Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Table of Contents

Preface ... 1

Chapter 1. Product Overview ... 5
 1.1 Introduction ... 5
 1.2 What is the MCP1630 Li-Ion Multi-Bay Battery Charger? 6
 1.3 What the MCP1630 Li-Ion Multi-Bay Battery Charger Kit Includes 6

Chapter 2. Installation and Operation .. 7
 2.1 Introduction .. 7
 2.2 Features ... 7
 2.3 Getting Started ... 8

Appendix A. Schematic and Layouts .. 11
 A.1 Introduction ... 11
 A.2 Board Schematic – Sheet 1 .. 12
 A.3 Board Schematic – Sheet 2 .. 13
 A.4 Board – Assembly Drawing .. 14
 A.5 Board – Top Layer .. 15
 A.6 Board – Mid-Layer 1 ... 16
 A.7 Board – Mid-Layer 2 ... 17
 A.8 Board – Bottom Layer ... 18

Appendix B. Bill-Of-Materials (BOM) .. 19

Appendix C. Evaluation Board Firmware
 C.1 Device Firmware .. 21
Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
www.microchip.com to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXA”, where “XXXX” is the document number and “A” is the revision level of the
document.

For the most up-to-date information on development tools, see the MPLAB® IDE on-line help.
Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the
MCP1630 Li-Ion Multi-Bay Battery Charger. Items discussed in this chapter include:

- Document Layout
- Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP1630 Li-Ion Multi-Bay Battery Charger. The
manual layout is as follows:

- Chapter 1. “Product Overview” – Important information about the MCP1630
 Li-Ion Multi-Bay Battery Charger.
- Chapter 2. “Installation and Operation” – Includes instructions on how to get
 started with this user’s guide and a description of the user’s guide.
- Appendix A. “Schematic and Layouts” – Shows the schematic and layout
 diagrams for the MCP1630 Li-Ion Multi-Bay Battery Charger.
- Appendix B. “Bill-Of-Materials (BOM)” – Lists the parts used to build the
 MCP1630 Li-Ion Multi-Bay Battery Charger.
- Appendix C. “Evaluation Board Firmware” – Provides information about the
 application firmware and where the source code can be found.
CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Represents</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arial font:</td>
<td>Referenced books</td>
<td>MPLAB® IDE User’s Guide</td>
</tr>
<tr>
<td>Italic characters</td>
<td>Emphasized text</td>
<td>...is the only compiler...</td>
</tr>
<tr>
<td>Initial caps</td>
<td>A window</td>
<td>the Output window</td>
</tr>
<tr>
<td></td>
<td>A dialog</td>
<td>the Settings dialog</td>
</tr>
<tr>
<td></td>
<td>A menu selection</td>
<td>select Enable Programmer</td>
</tr>
<tr>
<td>Quotes</td>
<td>A field name in a window or dialog</td>
<td>“Save project before build”</td>
</tr>
<tr>
<td>Underlined, italic text with right angle bracket</td>
<td>A menu path</td>
<td>File>Save</td>
</tr>
<tr>
<td>Bold characters</td>
<td>A dialog button</td>
<td>Click OK</td>
</tr>
<tr>
<td></td>
<td>A tab</td>
<td>Click the Power tab</td>
</tr>
<tr>
<td>‘bnnnn’</td>
<td>A binary number where n is a digit</td>
<td>‘b00100, ‘b10</td>
</tr>
<tr>
<td>Text in angle brackets < ></td>
<td>A key on the keyboard</td>
<td>Press <Enter>, <F1></td>
</tr>
<tr>
<td>Courier font:</td>
<td>Sample source code</td>
<td>#define START</td>
</tr>
<tr>
<td>Plain Courier</td>
<td>Filenames</td>
<td>autoexec.bat</td>
</tr>
<tr>
<td></td>
<td>File paths</td>
<td>c:\mcc18\h</td>
</tr>
<tr>
<td></td>
<td>Keywords</td>
<td>_asm, _endasm, static</td>
</tr>
<tr>
<td></td>
<td>Command-line options</td>
<td>-Opa+, -Opa-</td>
</tr>
<tr>
<td></td>
<td>Bit values</td>
<td>0, 1</td>
</tr>
<tr>
<td>Italic Courier</td>
<td>A variable argument</td>
<td>file.o, where file can be any valid filename</td>
</tr>
<tr>
<td>0xnnnn</td>
<td>A hexadecimal number where n is a hexadecimal digit</td>
<td>0xFFFF, 0x007A</td>
</tr>
<tr>
<td>Square brackets []</td>
<td>Optional arguments</td>
<td>mcc18 [options] file [options]</td>
</tr>
<tr>
<td>Curly brackets and pipe character: {</td>
<td>}</td>
<td>Choice of mutually exclusive arguments; an OR selection</td>
</tr>
<tr>
<td></td>
<td>Ellipses...</td>
<td>Replaces repeated text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Represents code supplied by user</td>
</tr>
</tbody>
</table>

RECOMMENDED READING

This user’s guide describes how to use MCP1630 Li-Ion Multi-Bay Battery Charger. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

MCP1630 Data Sheet, “High-Speed, Microcontroller-Adaptable, Pulse Width Modulator”, (DS21896)

This data sheet provides detailed information regarding the MCP1630 product family.
THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

In addition, there is a Development Systems Information Line which lists the latest versions of Microchip's development systems software products. This line also provides information on how customers can receive currently available upgrade kits.

The Development Systems Information Line numbers are:

1-800-755-2345 – United States and most of Canada
1-480-792-7302 – Other International Locations

DOCUMENT REVISION HISTORY

Revision A (March 2005)

- Initial Release of this Document.
Chapter 1. Product Overview

1.1 INTRODUCTION

The MCP1630 Li-Ion Multi-Bay Battery Charger is used to evaluate Microchip’s MCP1630, when used in a Single-Ended Primary Inductive Converter (SEPIC) power converter application. The MCP1630 Li-Ion Multi-Bay Battery Charger is capable of charging two single-cell, Li-Ion battery packs in parallel utilizing an input voltage of 10V to 28V. Multiple boards can be daisy-chained for a maximum of sixteen charger bays. The MCP1630 Li-Ion Multi-Bay Battery Charger is intended for use in pseudo-smart battery charger applications in conjunction with battery packs containing Microchip’s PS700 Battery Monitor. Standard battery packs can be utilized as well. The MCP1630 Li-Ion Multi-Bay Battery Charger provides a constant-current, constant-voltage charge with preconditioning, cell temperature monitoring and battery pack fault monitoring. Each charger bay provides status and fault indications. The MCP1630 Li-Ion Multi-Bay Battery Charger automatically detects the insertion or removal of a battery pack.

This chapter covers the following topics:
- What is the MCP1630 Li-Ion Multi-Bay Battery Charger?
- What the MCP1630 Li-Ion Multi-Bay Battery Charger kit includes

FIGURE 1-1: MCP1630 Li-Ion Multi-Bay Battery Charger Block Diagram.
1.2 WHAT THE MCP1630 LI-ION MULTI-BAY BATTERY CHARGER IS

The MCP1630 Li-Ion Multi-Bay Battery Charger is a complete, stand-alone, constant-current, constant-voltage battery charger for single-cell Li-Ion battery packs. Different battery chemistries (i.e. three NiMH or NiCd batteries connected in series) can be charged with minor modifications to the firmware. This board utilizes Microchip’s MCP1630 (High-speed PWM MSOP8), MCP6292 (Dual Op Amp MSOP8) and PIC18F2410 (Flash MCU SOIC28). The input voltage range for the MCP1630 Li-Ion Multi-Bay Battery Charger is 10V to 28V. The output is capable of charging at a fast-charge rate of 2A constant current.

An input terminal block is provided to apply an input voltage to the charger and as a convenient means to daisy-chain boards together. Output headers are also provided as a means to connect the external battery packs or simulated battery loads. A programming header is available for updating the firmware contained in the PIC18F2410.

1.3 WHAT THE MCP1630 LI-ION MULTI-BAY BATTERY CHARGER KIT INCLUDES

This MCP1630 Li-Ion Multi-Bay Battery Charger kit includes:

- MCP1630 Li-Ion Multi-Bay Battery Charger (102-00038)
- MCP1630 Li-Ion Multi-Bay Battery Charger User’s Guide (DS51515)
- MCP1630, High-Speed, Microcontroller-Adaptable, Pulse Width Modulator Data Sheet (DS21896)
Chapter 2. Installation and Operation

2.1 INTRODUCTION

The MCP1630 Li-Ion Multi-Bay Battery Charger demonstrates Microchip’s MCP1630 High-Speed PWM when used in a pseudo-smart battery charger application. The MCP1630 is a High Speed, microcontroller adaptable, pulse width modulator. When used in conjunction with a microcontroller, the MCP1630 will control the power system duty cycle to provide output voltage or current regulation. The microcontroller (PIC18F2410) can be used to regulate output voltage or current, switching frequency and maximum duty cycle. The MCP1630 generates duty cycle while providing fast overcurrent protection based off various external inputs. External signals include the input oscillator, the reference voltage, the feedback voltage and the current sense. The output signal is a square-wave pulse. The power train used for the MCP1630 is a SEPIC.

2.2 FEATURES

The MCP1630 has the following features:

- Programmed Parameters – Modified in firmware
- Factory Settings:
 - Preconditioning charge current = 200 mA
 - Preconditioning threshold = 2.8V
 - Constant-current fast charge = 2A
 - Constant-voltage charge = 4.2V
 - Charge termination threshold = 100 mA
- Overvoltage protection (battery removed)
- Overcharge protection to prevent damaging the battery
- Overcurrent protection in the event of a shorted battery
- Battery-reversal protection
- Input short circuit protection
- Overtemperature protection to prevent the battery from reaching too high a temperature during charge
- Fast charge termination in the event the battery temperature is too high
- Soft-start capability by holding the reference voltage low during power-up
- The MCP1630 terminates charge by detecting a predefined charge current threshold during constant-voltage charge, or a specified elapsed time
- The MCP1630 has the flexibility to optimize the charging algorithm for new battery technology and add proprietary features by modifying the firmware contained in the PIC18F2410. The factory-programmed source code is available
- Ability to adapt to environmental effects, such as ambient temperature
2.3 GETTING STARTED

The MCP1630 Li-Ion Multi-Bay Battery Charger is fully assembled and tested for charging single-cell, Li-Ion battery packs with the recommended charge profile for Li-Ion batteries. This board requires the use of an external input voltage source (+10V to +28V) and external load (battery or simulated battery load). It is recommended that a battery pack containing Microchip’s PS700 battery monitor be used to maximize the full benefits of the pseudo-smart battery system with the shortest charge cycle times. Alternatively, standard battery packs or the recommended simulated load can be utilized to evaluate the system performance.

2.3.1 Power Input and Output Connections

Powering the MCP1630 Li-Ion Multi-Bay Battery Charger

1. Apply the input voltage to the input terminal block (JP2). The input voltage source should be limited to the 0V to +28V range. For normal operation, the input voltage should be between +10V and +28V. The input voltage must not exceed an absolute maximum of +35V.

2. Connect the positive side (+) of the input source to pin 1 of JP2. Connect the negative or return side (-) of the input source to pin 2 of JP2. Refer to Figure 2-1.

![Setup Configuration Diagram](image)
Apply the load to a battery header.

1. To apply a load to the MCP1630 Li-Ion Multi-Bay Battery Charger, the positive side of the load (B+) should be connected to pin 1 of JP1 or JP3. The negative side of the load (B-) should be connected to pin 5 of JP1 or JP3. Care should be taken when using either electronic loads or ground-referenced loads.

2. A thermistor referenced to B- in the battery pack should be utilized. If a thermistor is not available or desired, a 10 kΩ resistor should be placed between pin 4 and pin 5 of the battery header. Alternatively, the firmware can be modified to ignore the thermistor input.

3. SMBus interface connections are provided at the battery headers for communication with battery packs containing Microchip’s PS700. Utilizing a pseudo-smart battery system will provide reduced charge cycle times by compensating for IR voltage drops in the high-current charge path.

4. The code will prevent the board from entering the 2A Fast Charge mode if the battery terminal voltage is less than 2.8V. During power-up, the board will always trickle charge first, so using a purely resistive load will not work for trickle and fast charge current. The best way to evaluate the charger is to use a single-cell, Li-Ion battery pack or the recommended simulated battery load. Refer to Figure 2-2.

![FIGURE 2-2: Simulated Battery Load.](image)

Status LEDs

1. Each charger bay has a LED to indicate charge status (D8 for charge bay 1 and D6 for charge bay 2), as well as a LED to indicate a fault (D4 for charge bay 1 and D5 for charge bay 2).

<table>
<thead>
<tr>
<th>TABLE 2-1: STATUS OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHARGE CYCLE STATE</td>
</tr>
<tr>
<td>Qualification</td>
</tr>
<tr>
<td>Preconditioning</td>
</tr>
<tr>
<td>Constant Current Fast Charge</td>
</tr>
<tr>
<td>Constant Voltage</td>
</tr>
<tr>
<td>Charge Complete</td>
</tr>
<tr>
<td>Safety Timer Fault</td>
</tr>
<tr>
<td>Cell Temperature Invalid</td>
</tr>
<tr>
<td>Battery Disconnected</td>
</tr>
<tr>
<td>Input Power Removed</td>
</tr>
</tbody>
</table>

Programming

1. Header JP4 is provided for in-system circuit programming.
Appendix A. Schematic and Layouts

A.1 INTRODUCTION

This appendix contains the following schematics and layouts for the MCP1630 Li-Ion Multi-Bay Battery Charger:

- Board Schematic (Sheets 1 and 2)
- Board – Assembly Drawing
- Board – Top Layer
- Board – Mid-Layer 1
- Board – Mid-Layer 2
- Board – Bottom Layer
A.7 BOARD – MID-LAYER 2
A.8 BOARD – BOTTOM LAYER
Appendix B. Bill-Of-Materials (BOM)

<table>
<thead>
<tr>
<th>Qty</th>
<th>Reference</th>
<th>Description</th>
<th>Mfr.</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C1, C15</td>
<td>1 µF, X7R Ceramic, 50V, 1206</td>
<td>TDK Electronic Co., LTD</td>
<td>C3216X7R1H105K</td>
</tr>
<tr>
<td>5</td>
<td>C2, C3, C13, C14, C18</td>
<td>10 µF, Y5U Ceramic, 50V, 1210</td>
<td>Panasonic®</td>
<td>ECJ-4YF1H106Z</td>
</tr>
<tr>
<td>4</td>
<td>C4, C5, C16, C17</td>
<td>10 µF, X5R Ceramic, 10V, 1206</td>
<td>Panasonic</td>
<td>ECJ-3YB1A106M</td>
</tr>
<tr>
<td>4</td>
<td>C6, C19, R18, R40</td>
<td>DNP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>C7, C20, C27, C28, C29, C30</td>
<td>0.01 µF, X7R Ceramic, 50V, 0805</td>
<td>Panasonic</td>
<td>ECJ-2VB1H103K</td>
</tr>
<tr>
<td>2</td>
<td>C8, C22</td>
<td>1500 pF, X7R Ceramic, 100V, 0805</td>
<td>Panasonic</td>
<td>ECJ-2VB2A152K</td>
</tr>
<tr>
<td>2</td>
<td>C9, C25</td>
<td>0.022 µF, X7R Ceramic, 50V, 0805</td>
<td>Panasonic</td>
<td>ECJ-2VB1H223K</td>
</tr>
<tr>
<td>4</td>
<td>C10, C21, C26, C31</td>
<td>4.7 µF, X5R Ceramic, 6.3V, 0805</td>
<td>Panasonic</td>
<td>ECJ-2FB0J475M</td>
</tr>
<tr>
<td>5</td>
<td>C11, C12, C23, C24, C32</td>
<td>0.1 µF, X7R Ceramic, 16V, 0805</td>
<td>Panasonic</td>
<td>ECJ-2VB1C104K</td>
</tr>
<tr>
<td>2</td>
<td>D1, D2</td>
<td>Schottky Diode, 40V, 3A, SMA</td>
<td>Diodes Inc.</td>
<td>B340A-13</td>
</tr>
<tr>
<td>1</td>
<td>D3</td>
<td>Shunt Regulator, SOT23-5</td>
<td>Texas Instruments Inc.</td>
<td>TL431IDBVR</td>
</tr>
<tr>
<td>2</td>
<td>D4, D5</td>
<td>Red LED, 0805</td>
<td>Lumex® Opto/Components</td>
<td>SML-LXT0805I-W-TR</td>
</tr>
<tr>
<td>2</td>
<td>D6, D8</td>
<td>Green LED, 0805</td>
<td>Lumex Opto/Components</td>
<td>SML-LXT0805GW-TR</td>
</tr>
<tr>
<td>1</td>
<td>D7</td>
<td>Dual Schottky, 45V, 75 mA, S-MINI 4P</td>
<td>Panasonic</td>
<td>MA4ZDG0300L</td>
</tr>
<tr>
<td>1</td>
<td>F1</td>
<td>Polyswitch, 2.0A, Resettable, MINISMDC</td>
<td>Raychem®</td>
<td>MINISMDC200-2</td>
</tr>
<tr>
<td>2</td>
<td>JP1, JP3</td>
<td>Connector Header, 5 Pos., 2.54mm, Friction Lock, HDR1X5-FL</td>
<td>Molex®/Waldon®</td>
<td>22-23-2051</td>
</tr>
<tr>
<td>1</td>
<td>JP2</td>
<td>Connector Terminal Block, 2-Pos., 5.08mm, TB508-2</td>
<td>Phoenix Contact</td>
<td>1729128</td>
</tr>
<tr>
<td>1</td>
<td>JP4</td>
<td>Connector Header, 5 Pos., 2.54mm, HDR1X5</td>
<td>Molex</td>
<td>22-03-2051</td>
</tr>
<tr>
<td>2</td>
<td>JP5, JP6</td>
<td>Connector Terminal Block, 2-Pos., 2.54mm, TB254-2</td>
<td>Phoenix Contact</td>
<td>1725656</td>
</tr>
<tr>
<td>2</td>
<td>L1, L3</td>
<td>Power Inductor, 15 µH, 1.47A, CDRH74</td>
<td>Sumida Corporation®</td>
<td>CDRH74-150MC</td>
</tr>
<tr>
<td>2</td>
<td>L2, L4</td>
<td>Power Inductor, 15 µH, 3.6A, CDRH104R</td>
<td>Sumida Corporation</td>
<td>CDRH104R-150NC</td>
</tr>
<tr>
<td>2</td>
<td>Q1, Q2</td>
<td>N-channel MOSFET, SOIC8</td>
<td>International Rectifier</td>
<td>IRF7478</td>
</tr>
<tr>
<td>1</td>
<td>Q3</td>
<td>NPN Transistor, SOT23-6</td>
<td>Zetex® Inc.</td>
<td>ZXT10N50DE6TA</td>
</tr>
<tr>
<td>8</td>
<td>R1, R2, R3, R4, R21, R22, R23, R24</td>
<td>0.22Ω, 1/4W, Chip Resistor, 1206</td>
<td>Panasonic</td>
<td>ERJ-8RQFR22V</td>
</tr>
<tr>
<td>Qty</td>
<td>Reference</td>
<td>Description</td>
<td>Mfgr.</td>
<td>Part Number</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>-------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>14</td>
<td>R5, R8, R9, R27, R29, R37, R50, R53, R54, R56, R57, R59, R60, R61</td>
<td>1.00 kΩ, 1/10W, Chip Resistor, 0805</td>
<td>Panasonic</td>
<td>ERJ-6ENF1001V</td>
</tr>
<tr>
<td>13</td>
<td>R6, R13, R14, R20, R28, R32, R35, R44, R46, R49, R52, R55, R62</td>
<td>10.0 kΩ, 1/10W, Chip Resistor, 0805</td>
<td>Panasonic</td>
<td>ERJ-6ENF1002V</td>
</tr>
<tr>
<td>6</td>
<td>R7, R25, R26, R33, R34, R36</td>
<td>7.87 kΩ, 1/10W, Chip Resistor, 0805</td>
<td>Panasonic</td>
<td>ERJ-6ENF7871V</td>
</tr>
<tr>
<td>8</td>
<td>R10, R15, R17, R19, R30, R39, R41, R43</td>
<td>100 kΩ, 1/10W, Chip Resistor, 0805</td>
<td>Panasonic</td>
<td>ERJ-6ENF1003V</td>
</tr>
<tr>
<td>2</td>
<td>R11, R31</td>
<td>10.0 Ω, 1/10W, Chip Resistor, 0805</td>
<td>Panasonic</td>
<td>ERJ-6ENF10R0V</td>
</tr>
<tr>
<td>7</td>
<td>R12, R42, R45, R47, R48, R51, R58</td>
<td>47.5 kΩ, 1/10W, Chip Resistor, 0805</td>
<td>Panasonic</td>
<td>ERJ-6ENF4752V</td>
</tr>
<tr>
<td>2</td>
<td>R16, R38</td>
<td>147 kΩ, 1/10W, Chip Resistor, 0805</td>
<td>Panasonic</td>
<td>ERJ-6ENF1473V</td>
</tr>
<tr>
<td>2</td>
<td>U1, U4</td>
<td>PWM Building Block, MSOP8</td>
<td>Microchip Technology Inc.</td>
<td>MCP1630-I/MS</td>
</tr>
<tr>
<td>2</td>
<td>U2, U5</td>
<td>Dual Op Amp 10 MHz, MSOP8</td>
<td>Microchip Technology Inc.</td>
<td>MCP6292-E/MS</td>
</tr>
<tr>
<td>2</td>
<td>U3, U6</td>
<td>Bilateral Switch, SOT23-5</td>
<td>Texas Instruments Inc.</td>
<td>SN74LVC1G66DBVR</td>
</tr>
<tr>
<td>1</td>
<td>U7</td>
<td>D-Type Flip-Flop, US8</td>
<td>Fairchild®</td>
<td>NC7SZ74K8X</td>
</tr>
<tr>
<td>1</td>
<td>U8</td>
<td>Enhanced Flash, SOIC28</td>
<td>Microchip Technology Inc.</td>
<td>PIC18F2410-I/SO</td>
</tr>
<tr>
<td>1</td>
<td>U9</td>
<td>Dual Inverter, SOT23-6</td>
<td>Texas Instruments Inc.</td>
<td>SN74LVC2G14DBVR</td>
</tr>
</tbody>
</table>
Appendix C. Evaluation Board Firmware

C.1 DEVICE Firmware

For the latest version of the MCP1630 Li-Ion Multi-Bay Battery Charger firmware, visit our web site at www.microchip.com.

FIGURE C-1: Firmware Flowchart - Page 1
AMERICAS
Corporate Office
2355 West Chandler Blvd.,
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westford, MA
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7200
Fax: 972-818-7200

Detroit
Farmington Hills, MI
Tel: 248-538-2431
Fax: 248-538-2431

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9523

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-8509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

ASIA/PACIFIC
Europe
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

10/20/04