
Section 2. CPU
C
PU

2

HIGHLIGHTS

This section of the manual contains the following topics:

2.1 Introduction .. 2-2
2.2 Programmer’s Model.. 2-4
2.3 Software Stack Pointer (SSP) .. 2-7
2.4 CPU Register Descriptions .. 2-10
2.5 Arithmetic Logic Unit (ALU).. 2-13
2.6 Multiplication and Divide Support... 2-14
2.7 Compiler Friendly Architecture... 2-17
2.8 Multi-Bit Shift Support .. 2-17
2.9 Instruction Flow Types ... 2-18
2.10 Program Flow Loop Control ... 2-21
2.11 Address Register Dependencies ... 2-23
2.12 Register Maps..2-26
2.13 Related Application Notes.. 2-27
2.14 Revision History ...2-28
© 2009 Microchip Technology Inc. DS70245B-page 2-1

PIC24H Family Reference Manual
2.1 INTRODUCTION
The PIC24H CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction
set. The CPU has a 24-bit instruction word with a variable length opcode field. The
Program Counter (PC) is 24 bits wide and addresses up to 4M x 24 bits of user program memory
space.

A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides
predictable execution. All instructions execute in a single cycle, except the instructions that
change the program flow, the double-word move (MOV.D) instruction, table instructions and also
instructions accessing Program Space Visibility (PSV) take more than one cycle. Overhead-free
program loop constructs are supported using the REPEAT instructions, which are interruptible at
any point.

2.1.1 Registers
The PIC24H devices have sixteen 16-bit working registers in the programmer’s model. Each
working register can act as a data, address or address offset register. The sixteenth working
register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls. The fifteenth
working register (W14) can be used as a Stack Frame Pointer when used with LNK and UNLK
instructions.

The data space can be addressed as 32K words or 64 Kbytes. The upper 32 Kbytes of the data
space memory map can optionally be mapped into program space at any 16K word program
boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The data to
Program Space Mapping feature lets any instruction access program space as if it were data
space. Refer to Section 4. “Program Memory” (DS70238), for more details on
Program Space Visibility.

2.1.2 Addressing Modes
The CPU supports the following Addressing modes:

• Inherent (no operand)
• Relative
• Literal
• Memory Direct
• Register Direct
• Register Indirect

Each instruction is associated with a predefined addressing mode group depending on its
functional requirements. As many as six addressing modes are supported for each instruction.
For most instructions, the PIC24H CPU can execute the following functions in a single instruction
cycle:

• Data (or program data) memory read
• Working register (data) read
• Data memory write
• Program (instruction) memory read

Therefore, three operand instructions can be supported allowing A + B = C operations to be
executed in a single cycle.

2.1.3 Arithmetic and Logic Unit
A high-speed, 17-bit by 17-bit multiplier is included to significantly enhance the core arithmetic
capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode,
16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single
cycle.

The 16-bit Arithmetic Logic Unit (ALU) is enhanced with integer divide assist hardware that
supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT
instruction looping mechanism, and a selection of iterative divide instructions, to support
32-bit (or 16-bit) divided by 16-bit integer signed and unsigned division. All divide operations
require 19 cycles to complete, but are interruptible at any cycle boundary.
DS70245B-page 2-2 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.1.4 Exception Processing
The PIC24H CPU has a vectored exception scheme with up to eight sources of non-maskable
traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of the seven
priority levels. Figure 2-1 shows the PIC24H CPU block diagram.

Figure 2-1: PIC24H CPU Block Diagram

Power-up
Timer

Oscillator
Start-up Timer

POR/BOR
Reset

Watchdog
Timer

Instruction
Decode

and Control

OSC1/CLKI

MCLR

Timing
Generation

16

PCH PCL

16

Program Counter (PC)

16-bit ALU

23

23

24

Data Bus

IR

PCU

 16

16 x 16
W Reg Array

R
O

M
 L

at
ch

16

EA MUX

RAGU
WAGU

16

16

16

16

8

Interrupt
Controller

PSV and Table
Data Access
Control Block

Stack
Control
Logic

Loop
Control
Logic

Data Latch
Data
RAM

Address
Latch

Control Signals
to Various Blocks

Address Latch

Program Memory

Data Latch

I/O Ports

16

16

Address Bus

16

Li
te

ra
l D

at
a

Peripherals

Multiplier
and Divide

Support

23
© 2009 Microchip Technology Inc. DS70245B-page 2-3

PIC24H Family Reference Manual
2.2 PROGRAMMER’S MODEL
Figure 2-2 shows the programmer’s model for the PIC24H CPU. All registers in the
programmer’s model are memory mapped and can be manipulated directly by instructions.
Table 2-1 provides a description of each register.

Table 2-7 shows how all registers associated with the programmer’s model are memory mapped.

Figure 2-2: Programmer’s Model

Table 2-1: Programmer’s Model Register Descriptions
Register(s) Name Description

W0 through W15 Working register array
PC 23-bit PC
SR ALU STATUS register
SPLIM Stack Pointer Limit Value register
TBLPAG Table Memory Page Address register
PSVPAG Program Space Visibility Page Address register
RCOUNT Repeat Loop Counter register
CORCON CPU Control register

N OV Z C

TBLPAG

22

7 0

 015

Program Counter

Data Table Page Address

Status Register

Working/Address
Registers

W0 (WREG)
W1
W2
W3
W4
W5
W6
W7
W8
W9

W10
W11
W12
W13

 Frame Pointer/W14
Stack Pointer/W15

PSVPAG
7 0

Program Space Visibility

RA

0

— — — —

RCOUNT
15 0

Repeat Loop Counter

IPL<2:0>

SPLIM Stack Pointer Limit

SRL

PUSH.S and POP.S Shadows

0

0

— —

Page Address

— DC

CORCON
15 0

Core Control Register

SRH

0

DS70245B-page 2-4 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.2.1 Working Register Array
The 16 working (W) registers can function as data, address or address offset registers. The
function of a W register is determined by the addressing mode of the instruction that accesses it.

The PIC24H instruction set can be divided into two instruction types:

• Register instructions
• File register instructions

2.2.1.1 REGISTER INSTRUCTIONS

Register instructions can use each W register as a data value or an address offset value, as
shown in Example 2-1.

Example 2-1: Register Instructions

2.2.1.2 FILE REGISTER INSTRUCTIONS

W0 is a special working register as it is the only working register that can be used in file register
instructions. File register instructions operate on a specific memory address contained in the
instruction opcode and W0. W1-W15 cannot be specified as a target register in file register
instructions.

The file register instructions provide backward compatibility with existing PIC® MCU devices that
have only one W register. The label “WREG” is used in the assembler syntax to denote W0 in a
file register instruction, as shown in Example 2-2.

Example 2-2: File Register Instructions

2.2.1.3 W REGISTER MEMORY MAPPING

Since the W registers are memory mapped, it is possible to access a W register in a file register
instruction, as shown in Example 2-3.

Example 2-3: Accessing W Register in File Register Instruction

In addition, it is also possible to execute an instruction that attempts to use a W register as both
an address pointer and operand destination, as shown in Example 2-4.

Example 2-4: W Register Used as Address Pointer and Operand Destination

Note: Refer to the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157), for
complete descriptions of addressing modes and instruction syntax.

MOV W0, W1 ; move contents of W0 to W1
MOV W0, [W1] ; move W0 to address contained in W1
ADD W0, [W4], W5 ; add contents of W0 to contents pointed

; to by W4. Place result in W5.

MOV WREG, 0x0100 ; move contents of W0 to address 0x0100
ADD 0x0100, WREG ; add W0 to address 0x0100, store in W0

MOV 0x0004, W10 ; equivalent to MOV W2, W10

where:

0x0004 is the memory address in W2

MOV W1, [W2++]

where:
W1 = 0x1234
W2 = 0x0004 ;[W2] addresses W2
© 2009 Microchip Technology Inc. DS70245B-page 2-5

PIC24H Family Reference Manual
In Example 2-4, the contents of W2 are 0x0004. Since W2 is used as an address pointer, it points
to location 0x0004 in memory. W2 is also mapped to this address in memory. Even though this
is an unlikely event, it is impossible to detect until run time. The PIC24H CPU ensures that the
data write dominates, resulting in W2 = 0x1234 in this example.

2.2.1.4 W REGISTERS AND BYTE MODE INSTRUCTIONS

The byte instructions, which target the W register array, affect only the Least Significant
Byte (LSB) of the target register. Since the working registers are memory mapped, the LSBs and
the Most Significant Bytes (MSBs) can be manipulated through byte wide data memory space
access.

2.2.2 Shadow Registers
Table 2-7 shows how some of the registers have a shadow register associated with them. The
shadow register is used as a temporary holding register and can transfer its contents to or from
its host register upon an occurring event. The shadow registers are not directly accessible. The
PUSH.S and POP.S shadow rule is applied to register transfer into and out of shadows.

The PUSH.S and POP.S instructions are useful for fast context save/restore during a function
call or Interrupt Service Routine (ISR). The PUSH.S instruction transfers the following register
values into their respective shadow registers:

• W0...W3
• SR (N, OV, Z, C, DC bits only)

The POP.S instruction restores the values from the shadow registers into these register
locations. Example 2-5 shows a code example using the PUSH.S and POP.S instructions.

Example 2-5: PUSH.S and POP.S Instructions

The PUSH.S instruction overwrites the contents previously saved in the shadow registers. The
shadow registers are only one level in depth. Therefore, care must be taken if the shadow
registers are to be used for multiple software tasks.

The user-assigned application must ensure that any task using the shadow registers is not
interrupted by a higher priority task that also uses the shadow registers. If the higher priority task
is allowed to interrupt the lower priority task, the contents of the shadow registers saved in the
lower priority task are overwritten by the higher priority task.

2.2.3 Uninitialized W Register Reset
The W register array (with the exception of W15) is cleared during all resets and is considered
uninitialized until written to. An attempt to use an uninitialized register as an address pointer
resets the device.

A word write must be performed to initialize a W register. A byte write will not affect the initialization
detection logic.

MyFunction:
PUSH.S ; Save W registers, MCU status
MOV #0x03, W0 ; load a literal value into W0
ADD RAM100 ; add W0 to contents of RAM100
BTSC SR, #Z ; is the result 0?
BSET Flags, #IsZero ; Yes, set a flag
POP.S ; Restore W regs, MCU status
RETURN
DS70245B-page 2-6 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.3 SOFTWARE STACK POINTER (SSP)
W15 serves as a dedicated SSP and is automatically modified by exception processing,
subroutine calls and returns. However, W15 can be referenced by any instruction in the same
manner as all other W registers. This simplifies reading, writing and manipulating the
Stack Pointer (SP). For example, creating stack frames.

W15 is initialized to 0x0800 during all resets. This address ensures that the SP points to valid
RAM in all PIC24H devices and permits stack availability for non-maskable trap exceptions,
which may occur before the SP is initialized by the user-assigned application software. The
user-assigned application may reprogram the SP during initialization to any location within data
space.

The SP always points to the first available free word and fills the software stack, working from
lower towards higher addresses. Figure 2-3 shows how it pre-decrements for a stack pop (read)
and post-increments for a stack push (writes).

When the PC is pushed onto the stack, the PC<15:0> bits are pushed onto the first available
stack word, and then the PC<22:16> bits are pushed onto the second available stack location.
Figure 2-3 shows that for a PC push during any CALL instruction, the MSB of the PC is
zero-extended before the push. During exception processing, the MSB of the PC is concatenated
with the lower eight bits of the CPU STATUS register, SR. This allows the contents of SRL to be
preserved automatically during interrupt processing.

Figure 2-3: Stack Operation for a CALL Instruction

2.3.1 Software Stack Examples
The software stack is manipulated using the PUSH and POP instructions. The PUSH and POP
instructions are the equivalent of a MOV instruction with W15 used as the destination pointer. The
contents of W0 can be pushed onto the stack, as shown in Example 2-6.

Example 2-6: Software Stack Example

Note: To protect against misaligned stack access, W15<0> is set to ‘0’ by the hardware.

<Free Word>

PC<15:0>
PC<22:16>

015

W15 (before CALL)

W15 (after CALL)

St
ac

k
G

ro
w

s
To

w
ar

ds
H

ig
he

r A
dd

re
ss

B‘000000000’

CALL SUBR

PUSH W0
This syntax is equivalent to:

MOV W0, [W15++]
The contents of the Top-of-Stack (TOS) can be returned to W0 by:

POP W0
This syntax is equivalent to:

MOV [--W15], W0
© 2009 Microchip Technology Inc. DS70245B-page 2-7

PIC24H Family Reference Manual
Figure 2-4 through Figure 2-7 show examples of how the software stack is used. Figure 2-4
shows the software stack at device initialization. W15 is initialized to 0x0800. Furthermore, this
example assumes that the values 0x5A5A and 0x3636 are written to W0 and W1, respectively.
The stack is pushed for the first time in Figure 2-5 and the value contained in W0 is copied to the
stack. W15 is automatically updated to point to the next available stack location (0x0802). In
Figure 2-6, the contents of W1 are pushed onto the stack. In Figure 2-7, the stack is popped and
the Top-of-Stack (TOS) value (previously pushed from W1) is written to W3.

Figure 2-4: Stack Pointer at Device Reset

Figure 2-5: Stack Pointer After the First PUSH Instruction

Figure 2-6: Stack Pointer After the Second PUSH Instruction

Figure 2-7: Stack Pointer After a POP Instruction

0x0000

0xFFFE

0x0800W15

W15 = 0x0800
W0 = 0x5A5A
W1 = 0x3636

0x0000

0xFFFE

0x5A5A

W15 = 0x0802
W0 = 0x5A5A
W1 = 0x3636

0x0800 PUSH W0

0x0802W15

0x0000

0xFFFE

0x5A5A
0x3636

W15 = 0x0804
W0 = 0x5A5A
W1 = 0x3636

0x0800 PUSH W1

0x0802
0x0804W15

0x0000

0xFFFE

0x05A5A
0x03636

0x3636 → W3
W15 = 0x0802

POP W3

0x0802
0x0800

W15
DS70245B-page 2-8 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.3.2 W14 Software Stack Frame Pointer
A frame is a user-defined section of memory in the stack used by a single subroutine. W14 is a
special working register because it can be used as a Stack Frame Pointer with the LNK (link) and
ULNK (unlink) instructions. W14 can be used in a normal working register by instructions when it
is not used as a Stack Frame Pointer.

For software examples that use W14 as a Stack Frame Pointer, refer to the
“dsPIC30F/33F Programmer’s Reference Manual” (DS70157).

2.3.3 Stack Pointer Overflow
There is a Stack Pointer Limit (SPLIM) register associated with the Stack Pointer that is reset to
0x0000. SPLIM is a 16-bit register, but SPLIM<0> is set to ‘0’ because all stack operations must
be word-aligned.

The stack overflow check is not enabled until a word write to the SPLIM register occurs, after this
time it can only be disabled by a device Reset. All effective addresses generated using W15 as
a source or destination are compared against the value in SPLIM. If the contents of the Stack
Pointer (W15) are greater than the contents of the SPLIM register by 2, and a Push operation is
performed, a stack error trap will not occur. The stack error trap will occur on a subsequent Push
operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows
beyond address 0x2000 in RAM, initialize the SPLIM register with the value, 0x1FFE.

If stack overflow checking is enabled, a stack error trap also occurs if the W15 effective address
calculation wraps over the end of data space (0xFFFF).

Refer to Section 6. “Interrupts” (DS70224), for more details on stack error traps.

2.3.4 Stack Pointer Underflow
The stack is initialized to 0x0800 during a Reset. A stack error trap is initiated, if the Stack Pointer
address is ever less than 0x0800.

Note: A stack error trap can be caused by any instruction that uses the contents of the
W15 register to generate an Effective Address (EA). Thus, if the contents of W15
are greater than the contents of the SPLIM register by 2, and a CALL instruction is
executed, or an interrupt occurs, a stack error trap is generated.

Note: A write to the SPLIM register should not be followed by an indirect read operation
using W15.

Note: Locations in data space between 0x0000 and 0x07FF are, in general, reserved for
core and peripheral Special Function Registers (SFRs).
© 2009 Microchip Technology Inc. DS70245B-page 2-9

PIC24H Family Reference Manual
2.4 CPU REGISTER DESCRIPTIONS

2.4.1 SR: CPU Status Register
The PIC24H CPU has a 16-bit Status Register (SR), the LSB of which is referred to as the lower
Status register (SRL). The upper byte of SR is referred to as higher Status register (SRH).
Register 2-1 shows a detailed description of SR.

The SRL register contains all of the MCU ALU operation Status flags, the CPU Interrupt Priority
Level Status bits (IPL<2:0>), and the REPEAT Loop Active Status bit, RA (SR<4>). During
exception processing, SRL is concatenated with the MSB of the PC, to form a complete word
value, which is then stacked.

SRH contains only the Digit Carry bit, DC (SR<8>). The SR bits are readable/writable with the
following exceptions:

• The RA bit (SR<4>): RA is a read-only bit
• IPL<2:0>: When the SRL register is disabled (NSTDIS = 1), the IPL<2:0> bits become

read-only

2.4.2 CORCON: Core Control Register
The CORCON register contains the IPL3 status bit, which is concatenated with IPL<2:0>
(SR<7:5>), to form the CPU Interrupt Priority Level, as well as the PSV Enable bit.

Note: A description of the SR bits affected by each instruction is provided in the
“dsPIC30F/33F Programmer’s Reference Manual” (DS70157).
DS70245B-page 2-10 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

Register 2-1: SR: CPU Status Register

U-0 U-0 U-0 U-0 U-0 U-0 U -0 R/W-0
— — — — — — — DC

bit 15 bit 8

R/W-0(1,2) R/W-0(1,2) R/W-0(1,2) R-0 R/W-0 R/W-0 R/W-0 R/W-0
IPL<2:0> RA N OV Z C

bit 7 bit 0

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-9 Unimplemented: Read as ‘0’
bit 8 DC: MCU ALU Half Carry/Borrow bit

1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data)
of the result occurred

0 = No carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized
data) of the result occurred

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2)

111 = CPU interrupt priority level is 7 (15), user interrupts disabled
110 = CPU interrupt priority level is 6 (14)
101 = CPU interrupt priority level is 5 (13)
100 = CPU interrupt priority level is 4 (12)
011 = CPU interrupt priority level is 3 (11)
010 = CPU interrupt priority level is 2 (10)
001 = CPU interrupt priority level is 1 (9)
000 = CPU interrupt priority level is 0 (8)

bit 4 RA: REPEAT Loop Active bit
1 = REPEAT loop in progress
0 = REPEAT loop not in progress

bit 3 N: MCU ALU Negative bit
1 = Result was negative
0 = Result was non-negative (zero or positive)

bit 2 OV: MCU ALU Overflow bit
This bit is used for signed arithmetic (2’s complement). It indicates an overflow of the magnitude which
causes the sign bit to change state.
1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
0 = No overflow occurred

bit 1 Z: MCU ALU Zero bit
1 = Last operation resulted in zero
0 = Last operation did not result in zero

bit 0 C: MCU ALU Carry/Borrow bit
1 = A carry out from the Most Significant bit (MSb) of the result occurred
0 = No carry out from the Most Significant bit (MSb) of the result occurred

Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU interrupt priority
level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when
IPL<3> = 1.

2: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).
© 2009 Microchip Technology Inc. DS70245B-page 2-11

PIC24H Family Reference Manual
Register 2-2: CORCON: Core Control Register

U-0 U-0 U-0 U-0 U-0 U-0 U -0 U -0
— — — — — — — —

bit 15 bit 8

U-0 U-0 U-0 U-0 R/C-0 R/W-0 U-0 U-0
— — — — IPL3(1) PSV — —

bit 7 bit 0

Legend: C = Clearable bit
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown

bit 15-4 Unimplemented: Read as ‘0’
bit 3 IPL3: CPU Interrupt Priority Level Status bit(1)

1 = CPU interrupt priority level is greater than 7
0 = CPU interrupt priority level is 7 or less

bit 2 PSV: Program Space Visibility in Data Space Enable bit
1 = Program space visible in data space
0 = Program space not visible in data space

bit 1-0 Unimplemented: Read as ‘0’

Note 1: User interrupts are disabled when IPL3 = 1.
DS70245B-page 2-12 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.4.3 Other PIC24H CPU Control Registers
This section provides brief descriptions of additional registers that are associated with the
PIC24H CPU. These registers are described in greater detail in other sections of the “PIC24H
Family Reference Manual”.

2.4.3.1 TBLPAG: TABLE PAGE ADDRESS POINTER

The TBLPAG register holds the upper eight bits of a program memory address during table read
and write operations. Table instructions transfer the data between program memory space and
data memory space. Refer to Section 4. “Program Memory” (DS70238), for more details.

2.4.3.2 PSVPAG: PROGRAM MEMORY VISIBILITY PAGE ADDRESS POINTER

Program Space Visibility allows the user to map a 32 Kbyte section of the program memory space
into the upper 32 Kbytes of data address space. This feature allows transparent access of
constant data through instructions that operate on data memory. The PSVPAG register selects
the 32 Kbyte region of program memory space mapped to the data address space. Refer to
Section 4. “Program Memory” (DS70238), for more details on the PSVPAG register.

2.4.3.3 DISICNT: DISABLE INTERRUPTS COUNTER REGISTER

The DISICNT register is used by the DISI instruction to disable interrupts of priority 1-6 for the
specified number of cycles. Refer to Section 6. “Interrupts” (DS70224), for more details.

2.5 ARITHMETIC LOGIC UNIT (ALU)
The PIC24H ALU is 16 bits wide and is capable of addition, subtraction, single bit shifts and logic
operations. Unless specified, arithmetic operations are 2’s complement in nature. Depending on
the operation, the ALU can affect the values of these status bits in the SR register:

• Carry/Borrow (C)
• Zero (Z), Negative (N)
• Overflow (OV)
• Half Carry/Borrow (DC)

The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction
operations.

The ALU can perform 8-bit or 16-bit operations depending on the mode of the instruction used.
Data for the ALU operation can come from the W register array, or data memory, depending on
the addressing mode of the instruction. Likewise, output data from the ALU can be written to the
W register array or a data memory location.

Refer to the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157), for more details on
the SR bits affected by each instruction, addressing modes and 8-bit/16-bit instruction modes.

Note 1: Byte operations use the 16-bit ALU and can produce results in excess of eight bits.
However, to maintain backward compatibility with PIC MCU devices, the ALU result
from all of the byte operations is written back as a byte (i.e., MSB not modified), and
the CPU STATUS register, SR, is updated based only on the LSB state of the result.

2: All register instructions performed in Byte mode only affect the LSB of the W registers.
The MSB of any W register can be modified by using file register instructions that
access the memory mapped contents of the W registers.
© 2009 Microchip Technology Inc. DS70245B-page 2-13

PIC24H Family Reference Manual
2.6 MULTIPLICATION AND DIVIDE SUPPORT

2.6.1 Overview
The PIC24H CPU contains a 17-bit x 17-bit multiplier and is capable of unsigned, signed or mixed
sign operation with the following multiplication modes:

• 16-bit x 16-bit Signed
• 16-bit x 16-bit Unsigned
• 16-bit Signed x 5-bit (literal) Unsigned
• 16-bit Unsigned x 16-bit Unsigned
• 16-bit Unsigned x 5-bit (literal) Unsigned
• 16-bit Unsigned x 16-bit Signed
• 8-bit Unsigned x 8-bit Unsigned

The divide block is capable of supporting 32-bit/16-bit and 16-bit/16-bit signed and unsigned
integer divide operation with the following data sizes:

• 32-bit Signed/16-bit Signed divide
• 32-bit Unsigned/16-bit Unsigned divide
• 16-bit Signed/16-bit Signed divide
• 16-bit Unsigned/16-bit Unsigned divide

2.6.2 Multiplier
Figure 2-8 shows a block diagram of the multiplier, which supports the multiply instructions that
include integer 16-bit signed, unsigned and mixed-sign multiplies. All multiply instructions only
support Register Direct Addressing mode for the result. A 32-bit result (from all multiplies other than
MULWF) is written to any two aligned consecutive W register pairs, except W15:W14, which are not
allowed.

The file register MUL instruction may be directed to use byte-sized or word-sized operands. The
destination is always the W3:W2 register pair in the W array. Byte multiplicands direct a 16-bit
result to W2 (W3 is not changed), and word multiplicands direct a 32-bit result to W3:W2.

The multiplicands for all multiply instructions are derived from the W array (first word) and data
space (second word). File register MUL instructions derive these multiplicands from W2 (first word
or byte) and data space (second word or byte) using a zero-extended, 13-bit absolute address.

Figure 2-8 shows additional data paths are provided to allow these instructions to write the result
back into the W array and data bus (via the W array).

Note: The destination register pair for multiply instructions must be ‘aligned’ (i.e.,
odd:even), where ‘odd’ contains the most significant result word and ‘even’ contains
the least significant result word. For example, W3:W2 is acceptable, whereas
W4:W3 is not acceptable.
DS70245B-page 2-14 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.6.2.1 MCU MULTIPLY INSTRUCTIONS

The same multiplier supports the MCU multiply instructions, which include integer 16-bit signed,
unsigned, and mixed sign multiplies as shown in Table 2-2. All multiplications performed by the
MUL instruction produce integer results. The MUL instruction can be directed to use byte-sized or
word-sized operands. Byte input operands produce a 16-bit result and word input operands
produce a 32-bit result to the specified register(s) in the W array.

Table 2-2: MCU Instructions that Utilize the Multiplier

Table 2-3: Multiplication Options

2.6.2.2 SINGLE AND MIXED MODE INTEGERS

Simple data preprocessing logic, either zero or sign, extends all operands to 17 bits such that the
unsigned, signed or mixed sign multiplications can be executed as signed values. All unsigned
operands are always zero-extended into the seventeenth bit of the multiplier input value. All
signed operands are always sign-extended into the seventeenth bit of the multiplier input value.

• For unsigned 16-bit multiplies, the multiplier produces a 32-bit, unsigned result
• For signed 16-bit multiplies, the multiplier produces 30 bits of data and two bits of sign
• For 16-bit Mixed mode (signed/unsigned) multiplies, the multiplier produces 31 bits of data

and one bit of sign

Figure 2-8: Multiplier Block Diagram

MCU Instruction Description

MUL/MUL.UU Multiply two unsigned integers
MUL.SS Multiply two signed integers
MUL.SU/MUL.US Multiply a signed integer with an unsigned integer
Note 1: MCU instructions using the multiplier operate only in Integer mode.

2: Result of an MCU multiply is 32 bits long and is stored in a pair of W registers.

Instruction Class Signed x Signed Unsigned x Unsigned Unsigned x Signed Signed x Unsigned

MUL
(MCU Multiplication)

Yes
(Integer only)

Yes
(Integer only)

Yes
(Integer only)

Yes
(Integer only)

2

16

17 17

Mixed Mode
IR

16:31

 0:15

16 16

16

Selection

Result

16 x 16
W Array

17 x 17-bit
Multiplier
© 2009 Microchip Technology Inc. DS70245B-page 2-15

PIC24H Family Reference Manual
2.6.3 Divider
The PIC24H CPU features both 32-bit/16-bit and 16-bit/16-bit signed and unsigned, integer
divide operations implemented as single instruction iterative divides.

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and
unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W
register (aligned) pair [W(m + 1):Wm] for the 32-bit dividend. The divide algorithm takes one cycle
per bit of divisor. Therefore, both 32-bit/16-bit and 16-bit/16-bit instructions take the same
number of cycles to execute.

The divide instructions must be executed within a REPEAT loop. Any other form of execution (for
example, a series of discrete divide instructions) will not function correctly because the
instruction flow function is conditional on RCOUNT. The divide flow does not automatically set up
the REPEAT, which must be explicitly executed with the correct operand value as shown in
Table 2-4 (REPEAT will execute the target instruction {operand value + 1} time).

Table 2-4: Divide Execution Time

All intermediate data is saved in W1:W0 after each iteration. The N, C and Z Status flags convey
control information between iterations. Consequently, although the divide instructions are listed
as 19 cycle operations, the divide iterative sequence is interruptible, just like any other REPEAT
loop.

Dividing by zero initiates an arithmetic error trap. The divisor is evaluated during the first cycle of
the divide instruction, so the first cycle executes prior to the start of exception processing for the
trap. Refer to Section 6. “Interrupts” (DS70224), for more details.

Instruction Description Iterations
REPEAT
Operand

Value

Total Execution
Time

(including
REPEAT)

DIV.SD Signed divide:
W(m + 1):Wm/Wn → W0; Rem →
W1

18 17 19

DIV.SW Signed divide:
Wm/Wn → W0; Rem → W1

18 17 19

DIV.UD Unsigned divide:
W(m + 1):Wm/Wn → W0; Rem →
W1

18 17 19

DIV.UW Unsigned divide:
Wm/Wn → W0; Rem → W1

18 17 19
DS70245B-page 2-16 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.7 COMPILER FRIENDLY ARCHITECTURE
The PIC24H CPU architecture is designed to produce an efficient (code size and speed) C
compiler.

• For most instructions, the core is capable of executing a data (or program data) memory
read, a working register (data) read, a data memory write and a program (instruction)
memory read per instruction cycle. As a result, three parameter instructions are supported,
allowing A + B = C operations to be executed in a single cycle.

• Instruction addressing modes are very flexible and are matched closely to compiler needs.
• There are sixteen, 16 x 16-bit working register arrays, each of which can act as data,

address or offset registers. One working register (W15) operates as a software stack for
interrupts and calls.

• Linear indirect access of all data space is supported, plus the memory direct address range
is extended to 8 Kbytes, with the addition of 16-bit direct address load and store
instructions.

• Linear indirect access of 32K word (64 Kbyte) pages within program space (user and test
space) is supported using any working register via new table read and write instructions.

• Part of the data space can be mapped into program space, allowing constant data to be
accessed as if it were in data space using PSV mode.

2.8 MULTI-BIT SHIFT SUPPORT
The PIC24H CPU supports single-cycle, multi-bit arithmetic and logic shifts using a shifter block.
It also supports single bit shifts through the ALU. The multi-bit shifter is capable of performing
up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. Table 2-5 provides
a full summary of instructions that use the shift operation.

Table 2-5: Instructions Using Single and Multi-Bit Shift Operations

All multi-bit shift instructions only support Register Direct Addressing mode for both the operand
source and result destination.

Instruction Description

ASR Arithmetic shift right source register by one or more bits.
SL Shift left source register by one or more bits.
LSR Logical shift right source register by one or more bits.
© 2009 Microchip Technology Inc. DS70245B-page 2-17

PIC24H Family Reference Manual
2.9 INSTRUCTION FLOW TYPES
Most instructions in the PIC24H architecture occupy a single word of program memory and
execute in a single cycle. An instruction prefetch mechanism facilitates single cycle (1 TCY)
execution. However, some instructions take two or three instruction cycles to execute.
Consequently, there are seven different types of instruction flow in the PIC24H architecture as
listed below and are described in this section:

• 1 Instruction Word, 1 Instruction Cycle
• 1 Instruction Word, 2 Instruction Cycles
• 1 Instruction Word, 2 or 3 Instruction Cycles (Program Flow Changes)
• 1 Instruction Word, 3 Instruction Cycles (RETFIE, RETURN, RETLW)
• Table Read/Write Instructions
• 2 Instruction Words, 2 Instruction Cycles
• Address Register Dependencies

2.9.1 1 Instruction Word, 1 Instruction Cycle
These instructions take one instruction cycle to execute as shown in Figure 2-9. Most instructions
are one-word, one-cycle instructions.

Figure 2-9: Instruction Flow: One-Word, One-Cycle

2.9.2 1 Instruction Word, 2 Instruction Cycles
In these instructions, there is no prefetch flush. The only instructions of this type are the MOV.D
instructions (load and store double-word). Two cycles are required to complete these
instructions, as shown in Figure 2-10.

Figure 2-10: Instruction Flow: One-Word, Two-Cycle (MOV.D Operation)

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. MOV #0x55AA,W0 Fetch 1 Execute 1
2. MOV W0,PORTA Fetch 2 Execute 2
3. MOV W0,PORTB Fetch 3 Execute 3

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. MOV #0x1234,W0 Fetch 1 Execute 1
2. MOV.D [W0++],W1 Fetch 2 Execute 2

R/W Cycle 1
3. MOV #0x00AA,W1 Fetch 3 Execute 2

R/W Cycle2
No Fetch Execute 3

4. MOV #0x00CC,W0 Fetch 4 Execute 4
DS70245B-page 2-18 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.9.3 1 Instruction Word, 2 or 3 Instruction Cycles (Program Flow
Changes)

These instructions include relative call and branch instructions, and skip instructions. When an
instruction changes the PC (other than to increment it), the program memory prefetch data must
be discarded. This makes the instruction take two effective cycles to execute, as shown in
Figure 2-11.

Figure 2-11: Instruction Flow: One-Word, Two-Cycle (Program Flow Change)

Three cycles are required when a two-word instruction is skipped. In this case, the program
memory prefetch data is discarded and the second word of the two-word instruction is fetched.
Figure 2-12 shows the second word of the instruction is executed as a NOP.

Figure 2-12: Instruction Flow: One-Word, Three-Cycle (Two-Word Instruction Skipped)

2.9.4 1 Instruction Word, 3 Instruction Cycles (RETFIE, RETURN,
RETLW)

Figure 2-13 shows the RETFIE, RETURN and RETLW instructions that are used to return from a
subroutine call or an Interrupt Service Routine (ISR) and take three instruction cycles to execute.

Figure 2-13: Instruction Flow: One-Word, Three-Cycle (RETURN, RETFIE, RETLW)

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. MOV.B #0x55,W0 Fetch 1 Execute 1
2. BTSC PORTA,#3 Fetch 2 Execute 2

Skip Taken
3. ADD.B PORTA (executed as NOP) Fetch 3 Forced NOP
4. BRA SUB_1 Fetch 4 Execute 4
5. ADD.B PORTB (executed as NOP) Fetch 5 Forced NOP
6. SUB_1: Instruction @ address SUB_1 Fetch SUB_1

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. BTSC SR,#Z Fetch 1 Execute 1,

Skip Taken
2. GOTO LABEL Fetch 2 Forced NOP
(GOTO 2nd word) Fetch 2nd

word of
GOTO

2nd word
executed as
a NOP

3. BCLR PORTB, #3 Fetch 3 Execute 3
4. MOV W0,W1 Fetch 4 Execute 4

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. MOV #0x55AA,W0 Fetch 1 Execute 1
2. RETURN Fetch 2 Execute 2
3. (instruction in old program flow) Fetch 3 Execute 2
4. MOV W0, W3 (instruction in new program flow) No Fetch Execute 2
5. MOV W3, W5 Fetch 4 Execute 4

Fetch 5
© 2009 Microchip Technology Inc. DS70245B-page 2-19

PIC24H Family Reference Manual
2.9.5 Table Read/Write Instructions
These instructions suspend fetching to insert a read or write cycle to the program memory.
Figure 2-14 shows the instruction that is fetched while executing the table operation that is saved
for one cycle, and executed in the cycle immediately after the table operation.

Figure 2-14: Instruction Pipeline Flow: Table Operations

2.9.6 2 Instruction Words, 2 Instruction Cycles
In these instructions, the fetch after the instruction contains data. This results in a two-cycle
instruction, as shown in Figure 2-15. The second word of a two-word instruction is encoded so
that it executes as a NOP if it is fetched by the CPU, when the CPU did not first fetch the first word
of the instruction. This is important when a two-word instruction is skipped by a skip instruction
(refer to Figure 2-12).

Figure 2-15: Instruction Pipeline Flow: Two-Word, Two-Cycle

2.9.7 Address Register Dependencies
These are instructions that are subjected to a stall due to data address dependency between the
X-data space read and write operations. An additional cycle is inserted to resolve the resource
conflict, as discussed in 2.11 “Address Register Dependencies”.

Figure 2-16: Instruction Pipeline Flow: One-Word, One-Cycle (With Instruction Stall)

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. MOV #0x1234,W0 Fetch 1 Execute 1
2. TBLRDL.w [W0++],W1 Fetch 2 Execute 2
3. MOV #0x00AA,W1 Fetch 3 PM Data

Read Cycle
Bus Read Execute 3

4. MOV #0x00CC,W0 Fetch 4 Execute 4

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. MOV #0xAA55,W0 Fetch 1 Execute 1
2. GOTO LABEL Fetch 2L Update PC

Fetch 2H Forced NOP
3. LABEL: MOV W0,W2 Fetch 3 Execute 3
4. BSET PORTA, #3 Fetch 4 Execute 4

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1. MOV W0,W1 Fetch 1 Execute 1
2. MOV [W1],[W4] Fetch 2 Execute 1

Stall Execute 2
3. MOV W2,W1 Fetch 3 Execute 3

Note: If the RETURN instruction is placed at the end of the program memory, the illegal
address error trap will be generated by the device during the run-time. This is due
to the prefetch operation that will try to preload the next two instructions from the
memory location, which in this case do not exist. The solution is to leave two extra
instruction words available after the RETURN instruction, so that the compiler can
place NOP and RESET instructions at the end of the program memory.
DS70245B-page 2-20 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.10 PROGRAM FLOW LOOP CONTROL
The PIC24H CPU supports the REPEAT instruction construct to provide unconditional automatic
program loop control. The REPEAT instruction implements a single instruction program loop. The
instruction uses control bits within the CPU STATUS register, SR, to temporarily modify CPU
operation.

2.10.1 REPEAT Loop
The REPEAT instruction causes the instruction that follows it to be repeated a number of times.
A literal value contained in the instruction, or a value in one of the W registers, can be used to
specify the REPEAT count value. The W register option enables the loop count to be a software
variable.

An instruction in a REPEAT loop executes at least once. The number of iterations for a REPEAT
loop is the 14-bit literal value + 1, or Wn + 1. The syntax for the two forms of the REPEAT
instruction is shown in Example 2-7.

Example 2-7: REPEAT Instruction Syntax

2.10.1.1 REPEAT OPERATION

The loop count for REPEAT operations is held in the 14-bit RCOUNT register, which is memory
mapped. RCOUNT is initialized by the REPEAT instruction. The REPEAT instruction sets the
Repeat Active Status bit, RA (SR<4>), to ‘1’ if the RCOUNT is a non-zero value.

RA is a read-only bit and cannot be modified through software. For REPEAT loop count values
greater than ‘0’, the PC is not incremented. Furthermore, PC increments are inhibited until
RCOUNT = 0. For an instruction flow example of a REPEAT loop, refer to Figure 2-17.

For a loop count value equal to ‘0’, REPEAT has the effect of a NOP and the RA (SR<4>) bit is not
set. The REPEAT loop is essentially disabled before it begins, allowing the target instruction to
execute only once while prefetching the subsequent instruction (i.e., normal execution flow).

Figure 2-17: REPEAT Instruction Pipeline Flow

Note: The instruction immediately following the REPEAT instruction (i.e., the target
instruction) is always executed at least one time. It is always executed one time
more than the value specified in the 14-bit literal or the W register operand.

REPEAT #lit14 ; RCOUNT <-- lit14
(Valid target Instruction)

or
REPEAT Wn ; RCOUNT <-- Wn
(Valid target Instruction)

TCY0 TCY1 TCY2 TCY3 TCY4 TCY5
1.REPEAT #0x2 Fetch 1 Execute 1
2.MOV [W0++], [W1++] Fetch 2 Execute 2

No Fetch Execute 2
No Fetch Execute 2

3.BSET PORTA, #3 Fetch 3 Execute 3

PC (at end of instruction) PC PC + 2 PC + 2 PC + 2 PC + 4 PC + 6
RCOUNT (at end of instruction) x 2 1 0 0 0

RA (at end of instruction) 0 1 1 0 0 0
© 2009 Microchip Technology Inc. DS70245B-page 2-21

PIC24H Family Reference Manual
2.10.1.2 INTERRUPTING A REPEAT LOOP

A REPEAT instruction loop may be interrupted any time. The RA state is preserved on the stack
during exception processing to allow the user to execute further REPEAT loops from within any
number of nested interrupts. After the SRL register is stacked, the RA Status bit is cleared to
restore normal execution flow within the ISR.

Returning into a REPEAT loop from an ISR using RETFIE requires no special handling.
Interrupts prefetch the repeated instruction during the third cycle of the RETFIE. The stacked
RA bit is restored when the SRL register is popped, and if set, the interrupted REPEAT loop is
resumed.

2.10.1.2.1 Early Termination of a REPEAT Loop
An interrupted REPEAT loop can be terminated earlier than normal in the ISR by clearing the
RCOUNT register in software.

2.10.1.3 RESTRICTIONS ON THE REPEAT INSTRUCTION

Any instruction can immediately follow a REPEAT except for the following:

• Program flow control instructions (any branch, compare and skip, subroutine calls,
returns, etc.)

• Another REPEAT instruction
• DISI, ULNK, LNK, PWRSAV, RESET instructions
• MOV.D instruction

Note 1: If a REPEAT loop is interrupted and an ISR is being processed, the user must stack
the RCOUNT (Repeat Loop Counter) register prior to executing another REPEAT
instruction within an ISR.

2: If REPEAT is used within an ISR, the user must unstack RCOUNT prior to executing
RETFIE.

Note: If the repeated instruction (target instruction in the REPEAT loop) is accessing data
from Program Space (PS) using PSV, it requires two instruction cycles the first time
it is executed after a return from an exception. Similar to the first iteration of a loop,
timing limitations will not allow the first instruction to access data residing in PS in a
single instruction cycle.
DS70245B-page 2-22 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.11 ADDRESS REGISTER DEPENDENCIES
The PIC24H architecture supports a data space read (source) and a data space write
(destination) for most instructions. The Effective Address (EA) calculation by the
Address Generator Unit (AGU), and subsequent data space read or write, each take a period of
one instruction cycle to complete. Figure 2-18 shows how the timing causes the data space read
and write operations for each instruction to partially overlap. Because of this overlap, a
Read-After-Write (RAW) data dependency can occur across instruction boundaries. RAW data
dependencies are detected and handled at run time by the PIC24H CPU.

Figure 2-18: Data Space Access Timing

2.11.1 Read-After-Write (RAW) Dependency Rules
If a working register, Wn, is used as a write operation destination in the current instruction, and the
same working register, Wn, that is read in the prefetched instruction are the same, the following
rules apply:

• If the destination write (current instruction) does not modify the contents of Wn, no stalls
occur, or

• If the source read (prefetched instruction) does not calculate an EA using Wn, no stalls
occur

During each instruction cycle, the PIC24H hardware automatically checks to see if a RAW data
dependency is about to occur. If the conditions specified above are not satisfied, the CPU
automatically adds one instruction cycle delay before executing the prefetched instruction. The
instruction stall provides enough time for the destination W register write to take place before the
next (prefetched) instruction has to use the written data.

ADD MOV

[W7]

[W10] [W9]++

Address W7 W10 W8 W9

ADD W0, [W7], [W10]

MOV [W8], [W9]++

[W8]Read AGU

Instruction Register
Contents

Write AGU

1 Instruction Cycle (TCY)

TCY0 TCY1 TCY2
© 2009 Microchip Technology Inc. DS70245B-page 2-23

PIC24H Family Reference Manual
Table 2-6: Read-After-Write (RAW) Dependency Summary

2.11.2 Instruction Stall Cycles
An instruction stall is essentially a one instruction cycle wait period appended in front of the read
phase of an instruction that allows the prior write to complete before the next read operation. For
the purpose of interrupt latency, it should be noted that the stall cycle is associated with the
instruction following the instruction where it was detected (i.e., stall cycles always precede
instruction execution cycles).

If a RAW data dependency is detected, the PIC24H CPU begins an instruction stall. During an
instruction stall, the following events occur:

• The write operation underway (for the previous instruction) is allowed to complete as normal.
• Data space is not addressed until after the instruction stall.
• PC increment is inhibited until after the instruction stall.
• Further instruction fetches are inhibited until after the instruction stall.

2.11.2.1 INSTRUCTION STALL CYCLES AND INTERRUPTS

When an interrupt event coincides with two adjacent instructions that cause an instruction stall,
one of two possible outcomes could occur:

1. The interrupt could be coincident with the first instruction. In this situation, the first instruction
is allowed to complete and the second instruction is executed after the ISR completes. In
this case, the stall cycle is eliminated from the second instruction because the exception
process provides time for the first instruction to complete the write phase.

2. The interrupt may be coincident with the second instruction. In this situation, the second
instruction and the appended stall cycle is allowed to execute prior to the ISR. In this case,
the stall cycle associated with the second instruction executes normally. However, the stall
cycle is effectively absorbed into the exception process timing. The exception process
proceeds as if an ordinary one-cycle instruction or two-cycle instruction is interrupted.

Destination Addressing
Mode Using Wn

Source Addressing
Mode Using Wn Status Examples

(Wn = W2)

Direct Direct Allowed ADD.w W0, W1, W2
MOV.w W2, W3

Direct Indirect Stall ADD.w W0, W1, W2
MOV.w [W2], W3

Direct Indirect with
modification

Stall ADD.w W0, W1, W2
MOV.w [W2++], W3

Indirect Direct Allowed ADD.w W0, W1, [W2]
MOV.w W2, W3

Indirect Indirect Allowed ADD.w W0, W1, [W2]
MOV.w [W2], W3

Indirect Indirect with
modification

Allowed ADD.w W0, W1, [W2]
MOV.w [W2++], W3

Indirect with
modification

Direct Allowed ADD.w W0, W1, [W2++]
MOV.w W2, W3

Indirect Indirect Stall ADD.w W0, W1, [W2]
MOV.w [W2], W3
; W2=0x0004 (mapped W2)

Indirect Indirect with
modification

Stall ADD.w W0, W1, [W2]
MOV.w [W2++], W3
; W2=0x0004 (mapped W2)

Indirect with
modification

Indirect Stall ADD.w W0, W1, [W2++]
MOV.w [W2], W3

Indirect with
modification

Indirect with
modification

Stall ADD.w W0, W1, [W2++]
MOV.w [W2++], W3
DS70245B-page 2-24 © 2009 Microchip Technology Inc.

Section 2. CPU
C

PU

2

2.11.2.2 INSTRUCTION STALL CYCLES AND FLOW CHANGE INSTRUCTIONS

The CALL and RCALL instructions write to the stack using W15 and may, therefore, force an
instruction stall prior to the next instruction if the source read of the next instruction uses W15.

The RETFIE and RETURN instructions can never force an instruction stall prior to the next
instruction because they only perform read operations. However, the user should note that the
RETLW instruction can force a stall because it writes to a W register during the last cycle.

The GOTO and branch instructions can never force an instruction stall because they do not
perform write operations.

2.11.2.3 INSTRUCTION STALLS AND REPEAT LOOPS

Other than the addition of instruction stall cycles, RAW data dependencies will not affect the
operation of REPEAT loops.

The prefetched instruction within a REPEAT loop does not change until the loop is complete or
an exception occurs. Although register dependency checks occur across instruction boundaries,
the PIC24H CPU effectively compares the source and destination of the same instruction during
a REPEAT loop.

2.11.2.4 INSTRUCTION STALLS AND PROGRAM SPACE VISIBILITY (PSV)

When the PSV is enabled and the Effective Address (EA) falls within the visible PSV window, the
read cycle is redirected to the address in program space. Accessing data from program space
takes up to three instruction cycles.

Instructions operating in PSV address space are subject to instruction stalls, just like any other
instruction. Although the instruction stall and PSV cycles both occur at the beginning of an
instruction, it is not possible to combine them. If a stall occurs coincidentally with a PSV cycle,
the stall cycle is forced first, and then the PSV cycle, and finally, the instruction cycle. Consider
the code segment shown in Example 2-8.

Example 2-8: Code Example

This sequence of instructions would take five instruction cycles to execute. Two instruction cycles
are added to perform the PSV access via W1. Furthermore, an instruction stall cycle is inserted
to resolve the RAW data dependency caused by W2.

ADD W0, [W1], [W2++] ; PSV = 1, W1=0x8000, PSVPAG=0xAA
MOV [W2], [W3]
© 2009 Microchip Technology Inc. DS70245B-page 2-25

PIC
24H

 Fam
ily R

eference M
anual

D
S

70245B
-page 2-26

©
 2009 M

icrochip Technology Inc.

.

Bit 3 Bit 2 Bit 1 Bit 0 All
Resets

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0800

xxxx

0000

unter, High Byte 0000

 Addess Pointer 0000

ility Page Address Pointer 0000

xxxx

N OV Z C 0000

IPL3 PSV — — 0000

xxxx
2.12 REGISTER MAPS
A summary of the registers associated with the PIC24H CPU core is provided in Table 2-7

Table 2-7: PIC24H CPU SFR Memory Map

 Name Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4

W0 Working Register 0
W1 Working Register 1
W2 Working Register 2
W3 Working Register 3
W4 Working Register 4
W5 Working Register 5
W6 Working Register 6
W7 Working Register 7
W8 Working Register 8
W9 Working Register 9
W10 Working Register 10
W11 Working Register 11
W12 Working Register 12
W13 Working Register 13
W14 Working Register 14
W15 Working Register 15
SPLIM Stack Pointer Limit
PCL Program Counter, Low Word
PCH — — — — — — — — Program Co
TBLPAG — — — — — — — — Table Page
PSVPAG — — — — — — — — Program Memory Visib
RCOUNT Repeat Loop Counter
SR — — — — — — — DC IPL2 IPL1 IPL0 RA
CORCON — — — — — — — — — — — —
DISICNT — — Disable Interrupts Counter
Legend: x = unknown value on Reset, — = unimplemented, read as '0’. Reset values are shown in hexadecimal.
Note: Refer to the device data sheet for specific core register map details.

Section 2. CPU
C

PU

2

2.13 RELATED APPLICATION NOTES
This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC24H device family, but the concepts
are pertinent and could be used with modification and possible limitations. The current
application notes related to the CPU are:

Title Application Note #
No related application notes at this time. N/A

Note: For additional Application Notes and code examples for the PIC24H device family,
visit the Microchip web site (www.microchip.com).
© 2009 Microchip Technology Inc. DS70245B-page 2-27

http://www.microchip.com
http://www.microchip.com

PIC24H Family Reference Manual
2.14 REVISION HISTORY
Revision A (May 2007)
This is the initial released version of this document.

Revision B (September 2009)
This revision includes the following updates:

• Note:
- The note reference for bit 5, bit 6 and bit 7 has been updated in Register 2-1.
- Added a note on program memory error in 2.9.7 “Address Register Dependencies”.

• Sections:
- Updated the 2.1 “Introduction” section with the following data: All instructions

execute in a single cycle, except the instructions that change the program flow,
double-word move (MOV.D) instruction, table instructions and also the instructions
accessing Program Space Visibility (PSV) take more than one cycle.

- Updated the exception process in 2.11.2.1 “Instruction Stall Cycles and Interrupts”
as follows: The exception process proceeds as if an ordinary one-cycle instruction or
two-cycle instruction is interrupted.

- Updated the read or write cycle as “read cycle” in 2.11.2.4 “Instruction Stalls and
Program Space Visibility (PSV)”.

• Tables:
- Added a table on MCU Instructions that utilize the Multiplier (see Table 2-2) in

2.6.2.1 “MCU Multiply Instructions”.
- Added a table on Multiplication Options (see Table 2-3) in 2.6.2.1 “MCU Multiply

Instructions”.
• Updated the incorrect references to external documents specified in this document.
• Additional minor corrections such as language and formatting updates have been

incorporated throughout the document.
DS70245B-page 2-28 © 2009 Microchip Technology Inc.

	Section 2. CPU
	2.1 Introduction
	2.1.1 Registers
	2.1.2 Addressing Modes
	2.1.3 Arithmetic and Logic Unit
	2.1.4 Exception Processing
	Figure 2-1: PIC24H CPU Block Diagram

	2.2 Programmer’s Model
	Table 2-1: Programmer’s Model Register Descriptions
	Figure 2-2: Programmer’s Model
	2.2.1 Working Register Array
	Example 2-1: Register Instructions
	Example 2-2: File Register Instructions
	Example 2-3: Accessing W Register in File Register Instruction
	Example 2-4: W Register Used as Address Pointer and Operand Destination

	2.2.2 Shadow Registers
	Example 2-5: PUSH.S and POP.S Instructions

	2.2.3 Uninitialized W Register Reset

	2.3 Software Stack Pointer (SSP)
	Figure 2-3: Stack Operation for a CALL Instruction
	2.3.1 Software Stack Examples
	Example 2-6: Software Stack Example
	Figure 2-4: Stack Pointer at Device Reset
	Figure 2-5: Stack Pointer After the First PUSH Instruction
	Figure 2-6: Stack Pointer After the Second PUSH Instruction
	Figure 2-7: Stack Pointer After a POP Instruction

	2.3.2 W14 Software Stack Frame Pointer
	2.3.3 Stack Pointer Overflow
	2.3.4 Stack Pointer Underflow

	2.4 CPU Register Descriptions
	2.4.1 SR: CPU Status Register
	2.4.2 CORCON: Core Control Register
	Register 2-1: SR: CPU Status Register
	Register 2-2: CORCON: Core Control Register

	2.4.3 Other PIC24H CPU Control Registers

	2.5 Arithmetic Logic Unit (ALU)
	2.6 Multiplication and Divide Support
	2.6.1 Overview
	2.6.2 Multiplier
	Table 2-2: MCU Instructions that Utilize the Multiplier
	Table 2-3: Multiplication Options
	Figure 2-8: Multiplier Block Diagram

	2.6.3 Divider
	Table 2-4: Divide Execution Time

	2.7 Compiler Friendly Architecture
	2.8 Multi-Bit Shift Support
	Table 2-5: Instructions Using Single and Multi-Bit Shift Operations

	2.9 Instruction Flow Types
	2.9.1 1 Instruction Word, 1 Instruction Cycle
	Figure 2-9: Instruction Flow: One-Word, One-Cycle

	2.9.2 1 Instruction Word, 2 Instruction Cycles
	Figure 2-10: Instruction Flow: One-Word, Two-Cycle (MOV.D Operation)

	2.9.3 1 Instruction Word, 2 or 3 Instruction Cycles (Program Flow Changes)
	Figure 2-11: Instruction Flow: One-Word, Two-Cycle (Program Flow Change)
	Figure 2-12: Instruction Flow: One-Word, Three-Cycle (Two-Word Instruction Skipped)

	2.9.4 1 Instruction Word, 3 Instruction Cycles (RETFIE, RETURN, RETLW)
	Figure 2-13: Instruction Flow: One-Word, Three-Cycle (RETURN, RETFIE, RETLW)

	2.9.5 Table Read/Write Instructions
	Figure 2-14: Instruction Pipeline Flow: Table Operations

	2.9.6 2 Instruction Words, 2 Instruction Cycles
	Figure 2-15: Instruction Pipeline Flow: Two-Word, Two-Cycle

	2.9.7 Address Register Dependencies
	Figure 2-16: Instruction Pipeline Flow: One-Word, One-Cycle (With Instruction Stall)

	2.10 Program Flow Loop Control
	2.10.1 REPEAT Loop
	Example 2-7: REPEAT Instruction Syntax
	Figure 2-17: REPEAT Instruction Pipeline Flow

	2.11 Address Register Dependencies
	Figure 2-18: Data Space Access Timing
	2.11.1 Read-After-Write (RAW) Dependency Rules
	Table 2-6: Read-After-Write (RAW) Dependency Summary

	2.11.2 Instruction Stall Cycles
	Example 2-8: Code Example

	2.12 Register Maps
	Table 2-7: PIC24H CPU SFR Memory Map

	2.13 Related Application Notes
	2.14 Revision History

