1.0 INTRODUCTION

The anti-collision interrogator in the DV103005 Development Kit is for Microchip Technology Inc.’s 13.56 MHz RFID devices (MCRF35X/360 and MCRF45X). The interrogator is used in conjunction with rFLAB™ software version 3.2 or above. The user must select the device type in the rFLAB menu bar for either the MCRF35X/360 or MCRF45X device.

In the MCRF35X/360 mode, the interrogator transmits 13.56 MHz carrier signal continuously and receives tag’s responses. This is often called “Tag Talks First” (TTF). The interrogator is working as the reader in the DV103003 kit that is for read-only devices (MCRF35X and MCRF360).

In the MCRF45X mode, the interrogator sends commands for reading or writing block data. Interrogator uses amplitude modulation for the commands. To initiate communications, the interrogator sends specially timed gap pulses: FRR (Fast Read Request) and FRB (Fast Read Bypass). These pulses consist of 5 gaps within 1.575 ms time span. Each gap pulse is 175 µs wide with 100% modulation depth. Gap means an absence of RF field. See Figures 4-3 thru 4-8 in the MCRF45X data sheet for details.

1-of-16 PPM (Pulse Position Modulation) is used for data and commands such as Read/Write command for block data, command to set/clear TF (Tag Talks First) and FR (Fast Read) bits, and command for end process. The 1-of-16 PPM signal consists of one gap pulse within 2.8 ms time span for a normal mode and 160 µs for a fast mode. The gap’s position within 16 possible locations determines its representation for hex value. See Figure 4-9 in the MCRF45X data sheet (DS40232) for details.

The interrogator also sends a time reference pulse before the commands and data. This time reference signal consists of three gap pulses within 2.8 ms time span for a normal mode and 160 µs for a fast mode. See Figure 4-10 in the MCRF45X data sheet for details. Figure 1-1 shows the read/write pulse sequence between the interrogator and device.

The demo interrogator communicates with the device in conjunction with the rFLAB.

The rFLAB is a menu driven software package. Once the “MCRF450” - “Continuous” - “Run” menus are selected, the interrogator transmits FRR command continuously. Tags respond to the FRR command with a maximum of 160 bits of data, including its unique ID number (32 bits). To read or write a specific memory block, users must select the tag ID and block number.

The demo interrogator, along with the rFLAB included in the DV103005 kit, is made as a reference material for various applications. The demo interrogator is designed for a general purpose utilizing all possible features shown in the data sheet. Both firmware and schematics can be modified for each individual application.

The interrogator uses two PICmicro® microcontrollers (MCUs) to communicate with a host computer, to send commands and data to the tag, and to receive and process the data from the tag.

The U17 includes the anti-collision algorithm shown in Figure 4-1 of the MCRF45X data sheet. It controls all functions of the interrogator except decoding the received Manchester data which is done by the U14.

The circuit is designed for medium read/write range applications (about 15” with 2” x 2” tag). The circuit can be optimized for lower cost or modified for long-range applications. Electronic copies of the PICmicro MCU source codes, schematics and Bill of Material (BOM) are available for download and contained on the CD provided in the DV103006 developer kit.
FIGURE 1-1: READ/WRITE PULSE SEQUENCE

To write 1 block (32 bits) in normal mode with TS = 1: ~ 78.014 ms
To read 1 block (32 bits) in normal mode with TS = 1: ~ 42.214 ms

Interrogator Command (FRR/FRB)

FRR or FRB Command: 5 gap pulses = 1.575 ms.

Listening window (TLw) for 1 ms

For FR Response:
(Preamble (8 bits) + Tc (3 bits) + Tp (4 bits) + "0" + 32 bits of Tag ID + FRF (32-96 bits) + bits 0-15 in Block #0
= 160 bits max = 2.296 ms)

For FRB Response:
(Preamble (8 bits) + "00001" + "000" + 32-bit Tag ID (block 1 data) + SCRC (16 bits)
= 64 bits = 0.914 ms)

To DECODE (2.8 ms)

Time Slot (TS)

Matching Code during listening window:
MC code = Calibration pulse (1 symbol) + Matched Tag ID (8 bits) + MC code type (3 bits) + 1 Parity bit
= Cal. pulse (1 symbol) + 12 bits = 4 symbols = 11.2 ms

For Reading: Cal. pulse (1 symbol) + Read Command (MSN first) + Address (MSN first + Parity) = Cal. pulse + 3 symbols = 11.2 ms
For Writing: Cal. pulse (1 symbol) + Write Command (MSN first) + Address (MSN first) + data (LSN first) + Parity/CRC (LSN first)
= Cal. pulse (1 symbol) + 14 symbols = 42 ms

Device Outputs:

After a completion of write cycle:
Preamble (8 bits) + written block # (5 bits) + "000" + written block data (32 bits) + CCRC/SCRC (16 bits)
= 64 bits = 0.914 ms
After read command:
Preamble (8 bits) + block # (5 bits) + "000" + block data (32 bits) + CCRC/SCRC (16 bits)
= 64 bits = 0.914 ms

Interrogator Command (End Process)

End Process Command:
Cal. pulse + End Process Command (111) + Address (01010) + Parity (1)
= Cal. Pulse + 3 symbols = 11.2 ms

Device Response: 8-bit preamble (11111110)
(0.114 ms)

Tag Response (FR response)

Tag Response (to Read/Write)

Device Outputs:

Interrogator Command (MC and Read/Write)
MCRF45X REFERENCE DESIGN

2.0 INTERROGATOR CIRCUITS

The interrogator circuit consists of (1) transmitting, (2) receiving and (3) command control/data processing sections.

2.1 RF Transmission Section

U6:A and 13.56 MHz crystal form a crystal oscillator and output a 13.56 MHz signal. The output signal is fed into pin 1 of U7. The input signal on pin 2 of U7 is coming from U17 (master microcontroller). The following is the output of U17 for pin 2 of U7:

- MCRF45X mode: Modulation signal for commands and block data for writing.
- Standby mode: Logic “HIGH”.
- MCRF35X/360 mode: Logic “HIGH”.

Therefore, U7 outputs (a) a modulated RF signal (for command or write data) or (b) continuous RF signals during the standby and MCRF35X/360 operation. The output signal of the U7 is fed into the gate of RF power amplifier U8 through U6:D, E and F. Splitting the output of U6:C using U6:D, E and F is helpful for preventing excessive heat on U6.

U4 is an adjustable voltage regulator and supplies the DC power supply voltage for U8. The U4 is controlled by U17 through U16 (DAC) and U3. The main idea of using the adjustable voltage regulator is to adjust the RF output signal level of U8. The power level is adjusted by the following procedure in the rfLAB menu:

"Configure" -> "Carrier Strength"

User can select the "Carrier Strength" from 0%-100% (from the above menu). Default is set to 100%. The interrogator outputs the maximum power level at this setting.

rfLAB sends the Carrier Strength information to U17 which adjusts U4’s output voltage through U16 and U3. This corresponds to about 12.37 VDC at pin 2 of U4 for the 15 VDC input voltage.

The purpose of adjusting the carrier signal level is to reduce a possible near-field problem which may result in an irregular clock rate of the RFID device. This is due to an excessive input voltage to the device when the tag is placed too close to the reader antenna. In this case, the output power level from the interrogator should be decreased. However, for a longer read range, it is often necessary to output a higher power level so that it can detect tags in the far range.

Adjusting the carrier signal level is an optional choice. Therefore, the circuit components (U16, U3 and U4) associated with this feature can be easily removed. In this case, +15 VDC or 9 VDC should be directly applied to L9 for U8.

The RF output voltage from U8 is fed into the antenna circuit formed by C1, C2, C3, C4, C5 and antenna coil L.

The demo unit has three different sizes of antenna. Each one has one turn inductor along the edge of the PCB board. The metal trace is embedded inside the PCB.

Figure 2-1 shows the antenna circuit. The impedance of LC circuit is given by:

\[
Z(\omega) = \frac{1}{C_4} \left(j \omega L + \frac{1}{j \omega C_S} \right)
- \frac{1}{\omega^2 L} + \frac{1}{C_S} + \frac{1}{C_4}
\]

where

- \(C_S = C_1 + C_2 + C_3 + C_5\)
- \(\omega = 2 \pi f\)
- \(f = \text{output carrier frequency}\)

The resonant frequency of the antenna circuit in the interrogator is given by solving the impedance equation in Equation 2-1. In Equation 2-1, the impedance \(Z(\omega)\) has poles and zeroes. The poles are found at the condition when the denominator goes to zero and the zeroes are found when the numerator goes to zero. The poles result in a maximum impedance, since the denominator goes to zero. Therefore, the frequencies at the poles are the parallel resonant frequencies. The zeroes result in a minimum impedance since the number goes to zero. Thus, the frequencies at the zeroes are series resonant frequencies.

FIGURE 2-1: ANTENNA CIRCUIT
The resonant frequencies by solving the poles and zeroes are:

EQUATION 2-2:

\[f_{\text{series}} = \frac{1}{2\pi \sqrt{L C_S}} = \frac{1}{2\pi \sqrt{L(C_1 + C_2 + C_3 + C_5)}} \]

and

EQUATION 2-3:

\[f_{\text{parallel}} = \frac{1}{2\pi \sqrt{\frac{1}{L(C_S + \frac{C_5}{C_4})}}} \]

where

\[C_S = C_1 + C_2 + C_3 + C_5 \]

Equation 2-3 is used for the antenna circuit of the interrogator in the DEV103005 kit.

The antenna voltage across the L is given:

EQUATION 2-4:

\[V_{\text{Ant}} = \frac{jX_L}{r + j(X_L - X_{C_S})} V_{\text{in}} \]

where

\[r = \text{Ohmic resistance of L and C} \]
\[X_L = 2\pi f L \text{ (}\Omega\text{)} \]
\[X_{C_S} = (2\pi f C_S)^{-1} \text{ (}\Omega\text{)} \]
\[V_{\text{IN}} = \text{AC voltage at points between P1 and P2}. \]

The antenna voltage measured between P3 and P2 contributes the radiating RF field from the antenna. The voltage is about 60 VPP-80 VPP. C5 can be adjusted to get the maximum voltage across the antenna. The current that flows along antenna L generates magnetic fields.

Each interrogator unit may have a slightly different output parasitic capacitor. As a result, there will be a chance of tuning variation when the antenna is attached to the unit. This results in shorter read range. In this case, C5 in the circuit should be adjusted properly.

2.2 Receiving Section

The receiving section receives 70 kHz Manchester data from tag in the field. D1, C4 and R3 collectively form an envelope detector.

L1 and C3 forms a 70 kHz band-pass filter. D4 and D2 are used to limit signal amplitude level which prevents U1:A from going into a saturation condition. L3, C33 and C47 form a 13.56 MHz notch filter and bypass the induced carrier signal into ground. FB1 is an RF choker that gives high attenuation to high frequency signal.

U1:A is a gain amplifier that gives about 26 dB voltage gain. U1:B is a unit gain second-order high-pass filter. U1:C is a gain amplifier with about 29 dB voltage gain. U1:D is a unit gain second-order low-pass filter. U1:B and D result in a band-pass filter for the 70 kHz Manchester data.

U11:A, B, T1 and T2 circuits are used to find a midpoint of the input data voltage. The resulting average voltage, \((V_{P+} + V_{P-})/2\), is used as a reference voltage for the voltage comparator U2. The output of U2 is fed into the PICmicro microcontroller U17 for data decoding.

2.3 Command Control and Data Decoding Section

The interrogator uses two PICmicro MCUs (PIC16F876-20/SP) for the command controls, data decoding and communication with a host computer.

The U17 includes PIC® code routines to follow the device’s read/write anti-collision algorithm as shown in Figure 4-1 in the data sheet. The U14 performs bit timing calculation for the received Manchester code.

The U17 does the following tasks:

- a) Communicate with a host computer
- b) Encode and transmit:
 - FRR and FRB Commands
 - Calculate/Send MC1 and MC2
 - Read/Write/End Commands
 - Calibration Pulse
 - Data and CRC
- c) Decode receiving data
- d) Calculate CRC for transmitting data and receiving data. CRC look-up table is used for the calculation.
- e) Give a received data stream to U14 for decoding of the Manchester data.

The flow charts of the PICmicro microcontroller routines for U14 and U17 are shown in AN760 (DS00760). The source codes are available for download and contained on the CD provided in the DV103006 develop kit.

Figure 2-2 shows the functional block diagram of the interrogator.
FIGURE 2-2: FUNCTIONAL BLOCK DIAGRAM OF DEMO INTERROGATOR

Transmitting Section:
- 13.56 MHz Signal Generator (U6: A)
- Modulator (U7)
- Power Amplifier (U8)
- Tuning Circuit (C1, C2, C3, C4, C5)

Receiving Section:
- 20 MHz OSC
- Microcontroller (U17, U14)
- Host Computer (rfLAB™)
- Amplifier (U1:A)
- 70 kHz LC Band Pass Filter (L1, C3)
- Envelope Detector (D1)
- 13.56 MHz LC Notch Filter (L3, C33, C47)
- High and Low Pass Filters (U1:B, U1:D)
FIGURE 2-3: DATA SIGNAL WAVEFORMS FROM TAG

- Tag Data Signal
- Signal Waveform in Reader Coil
- After Envelope Detector
- After Pulse Shaping

At 14.285 µs each

FIGURE 2-4: BIPHASE-L (MANCHESTER) SIGNAL

(a) Data ‘1’

(b) Data ‘0’
Note: Remove GND and PWR plane from beneath L4.
MCRF45X REFERENCE DESIGN

Ground Point of Antenna

ANT 1
ANTENNA

330 pF

C4

470 pF

C4 A

BANANNA

P1

47 pF

C3

56 pF

C2

56 pF

C1

65-30 pF

C5

Receive

BANANNA

P3

Antenna
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Printed on recycled paper.