



 1998 Microchip Technology Inc. DS40160A/5_015-page 1

Microchip Technology Incorporated, has been granted a nonexclusive, worldwide license to reproduce, publish and distribute all submitted materials, in
either original or edited form. The author has affirmed that this work is an original, unpublished work and that he/she owns all rights to such work. All
property rights, such as patents, copyrights and trademarks remain with author.

APPLICATION OPERATION:

Overview

Most of us who have read the advertisements in comic
books or visited novelty stores know of the classic
piece of practical joke hardware known as the
“whoopie cushion”. This low-tech device is essentially
a rubber bag with an opening on one end. This open-
ing is like a valve in that it allows for an easy flow of air
into the bag but restricts the flow of air out of the bag.
The bag is placed either on top of a seat or in-between
the cushion of a sofa or easy chair. When a person
sits down in the chair, air is forced out of the bag
through the opening, causing the bag to emit an
embarrassing noise. This results in embarrassment
for the victim, and more importantly, laughter among
the non-victims. With the possible exception of the
victim, this laughter improves the quality of life of all
concerned.

While the whoopie cushion is considered a classic by
the practical jokers of the world, it possesses several
flaws, which are:

1:

It is not inconspicuous. If left on the top of a chair,
the would-be victim can generally recognize it as
something that should not be there, and he/she
immediately suspects foul play. Moreover, if it is
placed underneath a sofa cushion, its inflated size
makes it clearly visible, and the would-be victim
immediately suspects foul play.

2:

It possesses a repertoire of only one sound.

3:

It is not self-retriggering. It must be removed from
the chair and re-inflated before it is ready for the
next victim.

4:

It can only be triggered when someone sits in the
chair. It does not possess the capability of trigger-
ing when the victim leaves the chair.

As with many things, we look to science and technol-
ogy to solve our problems. While many of the parts

required to produce an electronic version this classic
gag device have existed for several years, only
recently with the advent of low cost, small microcon-
trollers such as the PIC12C508 can the dream of a
high tech version of the whoopie cushion be realized.
Thus, I present to the world the first (to the best of my
knowledge) electronic version of the whoopie cushion.
It utilizes a thin piece of piezoelectric film to sense
when someone sits down in the chair or gets up from
the chair, and utilizes a single chip sound record/play-
back device to play back one of four different pre-
recorded “sounds”. Overall device control is provided
by a PIC12C508 8 pin microcontroller.

Hardware

The Electronic Whoopie Cushion consists of a
PIC12C508 microcontroller, an AMP04 instrumenta-
tion amplifier, an LM2903 comparator, an ISD1000A
single chip voice record/playback device, an LM386N-
3 audio amplifier, and an LP2951 low power voltage
regulator. Connections to the piezoelectric sensor, a
small loudspeaker, and a 9V alkaline battery are pro-
vided using header connectors. A 2.875” by .625”
piece of AMP piezoelectric film is used as a “person
sitting down or getting up from the chair” sensor. The
piezoelectric film will generate a voltage output when a
change in stress occurs. It is deployed by either
inserting it into the seat cushion or by taping it to the
bottom of the seat cushion. Thus, when someone
either sits down in the chair or gets up from the chair, a
change in stress will occur in the sensor, and it will
generate an output voltage. Because the sensor has a
high output impedance and is susceptible to noise, an
AMP04 instrumentation amplifier is used to signal con-
dition the sensor output. The sensor is connected to
the AMP04 as a differential signal using twisted pair
wires, thus providing protection against noise via com-
mon-mode rejection. A 2.5V common mode voltage is
created on each of the differential inputs to the AMP04
via a voltage divider circuit using 2M ohm resistors.
Since the sensor signal is AC in nature and we are
running on a single +5V supply, the output of the
AMP04 must be biased to some DC level in order to
work properly. This is accomplished by a voltage

Author: Michael Kirkhart
Farmington Hills, Michigan
email: kirkhart@rust.net

The Electronic Whoopie Cushion

Consumer Appliance, Widget, Gadget

Consumer Appliance, Widget, Gadget

DS40160A/5_015-page 2



 1998 Microchip Technology Inc.

divider circuit on the AMP04’s reference input, which
causes the AMP04 output voltage to be 2.0V with no
input signal present. The output of the AMP04 goes
through a low pass filter to remove any remaining
noise, and is then applied to the inverting input of the
comparator. The comparator output, which is normally
high, is connected to the GP4 pin of the PIC12C508.
Whenever our conditioned sensor signal goes above
the upper trigger point of the comparator (which is set
to approximately 2.6V), the comparator output goes
low. When the PIC12C508 sees the comparator out-
put go low, it randomly selects one of four pre-
recorded “sounds” in the ISD1000A chip and initiates a
playback cycle. The sound output of the ISD1000A is
amplified by the LM386N-3 and is heard via the loud-
speaker. All of this fun stuff is powered by a 9V alka-
line battery, and the +5V supply needed to run the
signal conditioning, the sound playback chip. The
PIC12C508 is generated by an LM2951 low power
voltage regulator.

For the purpose of testing, the prototype circuit was
constructed with sockets for both a PIC12C508 and a
PIC16C54. The software was initially written for a

PIC16C54, as a PICMASTER

TM

 emulator with a
PIC16C5X pod was available for debugging. After
debugging the software with the PICMASTER, it was
converted for use with a PIC12C508 and re-assem-
bled.

This required only very minor changes (add-
ing the oscillator trim instructions and changing
the port pin equates), which demonstrates how
easy it is to migrate designs from one variety of

PICmicro

TM

 microcontroller to another.

Software

The software consists of an initialization block, a main
loop, and subroutines for:
• Delay routines

Initialization block

Invoked on a CPU reset, this code trims the on-board
RC oscillator, sets up the OPTION register, and initial-
izes the GPIO register as well as the TRIS register.

Main loop

The main loop is nothing more than a sequential state
machine. In the first state, the PIC12C508 is watching
the output of the comparator, waiting for it to go low.
Once this occurs, we enter the second state, where
the PIC12C508 waits for 20 milliseconds and then
checks to see if the comparator output is still low. If it
is high, then we go back to the first state; otherwise,
the Electronic Whoopie Cushion is now triggered and
we enter the third state. The PIC12C508 takes bits 1
and 2 of the RTCC register contents and applies them
to the A5 and A6 inputs of the ISD1000A sound chip.

This randomly selects one of the four pre-recorded
“sounds”. Next, it sets the ISD1000A power down input
low to bring the ISD1000A out of low-power standby
mode. The PIC12C508 waits for 50 milliseconds and
then sets the ISD1000A chip enable input low. This ini-
tiates playback of the selected “sound”. We now enter
the fourth state where the PIC12C508 waits for the
ISD1000A to bring its EOM output low, which indicates
the playback cycle is complete. The PIC12C508 then
sets the ISD1000A chip enable and power down inputs
high, thus putting the ISD1000A back into low-power
standby mode. We now enter the fifth state, where the
PIC12C508 looks at the output of the comparator and
waits for it to go high. Once this occurs, we enter the
sixth state, where the PIC12C508 waits for 1 second
and then checks to see if the comparator output is still
high. If it is low, we go back to the fifth state; otherwise,
we enter the seventh and final state, where the
PIC12C508 waits for 10 seconds before going back to
the first state. At this point, the Electronic Whoopie
Cushion is re-armed and ready to be triggered again.

Subroutines

• delay, L_delay - these subroutines are used to gen-
erate the various time delays needed. The delay
subroutine, which was written by Philip Doucet and
published in an Electronics Design magazine “Soft-
ware Ideas for Design” section, generates a pro-
grammable delay. The delay duration, which is
specified in instruction cycles, is passed in the
delay_h and delay_l file registers. The L_delay sub-
routine, is used to generate delays in multiples of 10
milliseconds. For this routine, the length of the delay,
in units of 10 milliseconds, is passed in the w regis-
ter.

Afterthoughts

Although this design works reasonably well, there is
still room for improvement. Because the inspiration for
this design did not come to me until eleven days before
it was due for submission, there was not enough time
to produce a design as optimized for cost and function-
ality as I would have liked. The following are some of
the possible modifications to the design to lower the
cost and/or improve the functionality:
• Replace the PIC12C508 with a PIC12C671.

Because the PIC12C671 is an 8 pin microcontroller
with an on-board 8 bit A/D converter, the signal con-
ditioned piezoelectric sensor output could be
applied directly as an analog input. This would elimi-
nate the need for the comparator and allow for more
sophisticated trigger detection schemes using sim-
ple “signature analysis” techniques. This could
reduce the possibility of false triggering due to the
victim moving around in the seat as opposed to sit-

Consumer Appliance, Widget, Gadget



 1998 Microchip Technology Inc. DS40160A/5_015-page 3

ting down or standing up. It could also allow for dif-
ferentiating between sitting down and standing up
conditions.

• Use a lower cost/lower capacity sound chip. The
ISD1000A part was used for this design because it
is readily available at any Radio Shack store. ISD
makes other lower priced, lower capacity sound
chips that could be used instead of the ISD1000A.

• Do we really need an instrumentation amplifier?
Because the signal conditioning for the sensor
required both a high impedance input and high
noise immunity, I chose to use a single chip instru-
mentation amplifier. The gain requirement for the
instrumentation amplifier, however, was fairly low; for
this design, a gain of 10 was sufficient. It might be
possible to use a lower cost op-amp configured as a
differential amplifier to do this task. Although this
would not have as high an input impedance nor as
good a common mode rejection as the instrumenta-
tion amplifier, it might be good enough for this appli-
cation.

• Go surface mount. If I were to go into production
with this design, I would definitely make it a surface
mount design. This would make the size of the cir-
cuit board smaller and would likely reduce the over-
all cost as well.

Flow Chart:

S2

S1

Wait 20 ms

comparitor output = 1

Reset

comparitor output = 0

S4

S3

S6

comparitor output = 0

ISD1000A EOM = 0

S5

ISD1000A EOM = 1

ISD1000A CE = 0

Wait 50 ms

ISD1000A PD = 0

comparitor output = 0

comparitor output = 1

Wait 10 seconds

comparitor output = 0

comparitor output = 1

Wait 1 second

S7

comparitor output = 1

Reset

comparitor output = 0

comparitor output = 0

comparitor output = 1

comparitor output = 1

ISD 1000A EOM = 1

ISD 1000A EOM = 0

comparitor output = 0

comparitor output = 1

comparitor output = 0

comparitor output = 1

Wait 20 ms

SD 1000A PD = 0

Wait 50 ms

SD 1000A CE = 0

Wait 1 second

Wait 10 seconds

Consumer Appliance, Widget, Gadget

DS40160A/5_015-page 4



 1998 Microchip Technology Inc.

Graphical hardware representation:

+5V

+5V

+5V

+5V

+5V

+5V

+5V

+5V

+5V

+5V

+5V VDD

V++5V

V-

+9V +5V

+5V

+9V

+9V

+5V +5V +5V +5V

U2IC REF.

GND 4

7

IC Power and Ground Connections

+5V

Piezo Sensor In

U3

1

8

Loudspeaker out

9V Battery in

+

-

To U1
pin 16

To U1
pin 16

To U2
pin 7

To U3
pin 1

To U4
pin 8

To U5
pin 6

Playback-

EOM- Playback-

SoundSel1

SoundSel1

SoundSel0

SoundSel0
SitDown-

SitDown-

PwrDwn

PwrDwn

U3

PIC12C508

GP5/OSC1
2

GP4/OSC2
3

GP3/MCLR
4

GP0
7

GP2
5GP1
6

U1

ISD1000A

A0
1

A1
2

A2
3

A3
4

A4
5

A5
6

A6
9

A7
10

CE
23

VCCD
28

VCCA
16

VSSD
12

VSSA
13

SP+
14

SP-
15

AUX IN
11

ANA IN
20

ANA OUT
21

MIC REF
18

MIC
17

AGC
19

PD
24

P/R
27

EOM
25

XCLK
26

R15

10

J1
1
2

U2

AMP04

+

-

RefRg2

Rg1

2

3

6

5

1

8

R4

10K

R8

2M

R9

2M

R1

2M

U4B
LM2903

+

-

5

6
7

8

4

R2

2M

R10

3.01K

R11

2K

R12

2M

R14

100K

C2

.1µF

R5

10K

R16

10K

U4A

LM2903

+

-

3

2
1

8

4

R13

10K

C8
.1µF

C9
.1µF

R3 1K

R6 1K

U5

LM386N-3

+

-

3

2
5

6 1

4 8

7

R7

10K

C1

.1µF

J2

1
2

C4

470µF
16V

+

C6

10µF
20V

+

C3

.047µF

U6

LP2951

VIN
8

FDBK
7

SHTDN
3

TAP
6

SENS
2

VOUT
1

ERR
5

GND
4

C5

10µF
20V

+

C10
.1µF

J3
1
2
3

C11
.1µF

C12
.1µF

C7

4.7µF
35V

+

PIC12C508

Consumer Appliance, Widget, Gadget



 1998 Microchip Technology Inc. DS40160A/5_015-page 5

APPENDIX A: SOURCE CODE:

;**
;* Program for the PIC controlled *
;* Electronic Whoopie Cushion *
;* *
;* PIC12C508 Version 1.0 written *
;* 9/20/1997 by Michael Kirkhart *
;* *
;* Version 1.01 modified 10/7/1997 *
;* by Michael Kirkhart *
;* - set configuration fuses to correct *
;* values (Internal RC oscillator, no *
;* code protect, watchdog on, internal *
;* MCLR) *
;* - corrected TRIS register setting *
;* (GP3 and GP4 are now correctly set as *
;* inputs) *
;**

list p=12C508 ;specifies 12C508 microcontroller
list r=DEC ;specifies decimal radix as default
list x=ON ;specifies to expand macros in listing

errorlevel 1 ;print warnings and errors only in list file

;************************
;* General system info *
;************************
;
;Instruction clock frequency = 4.000 MHz
;Non-branching instruction execution time = 1 microsecond
;Fuse settings: Watchdog timer = ON
; Code Protect = OFF
; Oscillator = INTRC
; MCLR on GP3 disabled

__config 0xfee

;************************
;* CPU Register equates*
;************************
IND0 equ 00 ;indirect file register
RTCC equ 01 ;real time clock/counter
PC equ 02 ;program counter
STATUS equ 03 ;status register
FSR equ 04 ;file select register (pointer)
OSCCAL equ 05 ;internal oscillator fine trim register
GPIO equ 06 ;general purpose I/O register

;**
;* Status register bit definitions *
;**

CARRY equ 0 ;carry/!borrow flag
DCARRY equ 1 ;BCD carry/!borrow flag
ZERO equ 2 ;zero flag
PDOWN equ 3 ;powerdown flag
TIMEOUT equ 4 ;watchdog timeout flag

;********************************
;* GPIO bit definitions *
;********************************

SNDSEL0 equ 0 ;ISD1000A A5 line (O)
SNDSEL1 equ 1 ;ISD1000A A6 line (O)
PLAY equ 2 ;ISD1000A Chip Enable line (O)(active low)
EOM equ 3 ;ISD1000A End Of Message output (I)(active low)

Consumer Appliance, Widget, Gadget

DS40160A/5_015-page 6



 1998 Microchip Technology Inc.

SITDOWN equ 4 ;output from person sitting down detector (I)(active low)
PWRDWN equ 5 ;ISD1000A Power Down line (O)

;***
;* Equates for register files (variables)*
;***

cblock 0x07

delay_l ;register file for delay value LSB
delay_h ;register file for delay value MSB
dly_tmp ;temp value for delay routine

eye ;used for loop counting in L_delay routine
jay ;used for loop counting

endc

;**
;* Miscelaneous equates (constants) *
;**

;Port A, B initialization values
GPINIT equ 00100100b ;GPIO initialization value

;GP0 and GP1 low, GP2 and GP5 high
GPTRIS equ 00011000b ;GPIO initialization value

;GP0 and GP1 and GP2 and GP5 are outputs,
;GP3 and GP4 are inputs

RETRIG equ 10 ;whoopie cushion retrigger delay value
; in seconds

;delay constants for 1 millisecond delay using delay routine
ONEMS_H equ 0x03 ;
ONEMS_L equ 0xe8 ;

;delay constants for 10 millisecond delay using delay routine
TENMS_H equ 0x27 ;
TENMS_L equ 0x10 ;

;************************
;* Macro definitions *
;************************

CLC macro ;this macro will clear the C flag
bcf STATUS,CARRY
endm

SEC macro ;this macro will set the C flag
bsf STATUS,CARRY
endm

SCC macro ;used after an instruction that affects the C
btfsc STATUS,CARRY ; flag, this macro will skip the next
endm ; instruction if the C flag is clear

SCS macro ;used after an instruction that affects the C
btfss STATUS,CARRY ; flag, this macro will skip the next
endm ; instruction if the C flag is set

SLT macro ;used after a subtract instruction, this macro
btfsc STATUS,CARRY ; will skip the next instruction if the result
endm ; of the subtraction is < 0

SGE macro ;used after a subtract instruction, this macro

Consumer Appliance, Widget, Gadget



 1998 Microchip Technology Inc. DS40160A/5_015-page 7

btfss STATUS,CARRY ; will skip the next instruction if the result
endm ; of the subtraction is >= 0

SEQ macro ;used after an instruction that affects the Z
btfss STATUS,ZERO ; flag, this macro will skip the next
endm ; instruction if a result is zero

SNE macro ;used after an instruction that affects the Z
btfsc STATUS,ZERO ; flag, this macro will skip the next
endm ; instruction if a result is non-zero

;************************
;* Start of program *
;************************
; actual reset vector - instruction at address 0x1ff was movlw XX, where
; XX is the calibration value to be copied into the OSCCAL register

org 0 ;start of program memory
movwf OSCCAL ;calibrate on-chip oscillator
goto start ;jump to start of program

;********************************
;* Subroutines *
;* These must be located in the*
;* lower 256 words of program *
;* memory *
;********************************

;**
;* Routine to generate a time delay in *
;* multiples of 10 milliseconds from 1 ms to*
;* 2.55s *
;* *
;* Input: W = delay length in tens of *
;* tens of milliseconds*
;* *
;* Output: W = 0 *
;* *
;* Calls: delay *
;* *
;* Uses: delay_h, delay_l, eye, W *
;**

L_delay
movwf eye ;set loop count

Ldloop clrwdt ;clear the watchdog timer
movlw TENMS_L ;set
movwf delay_l ; delay
movlw TENMS_H ; constants for
movwf delay_h ; 10 millisecond delay
call delay ;call delay routine
decfsz eye ;have we gone thru the loop 200 times?
goto Ldloop ;if not, do it again!
retlw 0 ;return from subroutine

;**
;* Routine for generating a programmable delay *
;* (routine written by Philip Doucet - obtained *
;* from Electronics Design - August 8, 1994, *
;* page 26ES) *
;**

delay
movlw 0x14 ;subtract minimum # of instructions to
subwf delay_l ; execute this routine from requested delay

Consumer Appliance, Widget, Gadget

DS40160A/5_015-page 8



 1998 Microchip Technology Inc.

btfss STATUS,CARRY ;check for borrow
decf delay_h ; and decrement high byte if there was one
bcf STATUS,CARRY ;divide by 4
rrf delay_l ; to determine how many times to
bcf STATUS,CARRY ; execute
rrf delay_l ; delay_l loop
movf delay_h ;check to see if
btfsc STATUS,ZERO ; delay_h = 0 and
goto dly_30 ; skip delay_h loop if it is
nop ;nop equalizes timing between paths

;delay_h setup and loop

dly_10 movlw 0x3e ;since each delay_h loop needs 256 cycle, or
movwf dly_tmp ; 40h times thru inner loop of cycles, minus
nop ; cycle setup, so 40h - 2 = 3eh
goto dly_20 ;add a 2 cycle delay

dly_20 nop ;inner
decfsz dly_tmp ; loop
goto dly_20 ; for
nop ; delay_h
decfsz delay_h ;outer loop

 goto dly_10 ; for
nop ; delay_h

;delay_l setup and loop

dly_30 movf delay_l ;if delay_l
btfsc STATUS,ZERO ; = 0,
goto dly_end ; skip loop
nop ;

dly_40 nop ;loop for
decfsz delay_l ; delay_l
goto dly_40 ;
nop ;

dly_end retlw 0 ;return from subroutine

;********************
;* Start of program *
;********************

start movlw 0x0f ;assign prescaler to WDT, set prescaler to
option ; 128, use internal clock for RTCC
movlw GPINIT ;initialize
movwf GPIO ; GPIO
movlw GPTRIS ; register and GPIO
tris GPIO ; TRIS register

movlw 2 ;wait for 20 milliseconds for
call L_delay ; power to stablize

infLoop
clrwdt ;pet the dog!
btfsc GPIO,SITDOWN;have we detected a person sitting down in the chair?
goto infLoop ;if not, check again
movlw 2 ;wait for
call L_delay ; 20 milliseconds
btfsc GPIO,SITDOWN;is sitdown detector output still active?
goto infLoop ;if not, start all over again
rrf RTCC,w ;randomly select which
iorlw 0xfc ; of the 4 sounds to play using bits 1 and 2
movwf GPIO ; of the current RTCC contents (yet keep RA2 and RA3 high)
bcf GPIO,PWRDWN;bring ISD1000A sound chip out of standby mode
movlw 5 ;wait for 50 milliseconds
call L_delay ; before activating chip enable

Consumer Appliance, Widget, Gadget



 1998 Microchip Technology Inc. DS40160A/5_015-page 9

bcf GPIO,PLAY ;activate ISD1000A chip enable

waitEOM
clrwdt ;we might be here awhile - better pet the dog!
btfsc GPIO,EOM ;has ISD1000A EOM signal gone low yet?
goto waitEOM ;if not, check again

bsf GPIO,PWRDWN;put ISD1000A into
bsf GPIO,PLAY ; standby mode

noSit
clrwdt ;we might be here awhile - better pet the dog!
btfss GPIO,SITDOWN;is the sitdown detector still active?
goto noSit ;if so, wait until it becomes inactive
movlw 100 ;wait for
call L_delay ; 1 second
btfss GPIO,SITDOWN;is the sitdown detector still inactive?
goto noSit ;if not, let's wait until it is!

movlw RETRIG ;initialize retrigger
movwf jay ; count value

reTrigDelay
movlw 100 ;delay
call L_delay ; for 1 second
decfsz jay ;decrement loop counter
goto reTrigDelay;if loop counter not yet zero, delay for another second

goto infLoop ;do the whole thing over again

;****************
;* Reset vector *
;****************
; For 12C508, this location contains movlw XX, where XX is the calibration value
; for the on-board oscillator - thus the real reset vector is at address 0

org 0x1ff ;location of "reset" vector

;******************
;* End of program *
;******************

end

Consumer Appliance, Widget, Gadget

DS40160A/5_015-page 10



 1998 Microchip Technology Inc.

NOTES:

