Receive Buffer 1 Byte 6 XXXX
C2RX1CON 43E — — — — — — — RX — — RX RX FILHIT<2:0> 0000
FUL ERR RTR
RO

C2RX1SID 440 — — — SID<10:6> SID<5:0> SRR RX XKXX

IDE
C2RX1EID 442 — — — — EID<17:14> EID<13:6> XKXX
C2RX1DLC 444 EID<0:5> RX RX — — — RX DLC<3:0> XKXX

RTR RB1 RBO

C2RX0B1 446 Receive Buffer 0 Byte 1 Receive Buffer 0 Byte 0 XXXX
C2RX0B2 448 Receive Buffer 0 Byte 3 Receive Buffer 0 Byte 2 XXXX
C2RX0B3 44A Receive Buffer 0 Byte 5 Receive Buffer 0 Byte 4 XXXX
C2RX0B4 44C Receive Buffer 0 Byte 7 Receive Buffer 0 Byte 6 XXXX
C2RX0CON 44E — — — — — — — RX — — RX RX RXBO | JTOFF FIL 0000

FUL ERR RTR DBEN HIT

RO 0
C2CTRL 450 CAN — C ABAT CAN REQOP<2:0> OPMODE<2:0> — ICODE<2:0> — 0480

CAP SIDL CKS
C2CFG1 452 — — — — — | — — SJW<1:0>S BRP<5:0> 0000
C2CFG2 454 — WAK — — — SEG2PH<2:0> SEG2 SAM SEG1PH<2:0> PRSEG<2:0> 0000
FIL PHTS

C2INTF 456 RXBO RXB1 TXBO TXBP | RXBP RX E IVR WAK ERR TXB2 TXB1 TXBO RXB1 RXBO 0000

OVR OVR WARN | WARN | WARN IF IF IF IF IF IF IF IF
C2INTE 458 — — — — — — — IVR WAK ERR TXB2 TXB1 TXBO RXB1 RXBO 0000

IE IE IE IE IE IE IE IE
C2EC 45A Transmit Error Counter Receive Error Counter 0000
Reserved 45C — — — — — — — — — — — — — — — XXXX

4FE
Legend: x = Unknown

SINPOIN NVO

NV "¢€¢ uondds§

dsPIC30F Family Reference Manual

23.4 CAN Module Features

The CAN module is a communication controller implementing the CAN 2.0A/B protocol as
defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B
Passive and CAN 2.0B Active versions of the protocol. The module implementation is a Full CAN
system.

The module features are as follows:

Implementation of the CAN protocol CAN 1.2, CAN 2.0A and CAN 2.0B
Standard and extended data frames

Data length from 0-8 bytes

Programmable bit rate up to 1 Mbit/sec

Support for remote data frames

Double buffered receiver with two prioritized received message storage buffers

Six full (standard/extended identifier) acceptance filters, 2 associated with the high priority
receive buffer and 4 associated with the low priority receive buffer

Two full acceptance filter masks, one each associated with the high and low priority receive
buffers

Three Transmit Buffers with application specified prioritization and abort capability
Programmable wake-up functionality with integrated low-pass filter

Programmable Loopback mode supports self-test operation

Signaling via interrupt capabilities for all CAN receiver and transmitter error states
Programmable clock source

Programmable link to input capture module for time-stamping and network synchronization
Low-Power Sleep mode

DS70070D-page 23-28

© 2007 Microchip Technology Inc.

Section 23. CAN

23.5 CAN Module Implementation
The CAN bus module consists of a Protocol Engine and message buffering and control. The
Protocol Engine can best be understood by defining the types of data frames to be transmitted
and received by the module. These blocks are shown in Figure 23-2.
Figure 23-2: CAN Buffers and Protocol Engine Block Diagram
Acceptance Mask
BUFFERS RXM1
Acceptance Filter |
RXF2
Z > A
Acceptance Mask Acceptance Filter
TXBO TXB1 TXB2 RXMO RXF3 — ¢
A c
% % % c Acceptance Filter Acceptance Filter e
—q
O|—§n¢—< O|—§n¢—< O|—§n¢—< c RXFO RXF4 p
Upogcxxy 9 Upngxxy 9 Upngxxy 9 7 ZaN N4 AN t
r<Jwuwao @ r<ijwao @ r<ijwao @ € - -
XX XXX W XX XXX W XX XXX W Acceptance Filter Acceptance Filter
FFFEFF = FFFFF = FFEFFFF = p RXF1 RXE5 —
[} * T t
Y *]
M ge
Message Identifier Assembly | Identifier
Queue N/ Buffer
Control
ontro Transmit Byte Sequencer Data Field Data Field
Receive > RERRCNT
Error
Counter |—
PROTOCOL _> TERRCNT
ENGINE
Transmit |— ErrPas
Error — BusOff
Counter
-+
A
Transmit Shift Receive Shift
Protocol
CRC Generator CRC Check Finite
State
<4 Machine
Transmit |~ .Bi.t o
Logic Timing Bit Timing
Logic Generator
CxTX CxRX

Note: x=1or2

© 2007 Microchip Technology Inc.

DS70070D-page 23-29

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.51 CAN Message Formats

The CAN protocol engine handles all functions for receiving and transmitting messages on the
CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and
errors can be checked by reading the appropriate registers. Any message detected on the CAN
bus is checked for errors and then matched against filters to see if it should be received and
stored in one of the two receive registers.

The CAN Module supports the following frame types:

« Standard Data Frame
« Extended Data Frame
* Remote Frame

¢ Error Frame

* Interframe Space

23.5.1.1 Standard Data Frame

A standard data frame is generated by a node when the node wishes to transmit data. The
standard CAN data frame is shown in Figure 23-3. In common with all other frames, the frame
begins with a Start-Of-Frame bit (SOF-dominant state) for hard synchronization of all nodes.

The SOF is followed by the Arbitration field consisting of 12 bits, the 11-bit identifier (reflecting
the contents and priority of the message) and the Remote Transmission Request bit (RTR bit).
The RTR bit is used to distinguish a data frame (RTR-dominant) from a remote frame.

The next field is the Control field, consisting of 6 bits. The first bit of this field is called the Identifier
Extension (IDE) bit and is at dominant state to specify that the frame is a standard frame. The
following bit is reserved by the CAN protocol, RBO, and defined as a dominant bit. The
remaining 4 bits of the Control field are the Data Length Code (DLC) and specify the number of
bytes of data contained in the message.

The data being sent follows in the Data field which is of the length defined by the DLC above
(0-8 bytes).

The Cyclic Redundancy Check (CRC) field follows and is used to detect possible transmission
errors. The CRC field consists of a 15-bit CRC sequence and a delimiter bit. The message is
completed by the End-Of-Frame (EOF) field, which consists of seven recessive bits with no
bit-stuffing.

The final field is the Acknowledge field. During the ACK Slot bit the transmitting node sends out
a recessive bit. Any node that has received an error free frame acknowledges the correct
reception of the frame by sending back a dominant bit (regardless of whether the node is
configured to accept that specific message or not). The recessive Acknowledge Delimiter
completes the Acknowledge Slot and may not be overwritten by a dominant bit, except when an
error frame occurs.

23.5.1.2 Extended Data Frame

In the extended CAN data frame, as shown in Figure 23-4, the Start-Of-Frame bit (SOF) is
followed by the Arbitration Field consisting of 38 bits. The first 11 bits are the 11 Most Significant
bits of the 29-bit identifier (“Base-ID”). These 11 bits are followed by the Substitute Remote
Request bit (SRR), which is transmitted as recessive. The SRR is followed by the IDE bit which
is recessive to denote that the frame is an extended CAN frame. It should be noted from this, that
if arbitration remains unresolved after transmission of the first 11 bits of the identifier, and one of
the nodes involved in arbitration is sending a standard CAN frame (11-bit identifier), then the
standard CAN frame will win arbitration due to the assertion of a dominant IDE bit. Also, the SRR
bit in an extended CAN frame must be recessive to allow the assertion of a dominant RTR bit by
a node that is sending a standard CAN remote frame. The SRR and IDE bits are followed by the
remaining 18 bits of the identifier (“ID-Extension”) and a dominant RTR bit.

DS70070D-page 23-30

© 2007 Microchip Technology Inc.

Section 23. CAN

To enable standard and extended frames to be sent across a shared network, it is necessary to
split the 29-bit extended message identifier into 11-bit (Most Significant) and 18-bit (Least
Significant) sections. This split ensures that the Identifier Extension bit (IDE) can remain at the
same bit position in both standard and extended frames.

The next field is the Control field, consisting of 6 bits. The first 2 bits of this field are reserved and
are at dominant state. The remaining 4 bits of the Control field are the Data Length Code (DLC)
and specify the number of data bytes.

The remaining portion of the frame (Data field, CRC field, Acknowledge field, End-Of-Frame and
intermission) is constructed in the same way as for a standard data frame.

23.5.1.3 Remote Frame

A data transmission is usually performed on an autonomous basis with the data source node (For
example, a sensor sending out a data frame). It is possible however for a destination node to
request the data from the source. For this purpose, the destination node sends a “remote frame”
with an identifier that matches the identifier of the required data frame. The appropriate data
source node will then send a data frame as a response to this remote request.

There are two differences between a remote frame and a data frame, shown in Figure 23-5. First,
the RTR bit is at the recessive state and second there is no Data field. In the very unlikely event
of a data frame and a remote frame with the same identifier being transmitted at the same time,
the data frame wins arbitration due to the dominant RTR bit following the identifier. In this way,
the node that transmitted the remote frame receives the desired data immediately.

23.5.1.4 The Error Frame

An error frame is generated by any node that detects a bus error. An error frame, shown in
Figure 23-6, consists of 2 fields, an error flag field followed by an Error Delimiter field. The Error
Delimiter consists of 8 recessive bits and allows the bus nodes to restart bus communications
cleanly after an error. There are two forms of error flag fields. The form of the error flag field
depends on the error status of the node that detects the error.

If an error-active node detects a bus error then the node interrupts transmission of the current
message by generating an active error flag. The active error flag is composed of six consecutive
dominant bits. This bit sequence actively violates the bit-stuffing rule. All other stations recognize
the resulting bit-stuffing error and in turn generate error frames themselves, called Error Echo
Flags. The error flag field therefore consists of between six and twelve consecutive dominant bits
(generated by one or more nodes). The Error Delimiter field completes the error frame. After
completion of the error frame, bus activity retains to normal and the interrupted node attempts to
resend the aborted message.

If an error passive node detects a bus error then the node transmits an Error Passive flag
followed, again, by the Error Delimiter field. The Error Passive flag consists of six consecutive
recessive bits. From this it follows that, unless the bus error is detected by the transmitting node
or other error active receiver that is actually transmitting, the transmission of an error frame by
an error passive node will not affect any other node on the network. If the bus master node
generates an error passive flag then this may cause other nodes to generate error frames due
to the resulting bit-stuffing violation. After transmission of an error frame, an error passive node
must wait for 6 consecutive recessive bits on the bus before attempting to rejoin bus
communications.

23.5.1.5 The Interframe Space

Interframe Space separates a proceeding frame (of whatever type) from a following data or
remote frame. Interframe Space is composed of at least 3 recessive bits, called the intermission.
This is provided to allow nodes time for internal processing of the message by receiving nodes
before the start of the next message frame. After the intermission, the bus line remains in the
recessive state (bus idle) until the next transmission starts.

If the transmitting node is in the error passive state, an additional 8 recessive bit times will be
inserted in the Interframe Space before any other message is transmitted by that node. This time
period is called the Suspend Transmit field. The Suspend Transmit field allows additional delay
time for other transmitting nodes to take control of the bus.

© 2007 Microchip Technology Inc. DS70070D-page 23-31

SINPOIN NVO H

Standard Data Frame

dsPIC30F Family Reference Manual

Figure 23-3:

o

S BRBRERR BB

jwisuel)
m_v_mg puedsng | LNI [oweI AUy Buiynis-yg

8 3 Sleung ui paioig

awel sjoway
10 swel4 eyeq

sIayng SAI90SY/NWSUBI] Ul PRIOIS

X
|l «——o0eds swes4-ou] — | - muo” Ww mmm_mwuﬂ
wusT| & | [~ >
eleq % [<e—Jaynuap] —|
e LT LT olelooltelof T T Tl [TLITITLT L
2>
wxwm o)) mmm S mm
swey (T2 Sl - g —> e L >le—3g > [V..,
Jo-pu3 [g R n
.m pIsl4 04O Pial4 Ejed jonuo) plal4 uonegly)
l—/ wl|$\VA| (8SNS)INg ————>|e—9—>ie—— 7L —>3
- = (N 8 + ¥ = SHQ Jo Jaquinu) awe. eyeq >
OLLLL S T L LB LY
5
2 ywsues|
awel slowsy Q) eipisng pusdsng | INI [Bweig Auy
10 awe. eleq mch R g -
3
el|wumnw awel4-Iaju| —p|

© 2007 Microchip Technology Inc.

DS70070D-page 23-32

CAN Module

Section 23. CAN

Extended Data Format

Figure 23-4:

R0 v

o B LY
jwsues|
owel4 sjowey elpisnq | puedsns | IN| [BUEIIAUY
10 dweld eyeq <) ¢ Buiynms-ug
aoedg swel4-1a| SIBYNG SNBOBHAIWISULI] Ul PBIOS P - siYNguIpaIo)g — 5l
@ Bunsyi4
op09 wa - - abessa|y
Eww_wm = 18YJUBP| POPUBIXT ——B= |a— Jounuap] —m-|
Fi
v [ololelofofolefofofolofo]olefofoolefofofolofo] | [TTLLTTL{T I {olofef [TLLTLITTLLITLLTT P ITLITITTT [
535 o 2L 3 &
wmm M0 s &P Sh _
o 2 30l) 8 >{e-X>{e—38 v > |l 8l > | :
10Pu3 nw pleld DD plal4 eyeq _ohﬂ_ho.m pial4 uoneniqiy
L — S 9l (8SNINg—————»la—9 | ze >
- (N 8 + ¥9 = SHq Jo Jaquinu) swel ejeq papualxy -

L B

aIp| shq

awel sjowa
wel sjou 2

JO swel eje

DS70070D-page 23-33

© 2007 Microchip Technology Inc.

dsPIC30F Family Reference Manual

Remote Data Frame

Figure 23-5:

awel4 sjoway
10 swel eyeq

=}

l«—— " ($ = SHQ 4O Jaquinu) swel sjoway

[o[1] : A EEBEEEAAAAAEARAAAEE
i Buiyms-yg
Jlwsuel] - -
TRy A
m_u_NNm:g ol ucme:wV MM_% swel Auy % Amhmt:m_ Ul paioig .
& Buiayiy
[<——o0edg swel4-Joju] —— | ;mﬂ_v_wmv_ m < obessa| -
ERd| T | |—doynuap| —|
172}
r_F_,_:_F_:_X_V______________ Lol [T L
>
23 M0) mmm S mm
awelq aMak Sk > 12 H V@,
Ho-pug Q[plei4 5
Q PRI4 OHO |onuo) plal4 uonenigly o
la—/ 3 N9 7 —>3

\J

0|

AERINID

=

ARBennARAAE

AReanARE!

2
WV
=
.
swel sjoway [H
10 swe.d ejeq [

o
B
@

Jjwsuel]
alp| snq puadsng | LNI

swei] Auy >

< N
N) e

[<——s0edg awel4-1eu| — |

© 2007 Microchip Technology Inc.

DS70070D-page 23-34

Section 23. CAN

CAN Module

Error Frame

Figure 23-6:

[=]

o S BB

—

L

jwsuel)
a|p| snq puadsng | LN
— - 3

€

awel4 sjoway
1o aweld eyeq

l«—— 90EdS SWel4-1o)U] —

awel Auy

——————»

[LI]elole] 5 ofolofo[ofolo
Belq
B >
soeds sweigar | S | o3 | oo s oiouwey
80> 0 Buynis-ig
e—owel4 o] —— p| -
¢ Buusyi4
opoo) w abessa|y
Emmﬂmomw |— Jaliusp| ——-|
L LT ool LTI [
¥
g — e Y >3 VA.\W le—11 p
plot4 o
piel4 eleq |onuo) pioi4 uoneyiqly [
e——(8>N>5)N8 9—»-t 2L —3

swel ejeq paydnuiisul

L

=

AEAnnCCEREE

JadooceE

awel4 sjowsy
10 swel eyeq

Jjlwsuel]
—————
.D., 8|p| snq puadsns | LNI [ewelq Auy
— - 5 > AmV

|l«——o0€dg swel4-19)u| —— |

DS70070D-page 23-35

© 2007 Microchip Technology Inc.

dsPIC30F Family Reference Manual

23.6 CAN Module Operation Modes

The CAN Module can operate in one of several Operation modes selected by the user. These
modes include:

* Normal Operation mode

+ Disable mode

* Loopback mode

* Listen Only mode

» Configuration mode

« Listen to All Messages mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL<10:8>). Entry into a mode is
acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL<7:5>). The module does not
change the mode and the OPMODE bits until a change in mode is acceptable, generally during
bus idle time which is defined as at least 11 consecutive recessive bits.

23.6.1 Normal Operation Mode

Normal Operation mode is selected when REQOP<2:0> =‘000’. In this mode, the module is
activated, the 1/O pins will assume the CAN bus functions. The module will transmit and receive
CAN bus messages as described in subsequent sections.

23.6.2 Disable Mode

The CAN module will not transmit or receive in Disable mode. The module has the ability to set
the WAKIF bit due to bus activity, however any pending interrupts will remain and the error
counters will retain their value.

If the REQOP<2:0> bits (CiCTRL<10:8>) = ‘001’, the module will enter the Module Disable
mode. This mode is similar to disabling other peripheral modules by turning off the module
enables. This causes the module internal clock to stop unless the module is active (i.e., receiving
or transmitting a message). If the module is active, the module will wait for 11 recessive bits
on the CAN bus, detect that condition as an idle bus, then accept the module disable command.
When the OPMODE<2:0> bits (CiICTRL<7:5>) =001’, this indicates that the module
successfully entered Module Disable mode (see Figure 23-7).

The WAKIF interrupt is the only module interrupt that is still active in the Module Disable mode.
If the WAKIE bit (CIINTE<6>) is set, the processor will receive an interrupt whenever the CAN
bus detects a dominant state, as occurs with a Start-Of-Frame (SOF).

The 1/O pins will revert to normal I/O function when the module is in the Module Disable mode.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation
and a transmission is requested immediately after the CAN module has been
placed in that mode of operation, the module waits for 11 consecutive recessive bits
on the bus before starting transmission. If the user switches to Disable Mode within
this 11-bit period, then this transmission is aborted and the corresponding TXABT

bit is set and TXREQ bit is cleared.

DS70070D-page 23-36

© 2007 Microchip Technology Inc.

Section 23. CAN

Figure 23-7: Entering and Exiting Module Disable Mode
0OSC1 . :
REQOP<2:0> 000 >< 001 X 000
OPMODE<2:0> 000 >< 001 >< 000

CAN bus

WAKIF

WAKIE

@@ - Processor writes REQOP<2:0> while module receiving/transmitting message. Module continues with CAN message.
@ - Module detects 11 recessive bits. Module acknowledges Disable mode and sets OPMODE<2:0> bits. Module disables.
(3 - CAN bus message will set WAKIF bit. If WAKIE = 1", processor will vector to the interrupt address. CAN message ignored.
- Processor writes <2:0> during us activity. Module waits for 11 recessive bits before accepting activate.
P ites REQOP<2:0> during CAN b tivity. Modul its for 11 ive bits bef ti tivat
(® - Module detects 11 recessive bits. Module acknowledges Normal mode and sets OPMODE<2:0> bits. Module activates.

CAN Module!
Disabled |

® @ ® ®®

»

23.6.3 Loopback Mode

If the Loopback mode is activated, the module will connect the internal transmit signal to the
internal receive signal at the module boundary. The transmit and receive pins revert to their
PORT 1/O function.

The transmitter will receive an acknowledge for its sent messages. Special hardware will
generate an acknowledge for the transmitter.

23.6.4 Listen Only Mode

Listen Only mode and Loopback modes are special cases of Normal Operation mode to allow
system debug. If the Listen Only mode is activated, the module on the CAN bus is passive. The
transmitter buffers revert to the PORT I/O function. The receive pins remain as inputs to the CAN
module. For the receiver, no error flags or Acknowledge signals are sent. The error counters are
deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the
CAN bus. To use this, it is necessary that there are at least two further nodes that communicate
with each other. The baud rate can be detected empirically by testing different values. This mode
is also useful as a bus monitor without influencing the data traffic.

© 2007 Microchip Technology Inc. DS70070D-page 23-37

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.6.5 Configuration Mode

In the Configuration mode, the module will not transmit or receive. The error counters are cleared
and the interrupt flags remain unchanged. The programmer will have access to configuration
registers that are access restricted in other modes.

After a device Reset the CAN module is in the Configuration mode (OPMODE<2:0>=100’). The
error counters are cleared and all registers contain the Reset values. It should be ensured that
the initialization is performed before REQOP<2> bit is cleared.

The CAN module has to be initialized before its activation. This is only possible if the module is
in the Configuration mode. The Configuration mode is requested by setting the REQOP<2> bit.
Only when the Status bit OPMODE<2> has a high level, the initialization can be performed.
Afterwards the configuration registers and the acceptance mask registers and the acceptance
filter registers can be written. The module is activated by clearing the control bits REQOP<2:0>.

The module will protect the user from accidentally violating the CAN protocol through program-
ming errors. All registers which control the configuration of the module can not be modified while
the module is on-line. The CAN module will not be allowed to enter the Configuration mode while
a transmission is taking place. The Configuration mode serves as a lock to protect the following
registers.

* All Module Control Registers

» Baud Rate and Interrupt Configuration Registers

» Bus Timing Registers

« l|dentifier Acceptance Filter Registers

« Identifier Acceptance Mask Registers

23.6.6 Listen All Messages Mode

Listen All Messages mode is a special case of Normal Operation mode to allow system debug.
If the Listen All Messages mode is activated, the module on the CAN bus is passive. The
transmitter buffers revert to the PORT /O function. The receive pins remain inputs. For the
receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in
this state. The filters are disabled. Receive Buffer 0 will receive any message transferred on the
bus. This mode is useful to record all bus traffic as a bus monitor without influencing the data
traffic.

DS70070D-page 23-38

© 2007 Microchip Technology Inc.

Section 23. CAN

23.7 Message Reception

This subsection describes CAN module message reception.
23.71 Receive Buffers

The CAN bus module has three receive buffers. However, one of the receive buffers is always
committed to monitoring the bus for incoming messages. This buffer is called the Message
Assembly Buffer (MAB). So there are two receive buffers visible, RXBO and RXB1, that can
essentially instantaneously receive a complete message from the protocol engine. The CPU can
be operating on one while the other is available for reception or holding a previously received
message.

The MAB holds the destuffed bit stream from the bus line to allow parallel access to the whole
data or remote frame for the acceptance match test and the parallel transfer of the frame to the
receive buffers. The MAB will assemble all messages received. These messages will be
transferred to the RXBn buffers only if the acceptance filter criterion are met. When a message
is received, the RXnIF flag (CiINTF<0> or CiINRF<1>) will be set. This bit can only be set by the
module when a message is received. The bit is cleared by the CPU when it has completed
processing the message in the buffer. This bit provides a positive lockout to ensure that the CPU
has finished with the message buffer. If the RXnIE bit (CIINTE<O0> or CIINTE<1>) is set, an
interrupt will be generated when a message is received.

There are 2 programmable acceptance filter masks associated with the receive buffers, one for
each buffer.

When the message is received, the FILHIT bits (CIRXOCON<0> for Receive Buffer 0 and
CiRX1CON<2:0> for Receive Buffer 1) indicate the acceptance criterion for the message. The
number of the acceptance filter that enabled the reception will be indicated as well as a Status
bit that indicates that the received message is a remote transfer request.

Note: In the case of Receive Buffer 0, a limited number of Acceptance Filters can be used
to enable a reception. A single bit, FILHITO (CiRXOCON<0>) determines which of
the 2 filters, RXFO or RXF1, enabled the message reception.

© 2007 Microchip Technology Inc. DS70070D-page 23-39

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.7141

To provide flexibility, there are several acceptance filters corresponding to each receive buffer.
There is also an implied priority to the receive buffers. RXBO is the higher priority buffer and has
two message acceptance filters associated with it. RXB1 is the lower priority buffer and has four
acceptance filters associated with it. The lower number of possible acceptance filters makes the
match on RXBO more restrictive and implies the higher priority associated with that buffer.
Additionally, if the RXBO contains a valid message, and another valid message is received, the
RXBO can be set up such that it will not overrun and the new message for RXBO will be placed
into RXB1. Figure 23-8 shows a block diagram of the receive buffer, while Figure 23-9 shows a

Receive Buffer Priority

flow chart of a receive operation.

Figure 23-8: The Receive Buffers
Acceptance Mask
RXM1
Acceptance Filter
RXF2
Acceptance Mask Acceptance Filter
RXMO RXF3 A
c
4 i i
Acceptance Filter Acceptance Filter c
RXFO RXF4 g
v i i i |
c Acceptance Filter Acceptance Filter
e RXF1 RXF5
p
t
A Y
R ” - R
X Identifier Message Identifier X
Assembly
B Buffer B
0 urie 1
Data Field Data Field

DS70070D-page 23-40

© 2007 Microchip Technology Inc.

Section 23. CAN

Figure 23-9: Receive Flowchart

(START

/

Detect
Start of
Message
?
Yes

Y

Begin Loading Message into
Message Assembly Buffer (MAB)

Generate
Error
Frame

for RXBO

Yes, meets criteria

The RXFUL bit determines if the
receive register is empty and
able to accept a new message.

Valid

Message

Received
?

Yes

Yes, meets criteria
Message for R
Identifier meets

a filter criteria
?

No

Go to Start

The DBEN bit determines if
RXBO can roll over into

| Move message into RXBO | ‘

RXB1 if it is full.
Yes _
No
; Generate Overrun Error: | (NO
Generate Overrun Error:
Set RXOOVR | Set RX1OVR

!

| SetRXFUL=1 |

!

| Move message into RXB1 |

Set FILHIT<0>
according to which filter criteria

!

was met | SetRXFUL=1 |
Go to Start Set FILHIT<2:0>
according to which filter criteria
was met
Y
Is D
Yes oes
RXnlE =1 Generate | >
2 Interrupt [~ RX”J’E 1
! Yes ?
No

Set ICODE<3:0> according No
to which receive buffer the

message was loaded into

© 2007 Microchip Technology Inc.

DS70070D-page 23-41

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.7.2 Message Acceptance Filters

The message acceptance filters and masks are used to determine if a message in the message
assembly buffer should be loaded into either of the receive buffers. Once a valid message has
been received into the message assembly buffer, the identifier fields of the message are com-
pared to the filter values. If there is a match, that message will be loaded into the appropriate
receive buffer. The filter masks are used to determine which bits in the identifiers are examined
with the filters. A truth table is shown in Table 23-3 that indicates how each bit in the identifier is
compared to the masks and filters to determine if the message should be loaded into a receive
buffer. The mask bit essentially determines as to which bits to apply the filter to. If any mask bit
is set to a zero, then that bit will automatically be accepted regardless of the filter bit.

Table 23-3: Filter/Mask Truth Table

Mask Bit n Filter Bit n Message Identifier bit | Accept or Reject bit n
0 x x Accept
1 0 0 Accept
1 0 1 Reject
1 1 0 Reject
1 1 1 Accept

Legend: x = don’t care

23.7.2.1 lIdentifier Mode Selection

The EXIDE control bits (CiRXFnSID<0>) and the MIDE control bits (CiRXMnSID<0>) enable an
acceptance filter for standard or extended identifiers. The acceptance filters look at incoming
messages for the RXIDE bit to determine how to compare the identifiers. If the RXIDE bit is clear,
the message is a standard frame. If the RXIDE bit is set, the message is an extended frame.

If the MIDE control bit for the filter is set, then the identifier type for the filter is determined by the
EXIDE control bit for the filter. If the EXIDE control bit is cleared, then the filter will accept
standard identifiers. If the EXIDE bit is set, then the filter will accept extended identifiers. Most
CAN systems will use only standard identifiers or only extended identifiers.

If the MIDE control bit for the filter is cleared, the filter will accept both standard and extended
identifiers if a match occurs with the filter bits. This mode can be used in CAN systems that
support both standard and extended identifiers on the same bus.

23.7.2.2 FILHIT Status Bits

As shown in the Receive Buffers Block Diagram, Figure 23-8, RXF0 and RXF1 filters with the
RXMO mask are associated with RXBO0. The filters RXF2, RXF3, RXF4 and RXF5 and the mask
RXM1 are associated with RXB1. When a filter matches and a message is loaded into the
receive buffer, the number of the filter that enabled the message reception is indicated in the
CiRXnCON register via the FILHIT bits. The CiRX0OCON register contains one FILHIT Status bit
to indicate whether the RXFO or the RXF1 filter enabled the message reception. The CiRX1CON
register contains the FILHIT<2:0> bits. They are coded as shown in Table 23-4.

DS70070D-page 23-42

© 2007 Microchip Technology Inc.

Section 23. CAN

Table 23-4: Acceptance Filter

FILHIT<2:0> Acceptance Filter Comment
0001 RXFO Only if DBEN = 1
001 RXF1 Only if DBEN =1
010 RXF2 —

011 RXF3 —
100 RXF4 —
101 RXF5 —

Note 1: Valid only if the DBEN bit is set.

The DBEN bit (CiIRXOCON<2>) allows the FILHIT bits to distinguish a hit on filter RXFO and
RXF1 in either RXBO or overrun into RXB1.

111 = Acceptance Filter 1 (RXF1)
110 = Acceptance Filter 0 (RXFO0)
001 = Acceptance Filter 1 (RXF1)
000 = Acceptance Filter 0 (RXFO0)

If the DBEN bit is clear, there are 6 codes corresponding to the 6 filters. If the DBEN bit is set,
there are 6 codes corresponding to the 6 filters plus 2 additional codes corresponding to RXFO
and RXF1 filters overrun to RXB1.

If more than 1 acceptance filter matches, the FILHIT bits will encode the lowest binary value of
the filters that matched. In other words, if filter 2 and filter 4 match, FILHIT will code the value
for 2. This essentially prioritizes the acceptance filters with lower numbers having priority.
Figure 23-10 shows a block diagram of the message acceptance filters.

Figure 23-10: Message Acceptance Filter

SINPOIN NVO IE%I

‘ Acceptance Filter Register ‘ ‘ Acceptance Mask Register |
RXMnO
RXFnO D i:
RXMn1 RxRgst

v

RXFn1 ﬁD —@

RXMnh

RXFnn D =5

Message Assembly Buffer
Identifier

© 2007 Microchip Technology Inc. DS70070D-page 23-43

dsPIC30F Family Reference Manual

23.7.3 Receiver Overrun
An overrun condition occurs when the Message Assembly Buffer has assembled a valid received
message, the message is accepted through the acceptance filters, and when the receive buffer
associated with the filter has not been designated as clear of the previous message.
The overrun error flag, RXnOVR (CiINTF<15> or CiINTF<14>) and the ERRIF bit (CiINTF<5>)
will be set and the message in the MAB will be discarded. While in the overrun situation, the
module will stay synchronized with the CAN bus and is able to transmit messages, but it will
discard all incoming messages destined for the overflowed buffer.
If the DBEN bit is clear, RXB1 and RXBO operate independently. When this is the case, a
message intended for RXBO will not be diverted into RXB1 if RXBO contains an unread message
and the RXOOVR bit will be set.
If the DBEN bit is set, the overrun for RXBO is handled differently. If a valid message is received
for RXBO and RXFUL =1 (CiRXOCON<7>) indicating that RXB0 is full, and RXFUL =0
(CiIRX1CON<7>) indicating that RXB1 is empty, the message for RXBO will be loaded into RXB1.
An overrun error will not be generated for RXBO. If a valid message is received for RXB0 and
RXFUL = 1, and RXFUL = 1 indicating that both RXB0 and RXB1 are full, the message will be
lost and an overrun will be indicated for RXB1.
If the DBEN bit is clear, there are six codes corresponding to the six filters. If the DBEN bit is set,
there are six codes corresponding to the six filters plus two additional codes corresponding to
RXFO and RXF1 filters overrun to RXB1. These codes are given in Table 23-5.
Table 23-5: Buffer Reception and Overflow Truth Table
Message | Message
Matches | Matches | RXFULO | RXFUL1 | DBEN Action Results
Filter Filter Bit Bit Bit
Oor1 2,3,4,5
0 0 X X X None No message received
0 1 X 0 X MAB — RXB1 Message for RXB1, RXB1 available
0 1 X 1 X MAB discarded | Message for RXB1, RXB1 full
RX10VR =1
1 0 0 X X MAB — RXBO Message for RXBO, RXBO0 available
1 0 1 X 0 MAB discarded | Message for RXB0, RXBO full,
RX0OVR =1 DBEN not enabled
1 0 1 0 1 MAB — RXB1 Message for RXB0, RXBO full,
DBEN enabled, RXB1 available
1 0 1 1 1 MAB discarded Message for RXB0, RXBO full,
RX10VR =1 DBEN enabled, RXB1 full
1 1 0 X X MAB — RXBO Message for RXB0O and RXB1,
RXBO0 available
1 1 1 X 0 MAB discarded | Message for RXB0 and RXB1,
RX0OVR =1 RXBO full, DBEN not enabled
0 0 X X X None No message received
0 1 X 0 X MAB — RXB1 Message for RXB1, RXB1 available

Legend: x = Don'’tcare

DS70070D-page 23-44

© 2007 Microchip Technology Inc.

Section 23. CAN

23.7.4 Effects of a Reset

Upon any Reset the CAN module has to be initialized. All registers are set according to the Reset
values. The content of a received message is lost. The initialization is discussed in
23.6.5 “Configuration Mode”.

23.7.5 Receive Errors

The CAN module will detect the following receive errors:

» Cyclic Redundancy Check (CRC) Error
* Bit Stuffing Error
 Invalid message receive error

These receive errors do not generate an interrupt. However, the receive error counter is
incremented by one in case one of these errors occur. The RXWAR bit (CiINTF<9>) indicates
that the Receive Error Counter has reached the CPU warning limit of 96 and an interrupt is
generated.

23.7.5.1 Cyclic Redundancy Check (CRC) Error

With the Cyclic Redundancy Check, the transmitter calculates special check bits for the bit
sequence from the start of a frame until the end of the data field. This CRC sequence is
transmitted in the CRC Field. The receiving node also calculates the CRC sequence using the
same formula and performs a comparison to the received sequence. If a mismatch is detected,
a CRC error has occurred and an Error Frame is generated. The message is repeated. The
receive error interrupt counter is incremented by one. An Interrupt will only be generated if the
error counter passes a threshold value.

23.7.5.2 Bit Stuffing Error

If, between the Start -Of-Frame and the CRC Delimiter, 6 consecutive bits with the same polarity
are detected, the bit-stuffing rule has been violated. A bit-stuffing error occurs and an error frame
is generated. The message is repeated. No interrupt will be generated upon this event.

23.7.5.3 Invalid Message Received Error

If any type of error occurs during reception of a message, an error will be indicated by the IVRIF
bit (CiINTF<7>). This bit can be used (optionally with an interrupt) for autobaud detection with
the device in Listen Only mode. This error is not an indicator that any action needs to be taken,
but it does indicate that an error has occurred on the CAN bus.

23.7.5.4 Rules for Modifying the Receive Error Counter

The Receive Error Counter is modified according to the following rules:

* When the receiver detects an error, the Receive Error Counter is incremented by 1, except
when the detected error was a bit error during the transmission of an active error flag.

* When the receiver detects a “dominant” bit as the first bit after sending an error flag, the
Receive Error Counter will be incremented by 8.

« If a receiver detects a bit error while sending an active error flag, the Receive Error Counter
is incremented by 8.

* Any node tolerates up to 7 consecutive “dominant” bits after sending an active error flag or
passive error flag. After detecting the 14th consecutive “dominant” bit (in case of an Active
error flag) or after detecting the 8th consecutive “dominant” bit following a passive error
flag, and after each sequence of eight additional consecutive “dominant” bits, every
transmitter increases its Transmission Error Counter and every receiver increases its
Receive Error Counter by 8.

+ After a successful reception of a message (reception without error up to the ACK slot and
the successful sending of the ACK bit), the Receive Error Counter is decreased by one, if
the Receive Error Counter was between 1 and 127. If the Receive Error Counter was ‘0’, it
will stay ‘0’. If the Receive Error Counter was greater than 127, it will change to a value
between 119 and 127.

© 2007 Microchip Technology Inc. DS70070D-page 23-45

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.7.6 Receive Interrupts
Several Interrupts are linked to the message reception. The receive interrupts can be broken up
into two separate groups:
* Receive Error Interrupts
* Receive interrupts

23.7.6.1 Receive Interrupt

A message has been successfully received and loaded into one of the receive buffers. This
interrupt is activated immediately after receiving the End-Of-Frame (EOF) field. Reading the
RXnlIF flag will indicate which receive buffer caused the interrupt. Figure 23-11 depicts when the
receive buffer interrupt flag RXnIF will be set.

23.7.6.2 Wake-up Interrupt

The Wake-up interrupt sequences are described in Section 23.14.1 “Operation in Sleep
Mode”.

DS70070D-page 23-46 © 2007 Microchip Technology Inc.

Section 23. CAN

Figure 23-11: Receive Buffer Interrupt Flag

L______:

EOF
EOF
EOF
EOF
EOF
EOF
EOF
ACK DELIMITER
ACK SIST BIT
CRCDEL
CRCO
CRCA1
CRC2
CRC3
CRC4
CRC5
CRC6
CRC7
CRC8
CRC9
CRC10
CRCM11
CRC12
CRC13
CRC14
DLCO
DLC1
STUFF
DLC2
DLC3
RBO
IDE
RTR
IDO
ID1
ID2
ID3
ID4
ID5
ID6
ID7
ID8
ID9
ID10
SOF

-

:

Receive Buffer
Interrupt Flag
CAN bit
Timing

CAN bit
Names

© 2007 Microchip Technology Inc. DS70070D-page 23-47

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.7.6.3 Receive Error Interrupts

A receive error interrupt will be indicated by the ERRIF bit (CiINTF<5>). This bit shows that an
error condition occurred. The source of the error can be determined by checking the bits in the
CAN Interrupt Status Register CiINTF. The bits in this register are related to receive and transmit
errors. The following subsequences will show which flags are linked to the receive errors.

23.7.6.3.1 Invalid Message Received Interrupt

If any type of error occurred during reception of the last message, an error will be indicated by
the IVRIF bit (CIINTF<7>). The specific error that occurred is unknown. This bit can be used
(optionally with an interrupt) for autobaud detection with the device in Listen Only mode. This
error is not an indicator that any action needs to be taken, but an indicator that an error has
occurred on the CAN bus.

23.7.6.3.2 Receiver Overrun Interrupt

The RXnOVR bit (CiINTF<15>, CiINTF<14>) indicates that an overrun condition occurred for the
receive buffer. An overrun condition occurs when the Message Assembly Buffer has assembled
a valid received message, the message is accepted through the acceptance filters, however, the
receive buffer associated with the filter is not clear of the previous message. The overflow error
interrupt will be set and the message is discarded. While in the overrun situation, the module will
stay synchronized with the CAN bus and is able to transmit and receive messages.

23.7.6.4 Receiver Warning Interrupt

The RXWAR bit (CiINTF<8>) indicates that the Receive Error Counter has reached the CPU
warning limit of 96. When RXWAR ftransitions from a ‘0’ to a ‘1, it will cause the Error Interrupt
Flag ERRIF to become set. This bit cannot be manually cleared, as it should remain an indicator
that the Receive Error Counter has reached the CPU warning limit of 96. The RXWAR bit will
become clear automatically if the Receive Error Counter becomes less than or equal to 95. The
ERRIF bit can be manually cleared allowing the interrupt service routine to be exited without
affecting the RXWAR bit.

23.7.6.5 Receiver Error Passive

The RXEP bit (CiINTF<11>) indicates that the Receive Error Counter has exceeded the Error
Passive limit of 127 and the module has gone to Error Passive state. When the RXEP bit
transitions from a ‘0’ to a ‘1’, it will cause the error interrupt flag to become set. The RXEP bit
cannot be manually cleared, as it should remain an indicator that the bus is in Error State
Passive. The RXEP bit will become clear automatically if the Receive Error Counter becomes
less than or equal to 127. The ERRIF bit can be manually cleared allowing the interrupt service
routine to be exited without affecting the RXEP bit.

DS70070D-page 23-48

© 2007 Microchip Technology Inc.

Section 23. CAN

23.8 Transmission

This subsection describes how the CAN module is used to transmit CAN messages.
23.8.1 Real Time Communication and Transmit Message Buffering

For an application, to effectively transmit messages in real-time, the CAN nodes must be able to
dominate and hold the bus, assuming that nodes messages are of a high enough priority to win
arbitration on the bus. If a node only has 1 transmission buffer, it must transmit a message, then
release the bus while the CPU reloads the buffer. If a node has two transmission buffers, one
buffer could be transmitting while the second buffer is being reloaded. However, the CPU would
need to maintain tight tracking of the bus activity to ensure that the second buffer is reloaded
before the first message completes.

Typical applications require three transmit message buffers. With three buffers, one buffer can
be transmitting, the second buffer can be ready to transmit as soon as the first is complete, and
the third can be reloaded by the CPU. This eases the burden of the software to maintain
synchronization with the bus (see Figure 23-12).

Additionally, the three buffers allow some degree of prioritizing of the outgoing messages. For
example, the application software may have a message enqueued in the second buffer while it
is working on the third buffer. The application may require that the message going into the third
buffer is of higher importance than the one already enqueued. If only two buffers are available,
the enqueued message would have to be deleted and replaced with the third. The process of
deleting the message may mean losing control of the bus. With three buffers, both the second
and the third message can be enqueued, and the module can be instructed that the third
message is higher priority than the second. The third message will be the next one sent followed
by the second.

23.8.2 Transmit Message Buffers

The CAN module has three Transmit Buffers. Each of the three buffers occupies 14 bytes of data.
Eight of the bytes are the maximum 8 bytes of the transmitted message. Five bytes hold the
standard and extended identifiers and other message arbitration information.

The last byte is a control byte associated with each message. The information in this byte
determines the conditions under which the message will be transmitted and indicates status of
the transmission of the message.

The TXnlIF bit (CiINTF<2>, CiINTF<3>, or CiINTF<4>) will be set and the TXREQ bit
(CiITXnCON<3>) will be clear, indicating that the message buffer has completed a transmission.
The CPU will then load the message buffer with the contents of the message to be sent. At a
minimum, the standard identifier register CiTXnSID must be loaded. If data bytes are present in
the message, the TXBnDm registers are loaded. If the message is to use extended identifiers,
the CiTXnEID register and the EID<5:0> bits (CiTXnDLC<15:10>) are loaded and the TXIDE bit
is set (CiTXnSID<0>).

Prior to sending the message, the user must initialize the TXnIE bit (CIINTE<2>, CiINTE<3> or
CiINTE<4>) to enable or disable an interrupt when the message is sent. The user must also
initialize the transmit priority. Figure 23-12 shows a block diagram of the Transmit Buffers.

© 2007 Microchip Technology Inc. DS70070D-page 23-49

SINPOIN NVO H

dsPIC30F Family Reference Manual

Figure 23-12: Transmit Buffers

TXBO w TXB1 w TXB2 w
oL & 2 oL 2« 2 oL 2« 2
Lu'n_nEEn:E 9] uJ'cEEEmE] uJ'n_nEEn:E 0
n:§4mn_ 2] n:;E_nan_ 0 nc§4mn_ 2]
X X X X w X X X X w X X X X w
= FF = = FF - = [e i el o =
A A A
V‘V
Message
Queue ~
Control - Transmit Byte Sequencer

23.8.3 Transmit Message Priority

Transmit priority is a prioritization within each node of the pending transmittable messages. Prior
to sending the SOF (Start-Of-Frame), the priorities of all buffers ready for transmission are
compared. The Transmit Buffer with the highest priority will be sent first. For example, if Transmit
Buffer 0 has a higher priority setting than Transmit Buffer 1, Buffer O will be sent first. If two buffers
have the same priority setting, the buffer with the highest address will be sent. For example, if
Transmit Buffer 1 has the same priority setting as Transmit Buffer 0, Buffer 1 will be sent first.
There are 4 levels of transmit priority. If TXPRI<1:0> (CiTXnCON<1:0>) for a particular message
buffer is set to ‘11’, that buffer has the highest priority. If TXPRI<1:0> for a particular message
buffer is set to ‘10’ or ‘01’, that buffer has an intermediate priority. If TXPRI<1:0> for a particular
message buffer is ‘00’, that buffer has the lowest priority.

23.8.4 Message Transmission

To initiate transmitting the message, the TXREQ bit (CiTXnCON<3>) must be set. The CAN bus
module resolves any timing conflicts between setting of the TXREQ bit and the SOF time,
ensuring that if the priority was changed, it is resolved correctly before SOF. When TXREQ is set
the TXABT (CiTXnCON<6>), TXLARB (CiTXnCON<5>) and TXERR (CiTXnCON<4>) flag bits
will be cleared by the module.

Setting TXREQ bit does not actually start a message transmission, it flags a message buffer as
enqueued for transmission. Transmission will start when the module detects an available bus for
SOF. The module will then begin transmission on the message which has been determined to
have the highest priority.

If the transmission completes successfully on the first try, the TXREQ bit will clear and an
interrupt will be generated if the TXnlE bit (CIINTE<2>, CIINTE<3>, CiINTE<4>) is set.

If the message fails to transmit, other condition flags will be set and the TXREQ bit will remain
set indicating that the message is still pending for transmission. If the message tried to transmit
but encountered an error condition, the TXERR bit (CiTXnCON<4>) will be set. In this case, the
error condition can also cause an interrupt. If the message tried to transmit but lost arbitration,
the TXLARB bit (CiTXnCON<5>) will be set. In this case, no interrupt is available to signal the
loss of arbitration.

DS70070D-page 23-50

© 2007 Microchip Technology Inc.

Section 23. CAN

23.8.5 Transmit Message Aborting

The system can abort a message by clearing the TXREQ bit associated with each message
buffer. Setting the ABAT bit (CiCTRL<12>) will request an abort of all pending messages (see
Figure 23-14). A queued message is aborted by clearing the TXREQ bit. Aborting a queued
message is illustrated in Figure 23-13. If the message has not yet started transmission, or if the
message started but is interrupted by loss of arbitration or an error; the abort will be processed.
The abort is indicated when the module sets the TXABT bit (CiTXnCON<6>), and the TXnIF flag
is not set.

If the message has started to transmit, it will attempt to transmit the current message fully (see
Figure 23-15). If the current message is transmitted fully, and is not lost to arbitration or an error,
the TXABT bit will not be set, because the message was transmitted successfully. Likewise, if a
message is being transmitted during an abort request, and the message is lost to arbitration (see
Figure 23-16) or an error, the message will not be re-transmitted, and the TXABT bit will be set,
indicating that the message was successfully aborted.

Figure 23-13: Abort Queued Message

@ - Processor sets TXREQ while module receiving/transmitting message. Module continues with CAN message.

@ - Processor clears TXREQ while module looking for 11 recessive bits.
Module aborts pending transmission, sets TXABT bit in 2 clocks.

@ - Another module takes the available transmit slot.

© 2007 Microchip Technology Inc. DS70070D-page 23-51

SINPOIN NVO H

dsPIC30F Family Reference Manual

Figure 23-14: Abort All Messages

CiTX

ABAT

® @ ®
@ - Processor sets TXREQ while module receiving/transmitting message. Module continues with CAN message.

- Processor sets ABAT while module looking for 11 recessive bits. Module clears TXREQ bits.
Module aborts pending transmission, sets TXABT bit.

@ - Another module takes the available transmit slot.

Figure 23-15: Failed Abort During Transmission

CiTX

TXREQ

TXnIF

TXABT l

@ @ ® @
@ - Processor sets TXREQ while module receiving/transmitting message. Module continues with CAN message.
@ - Module detects 11 recessive bits. Module begins transmission of queued message.
@ - Processor clears TXREQ requesting message abort. Abort cannot be acknowledged.

@ - At successful completion of transmission, TXREQ bit remains clear and TXnlIF bit set. TXABT remains clear.

DS70070D-page 23-52 © 2007 Microchip Technology Inc.

Section 23. CAN

Figure 23-16: Loss of Arbitration During Transmission

Y ML
TXREQ ' ! ' ' A

TXnIF l Lo l i
TXLARB N

(@) - Processor sets TXREQ while module inactive. TXLARB bit cleared.

@ - Module in inactive state. Module begins transmission of queued message.

@ - Message loses arbitration. Module releases bus and sets TXLARB bit.

@ - Module waits for 11 recessive bits before re-trying transmission of queued message.
@ - At successful completion of transmission, TXREQ bit cleared and TXnIF bit set.

© 2007 Microchip Technology Inc. DS70070D-page 23-53

SINPOIN NVO H

dsPIC30F Family Reference Manual

Figure 23-17: Transmit Flowchart

Are any

TXREQ

bits = 1
?

No

¢ Yes

Clear: TXABT, TXLARB
and TXERR

The message transmission sequence begins when
the device determines that the TXREQ for any of the
Transmit registers has been set.

Clearing the TXREQ bit while it is set, or setting
the ABAT bit before the message has started
transmission will abort the message.

-

Is
CAN bus available
to start transmission
?

Examine TXPRI<1:0> to
Determine Highest Priority Message

Begin transmission (SOF)|

'

Set TXREQ =0

Y

Yes
Is
TXnlE = 1?

Generate
Interrupt

Mo No Set
message transmitted >———»| _
successfully? TXERR =1

Does
TXLARB =17

Yes

Arbitration lost during
transmission

A message can also be

’/_\ aborted if a message error or

' > Does lost arbitration condition
TXREQ =0 »occurred during transmission.
Set or TXABT =1
TXBUFE =1
The TXnIE bit determines if an
interrupt should be generated when a No v
message is successfully transmitted.
Abort Transmission: Y
Set TXABT =1
\
END

DS70070D-page 23-54

© 2007 Microchip Technology Inc.

Section 23. CAN

23.8.6

23.8.6.1

23.8.6.2

23.8.6.3

23.8.6.4

23.8.6.5

Transmit Boundary Conditions

The module handles transmit commands which are not necessarily synchronized to the CAN bus
message framing time.

Clearing TXREQ bit as a Message Starts

The TXREQ bit can be cleared just when a message is starting transmission, with the intent of
aborting the message. If the message is not being transmitted, the TXABT bit will be set,
indicating that the Abort was successfully processed.

When the user clears the TXREQ bit and the TXABT bit is not set two cycles later, the message
has already begun transmission.

If the message is being transmitted, the abort is not immediately processed, at some point later,
the TXnIF interrupt flag or the TXABT bit is set. If transmission has begun, the message will only
be aborted if either an error or a loss of arbitration occurs.

Setting TXABT bit as a Message Starts

Setting the ABAT bit will abort all pending Transmit Buffers and has the function of clearing all of
the TXREQ bits for all buffers. The boundary conditions are the same as clearing the TXREQ bit.

Clearing TXREQ bit as a Message Completes

The TXREQ bit can be cleared when a message is just about to successfully complete
transmission. Even if the TXREQ bit is cleared by the Data bus a short time before it will be
cleared by the successful transmission of the message, the TXnlIF flag will still be set due to the
successful transmission.

Setting TXABT bit as a Message Completes
The boundary conditions are the same as clearing the TXREQ bit.
Clearing TXREQ bit as a Message Loses Transmission

The TXREQ bit can be cleared when a message is just about to be lost to arbitration or an error.
If the TXREQ signal falls before the loss of arbitration signal or error signal, the result will be like
clearing TXREQ during transmission. When the arbitration is lost or the error is set, the TXABT
bit will be set, as it will see that an error has occurred while transmitting, and that the TXREQ bit
was not set.

If the TXREQ bit falls after the arbitration signal has entered the block, the result will be like
clearing TXREQ during an inactive transmit time. The TXABT bit will be set.

23.8.6.6 Setting TXABT bit as a Message Loses Transmission

23.8.7

The boundary conditions are the same as clearing the TXREQ bit.
Effects of a Reset

Upon any Reset, the CAN module has to be initialized. All registers are set according to the reset
values. The content of a transmitted message is lost. The initialization is discussed in Section
23.6.5 “Configuration Mode”.

© 2007 Microchip Technology Inc. DS70070D-page 23-55

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.8.8 Transmission Errors

The CAN module will detect the following transmission errors:

» Acknowledge Error
* Form Error
 Bit Error

These transmission errors will not necessarily generate an interrupt but are indicated by the
transmission error counter. However, each of these errors will cause the transmission error
counter to be incremented by one. Once the value of the error counter exceeds the value of 96,
the ERRIF (CiINTF<5>) and the TXWAR bit (CiINTF<10>) are set. Once the value of the error
counter exceeds the value of 96 an interrupt is generated and the TXWAR bit in the error flag
register is set.

Figure 23-18 illustrates an example of a transmission error.

Figure 23-18: Error During Transmission
CAN bus ! : |
CiTX : |

/7 | | \
TXnIF Y
TXERR N ./ | |
D @ ® @ ®

(@) - Processor sets TXREQ while module inactive. TXERR bit is cleared.

@ - Module in inactive state. Module begins transmission of queued message.

® - Module detects error during transmission, releases bus and sets TXERR bit.

@ - Module waits for 11 recessive bits before re-trying transmission of queued message.
@ - At successful completion of transmission, TXREQ bit cleared and TXnIF bit set.

23.8.8.1 Acknowledge Error

In the Acknowledge field of a message, the transmitter checks if the Acknowledge Slot (which it
has sent out as a recessive bit) contains a dominant bit. If not, no other node has received the
frame correctly. An acknowledge error has occurred and the message has to be repeated. No
error frame is generated.

23.8.8.2 Form Error

If a transmitter detects a dominant bit in one of the four segments including End-Of-Frame,
Interframe Space, Acknowledge Delimiter or CRC Delimiter; then a form error has occurred and
an error frame is generated. The message is repeated.

23.8.8.3 Bit Error

A bit error occurs if a transmitter sends a dominant bit and detects a recessive bit. In the case
where the transmitter sends a recessive bit and a dominant bit is detected during the Arbitration
field and the Acknowledge Slot, no bit error is generated because normal arbitration is occurring.

DS70070D-page 23-56 © 2007 Microchip Technology Inc.

Section 23. CAN

23.8.8.4 Rules for Modifying the Transmit Error Counter

The Transmit Error Counter is modified according to the following rules:

* When the transmitter sends an error flag the Transmit Error Counter is increased by 8 with
the following exceptions. In these two exceptions, the Transmit Error Counter is not
changed.

- If the transmitter is “error passive” and detects an acknowledgment error because of
not detecting a “dominant” ACK, and does not detect a “dominant” bit while sending a
passive error flag.

- If the transmitter sends an error flag because of a bit-stuffing error occurred during
arbitration whereby the Stuffbit is located before the RTR bit, and should have been
“recessive”, and has been sent as “recessive” but monitored as “dominant”.

« If a transmitter detects a bit error while sending an active error flag, the Transmit Error
Counter is increased by 8.

» Any Node tolerates up to 7 consecutive “dominant” bits after sending an active error flag or
passive error flag. After detecting the 14th consecutive “dominant” bit (in case of an active
error flag) or after detecting the 8th consecutive “dominant” following a passive error flag,
and after each sequence of eight additional consecutive “dominant” bits, every transmitter
increases its Transmission Error Counter and every receiver increases its Receive Error
Counter by 8.

« After the successful transmission of a message (getting an Acknowledge and no error until
End-Of-Frame is finished) the Transmit Error Counter is decreased by one unless it is
already 0.

23.8.9 Transmission Interrupts

There are several interrupts linked to the message transmission. The transmission interrupts can
be broken up into two groups:

* Transmission interrupts
» Transmission error interrupts

23.8.9.1 Transmit Interrupt

At least one of the three transmit buffers is empty (not scheduled) and can be loaded to schedule
a message for transmission. Reading the TXnlIF flags in the CiINTF register will indicate which
transmit buffer is available and caused the interrupt.

© 2007 Microchip Technology Inc. DS70070D-page 23-57

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.8.9.2 Transmission Error Interrupts

A transmission error interrupt will be indicated by the ERRIF flag. This flag shows that an error
condition occurred. The source of the error can be determined by checking the error flags in the
CAN Interrupt Status register CiINTF. The flags in this register are related to receive and transmit
errors.

The TXWAR bit (CiINTF<10>) indicates that the Transmit Error Counter has reached the CPU
warning limit of 96. When this bit transitions from a ‘0’ to a ‘1’, it will cause the error interrupt flag
to become set. The TXWAR bit cannot be manually cleared, as it should remain as an indicator
that the Transmit Error Counter has reached the CPU warning limit of 96. The TXWAR bit will
become clear automatically if the Transmit Error Counter becomes less than or equal to 95. The
ERRIF flag can be manually cleared allowing the interrupt service routine to be exited without
affecting the TXWAR bit.

The TXEP bit (CiINTF<12>) indicates that the Transmit Error Counter has exceeded the Error
Passive limit of 127 and the module has gone to Error Passive state. When this bit transitions
from a ‘0’ to a ‘1’, it will cause the error interrupt flag to become set. The TXEP bit cannot be
manually cleared, as it should remain as an indicator that the bus is in Error Passive state. The
TXEP bit will become clear automatically if the Transmit Error Counter becomes less than or
equal to 127. The ERRIF flag can be manually cleared allowing the interrupt service routine to
be exited without affecting the TXEP bit.

The TXBO bit (CiINTF<13>) indicates that the Transmit Error Counter has exceeded 255 and the
module has gone to bus off state. When this bit transitions froma ‘0’ to a ‘1’, it will cause the error
interrupt flag to become set. The TXBO bit cannot be manually cleared, as it should remain as
an indicator that the bus is off. The ERRIF flag can be manually cleared allowing the interrupt
service routine to be exited without affecting the TXBO bit.

23.9 Error Detection

The CAN protocol provides sophisticated error detection mechanisms. The following errors can
be detected. These errors are either receive or transmit errors.

Receive errors are:

» Cyclic Redundancy Check (CRC) Error (see Section 23.7.5.1 “Cyclic Redundancy
Check (CRC) Error”)

« Bit Stuffing Bit Error (see Section 23.7.5.2 “Bit Stuffing Error”)

* Invalid Message Received Error (see Section 23.7.5.3 “Invalid Message Received
Error”)

The transmit errors are:

» Acknowledge Error (see Section 23.8.8.1 “Acknowledge Error”)
» Form Error (see Section 23.8.8.2 “Form Error”)
 Bit Error (see Section 23.8.8.3 “Bit Error”)

23.9.1 Error States

Detected errors are made public to all other nodes via error frames. The transmission of the
erroneous message is aborted and the frame is repeated as soon as possible. Furthermore, each
CAN node is in one of the three error states “error active”, “error passive” or “bus off” according
to the value of the internal error counters. The error active state is the usual state where the bus
node can transmit messages and active error frames (made of dominant bits) without any
restrictions. In the error passive state, messages and passive error frames (made of recessive
bits) may be transmitted. The bus off state makes it temporarily impossible for the station to
participate in the bus communication. During this state, messages can neither be received nor

transmitted.

DS70070D-page 23-58

© 2007 Microchip Technology Inc.

Section 23. CAN

23.9.2 Error Modes and Error Counters

The CAN controller contains the two error counters Receive Error Counter (RERRCNT) and
Transmit Error Counter (TERRCNT). The values of both counters can be read by the CPU from
the Error Count Register CiEC. These counters are incremented or decremented according to
the CAN bus specification.

The CAN controller is error active if both error counters are below the error passive limit of 128.
Itis error passive if at least one of the error counters equals or exceeds 128. It goes bus off if the
Transmit Error Counter equals or exceeds the bus off limit of 256. The device remains in this
state, until the bus off recovery sequence is finished, which is 128 consecutive 11 recessive bit
times. Additionally, there is an error state warning flag bit, EWARN (CiINTF<8>), which is set if
at least one of the error counters equals or exceeds the error warning limit of 96. EWARN is reset
if both error counters are less than the error warning limit.

Figure 23-19: Error Modes

RERRCNT > 127 or
TERRCNT > 127

128 occurrences of
11 consecutive
“recessive” bits

RERRCNT < 127 or
TERRCNT <127

TERRCNT > 255 .

The values in the error flag register indicate which error(s) caused the error interrupt flag. The
RXnOVR error flags (CiINTF<15> and CiINTF<14>) have a different function than the other error
flag bits in this register. The RXnOVR bits must be cleared in order to clear the ERRIF interrupt
flag. The other error flag bits in this register will cause the ERRIF interrupt flag to become set as
the value of the Transmit and Receive Error Counters crosses a specific threshold. Clearing the
ERRIF interrupt flag in these cases will allow the interrupt service routine to be exited without
recursive interrupt occurring. It is better to disable specific interrupts after they have occurred
once to stop the device from interrupting repeatedly as the Error Counter moves up and down in
the vicinity of a threshold value.

Error
Passive

23.9.3 Error Flag Register

© 2007 Microchip Technology Inc. DS70070D-page 23-59

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.10 CAN Baud Rate

All nodes on any particular CAN bus must have the same nominal bit rate. The CAN bus uses
NRZ coding which does not encode a clock. Therefore the receivers independent clock must be
recovered by the receiving nodes and synchronized to the transmitters clock.

In order to set the baud rate the following bits have to be initialized:

» Synchronization Jump Width (see Section 23.10.6.2 “Re-synchronization”)

» Baud Rate Prescaler (see Section 23.10.2 “Prescaler Setting”)

* Phase Segments (see Section 23.10.4 “Phase Segments”)

» Length Determination of Phase Segment 2 (see Section 23.10.4 “Phase Segments”)
» Sample Point (see Section 23.10.5 “Sample Point”)

» Propagation Segment Bits (see Section 23.10.3 “Propagation Segment”)

23.10.1 Bit Timing

As oscillators and transmission time may vary from node to node, the receiver must have some
type of PLL synchronized to data transmission edges to synchronize and maintain the receiver
clock. Since the data is NRZ coded, it is necessary to include bit-stuffing to ensure that an edge
occurs at least every 6 bit times, to maintain the Digital Phase Lock Loop (DPLL) synchronization.

Bus timing functions executed within the bit time frame, such as synchronization to the local
oscillator, network transmission delay compensation, and sample point positioning, are defined
by the programmable bit timing logic of the DPLL.

All controllers on the CAN bus must have the same baud rate and bit length. However, different
controllers are not required to have the same master oscillator clock. At different clock
frequencies of the individual controllers, the baud rate has to be adjusted by adjusting the
number of time quanta in each segment.

The nominal bit time can be thought of as being divided into separate non-overlapping time
segments. These segments are shown in Figure 23-20.

* Synchronization segment (Sync Seg)

» Propagation time segment (Prop Seg)
* Phase buffer segment 1 (Phase1 Seg)
» Phase buffer segment 2 (Phase2 Seg)

The time segments and also the nominal bit time are made up of integer units of time called time
quanta or TQ. By definition, the nominal bit time has a minimum of 8 Ta and a maximum of 25 Ta.
Also, by definition the minimum nominal bit time is 1 psec, corresponding to a maximum 1 MHz
bit rate.

Figure 23-20: CAN Bit Timing

Input Signal \ /

Phase Phase
Segment 1 Segment 2

Prop
Segment

‘ Sync ‘ Sync ‘

Sample|Point

LT R I I R R R N

DS70070D-page 23-60

© 2007 Microchip Technology Inc.

Section 23. CAN

23.10.2 Prescaler Setting

There is a programmable prescaler, with integral values ranging from 1 to 64, in addition to a
fixed divide-by-2 for clock generation. The Time Quanta (TQ) is a fixed unit of time derived from
the input clock frequency, FCAN. Time quanta is defined as shown in Equation 23-1.

Note: FcaN must not exceed 30 MHz. If CANCKS = 0, then FCcY must not exceed 7.5 MHz.

Equation 23-1: Time Quanta for Clock Generation

2 (BRP<5:0> + 1)
FCAN

T0 =

Where BRP is the binary value of BRP<5:0>
Fcan is Fcy or 4 Fcy depending on CANCKS bit

Example 23-1: Bit Rate Calculation Example

If Fcy = 4 MHz, BRP<5:0> = 0x00 and CANCKS = 0, then:

Ity

To=2+(BRP+1) j

=2x1Xx(1/16x10% = 125ns

If Nominal Bit Time = 8 TQ then:
Nominal Bit Rate = 1/(8 x 125x 10) = 1 Mbps

Example 23-2: Baud Rate Prescaler Calculation Example

CAN Baud Rate = 125 kHz
Fcy =4 MHz, CANCKS =1

1. Select number of TQ clocks per bit time (e.g., K = 16).
2. Calculate TQ from baud rate:

_ 1/(BaudRate) _ 1/125x10°

Tt
© K 16

= 500ns

3. Calculate BRP<5:0>:
To=2+(BRP+ 1)+ TCAN

BRP = —TQ 1
- 2Tcy

_ 500x10”
2x250% 10"
=0

-1=1-1

The frequencies of the oscillators in the different nodes must be coordinated in order to provide
a system-wide specified time quantum. This means that all oscillators must have a Tosc that is
a integral divisor of TQ.

© 2007 Microchip Technology Inc. DS70070D-page 23-61

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.10.3 Propagation Segment

This part of the bit time is used to compensate physical delay times within the network. These
delay times consist of the signal propagation time on the bus line and the internal delay time of
the nodes. The delay is calculated as the round trip from transmitter to receiver as twice the
signal's propagation time on the bus line, the input comparator delay, and the output driver delay.
The Propagation Segment can be programmed from 1 TQ to 8 TQ by setting the PRSEG<2:0>
bits (CICFG2<2:0>).

23.10.4 Phase Segments

The phase segments are used to optimally locate the sampling of the received bit within the
transmitted bit time. The sampling point is between Phase1 Segment and Phase2 Segment.
These segments are lengthened or shortened by re-synchronization. The end of the Phase1
Segment determines the sampling point within a bit period. The segment is programmable from
1Ta to 8 TQ. Phase2 Segment provides delay to the next transmitted data transition. The
segment is programmable from 1 TaQ to 8 TQ or it may be defined to be equal to the greater of
Phase1 Segment or the Information Processing Time (3 TQ’s). The phase segment 1 is initialized
by setting bits SEG1PH<2:0> (CiCFG2<5:3>), and phase segment 2 is initialized by setting
SEG2PH<2:0> (CiCFG2<10:8>).

23.10.5 Sample Point

The sample point is the point of time at which the bus level is read and interpreted as the value
of that respective bit. The location is at the end of phase segment 1. If the bit timing is slow and
contains many TQ, it is possible to specify multiple sampling of the bus line at the sample point.
The level determined by the CAN bus then corresponds to the result from the majority decision
of three values. The majority samples are taken at the sample point and twice before with a
distance of Ta/2. The CAN module allows to choose between sampling three times at the same
point or once at the same point. This is done by setting or clearing the SAM bit (CiCFG2<6>).

23.10.6 Synchronization

To compensate for phase shifts between the oscillator frequencies of the different bus stations,
each CAN controller must be able to synchronize to the relevant signal edge of the incoming
signal. When an edge in the transmitted data is detected, the logic will compare the location of
the edge to the expected time (Synchronous Segment). The circuit will then adjust the values of
Phase1 Segment and Phase2 Segment. There are two mechanisms used to synchronize.

23.10.6.1 Hard Synchronization

Hard Synchronization is only done whenever there is a “recessive” to “dominant” edge during bus
Idle, indicating the start of a message. After hard synchronization, the bit time counters are
restarted with Synchronous Segment. Hard synchronization forces the edge which has caused
the hard synchronization to lie within the synchronization segment of the restarted bit time.
Due to the rules of synchronization, if a hard synchronization is done, there will not be a
re-synchronization within that bit time.

DS70070D-page 23-62

© 2007 Microchip Technology Inc.

Section 23. CAN

23.10.6.2 Re-synchronization

As a result of re-synchronization phase segment 1 may be lengthened or phase segment 2 may
be shortened. The amount of lengthening or shortening of the phase buffer segment, specified
by the SJW<1:0> bits (CiCFG1<7:6>), has an upper bound given by the re-synchronization jump
width bits. The value of the synchronization jump width will be added to phase segment 1 or
subtracted from phase segment 2. The re-synchronization jump width is programmable between
1Taand 4 Ta.

Clocking information will only be derived from transitions of recessive to dominant bus states.
The property that only a fixed maximum number of successive bits have the same value ensures
resynchronizing a bus unit to the bit stream during a frame (e.g., bit-stuffing).

The phase error of an edge is given by the position of the edge relative to Synchronous Segment,
measured in Time Quanta. The phase error is defined in magnitude of TQ as follows:

* e = 0 if the edge lies within the Synchronous Segment.
* e > 0 if the edge lies before the Sample Point.
* e < 0 if the edge lies after the Sample Point of the previous bit.

If the magnitude of the phase error is less than or equal to the programmed value of the
re-synchronization jump width, the effect of a re-synchronization is the same as that of a hard
synchronization.

If the magnitude of the phase error is larger than the re-synchronization jump width, and if the
phase error is positive, then phase segment 1 is lengthened by an amount equal to the
re-synchronization jump width.

If the magnitude of the phase error is larger than the re-synchronization jump width, and if the
phase error is negative, then phase segment 2 is shortened by an amount equal to the
re-synchronization jump width.

Figure 23-21: Lengthening a Bit Period

Input Signal \
Propagation Phase . Phase
‘Sync‘ Segment Segment 1 ‘ <sw ‘ Segment 2 ‘
Sample Nominal Actual Bit
Point Bit Length Length
L A A
Figure 23-22: Shortening a Bit Period
Input Signal
Propagation Phase Phase .
‘Sync| Segment Segment 1 | Segment 2 ‘ ssjw ‘
Sample Actual Nominal
Point Bit Length Bit Length
L N A e

© 2007 Microchip Technology Inc. DS70070D-page 23-63

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.10.7 Programming Time Segments

Some requirements for programming of the time segments are as follows:

* Propagation Segment + Phase1 Segment > = Phase2 Segment
* Phase2 Segment > Synchronous Jump Width

Typically, the sampling of the bit should take place at about 60-70% through the bit time,
depending on the system parameters.

Example 23-2 has a 16 Ta bit time. If we choose Synchronous Segment = 1 Tq and Propagation
Segment = 2 Tq, setting Phase Segment 1 =7 TQ would place the sample point at 10 Ta (62%
of the bit time) after the initial transition. This would leave 6 Ta for phase segment 2.

Since phase segment 2 is 6, according to the rules, the SJWS<1:0> bits could be set to the
maximum of 4 TQ. However, normally a large synchronization jump width is only necessary when
the clock generation of the different nodes is inaccurate or unstable, such as using ceramic
resonators. So a synchronization jump width of 1 is typically enough.

23.11 Interrupts

The module has several sources of interrupts. Each of these interrupts can be individually
enabled or disabled. A CiINTF register contains interrupt flags. A CiINTE register controls the
enabling of the 8 main interrupts. A special set of read only bits in the CiCTRL register
(ICODE<2:0>) can be used in combination with a jump table for efficient handling of interrupts.

All interrupts have one source, with the exception of the error interrupt. Any of the error interrupt
sources can set the error interrupt flag. The source of the error interrupt can be determined by
reading the CiINTF register.

The interrupts can be broken up into two categories: receive and transmit interrupts.
The receive related interrupts are:

* Receive interrupt

* Wake-Up interrupt

» Receiver Overrun interrupt

* Receiver Warning interrupt

» Receiver Error Passive interrupt

The Transmit related interrupts are:

* Transmit interrupt

» Transmitter Warning interrupt

» Transmitter Error Passive interrupt
* Bus Off interrupt

23.11.1 Interrupt Acknowledge

Interrupts are directly associated with one or more status flags in CiINTF register. Interrupts are
pending as long as one of the corresponding flags is set. The flags in the registers must be reset
within the interrupt handler in order to handshake the interrupt. A flag can not be cleared if the
respective condition still prevails, with the exception being interrupts that are caused by a certain
value being reached in one of the error counter registers.

DS70070D-page 23-64

© 2007 Microchip Technology Inc.

Section 23. CAN

23.11.2 The ICODE Bits

The ICODE<2:0> bits (CiCTRL<3:1>) are a set of read only bits designed for efficient handling
of interrupts via a jump table. The ICODE<2:0> bits can only display one interrupt at a time
because the interrupt bits are multiplexed into this register. Therefore, the pending interrupt with
the highest priority and enabled interrupt is reflected in the ICODE<2:0> bits. Once the highest
priority interrupt flag has been cleared, the next highest priority interrupt code is reflected in the
ICODE<2:0> bits. An interrupt code for a corresponding interrupt can only be displayed if both
its interrupt flag and interrupt enable are set. Table 23-6 describes the operation of the
ICODE<2:0> bits.

Table 23-6: ICODE Bits Decode Table

ICODE<2:0> |Boolean Expression
000 ERR « WAK * TX0 » TX1 « TX2 « RX0 + RX1
001 ERR
100 ERR * TX0
011 ERR + TX0 * TX1
010 ERR + TX0 « TX1 * TX2
110 ERR » TX0 « TX1 « TX2 « RX0
101 ERR « TX0 TX1 *« TX2 « RX0 * RX1
111 ERR » TX0 TX1 « TX2 « RX0 *« RX1 » WAK

Legend: ERR =ERRIF « ERRIE
TX0 = TXOIF » TXO0IE
TX1 =TX1IF « TX1IE
TX2 = TX2IF « TX2IE
RX0 = RXOIF « RX0IE
RX1 = RX1IF « RX1IE
WAK = WAKIF » WAKIE

23.12 CAN Capture

The CAN module will generate a signal that can be sent to a timer capture input whenever a valid
frame has been accepted. This is useful for time-stamping and network synchronization.
Because the CAN specification defines a frame to be valid if no errors occurred before the EOF
field has been transmitted successfully, the timer signal will be generated right after the EOF. A
pulse of one bit time is generated.

Time-stamping is enabled by the TSTAMP control bit (CiCTRL<15>). The IC2 capture input is
used for time-stamping.

Note: If the CAN capture is enabled, the IC2 pin becomes unusable as a general input
capture pin. In this mode, the IC2 channel derives its input signal from the C1RX or
C2RX pin instead of the IC2 pin.

23.13 CAN Module 1/0

The CAN bus module communicates on up to 2 I/O pins. There is 1 transmit pin and 1 receive
pin. These pins are multiplexed with normal digital 1/0 functions of the device.

When the module is in the Configuration mode, Module Disable mode or Loopback mode, the
I/O pins revert to the PORT 1/O function.

When the module is active, the CiTX pin (i = 1 or 2) is always dedicated to the CAN output
function. The TRIS bits associated with the transmit pins are overridden by the CAN bus modes.
The module receives the CAN input on the CiRX input pin.

© 2007 Microchip Technology Inc. DS70070D-page 23-65

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.14 Operation in CPU Power Saving Modes

23.14.1 Operation in Sleep Mode

Sleep mode is entered by executing a PWRSAV #0 instruction. This will stop the crystal oscillator
and shut down all system clocks. The user should ensure that the module is not active when the
CPU goes into Sleep mode. The pins will revert into normal 1/O function, dependent on the value
in the TRIS register.

Because the CAN bus is not disruptable, the user must never execute a PWRSAV #0 instruction
while the module is in an Operating mode. The module must first be switched to Disable mode
by setting REQOP<2:0> =001 (CiCTRL<10:8>). When OPMODE<2:0> = 001 (CiCTRL<7:5>),
indicating that Disable mode is achieved, then the Sleep instruction may be used.

Figure 23-23 depicts how the CAN module will behave when the CPU enters Sleep mode and
how the module wakes up on bus activity. When the CPU exits Sleep mode due to activity on the
CAN bus, the WAKIF flag (CiINTF<6>) is set.

The module will monitor the CiRX line for activity while the device is in Sleep mode.

If the device is in Sleep mode and the WAKIE wake-up interrupt enable is set, the module will
generate an interrupt, waking the CPU. Due to the delays in starting up the oscillator and CPU,
the message activity that caused the wake-up will be lost.

If the module is in CPU Sleep mode and the WAKIE is not set, no interrupt will be generated and
the CPU and the CAN module will continue to sleep.

If the CAN module is in Disable mode, the module will wake-up and, depending on the condition
of the WAKIE bit, may generate an interrupt. It is expected that the module will correctly receive
the message that caused the wake-up from Sleep mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while
the module or the CPU is in Sleep mode. This feature can be used to protect the module from
wake-up due to short glitches on the CAN bus lines. Such glitches can result from
electromagnetic inference within noisy environments. The WAKFIL bit (CiCFG2<14>) enables or
disables the filter.

DS70070D-page 23-66

© 2007 Microchip Technology Inc.

Section 23. CAN

Figure 23-23: Processor Sleep and CAN bus Wake-up Interrupt

OSC1 !

REQOP<2:0> 000 X 001 / X 000
OPMODE<2:0> ~ o000 X : 001 | X 000
CAN bus E E I] H | ” E ”

Sleep E E :\ E

WAKIF | i | :

' L Processor in _
. o Sleep o
!) CAN Module .
' : Disabled

® @ ® ® ®

@ - Processor requests and receives Module Disable mode. Wake-up interrupt enabled.

N A

@ - Processor executes SLEEP (PWRSAV #0) instruction.
@ - SOF of message wakes up processor. Oscillator start time begins. CAN message lost. WAKIF bit set.

@ - Processor completes oscillator start time. Processor resumes program or interrupt, based on GIE bits.
Processor requests Normal Operating mode. Module waits for 11 recessive bits before
accepting CAN bus activity. CAN message lost.

@ - Module detects 11 recessive bits. Module will begin to receive messages and transmit any pending messages.

SINPOIN NVO H

23.14.2 CAN Module Operation during CPU Idle Mode

On executing a CPU Idle (PWRSAV #1) instruction, the operation of the CAN module is
determined by the state of the CSIDL bit (CiCTRL<13>).

If CSIDL = 0, the module will continue operation on assertion of Idle mode. The CAN module can
wake the device from Idle mode if the CAN module interrupt is enabled.

If CSIDL = 1, the module will discontinue operation in Idle mode. The same rules and conditions
for entry to and wake from Sleep mode apply. Refer to Section 23.14.1 “Operation in Sleep
Mode” for further details.

© 2007 Microchip Technology Inc. DS70070D-page 23-67

dsPIC30F Family Reference Manual

23.15 CAN Protocol Overview

The Controller Area Network (CAN) is a serial communications protocol which efficiently
supports distributed real-time control with a very high level of robustness. The CAN Protocol is
fully defined by Robert Bosch GmbH, in the CAN Specification V2.0B from 1991.

Its domain of application ranges from high speed networks to low cost multiplex wiring.
Automotive electronics (i.e., engine control units, sensors, anti-skid-systems and so on) are
connected using CAN with bit rates up to 1 Mbit/sec. The CAN Network allows a cost effective
replacement of wiring harnesses in the automobile. The robustness of the bus in noisy
environments and the ability to detect and recover from fault conditions makes the bus suitable
for industrial control applications such as DeviceNet, SDS and other field bus protocols.

CAN is an asynchronous serial bus system with one logical bus line. It has an open, linear bus
structure with equal bus nodes. A CAN bus consists of two or more nodes. The number of nodes
on the bus may be changed dynamically without disturbing the communication of other nodes.
This allows easy connection and disconnection of bus nodes (e.g., for addition of system
function, error recovery or bus monitoring).

The bus logic corresponds to a “wired-AND” mechanism, “recessive” bits (mostly, but not
necessarily equivalent to the logic level ‘1’) are overwritten by “dominant” bits (mostly logic
level ‘0°). As long as no bus node is sending a dominant bit, the bus line is in the recessive state,
but a dominant bit from any bus node generates the dominant bus state. Therefore, for the CAN
bus line, a medium must be chosen that is able to transmit the two possible bit states (dominant
and recessive). One of the most common and cost effective ways is to use a twisted wire pair.
The bus lines are then called “CANH” and “CANL”, and may be connected directly to the nodes,
or via a connector. There is no standard defined by CAN regarding connector requirements. The
twisted wire pair is terminated by terminating resistors at each end of the bus line. The maximum
bus speed is 1 Mbit, which can be achieved with a bus length of up to 40 meters. For bus lengths
longer than 40 meters, the bus speed must be reduced (a 1000 m bus can be realized with a
40 Kb bus speed). For bus lengths above 1000 meters, special drivers should be used. At least
20 nodes may be connected without additional equipment. Due to the differential nature of
transmission, CAN is not inherently susceptible to radiated electromagnetic energy because both
bus lines are affected in the same way, which leaves the differential signal unaffected. The bus
lines may also be shielded to reduce the radiated electromagnetic emission from the bus itself,
especially at high baud rates.

The binary data is coded corresponding to the NRZ code (Non-Return-to-Zero;
low level = dominant state; high level = recessive state). To ensure clock synchronization of all
bus nodes, bit-stuffing is used. This means that during the transmission of a message, a
maximum of five consecutive bits may have the same polarity. Whenever five consecutive bits of
the same polarity have been transmitted, the transmitter will insert one additional bit of the
opposite polarity into the bit stream before transmitting further bits. The receiver also checks the
number of bits with the same polarity and removes the stuff bits from the bit stream (destuffing).

In the CAN protocaol, it is not bus nodes that are addressed. The address information is contained
in the messages that are transmitted. This is done via an identifier (part of each message) which
identifies the message content (e.g., engine speed, oil temperature etc.). This identifier also
indicates the priority of the message. The lower the binary value of the identifier, the higher the
priority of the message.

For bus arbitration, Carrier Sense Multiple Access/Collision Detection (CSMA/CD) with
Non-Destructive Arbitration (NDA) is used. If bus node A wants to transmit a message across the
network, it first checks that the bus is in the Idle state (“Carrier Sense”), (i.e., no node is currently
transmitting). If this is the case (and no other node wishes to start a transmission at the same
moment), node A becomes the bus master and sends its message. All other nodes switch to
Receive mode during the first transmitted bit (Start-Of-Frame bit). After correct reception of the
message (which is Acknowledged by each node), each bus node checks the message identifier
and stores the message, if required. Otherwise, the message is discarded.

DS70070D-page 23-68

© 2007 Microchip Technology Inc.

Section 23. CAN

If two or more bus nodes start their transmission at the same time (“Multiple Access”), collision
of the messages is avoided by bitwise arbitration (“Collision Detection/Non-Destructive
Arbitration” together with the “Wired-AND” mechanism, “dominant” bits override “recessive” bits).
Each node sends the bits of its message identifier (Most Significant bit first) and monitors the bus
level. A node that sends a recessive identifier bit but reads back a dominant one loses bus
arbitration and switches to Receive mode. This condition occurs when the message identifier of
a competing node has a lower binary value (dominant state = logic 0) and therefore, the
competing node is sending a message with a higher priority. In this way, the bus node with the
highest priority message wins arbitration without losing time by having to repeat the message.
All other nodes automatically try to repeat their transmission once the bus returns to the Idle
state. It is not permitted for different nodes to send messages with the same identifier, as
arbitration could fail, leading to collisions and errors later in the message.

The original CAN specifications (Versions 1.0, 1.2 and 2.0A) defined the message identifier as
having a length of 11 bits giving a possible 2048 message identifiers. The specification has since
been updated (to version 2.0B) to remove this limitation. CAN specification Version 2.0B allows
message identifier lengths of 11 and/or 29 bits to be used (an identifier length of 29 bits allows
over 536 million message identifiers). Version 2.0B CAN is also referred to as “Extended CAN”;
and Versions 1.0, 1.2 and 2.0A) are referred to as “Standard CAN".

23.15.1 Standard CAN vs. Extended CAN

Those data frames and remote frames, which only contain the 11-bit identifier, are called
standard frames according to CAN specification V2.0A. With these frames, 2048 different
messages can be identified (identifiers 0-2047). However, the 16 messages with the lowest
priority (2032-2047) are reserved. Extended frames according to CAN specification V2.0B have
a 29-bit identifier. As already mentioned, this 29-bit identifier is made up of the 11-bit identifier
(“Standard ID”) and the 18-bit Extended identifier (‘Extended ID”).

CAN modules specified by CAN V2.0A are only able to transmit and receive standard frames
according to the Standard CAN protocol. Messages using the 29-bit identifier cause errors. If a
device is specified by CAN V2.0B, there is one more distinction. Modules named “Part B Passive”
can only transmit and receive standard frames but tolerate extended frames without generating
error frames. “Part B Active” devices are able to transmit and receive both standard and
extended frames.

23.15.2 1SO Model

The ISO/OSI Reference Model is used to define the layers of protocol of a communication system
as shown in Figure 23-24. At the highest end, the applications need to communicate between
each other. At the lowest end, some physical medium is used to provide electrical signaling.

The higher levels of the protocol are run by software. Within the CAN bus specification, there is
no definition of the type of message, or the contents, or meaning of the messages transferred.
These definitions are made in systems such as Volcano, the Volvo automotive CAN specification
J1939, the U.S. heavy truck multiplex wiring specification; and Allen-Bradley DeviceNet and
Honeywell SDS, industrial protocols.

The CAN bus module definition encompasses two levels of the overall protocol:
* The Data Link Layer

- The Logical Link Control (LLC) sub layer

- The Medium Access Control (MAC) sub layer
» The Physical Layer

- The Physical Signaling (PLS) sub layer

© 2007 Microchip Technology Inc. DS70070D-page 23-69

SINPOIN NVO H

dsPIC30F Family Reference Manual

The LLC sub layer is concerned with Message Filtering, Overload Notification and Error
Recovery Management. The scope of the LLC sub layer is:

» To provide services for data transfer and for remote data request.
» To decide which messages received by the LLC sub layer are actually to be accepted.
» To provide means for error recovery management and overload notifications.

The MAC sub layer represents the kernel of the CAN protocol. The MAC sub layer defines the
transfer protocol, (i.e., controlling the Framing, Performing Arbitration, Error Checking, Error
Signalling and Fault Confinement). It presents messages received from the LLC sub layer and
accepts messages to be transmitted to the LLC sub layer. Within the MAC sub layer is where it's
decided whether the bus is free for starting a new transmission, or whether a reception is just
starting. The MAC sub layer is supervised by a management entity called Fault Confinement
which is a self-checking mechanism for distinguishing short disturbances from permanent
failures. Also, some general features of the bit timing are regarded as part of the MAC sub layer.

The physical layer defines the actual transfer of the bits between the different nodes with respect
to all electrical properties. The PLS sub layer defines how signals are actually transmitted and
therefore deals with the description of Bit Timing, Bit Encoding and Synchronization.

The lower levels of the protocol are implemented in driver/receiver chips and the actual interface
such as twisted pair wiring or optical fiber and so on. Within one network, the physical layer has
to be the same for all nodes. The driver/receiver characteristics of the physical layer are not
defined in the CAN specification so as to allow transmission medium and signal level
implementations to be optimized for their application. The most common example of the physical
transmission medium is defined in Road Vehicles ISO11898, a multiplex wiring specification.

DS70070D-page 23-70

© 2007 Microchip Technology Inc.

Section 23. CAN

Figure 23-24: CAN Bus in ISO/OSI Reference Model

OSI REFERENCE LAYERS

Application

Presentation

Session

Transport

Network

Error Detection
Error Signalling
Acknowledgment

Data Link Layer

LLC (Logical Link Control)
Acceptance Filtering
Overload Notification
Recovery Management

MAC (Medium Access Control)
Data Encapsulation/Decapsulation
Frame Coding (stuffing, destuffing)
Medium Access Management

Serialization/Deserialization

Supervisor

Bit Timing
Synchronization

At

Physical Layer

PLS (Physical Signalling)
Bit Encoding/Decoding

PMA (Physical Medium Attachment)
Driver/Receiver Characteristics

A

Fault
Confinement

Shaded Regions
Implemented by
the CAN Module

Has to be Implemented
in dsPIC30F Firmware

CAN

Transceiver
Chip

Y

Bus Failure
Management

© 2007 Microchip Technology Inc.

DS70070D-page 23-71

SINPOIN NVO H

dsPIC30F Family Reference Manual

23.16 Related Application Notes

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC30F Product Family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the CAN module are:

Title Application Note #
An Introduction to the CAN Protocol AN713

Note: Please visit the Microchip web site (www.microchip.com) for additional Application
Notes and code examples for the dsPIC30F Family of devices.

DS70070D-page 23-72

© 2007 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com

Section 23. CAN

23.17 Revision History
Revision A
This is the initial released revision of this document.
Revision B
This revision incorporates additional technical content for the dsPIC30F CAN module.
Revision C
This revision incorporates all known errata at the time of this document update.
Revision D

This revision incorporates changes to Example 23-1: “Bit Rate Calculation Example” and
Figure 23-2: “CAN Buffers and Protocol Engine Block Diagram” as well as minor changes
to the document text.

© 2007 Microchip Technology Inc. DS70070D-page 23-73

SINPOIN NVO H

dsPIC30F Family Reference Manual

NOTES:

DS70070D-page 23-74 © 2007 Microchip Technology Inc.

	Section 23. CAN Module
	Highlights
	23.1 Introduction
	Figure 23-1: CAN Bus Network

	23.2 Control Registers for the CAN Module
	23.2.1 CAN Control and Status Registers
	Register 23-1: CiCTRL: CAN Module Control and Status Register
	Register 23-1: CiCTRL: CAN Module Control and Status Register (Continued)

	23.2.2 CAN Transmit Buffer Registers
	Register 23-2: CiTXnCON: Transmit Buffer Status and Control Register
	Register 23-3: CiTXnSID: Transmit Buffer n Standard Identifier
	Register 23-4: CiTXnEID: Transmit Buffer n Extended Identifier
	Register 23-5: CiTXnDLC: Transmit Buffer n Data Length Control
	Register 23-6: CiTXnBm: Transmit Buffer n Data Field Word m

	23.2.3 CAN Receive Buffer Registers
	Register 23-7: CiRX0CON: Receive Buffer 0 Status and Control Register
	Register 23-8: CiRX1CON: Receive Buffer 1 Status and Control Register
	Register 23-9: CiRXnSID: Receive Buffer n Standard Identifier
	Register 23-10: CiRXnEID: Receive Buffer n Extended Identifier
	Register 23-11: CiRXnBm: Receive Buffer n Data Field Word m
	Register 23-12: CiRXnDLC: Receive Buffer n Data Length Control

	23.2.4 Message Acceptance Filters
	Register 23-13: CiRXFnSID: Acceptance Filter n Standard Identifier
	Register 23-14: CiRXFnEIDH: Acceptance Filter n Extended Identifier High
	Register 23-15: CiRXFnEIDL: Acceptance Filter n Extended Identifier Low

	23.2.5 Acceptance Filter Mask Registers
	Register 23-16: CiRXMnSID: Acceptance Filter Mask n Standard Identifier
	Register 23-17: CiRXMnEIDH: Acceptance Filter Mask n Extended Identifier High
	Register 23-18: CiRXMnEIDL: Acceptance Filter Mask n Extended Identifier Low

	23.2.6 CAN Baud Rate Registers
	Register 23-19: CiCFG1: Baud Rate Configuration Register 1
	Register 23-20: CiCFG2: Baud Rate Configuration Register 2

	23.2.7 CAN Module Error Count Register
	Register 23-21: CiEC: Transmit/Receive Error Count

	23.2.8 CAN Interrupt Registers
	Register 23-22: CiINTE: Interrupt Enable Register
	Register 23-23: CiINTF: Interrupt Flag Register

	23.3 Register Maps
	Table 23-1: CAN1 Register Map
	Table 23-2: CAN2 Register Map

	23.4 CAN Module Features
	23.5 CAN Module Implementation
	Figure 23-2: CAN Buffers and Protocol Engine Block Diagram
	23.5.1 CAN Message Formats
	23.5.1.1 Standard Data Frame
	23.5.1.2 Extended Data Frame
	23.5.1.3 Remote Frame
	23.5.1.4 The Error Frame
	23.5.1.5 The Interframe Space
	Figure 23-3: Standard Data Frame
	Figure 23-4: Extended Data Format
	Figure 23-5: Remote Data Frame
	Figure 23-6: Error Frame

	23.6 CAN Module Operation Modes
	23.6.1 Normal Operation Mode
	23.6.2 Disable Mode
	Figure 23-7: Entering and Exiting Module Disable Mode

	23.6.3 Loopback Mode
	23.6.4 Listen Only Mode
	23.6.5 Configuration Mode
	23.6.6 Listen All Messages Mode

	23.7 Message Reception
	23.7.1 Receive Buffers
	23.7.1.1 Receive Buffer Priority
	Figure 23-8: The Receive Buffers
	Figure 23-9: Receive Flowchart

	23.7.2 Message Acceptance Filters
	Table 23-3: Filter/Mask Truth Table
	23.7.2.1 Identifier Mode Selection
	23.7.2.2 FILHIT Status Bits
	Table 23-4: Acceptance Filter
	Figure 23-10: Message Acceptance Filter

	23.7.3 Receiver Overrun
	Table 23-5: Buffer Reception and Overflow Truth Table

	23.7.4 Effects of a Reset
	23.7.5 Receive Errors
	23.7.5.1 Cyclic Redundancy Check (CRC) Error
	23.7.5.2 Bit Stuffing Error
	23.7.5.3 Invalid Message Received Error
	23.7.5.4 Rules for Modifying the Receive Error Counter

	23.7.6 Receive Interrupts
	23.7.6.1 Receive Interrupt
	23.7.6.2 Wake-up Interrupt
	Figure 23-11: Receive Buffer Interrupt Flag

	23.7.6.3 Receive Error Interrupts
	23.7.6.3.1 Invalid Message Received Interrupt
	23.7.6.3.2 Receiver Overrun Interrupt

	23.7.6.4 Receiver Warning Interrupt
	23.7.6.5 Receiver Error Passive

	23.8 Transmission
	23.8.1 Real Time Communication and Transmit Message Buffering
	23.8.2 Transmit Message Buffers
	Figure 23-12: Transmit Buffers

	23.8.3 Transmit Message Priority
	23.8.4 Message Transmission
	23.8.5 Transmit Message Aborting
	Figure 23-13: Abort Queued Message
	Figure 23-14: Abort All Messages
	Figure 23-15: Failed Abort During Transmission
	Figure 23-16: Loss of Arbitration During Transmission
	Figure 23-17: Transmit Flowchart

	23.8.6 Transmit Boundary Conditions
	23.8.6.1 Clearing TXREQ bit as a Message Starts
	23.8.6.2 Setting TXABT bit as a Message Starts
	23.8.6.3 Clearing TXREQ bit as a Message Completes
	23.8.6.4 Setting TXABT bit as a Message Completes
	23.8.6.5 Clearing TXREQ bit as a Message Loses Transmission
	23.8.6.6 Setting TXABT bit as a Message Loses Transmission

	23.8.7 Effects of a Reset
	23.8.8 Transmission Errors
	Figure 23-18: Error During Transmission
	23.8.8.1 Acknowledge Error
	23.8.8.2 Form Error
	23.8.8.3 Bit Error
	23.8.8.4 Rules for Modifying the Transmit Error Counter

	23.8.9 Transmission Interrupts
	23.8.9.1 Transmit Interrupt
	23.8.9.2 Transmission Error Interrupts

	23.9 Error Detection
	23.9.1 Error States
	23.9.2 Error Modes and Error Counters
	Figure 23-19: Error Modes

	23.9.3 Error Flag Register

	23.10 CAN Baud Rate
	23.10.1 Bit Timing
	Figure 23-20: CAN Bit Timing

	23.10.2 Prescaler Setting
	23.10.3 Propagation Segment
	23.10.4 Phase Segments
	23.10.5 Sample Point
	23.10.6 Synchronization
	23.10.6.1 Hard Synchronization
	23.10.6.2 Re-synchronization
	Figure 23-21: Lengthening a Bit Period
	Figure 23-22: Shortening a Bit Period

	23.10.7 Programming Time Segments

	23.11 Interrupts
	23.11.1 Interrupt Acknowledge
	23.11.2 The ICODE Bits
	Table 23-6: ICODE Bits Decode Table

	23.12 CAN Capture
	23.13 CAN Module I/O
	23.14 Operation in CPU Power Saving Modes
	23.14.1 Operation in Sleep Mode
	Figure 23-23: Processor Sleep and CAN bus Wake-up Interrupt

	23.14.2 CAN Module Operation during CPU Idle Mode

	23.15 CAN Protocol Overview
	23.15.1 Standard CAN vs. Extended CAN
	23.15.2 ISO Model
	Figure 23-24: CAN Bus in ISO/OSI Reference Model

	23.16 Related Application Notes
	23.17 Revision History
	Revision A
	Revision B
	Revision C
	Revision D

