Discrete Logic Replacement

Logic Switch with Clock Generator

APPLICATION OPERATION:

The first application of my Logic Switch is to help prototyping of a digital circuit. There are two main functions:

1 - Logic Level Generator:

The momentary switch acts as a debounced switch. Each time you press the switch the outputs toggle. There are also two LED indicators to show the state of the outputs Q and 'Q.

2 - Clock Generator:

To enter or exit this mode you need to press the switch at least 2 seconds. The first time you enter this mode the outputs oscillate at 1 Hz. Pressing again will change the frequency to 10 Hz (LED L5 On). Pressing a second time for 100 Hz (LED L2 On) and a third time for 1 KHz (LED L1 On). Pressing the switch again will reset frequency to 1 Hz. Note that duty cycle is 50% for all frequencies.
APPENDIX A: SOURCE CODE

;**
;
; Marc Lemay
; Electro Technician
; 221 St-Isidore
; St-Etienne-des-Gres
; Quebec, Canada
; G0X 2P0
;
; Tel: (819) 535-4117
;
; Project: Logic Switch
; date : august 23 1997
;
;**

list p=12c508, f=inhx8m ;uC number

;and inhx8m output format file

decfreq equ 0x07 ;low register use for frequency generation

decfreqh equ 0x0e ;high register use for frequency generation

freqscale equ 0x08 ;low prescale value for frequency generation

freqscaleh equ 0x0f ;high prescale value for frequency generation

;1 = 1 Khz
;10 =100 Hz
;100= 10 Hz
;1000= 1 Hz 3e8 hexa

timeswp equ 0x09 ;switch time pressed

;each unit = 16 msec

swcourte equ 0x0a ;1 = switch pressed detected

swprescale equ 0x0b ;switch prescale 0 to 31 = 16 msec

funct equ 0x0c ;0 = 0 logic output (stable)

;1 = 1 logic output (stable)

;2 = output = freq 1 Hz

;3 = output = freq 10 Hz

;4 = output = freq 100 Hz

;5 = output = freq 1 Khz

functtmp equ 0x0d ;temp register

gpio equ 0x06 ;adrs io

tmr0 equ 0x01 ;adrs timer

status equ 0x03 ;status register adrs

osccal equ 0x05 ;oscillator calibration register

org 0000

;begin init

begin

movwf osccal ;save oscillator calibration value

movlw 0x08 ;gp0 gp1 gp2 gp4 gp5 output gp3 input

tris 6 ;

movlw 0xd1 ;prescale =1/4 for RC internal

option ;

clrff decfreqh ;

clrff decfreq ;

clrff freqscaleh ;0 = freq. stop

clrff freqscale ;0 = freq. stop

clrff timeswp ;time switch pressed = 0

clrff swcourte

clrff funct ;function = 0 = output = 0

movlw 0x1f ;31 decimal

movlw swprescale ;init prescale switch pressed to 31

movlw 0x36 ;logic 0 on gpio0 and 1 on gp1

;gp2, gp4 et gp5 at 1 log -> led freq. off

movwf gpio

movlw 0x05 ;init value for timer0
movwf tmr0
;end init
;begin master prog

princ
btfss tmr0,07 ;test bit 7 of tmr0
goto princ ;wait until tmr0 = 128

;each 500 Usec the program will go here
movlw 0x05 ;init value of tmr0 to 5 to give a good 500 usec
;for time base
movwf tmr0
movf freqscale,0 ;mov freqscale in w
btfss status,2 ;check the z bit in status
goto freqact ;if freqscale <> 0 the freq. is running
;here the freq. is off and a logic 0 or 1 is steady to the output
suite
btfss gpio,3 ;test switch pressed=1 log open=0 log.
goto open ;
;goto here if switch pressed ---> gp3 = 1 log.
decfsz swprescale,1 ;var decrement from 31 to 0
;here the switch is pressed since 16 msec
movlw 0x1f ;value 31 decimal
movwf swprescale ;re-init swprescale to 31
incf timeswp ;inc value time switch pressed
btfsc timeswp,2 ;test if timeswp = 4 (64 msec pressed ?)
goto rendu4 ;branch if timeswp = 4 (from 4 to 7 it's ok)
;here we check the 2 second switch pressed
movlw 0x80 ;w <-- 128 for 2 sec.
subwf timeswp,0 ;compare w and timeswp
btfss status,2 ;skip if z bit = 1
;here the switch is pressed since 2 second
movf freqscale,1;move to affect the z flag
btfss status,2 ;skip if z flag is 1
;here the logic mode is on... we stop it to make a freq. running
bcf gpio,5 ;led 1 KHz on
movlw 0x0f ;5 = 1 KHz
movwf funct ;funct = 5 = 1 KHz
movlw 0xc8 ;c8 = 200 dec. prescale before output toggle
movwf freqscale
movwf decfreq
clrwf freqscaleh
clrwf decfreqh
scansw
btfsc gpio,3 ;test if switch open
goto scansw ;scan while sw not open
movlw 0x1f ;31 decimal
movwf swprescale ;re-init prescale
clrwf swprescaleh
btfsc timeswp,2 ;time switch pressed
;here the freq. will be stopped and a steady logic 0 will be at the output
btfsc funct ;function = 0
clrwf functh
clrwf funct
;deactivate the frequency
clrwf freqscaleh
movlw 0x36 ;output gpi0 = 0 gpi1 (inverse)= 1
;and frequency led OFF
;return to master program to scan tmr0
;here the freq. is off and a logic 0 or 1 is steady to the output
;---------

rendu4
movlw 0x01 ;
movwf swcourte ;init variable swcourte to 1 (the switch is good)
goto princ ;return to master program to scan tmr0

;--
open
movlw 0x1f ;31 decimal

© 1997 Microchip Technology Inc. DS40160A/4_014-page 3
movwf swprescale ;re-init prescale for switch
clrif timeswp ;reset timeswp because switch is open
movf swcourtet,1 ;check if swcourt=0
btfsc status,2 ;test le z flag si 0 logique
goto princ
;jhere swcourt=0, then switch good
clrif swcourtet ;reset swcourteto 0
movf funct,0 ;move funct in w register
movwf functtmp ;put a copy of funct in functtmp
btfsc status,2 ;check the z flag
goto funct1 ;branch if z flag equal 1 log.
clear functtmp,1 ;if z = 1 then branch to funct1
btfsc status,2 ;check z flag
goto funct0 ;if z = 1 then branch to funct0
clear functtmp,1 ;if z = 1 then branch to funct3
clear functtmp,1 ;if z = 1 then branch to funct4
clear functtmp,1 ;if z = 1 then branch to funct5
;jhere the function if 5
movlw 0x02
movwf funct ;function = 2 now
movlw 0x08 ;3e8 = 1000 dec
movwf freqscale
movwf decfreq
movlw 0x03
movwf freqscaleh
movwf decfreqh
bsf gpio,5 ;led 500-1000 Hz off. no led for 1 Hz rate
goto princ ;return to main program to scan tmr0

funct1 ;jhere the active function will be 1
incf funct,1 ;funct = 1
movlw 0x35 ;output = 1 and leds off
movwf gpio
goto princ ;return to main program to scan tmr0

funct0 ;jhere the active function will be 0
clear funct ;funct = 0
movlw 0x36 ;output q= 0
movwf gpio
goto princ ;return to main program to scan tmr0

funct3 ;jhere the active function will be 3 10 Hz
incf funct ;incremente funct --> 3
movlw 0x64 ;64 = 100 dec
movwf freqscale
movwf decfreq
clear freqscaleh
clear decfreqh ;reset high byte
bsf gpio,2 ;led 10 Hz on
goto princ ;return to main program to scan tmr0

funct4 ;jhere the active function will be 4 100Hz
incf funct ;incremente funct --> 4
movlw 0x0a ;0a = 10 dec
movwf freqscale
movwf decfreq
clear freqscaleh
clear decfreqh ;reset high byte
bcf gpio,2 ;led 10Hz off
bcf gpio,4 ;led 100 Hz on
goto princ ;return to main program to scan tmr0

funct5 ;jhere the active function will be 5 1000 Hz
incf funct ;increase funct --> 5
movlw 0x01 ;01 = 1 dec = 1 KHz
movwf freqscale
movwf decfreq
clrf freqscaleh
clrf decfreqh ;reset high byte
bsf gpio,4 ;led 100 Hz off
bcf gpio,5 ;led 1000 Hz on
goto princ ;return to main program to scan tmr0

;--
freqact ;here frequency mode is active
decf decfreq,1 ;decremente decfreq
btfss status,2 ;test z flag
goto suite ;branche if z <> 0
movf decfreqh,0 ;check high byte if = 0
btfss status,2 ;check z flag
goto decfreqhigh ;branch if > 0
;here we toggle the output
movf gpio,0 ;load w with gpio : clock out
xorlw 0x03 ;2 last bits to toggle
movf freqscale,0 ;freqscale --> w
movwf decfreq ;re-init decfreq for next toggle
movf freqscaleh,0
movwf decfreqh ;init byte high
goto suite
decfreqhigh
decf decfreqh,1 ;decremente byte high
goto suite
end