



 1997 Microchip Technology Inc. DS40160A/4_012-page 1

Microchip Technology Incorporated, has been granted a nonexclusive, worldwide license to reproduce, publish and distribute all submitted materials, in
either original or edited form. The author has affirmed that this work is an original, unpublished work and that he/she owns all rights to such work. All
property rights, such as patents, copyrights and trademarks remain with author.

APPLICATION OPERATION:

The PIC microcontroller can replace the traditional
decoders and encoders that are used for old-fashion
keyboard controllers. But it can replace even more—
the traditional keypad controllers, based on many types
of new chips. It’s possible due to this new idea that uses
a special type of key matrix. I named it a “bi-directional
key matrix.” For better understanding of how it works
and to see its advantages, let’s take a look of the evo-
lution of keyboard controllers.

Figure 1 shows the classic key matrix, which uses one
decoder for output lines and one encoder for input lines.
These components have strictly determined pins for
inputs and outputs.

FIGURE 1: CLASSIC KEY MATRIX

NEXT GENERATION

Figure 2 shows how to connect the classic key matrix
to any microcontroller. It must be programmed to have
some input and output pins. In this case, the encoder
and the decoder are simulated by the software. But in
fact, during the scanning of the matrix, all pins still are
strictly determined as inputs or outputs and have one
direction.

FIGURE 2: CONNECTING CLASSIC KEY
MATRIX TO ANY
MICROCONTROLLER

The new idea for a different key matrix circuit is shown
in Figure 3:

FIGURE 3: A DIFFERENT KEY MATRIX
CIRCUIT

Author: Vladimir Velchev
AVEX - Vladimir Velchev
Sofia, Bulgaria
email:avex@iname.com

VCC

ENCODER

DECODER

R4 3K

Sxy

PUSHBUTTON

R1 3K

R2 3K

R3 3K

MICROCONTROLLER

INPUTS

OUTPUTS

MICROCONTROLLER

MICROCONTROLLER

GP0

GP1

GP0, GP1 - bidirectional pins

D1

DIODE

D2

DIODE
S1

BUTTON

S2

BUTTON

GP0, GP1 - bidirectional pins

A Keypad Controller for Bi-directional Key Matrix

Discrete Logic Replacement

Discrete Logic Replacement

DS40160A/4_012-page 2



 1997 Microchip Technology Inc.

This is an illustration of 2-button keypad. To scan this
simple key matrix, the microcontroller must perform two
basic steps:

1. Set GP0 pin as output and write to it logic ‘0’.Set
GP1 pin as input and check its state. If GP1=0
then button S1 has been pressed. The state of
button S2 does not affect the input GP1,
because of diode D2.

2. Set GP1 pin as output and write to it logic ‘0’. Set
GP0 pin as input and check its state. If GP0=0
then button S2 has been pressed. The state of
button S1 does not affect the input GP0,
because of diode D1.

Inputs GP0 and GP1 must be configured with internal
pull-up resistors.

As we can see, the pins have a bi-directional working
cycle.

Figure 4 shows the complete design of keypad control-
ler with bi-directional key matrix. It uses 4 pins (GP0-
GP3) for bi-directional key matrix and GP4,5 as com-
munication inputs/outputs. GP3 is always input, so the
scanning cycle will have 3 basic steps:

1. Set GP0 pin as output and write to it logic ‘0’. Set
other pins as inputs and read their states. For
inputs GP1-GP3, it’s possible to have 7 combi-
nations of codes (keys). - 000_111. The combi-
nation 111 means that no key has been pressed.

2. Set GP1 pin as output and write to it logic ‘0’. Set
other pins as inputs and read the code of the
pressed button if any.

3. Set GP2 pin as output and write to it logic ‘0’. Set
other pins as inputs and read the code of the
pressed button if any.

Figure 4 shows a circuit of a fully combined bi-direc-
tional key matrix with three bi-directional and one input
pin (max. 21 buttons). Many applications need 12 – 16
buttons and for these cases it’s suitable to remove the
buttons connected to 2 and 3 diodes. This will reduce
the number of used diodes. A cost efficient keypad
using the PIC12C508 can be built with 9 buttons or 12
buttons (if GP3 pin is changed with GP4).

FIGURE 4: KEYPAD CONTROLLER

VDD

VDD

* All diodes - 1N4148

9 buttons keypad
12 buttons keypad

15 buttons keypad
18 buttons keypad

21 buttons keypad

GP3
GP2
GP1

GP0

GP3
GP2
GP0

GP1

GP3
GP1
GP0

GP2

GP0
GP1

GP2
GP3

U1

PIC12C508

VDD
1

GP5/OSC1/CLKIN
2

GP4/OSC2
3

GP3/MCLR/Vpp
4

GP2/T0CKI
5

GP1
6

GP0
7

Vss
8

D1

*

D2

*

D3

*

D4

*

D5

*

D6

*

D7

*

D8

*

D9

*

D10

*

D11

*

D12

*

S6

'06'

S5

'05'

S7

'07'

S1

'01'

S4

'04'

S3

'03'

S2

'02'

D13

*

D14

*

D15

*

D16

*

D17

*

D18

*

D19

*

D20

*

D21

*

D22

*

D23

*

D24

*

S13

'13'

S12

'12'

S14

'14'

S8

'08'

S11

'11'

S10

'10'

S9

'09'

D25

*

D26

*

D27

*

D28

*

D29

*

D30

*

D31

*

D32

*

D33

*

D34

*

D35

*

D36

*

S20

'20'

S19

'19'

S21

'21'

S15

'15'

S18

'18'

S17

'17'

S16

'16'

R1
100

R2
100

R3

100K

CLOCK or ASYNC.DATA

DATA or LED

Discrete Logic Replacement



 1997 Microchip Technology Inc. DS40160A/4_012-page 3

APPLICATIONS

• Small keypads for standard IBM PC based appli-
ances;

• Keypads for telephone industry;
• Access control keypads (GP4 can be connected

to two LEDs: red for “access denied” state and
green for “access granted” state;

AUTHOR’S NOTE:

Table 1, shown below, makes a comparison between
the bi-directional and the classic key matrix for a differ-
ent number of pins used. This table refers to a short bi-
directional key matrix with only one diode per button
and all the pins are bi-directional.

\

MICROCHIP DEVELOPMENT TOOLS
USED

Assembler/Compiler version:

MPLAB 3.22, MPASM 1.5

TABLE 1: BI-DIRECTIONAL AND CLASSIC KEY MATRIX COMPARISON CHART

Number of Pins Used

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Max. Number of
Buttons /Classic XY
Matrix/

2 3 4 6 9 12 16 20 25 30 36 42 49 56 64

Max. Number of
Buttons /Short
Bi-directional Matrix/

2 6 12 20 30 42 56 72 90 110 132 156 182 210 240

Discrete Logic Replacement

DS40160A/4_012-page 4



 1997 Microchip Technology Inc.

FLOW CHART

START
Initial setup

CALL READ_KEY
USER:

Transmitting the code of the pressed key
or do something else

READ_KEY
Set GP0 as output, GP1,2,3 as inputs. GP0=0.

Read GP1,2,3 inputs.
Call table of key codes.

Key
1 - 7

 pressed?
Set GP1 as output, GP0,2,3 as inputs. GP1=0.

Read GP0,2,3 inputs.
Call table of key codes.

Key
8 - 14

 pressed?
Set GP2 as output, GP0,1,3 as inputs. GP2=0.

Read GP0,1,3 inputs.
Call table of key codes.

Return key code
Key

15 - 21
 pressed?
Return 0

Y
Y
Y
N
N
N

Discrete Logic Replacement



 1997 Microchip Technology Inc. DS40160A/4_012-page 5

APPENDIX A: SOURCE CODE

Note:

This program is not tested with real PIC12C508. All the experiments were done with PIC16C84 (PICSTART-
16B1 programmer).

;**
; Using PIC12CXXX as keyboard controller for bi-directional key matrix
; Written by Vladimir Velchev 08.1997.
; (C) AVEX - Vladimir Velchev
; Version 1.00
;**

; Osc.: F=4MHz (internal)
; GP0 - input/output 0 for key matrix
; GP1 - input/output 1 for key matrix
; GP2 - input/output 2 for key matrix
; GP3 - input 3 for key matrix
; GP4 - input/output (may be DATA or LED)
; GP5 - input/output (may be CLOCK or async.output)

LIST P=12C508

#include <p12C508.inc>

;*** Equates
GP0_Pin equ 0 ;input/output 0 for key matrix
GP1_Pin equ 1 ;input/output 1 for key matrix
GP2_Pin equ 2 ;input/output 2 for key matrix
GP3_Pin equ 3 ;input 3 for key matrix
GP0_MASK equ B'00000001' ;bit mask for GP0
GP1_MASK equ B'00000010' ;bit mask for GP1
GP2_MASK equ B'00000100' ;bit mask for GP2
GP3_MASK equ B'00001000' ;bit mask for GP3
IOSET equ B'00111111' ;initial I/O port settings - all inputs

;*** RAM locations
KEY equ H'07' ;code of pressed key or 0 if no pressed

;*** Vectors
org 0 ;RESET vector
goto MAIN

;*** Table of key codes (3x7=21 posible codes)
KEY_TABLE addwf PCL,1 ;W- offset of table

retlw D'1' ;Codes of keys (can be 1...255)
retlw D'2'
retlw D'3'
retlw D'4'
retlw D'5'
retlw D'6'
retlw D'7'
retlw 0 ;0= no key pressed
retlw D'8'
retlw D'9'
retlw D'10'
retlw D'11'
retlw D'12'
retlw D'13'
retlw D'14'
retlw 0 ;0= no key pressed
retlw D'15'
retlw D'16'
retlw D'17'
retlw D'18'
retlw D'19'

Discrete Logic Replacement

DS40160A/4_012-page 6



 1997 Microchip Technology Inc.

retlw D'20'
retlw D'21'
retlw 0 ;0= no key pressed

;*** Code Starting Point
MAIN:
; Initial setup

movlw IOSET ;init GPIO
tris GPIO
clrf GPIO ;write 0 to output latches
movlw H'80' ;init option register
option ;enable pull-ups (GP0,1,3)

Main_Loop:
clrwdt ;clear watchdog timer
call READ_KEY ;call subroutine

;Space for User code
; ...
; ...

goto Main_Loop ;go to beginning

;*** Subroutine - READ_KEY
; Input :
; Output: KEY- code of pressed key (KEY=0, ZF=ZY - if no key was pressed)
READ_KEY:
;Read keys when GP0 is set as output, GP1,2,3- inputs

movlw IOSET&(~GP0_MASK) ;set GP0 as output
tris GPIO
rrf GPIO,W ;read port & remove GP0 bit
andlw H'07' ;keep low 3 bits
call KEY_TABLE ;read code of key
iorlw 0 ;check code
btfss STATUS,Z ;skip if no key pressed
goto READ_KEY_END

;Read keys when GP1 is set as output, GP0,2,3- inputs
movlw (IOSET|GP0_MASK)&(~GP1_MASK) ;reset GP0 as input
tris GPIO ;set GP1 as output
rrf GPIO,W ;read port & move GP0 bit to C flag
andlw H'06' ;keep GP2,1 & clear GP0
btfsc STATUS,C ;skip if CF=0 (GP0 was 0)
iorlw H'01' ;else- set GP0=1
iorlw H'08' ;add offset of second part of table (+8)
call KEY_TABLE ;read code of key
iorlw 0 ;check code
btfss STATUS,Z ;skip if no key pressed
goto READ_KEY_END

;Read keys when GP2 is set as output, GP0,1,3- inputs
movlw (IOSET|GP1_MASK)&(~GP2_MASK) ;reset GP1 as input
tris GPIO ;set GP2 as output
movlw H'0B' ;W- mask for GP3,1,0
andwf GPIO,W ;read port and remove bits GP5,4,2
btfsc GPIO,GP3_Pin ;skip if bit GP3 is 0
iorlw H'04' ;copy bit GP3 to GP2 if GP3=1
andlw H'07' ;keep GP2-GP0 bits
iorlw H'10' ;add offset of third part of table (+16)
call KEY_TABLE ;read code of key
iorlw 0 ;set flags (ZF)

READ_KEY_END:
movwf KEY ;save the code of key
movlw IOSET ;reset GP0...GP3 (as inputs)
tris GPIO
return

end ;end of program

