APPLICATION OPERATION:

The operation is very simple. The signal input on GP1 is divided by the factor selected at the input S3-S0. The max frequency input is about 25 KHz or more depending on the internal RC.

Division Factor Table:

<table>
<thead>
<tr>
<th>S3</th>
<th>S2</th>
<th>S1</th>
<th>S0</th>
<th>Division factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>255</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>
APPENDIX A: SOURCE CODE

;**
; Philippe Labonne
; Student in Electro at College Shawinigan
; 5450 18 Street
; Grand-Mere
; Quebec, Canada
; G9T 6P1
; Tel: (819) 538-2169
; Project: PicDiv
; date: August 24, 1997
; Note: Internal RC, No MCLR
;**

list p=12c508, f=inhx8m ; uC number
; and inhx8m output format file

gpio equ 0x06 ; adrs io
tmr0 equ 0x01 ; adrs timer
status equ 0x03 ; status register adrs
osccal equ x05 ; oscillator calibration register
lastlevel equ 0x07 ; Last logic level
di equ 0x08 ; div. factor
temp equ 0x09 ; temp.
org 0000
begin
 movlw 0x3e ; gp0 = output gp1 gp2 gp3 gp4 gp5 = input
 tris 6 ;
 btfss gpio,1 ; Set input level init.
 goto zerlog ; Branch if input is zero
 bsf lastlevel,0 ; set last level to one
 goto readiv ; branch to zerlog

zerlog ; here input level is zero
 bcf lastlevel,0 ; Set last level to zero
 readiv
 movf gpio,0 ; read div. factor
 andlw 0x3c ; be sure that higher bits are 0.
 movwf div ; move W to F to rotate it
 rrf div,1 ; rotate right to put away lower
 rrf div,1 ; 2 bits

readin
 clrw ; Clear W
 btfss gpio,1 ; test input
 goto zero ; branch to zero
 movlw 0x01 ; if one then W = 01

zero
 addwf lastlevel,0 ; add to last level
 movwf temp ; move f to temp to test bit 0
 btfss temp,0 ; If temp = 1 then a input as changed
 goto readin ; If level not changed then branch to readin

change
 movlw 0x01 ; load 1 in W
 xorwf lastlevel,1 ; change last level to is complement
 decfsz div,1 ; dec. div to see if it's time to toggle
 goto readin ; goto readin if div /= to zero

toggle
 movlw 0x01 ; load 1 in W
 xorwf gpio,1 ; Toggle output
 goto readiv ; restart read division
end