

Sensor Interface

Triple Stage Incubator

Author: Brian Iehl Hoffman Estates IL brian@dls.net

OVERVIEW

This project is a triple stage incubator. Three separate incubators are simultaneously controlled by one microcontroller. Each incubator stage has its own programmable active temperature range, which is needed if there are different temperature requirements for each stage. This circuit senses the temperature of the environment in each incubator and then controls the corresponding heat lamp in each incubator to keep the temperature within the active temperature range.

Each incubator has a temperature sensor which is connected to the microcontroller. The microcontroller scans the sensors and determines the temperature of each stage. If the temperature for any stage falls below its lower threshold, the microcontroller turns on a heat lamp in the corresponding incubator. If the temperature of any stage rises above its upper threshold, the microcontroller turns the heat lamp in the corresponding incubator off.

By using the PIC12C671 microcontroller, with its built in analog to digital converter (ADC), this design can control all three stages with one microcontroller at a lower cost that designs that either require an external ADC or use digital interface temperature sensors.

APPLICATION OPERATION

Since the temperature sensors will not be located close to the microcontroller, the LM334 current mode sensor is used instead of a simpler voltage mode sensor. A current mode sensor has more noise immunity and is useful if the temperature sensor is located physically far away from the ADC. This temperature sensor passes a small current that varies with temperature. With the component values used here, the current is one microamp (uA) per degree Kelvin (K). Kelvin is an absolute scale; 0 corresponds to absolute zero. To convert K to C, just subtract 273. In order to measure this tiny current we pass it through the 5K resistor at the ADC input, which converts it to a voltage. The spreadsheet shown below calculates the resolution. That is, how many degrees does one ADC bit correspond to. For this design we see that the resolution is 1.3 K per bit.

Microchip Technology Incorporated, has been granted a nonexclusive, worldwide license to reproduce, publish and distribute all submitted materials, in either original or edited form. The author has affirmed that this work is an original, unpublished work and that he/she owns all rights to such work. All property rights, such as patents, copyrights and trademarks remain with author.

Current mode Temperature Sensor Design Equations

These design equations are for the LM134 current mode temperature sensor. Input the ADC Vref used, the ADC bits, the desired Max temperature, and the Rload to be used. These equations will tell you what Rset value to use and what the degrees of resolution will be. This design is constrained by the fact that is measure all the way down to absolute zero and hence reduces the resolution that could be obtained if the temperature range was limited on the low end. Current mode temperature sensors are preferred over voltage mode sensors when the sensor is located physically far away from the ADC input because of better noise immunity.

Vref, VDD	5.0	V
ADC Bits	8	
Desired Max Temperature (F)	135.0	F
Max Temperature (C) (F-32)*5/9	57.2	С
Max Temperature (K) (C+273.15)	330.4	К
Number of ADC Steps	256	
ADC Step Size = (Vref / Num Steps)	19.5	mV
Required Temp Coeff = (Vref / Max Temp)	15.1	mV / K
Resolution = (ADC Step Size / Temp Coeff)	1.29	K / Bit
Rload	5000	ohms
Iset = (Temp Coeff / Rload)	3.03	uA / K
Rset = (227 uV / K) / Iset	75	ohms
Example Temperature (F)	87	F
Example Temperature (C)	30.6	С
Example Temperature (K)	303.7	К
Example ADC Reading (K / Resolution)	235	Bits

Using this we can convert the desire temperature range into corresponding bit levels. This is then programmed in as high and low levels for each stage.

This design saves a considerable amount of money over those designs that use digital interface temperature sensors and the less expensive PIC12C508. Even though the PIC12C671 is more expensive than the PIC12C508, the difference is much less than the cost of the digital sensors IC's. In addition a part such as the widely used Dallas DS1620 Digital Thermometer needs 3 lines to communicate with it. Two of these could be shared, but that would still only allow a two stage incubator to be built instead of a three stage, with out additional I/O ports. Typical prices (JDR Microdevices single qty) are \$6.75 for each DS1620 and \$0.89 for each LM334. Even for a dual incubator design that is a cost of \$1.78 compared to \$13.50, a savings of 11.72 in the sensors alone. This more than offset the slightly higher cost of the PIC12C671.

If smaller temperature resolution was require, an op amp could be added in the temperature sensor circuitry that would allow the range to be adjusted to a minimum and maximum temperatures. This keeps the circuit from responding down to absolute zero which uses valuable ADC bits for temperatures that are not used. The op amp adds an offset corresponding to the minimum desired temperature and adds gain to spread the desired temperature range across the full ADC bit range. The spread sheet shown below show the calculations needed to determine the resistor values to use in the circuit and the resolution that is obtained. The spread sheet calculates the optimal circuit that will give 0 ADC reading at the specified minimum temperature and a 255 ADC reading at the specified maximum temperature reading.

Current mode Temperature Sensor Design Equations

These design equations are for the LM134 current mode temperature sensor. Input the ADC Vref used, the ADC bits, the desired Max and Min temperatures, the Rload and R1 to be used. These equations will tell you what values to use for R2, R3, R4, and Rset. The op amp in this design is used to provide an offset which will limit the lower range, thus not wasting AD bits on temperatures that will never be used. It also provides gain so that the max desired temperature occures at the max ADC level. This optimizes resolution. Current mode temperature sensors are preferred over voltage mode sensors when the sensor is located physically far away from the ADC input because of better noise immunity.

······		
Vout = Vin * Gain - Offset		
Vref , Vdd	5.0	V
ADC Bits	8	
Desired Max Temperature (F)	120.0	F
Desired Min Temperature (F)	0.0	F
Offset = (Vref / 2)	2.5	V
Max Temperature (C) (F-32)*5/9	48.9	С
Max Temperature (K) (C+273.15)	322.0	K
Min Temperature (C) (F-32)*5/9	-17.8	С
Min Temperature (K) (C+273.15)	255.4	K
Temperature Range (Max T - Min T)	66.7	K
Number of ADC Steps (2 ^ ADC Bits)	256	
Resolution = (Temp Range /Num ADC Steps)	0.26	K / Bit
ADC Step Size = (Vref / Num Steps)	19.5	mV
Effective Temp Coeff = (Vref / Temp Range)	75.0	mV / K
Gain = 2 / ((Max Temp / Min Temp) - 1)	7.7	
Temp Coeff = (Effective Temp Coeff / Gain)	9.8	mV / K
Rload	10000	ohms
Iset = (Temp Coeff / Rload)	0.98	uA / K
Rset = (227 uV / K) / Iset	232	ohms
R1	30000	ohms
R2 = R1 * Gain -1	229834	ohms
Voffset = (R1/R2)*Offset	0.33	V
R4 = R1 / 10	3000	ohms
R3 = R4 * ((Vdd / Voffset) - 1)	42966.8	ohms
Example Temperature (F)	104	F
Example Temperature (C)	40.0	C
Example Temperature (K)	313.2	К
Example ADC Reading ((K - Min Temp) / Res)	222	Bits

Since the PIC12C671 draws so little current, a very simple, low cost power supply circuit is used which does not need a transformer. This power supply design was taken from the Microchip application note TB008.

BLOCK DIAGRAM

FLOWCHART

GRAPHICAL HARDWARE REPRESENTATION

BILL OF MATERIALS (BOM)

Ref	Part#	Manufacture
U1,2,3	LM334Z	National Semiconductor
U4	PIC12C671	Microchip Technology
Q1,2,3	L4004L3	Teccor
D3	1N5231BCT	Liteon

MICROCHIP TOOLS USED

Assembler/Compiler version:

MPLAB 3.22.02

APPENDIX A: SOURCE CODE

Title "Triple Incubator Controler" Subtitle "Version 1.0"

Written by Brian Iehl 7/22/97

Last modified 7/27/97

list p=12C671

;

;

INCLUDE c:\apps\mplab\p12c671.inc

SetIO		equ	B'00111000'	; 0 for output, 1 for input
SetADC		equ	B'0000010'	; ADC for GP2, GP1, GP0
65700			0	
GPIOO		equ	0	
GPI01		equ	1	
GPIO2		equ	2	
GPIO3		equ	3	
GPIO4		equ	4	
GPIO5		equ	5	
				; Program Temp limits here
				; Temp (Kelvin) / Resolution (K / Bit)
LowRd0		equ	D'241'	; 101 F, Port 0 low temp bit reading
HighRd0		equ	D'243'	; 104 F, Port 0 High temp bit reading
LowRd1		equ	D'239'	; 96 F, Port 1 low temp bit reading
HighRd1		equ	D'241'	; 101 F, Port 1 High temp bit reading
LowRd2		equ	D'235'	; 87 F, Port 2 low temp bit reading
HighRd2		equ	D'239'	; 96 F, Port 2 High temp bit reading
TriacCntl0	equ	GPIO3		; Output Triac Control 0
TriacCntl1	equ	GPIO4		; Output Triac Control 1
TriacCntl2	equ	GPI05		; Output Triac Control 2
TriacOn		equ	1	; Hi to turn Triac on
TriacOff	equ	0		; Lo to turn Triac off
ReadDelay	equ	D'15'		; S to wait for next reading
ScratchPadRam	equ	0x20		
DelayValue	equ	ScratchPadRam+0	; For mSDela	ay Macro
SDelayValue	equ	ScratchPadRam+1	; For SDelay	y Macro
ADCRead		equ	ScratchPadRa	am+2; Save ADC Reading
• * * * * * * * * * * * * * *	******	Maaraa ********	* * * * * * * * * * * * * *	****
,		Macros		
MOVLF	MACRO	LL,	FF	; Move Literal to register file
110 1 21	MOVIW			; Load literal
	MOVWE			; Store in register file
	FNDM	11		; and MOVIE
	ENDM			
				; Assumes 4 MHz clock
mSDelay	MACRO	mS		; Number of mS to delay up to 255 mS
				; each clock cycle is 1 uS = .001 mS
	LOCAL	Loop, SetTmr		
	MOVLF	mS,	DelayValue	; store number of mS delay
	CLRWDT			; avoid unitentional reset
SetTmr	BSF	STATUS,	KPU	; Switch to bank 1 for OPTION
	MOVLF	B'00000111',OPTI	ION_REG	; Set prescaler to 256,
				: clear PSA, Clear TOCS
	BCF	STATUS,	RP0	; Switch to bank 0
	MOM1.F	-4	<u>ተለጉ ሀ</u>	$: 4 * 256 = 1024 \text{ us} \sim 1 \text{ ms}$
Loop	MOVE	י י דאד 0	11.11.0	; force check zero
поор	1.10 A T.	1	**	, TOTOC CHECK ZELO

Sensor Interface

		BTFSS goto	STATUS , Loop	Z	; w = 0 if same, so Z is set ; not 0 so loop again
		DECFSZ goto	DelayValue, SetTmr	f	; count down number of mS ; not done reset timer ; if Polovice of the done
		ENDM			; end mSDelay
SDelay		MACRO LOCAL Lo	S op		; Number of Seconds delay up to 63
Loop		BCF MOVLF mSDelay	STATUS, S*4, D'250' SDelayValue	RPO SDelayValue f	; Switch to bank 0 ; store number of S delay ; Delay 0.25 sec ; count down number of S
		goto	Loop	L	; not done reset timer ; if DelayValue = 0 then done
		ENDM			; end SDelay
;*****	*****	* * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	******
	org goto org	0x0A Start 0x10	;start addres	s OxOA	
; Start					
Setup		BSF MOVLF MOVLF BCF	STATUS, SetIO, SetADC, STATUS,	RP0 TRISIO ADCON1 RP0	<pre>; Switch to bank 1 for TRIS ; Load IO configuration byte ; Setup ports to be ADC inputs ; Switch to bank 0</pre>
		BCF BSF BSF	ADCON0, ADCON0, ADCS0 ADCON0, ADON	ADCS1	; Set clock source 8 Tosc ; 01 = 2.0 uS at 4 MHz clock ; Turn ADC module on
		CLRF CLRF	DelayValue SDelayValue		; Init variables
MainLoc	p				
		mSDelay BCF BCF	1 ADCON0, ADCON0, CHS0	CHS1	<pre>; Read ADC 0 ***********************************</pre>
		mSDelay BSF	1 ADCON0, GO_DONE		; Wait for acquisition time ; Start Conversion
ADCLp0		BTFSC GOTO	ADCON0, GO_DONE ADCLp0		; Check to see if conversion done ; Check again
		MOVF MOVWF	ADRES , ADCRead	W	; Read Result ; Store result in ADCRead
		SUBLW BTFSC BSF	LowRd0 STATUS, GPIO,	C TriacCntl0	<pre>; Compare to Lower limit ; if ADC <= limit then result pos, C=1 ; if ADC <= limit turn on lamp ; Turn Triac on</pre>
		MOVF	ADCRead, w		; recall ADC Reading ; Compare reading to high limit

Sensor Interface

	SUBLW BTFSS BCF	HighRd0 STATUS, C GPIO,	TriacCntl0	; if ADC > limit then result neg, C=0 ; if ADC > limit then turn off lamp ; Turn Triac Off
	mSDelay BCF BSF	l ADCON0, ADCON0, CHS0	CHS1	<pre>; Read ADC 1 ***********************************</pre>
	mSDelay BSF	1 ADCON0, GO_DONE		; Wait for acquisition time ; Start Conversion
ADCLp1	BTFSC GOTO	ADCON0, GO_DONE ADCLp1		; Check to see if conversion done ; Check again
	MOVF MOVWF	ADRES, ADCRead	W	; Read Result ; Store result in ADCRead
	SUBLW BTFSC BSF	LowRd1 STATUS, GPIO,	C TriacCntll	<pre>; Compare to Lower limit ; if ADC <= limit then result pos, C=1 ; if ADC <= limit turn on lamp ; Turn Triac on</pre>
	MOVF SUBLW BTFSS BCF	ADCRead, w HighRdl STATUS, C GPIO,	TriacCntll	<pre>; recall ADC Reading ; Compare reading to high limit ; if ADC > limit then result neg, C=0 ; if ADC > limit then turn off lamp ; Turn Triac Off</pre>
	mSDelay BSF BCF	l ADCON0, ADCON0, CHS0	CHS1	<pre>; Read ADC 2 ***********************************</pre>
	mSDelay BSF	1 ADCON0, GO_DONE		; Wait for acquisition time ; Start Conversion
ADCLp2	BTFSC GOTO	ADCON0, GO_DONE ADCLp2		; Check to see if conversion done ; Check again
	MOVF MOVWF	ADRES, ADCRead	W	; Read Result ; Store result in ADCRead
	SUBLW BTFSC BSF	LowRd2 STATUS, GPIO,	C TriacCntl2	<pre>; Compare to Lower limit ; if ADC <= limit then result pos, C=1 ; if ADC <= limit turn on lamp ; Turn Triac on</pre>
	MOVF	ADCRead, w		; recall ADC Reading ; Compare reading to high limit
	SUBLW BTFSS BCF	HighRd2 STATUS, C GPIO,	TriacCntl2	<pre>; if ADC > limit then result neg, C=0 ; if ADC > limit then turn off lamp ; Turn Triac Off</pre>
	SDelay	ReadDelay		; Wait before next reading
	goto END	MainLoop		; Return to top of main loop