
Section 4. Program Memory
P
ro

g
ram

M
em

o
ry

4

HIGHLIGHTS

This section of the manual contains the following topics:

4.1 Program Memory Address Map ..................................................................................... 4-2

4.2 Program Counter ........................................................................................................... 4-4
4.3 Data Access from Program Memory.............................................................................. 4-4
4.4 Program Space Visibility from Data Space .................................................................... 4-8

4.5 Program Memory Writes .............................................................................................. 4-10
4.6 PSV Code Examples ................................................................................................... 4-11
4.7 Related Application Notes............................................................................................ 4-12

4.8 Revision History ........................................................................................................... 4-13
© 2005 Microchip Technology Inc. DS70051D-page 4-1



dsPIC30F Family Reference Manual
4.1  Program Memory Address Map

The dsPIC30F devices have a 4M x 24-bit program memory address space, shown in Figure 4-1.
There are three available methods for accessing program space. 

1. Via the 23-bit PC.
2. Via table read (TBLRD) and table write (TBLWT) instructions.

3. By mapping a 32-Kbyte segment of program memory into the data memory address
space.

The program memory map is divided into the user program space and the user configuration
space. The user program space contains the Reset vector, interrupt vector tables, program
memory and data EEPROM memory. The user configuration space contains non-volatile
configuration bits for setting device options and the device ID locations.
DS70051D-page 4-2 © 2005 Microchip Technology Inc.



Section 4. Program Memory
P

ro
g

ram
M

em
o

ry

4

Figure 4-1: Example Program Space Memory Map

Note: The address boundaries for user Flash program memory and data EEPROM memory will depend on the dsPIC30F device variant
that is selected. Refer to the appropriate device data sheet for further details.

Reset - Target Address

U
se

r 
M

em
or

y
S

pa
ce

000000

00007E

Level 15 Trap Vector
000002

000080

Device Configuration

User Flash
Program Memory

018000

017FFE

C
on

fig
ur

at
io

n 
M

em
or

y
S

pa
ce

Data EEPROM

Level 14 Trap Vector
Level 13 Trap Vector
Level 12 Trap Vector
Level 11 Trap Vector
Level 10 Trap Vector
Level 9 Trap Vector
Level 8 Trap Vector
Interrupt 0 Vector
Interrupt 1 Vector

Interrupt 52 Vector
Interrupt 53 Vector

(48K Instructions)

(4 Kbytes)

800000

F80000
Registers F8000E

F80010

DEVID (2)

FEFFFE

FF0000
FFFFFE

Reserved
F7FFFE

Reserved

7FF000

7FEFFE
(Read 0’s)

8005FE

800600

UNITID

000014

Interrupt Vector Table

8005BE

8005C0

Reset - GOTO Instruction

000004

Reserved

7FFFFE

Reserved

000100

0000FE

000084

Reserved

Level 15 Trap Vector
Level 14 Trap Vector
Level 13 Trap Vector
Level 12 Trap Vector
Level 11 Trap Vector
Level 10 Trap Vector
Level 9 Trap Vector
Level 8 Trap Vector
Interrupt 0 Vector
Interrupt 1 Vector

Interrupt 52 Vector
Interrupt 53 Vector

000082

Alternate Interrupt Vector Table
© 2005 Microchip Technology Inc. DS70051D-page 4-3



dsPIC30F Family Reference Manual
4.2  Program Counter

The PC increments by 2 with the LSb set to ‘0’ to provide compatibility with data space
addressing. Sequential instruction words are addressed in the 4M program memory space by
PC<22:1>. Each instruction word is 24-bits wide. 

The LSb of the program memory address (PC<0>) is reserved as a byte select bit for program
memory accesses from data space that use Program Space Visibility or table instructions. For
instruction fetches via the PC, the byte select bit is not required. Therefore, PC<0> is always set
to ‘0’.

An instruction fetch example is shown in Figure 4-2. Note that incrementing PC<22:1> by one is
equivalent to adding 2 to PC<22:0>.

Figure 4-2: Instruction Fetch Example

4.3  Data Access from Program Memory

There are two methods by which data can be transferred between the program memory and data
memory spaces: via special table instructions, or through the remapping of a 32-Kbyte program
space page into the upper half of data space. The TBLRDL and TBLWTL instructions offer a direct
method of reading or writing the LSWord of any address within program space without going
through data space, which is preferable for some applications. The TBLRDH and TBLWTH
instructions are the only method whereby the upper 8-bits of a program word can be accessed
as data.

22 0

Program Counter 0

0x000000

0x7FFFFE

24-bits

In
st

ru
ct

io
n

Instruction
23

+1(1) 

Note 1: Increment of PC<22:1> is equivalent to PC<22:0>+2.

2423 User
Space

La
tc

h

DS70051D-page 4-4 © 2005 Microchip Technology Inc.



Section 4. Program Memory
P

ro
g

ram
M

em
o

ry

4

4.3.1 Table Instruction Summary

A set of table instructions is provided to move byte or word-sized data between program space
and data space. The table read instructions are used to read from the program memory space
into data memory space. The table write instructions allow data memory to be written to the
program memory space. 

The four available table instructions are listed below:

• TBLRDL: Table Read Low

• TBLWTL: Table Write Low
• TBLRDH: Table Read High
• TBLWTH: Table Write High

For table instructions, program memory can be regarded as two 16-bit word wide address spaces
residing side by side, each with the same address range as shown in Figure 4-3. This allows
program space to be accessed as byte or aligned word addressable, 16-bit wide, 64-Kbyte pages
(i.e., same as data space).

TBLRDL and TBLWTL access the LS Data Word of the program memory, and TBLRDH and
TBLWTH access the upper word. As program memory is only 24-bits wide, the upper byte from
this latter space does not exist, though it is addressable. It is, therefore, termed the ‘phantom’
byte.

Figure 4-3: High and Low Address Regions for Table Operations

Note: Detailed code examples using table instructions can be found in Section 5. “Flash
and EEPROM Programming”.

0816PC Address

0x000100

0x000102

0x000104

0x000106

23

00000000

00000000

00000000

00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

‘HIGH’ Table Address Range ‘LOW’ Table Address Range
© 2005 Microchip Technology Inc. DS70051D-page 4-5



dsPIC30F Family Reference Manual
4.3.2 Table Address Generation

For all table instructions, a W register address value is concatenated with the 8-bit Data Table
Page register, TBLPAG, to form a 23-bit effective program space address plus a byte select bit,
as shown in Figure 4-4. As there are 15 bits of program space address provided from the
W register, the data table page size in program memory is, therefore, 32K words. 

Figure 4-4: Address Generation for Table Operations 

4.3.3 Program Memory Low Word Access

The TBLRDL and TBLWTL instructions are used to access the lower 16 bits of program memory
data. The LSb of the W register address is ignored for word-wide table accesses. For byte-wide
accesses, the LSb of the W register address determines which byte is read. Figure 4-5
demonstrates the program memory data regions accessed by the TBLRDL and TBLWTL
instructions.

Figure 4-5: Program Data Table Access (LSWord)

TBLPAG

8 bits from TBLPAG

EA

EA<0> Selects Byte

24-bit EA

TBLPAG<7> Selects
User/Configuration
Space

01507

16 bits from Wn

0816PC Address

0x000100

0x000102

0x000104

0x000106

23

00000000

00000000

00000000

00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

TBLRDL.W

TBLRDL.B (Wn<0> = 1)

TBLRDL.B (Wn<0> = 0)
DS70051D-page 4-6 © 2005 Microchip Technology Inc.



Section 4. Program Memory
P

ro
g

ram
M

em
o

ry

4

4.3.4 Program Memory High Word Access

The TBLRDH and TBLWTH instructions are used to access the upper 8 bits of the program
memory data. These instructions also support Word or Byte Access modes for orthogonality, but
the high byte of the program memory data will always return ‘0’, as shown in Figure 4-6. 

Figure 4-6: Program Data Table Access (MS Byte)

4.3.5 Data Storage in Program Memory

It is assumed that for most applications, the high byte (P<23:16>) will not be used for data,
making the program memory appear 16-bits wide for data storage. It is recommended that the
upper byte of program data be programmed either as a NOP, or as an illegal opcode value, to
protect the device from accidental execution of stored data. The TBLRDH and TBLWTH
instructions are primarily provided for array program/verification purposes and for those
applications that require compressed data storage.

0816PC Address

0x000100

0x000102

0x000104

0x000106

23

00000000

00000000

00000000

00000000

Program Memory
‘Phantom’ Byte
(Read as ‘0’)

TBLRDH.W

TBLRDH.B (Wn<0> = 1)

TBLRDH.B (Wn<0> = 0)
© 2005 Microchip Technology Inc. DS70051D-page 4-7



dsPIC30F Family Reference Manual
4.4  Program Space Visibility from Data Space

The upper 32 Kbytes of the dsPIC30F data memory address space may optionally be mapped
into any 16K word program space page. This mode of operation is called Program Space
Visibility (PSV) and provides transparent access of stored constant data from X data space
without the need to use special instructions (i.e., TBLRD, TBLWT instructions).

4.4.1 PSV Configuration

Program Space Visibility is enabled by setting the PSV bit (CORCON<2>). A description of the
CORCON register can be found in Section 2. “CPU”.

When PSV is enabled, each data space address in the upper half of the data memory map will
map directly into a program address (see Figure 4-7). The PSV window allows access to the
lower 16 bits of the 24-bit program word. The upper 8 bits of the program memory data should
be programmed to force an illegal instruction, or a NOP, to maintain machine robustness. Note
that table instructions provide the only method of reading the upper 8 bits of each program
memory word.

Figure 4-8 shows how the PSV address is generated. The 15 LSbs of the PSV address are
provided by the W register that contains the effective address. The MSb of the W register is not
used to form the address. Instead, the MSb specifies whether to perform a PSV access from
program space or a normal access from data memory space. If a W register effective address of
0x8000 or greater is used, the data access will occur from program memory space when PSV
is enabled. All accesses will occur from data memory when the W register effective address is
less than 0x8000.

The remaining address bits are provided by the PSVPAG register (PSVPAG<7:0>), as shown in
Figure 4-8. The PSVPAG bits are concatenated with the 15 LSbs of the W register, holding the
effective address to form a 23-bit program memory address. PSV can only be used to access
values in program memory space. Table instructions must be used to access values in the user
configuration space.

The LSb of the W register value is used as a byte select bit, which allows instructions using PSV
to operate in Byte or Word mode. 

4.4.2 PSV Mapping with X and Y Data Spaces

The Y data space is located outside of the upper half of data space for most dsPIC30F variants,
such that the PSV area will map into X data space. The X and Y mapping will have an effect on
how PSV is used in algorithms.

As an example, the PSV mapping can be used to store coefficient data for Finite Impulse
Response (FIR) filter algorithms. The FIR filter multiplies each value of a data buffer containing
historical filter input data with elements of a data buffer that contains constant filter coefficients.
The FIR algorithm is executed using the MAC instruction within a REPEAT loop. Each iteration of
the MAC instruction pre-fetches one historical input value and one coefficient value to be
multiplied in the next iteration. One of the pre-fetched values must be located in X data memory
space and the other must be located in Y data memory space.

To satisfy the PSV mapping requirements for the FIR filter algorithm, the user must locate the
historical input data in the Y memory space and the filter coefficients in X memory space.
DS70051D-page 4-8 © 2005 Microchip Technology Inc.



Section 4. Program Memory
P

ro
g

ram
M

em
o

ry

4

Figure 4-7: Program Space Visibility Operation

Figure 4-8: Program Space Visibility Address Generation

23 15 0

PSVPAG

EA<15> = 1

Data Space

Program Space

8

15 23

0x0000

0x8000

0xFFFF

0x01

0x008000

Data Read

Upper 8 bits of Program
Memory Data cannot be
read using Program Space
Visibility.

0x000100

0x017FFF

23 bits

1

PSVPAG Reg

8 bits

Wn

15 bits

Select

23-bit EA

 Wn<0> is Byte Select
© 2005 Microchip Technology Inc. DS70051D-page 4-9



dsPIC30F Family Reference Manual
4.4.3 PSV Timing

Instructions that use PSV will require two extra instruction cycles to complete execution, except
the following instructions that require only one extra cycle to complete execution:

- The MAC class of instructions with data pre-fetch operands

- All MOV instructions including the MOV.D instruction

The additional instruction cycles are used to fetch the PSV data on the program memory bus. 

4.4.3.1    Using PSV in a Repeat Loop

Instructions that use PSV within a REPEAT loop eliminate the extra instruction cycle(s) required
for the data access from program memory, hence incurring no overhead in execution time.
However, the following iterations of the REPEAT loop will incur an overhead of two instruction
cycles to complete execution:

- The first iteration

- The last iteration
- Instruction execution prior to exiting the loop due to an interrupt
- Instruction execution upon re-entering the loop after an interrupt is serviced

4.4.3.2    PSV and Instruction Stalls

Refer to Section 2. “CPU” for more information about instruction stalls using PSV.

4.5  Program Memory Writes

The dsPIC30F family of devices contains internal program Flash memory for executing user
code. There are two methods by which the user can program this memory:

1. Run-Time Self Programming (RTSP)
2. In-Circuit Serial Programming™ (ICSP™)

RTSP is accomplished using TBLWT instructions. ICSP is accomplished using the SPI interface
and integral bootloader software. Refer to Section 5. “Flash and EEPROM Programming” for
further details about RTSP. ICSP specifications can be downloaded from the Microchip
Technology web site (www.microchip.com).
DS70051D-page 4-10 © 2005 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com


Section 4. Program Memory
P

ro
g

ram
M

em
o

ry

4

4.6  PSV Code Examples

4.6.1 PSV Code Example in C:

// PSV code example in C
// When defined as below the const string uses the PSV feature of dsPIC

const unsigned char hello[] = {"Hello World:\r\n"};
unsigned char *TXPtr; // Transmit pointer 

int main(void)
{
// Initialize the UART1   
 U1MODE = 0x8000;
 U1STA = 0x0000;
 U1BRG = ((FCY/16)/BAUD) - 1; // set baud rate = BAUD
 TXPtr = &hello[0]; // point to first char in string
 U1STAbits.UTXEN = 1; // Initiate transmission
while (1)

{
while (*TXPtr) // while valid char in string ... 

if (!U1STAbits.UTXBF) // and buffer not full ...
U1TXREG = *TXPtr++; // transmit string via UART

 
DelayNmSec(500); // delay for 500 mS

 TXPtr = &hello[0]; // re-initialize pointer to first char
}

}   // end main

4.6.2 PSV code Example in Assembly:

.equ CORCONL, CORCON
.section  .const, "r"

hello:
.ascii "Hello World:\n\r\0"

  .global __reset ;Declare the label for the start of code
 

.text ;Start of Code section

__reset:       

clr U1STA
mov #0x8000,W0 ; enable UART module
mov W0,U1MODE
mov #BR,W0 ; set baudrate using formula value
mov W0, U1BRG ; /
bset U1STA,#UTXEN ; initiate transmission

Again:
rcall Delay500mSec ; delay for 500 mS
mov #psvpage(hello),w0
mov w0, PSVPAG
bset.b CORCONL,#PSV
mov #psvoffset(hello),w0

TxSend:
mov.b [w0++], w1 ; get char in string
cp w1,#0 ; if Null
bra Z,Again ; then re-initialize

BufferTest:
btsc U1STA,#UTXBF ; see if buffer full
bra BufferTest ; wait till empty
mov w1,U1TXREG ; load value in TX buffer
bra TxSend ; repeat for next char.
© 2005 Microchip Technology Inc. DS70051D-page 4-11



dsPIC30F Family Reference Manual
4.7  Related Application Notes

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the dsPIC30F Product Family, but the
concepts are pertinent and could be used with modification and possible limitations. The current
application notes related to the Program Memory module are:

Title Application Note #

No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional Application
Notes and code examples for the dsPIC30F Family of devices.
DS70051D-page 4-12 © 2005 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com


Section 4. Program Memory
P

ro
g

ram
M

em
o

ry

4

4.8  Revision History

Revision A 

This is the initial released revision of this document.

Revision B

There were no technical content or editorial revisions to this section of the manual, however, this
section was updated to reflect Revision B throughout the manual.

Revision C

This revision incorporates all known errata at the time of this document update.

Revision D

Section 4.6 “PSV Code Examples”, has been added.
© 2005 Microchip Technology Inc. DS70051D-page 4-13



dsPIC30F Family Reference Manual
NOTES:
DS70051D-page 4-14 © 2005 Microchip Technology Inc.


	Section 4. Program Memory
	4.1 Program Memory Address Map
	4.2 Program Counter
	4.3 Data Access from Program Memory
	4.3.1 Table Instruction Summary
	4.3.2 Table Address Generation
	4.3.3 Program Memory Low Word Access
	4.3.4 Program Memory High Word Access
	4.3.5 Data Storage in Program Memory

	4.4 Program Space Visibility from Data Space
	4.4.1 PSV Configuration
	4.4.2 PSV Mapping with X and Y Data Spaces
	4.4.3 PSV Timing

	4.5 Program Memory Writes
	4.6 PSV Code Examples
	4.6.1 PSV Code Example in C:
	4.6.2 PSV code Example in Assembly:

	4.7 Related Application Notes
	4.8 Revision History


