QUICKCODE™

Transmit One Byte Data with Synchronous Bit

Author: Dag Bakken
Component-74 Eidsvold AS
RAHOLT
dag.bakken@microchip.com

OVERVIEW

This piece of QuickCode is kind of a concept. The
whole idea behind it, is to de-bounce without having to
wait for the de-bouncing to finish without using inter-
rupts or timers.

APPLICATION OPERATION:

The concept is extremely simple and easy to use, and
generates very few words of code. The amount of code
will vary greatly depending on how big your buffer must
be. Usually, you can do with four bytes as in this piece
of code. The two routines that handles the buffer/de-
bouncing are totally 31 instructions with a four-byte
deep buffer. A few instruction will be added if you
require more buffer. The total amount of RAM is 4 for
the buffer, 1 for ‘last key’ and 1 for return value (only 12-
bit core of course). None of the functions needs any
local variables.

The way this works, is by implementing some sort of
multitasking. The basic idea behind it is that no tasks in
your software should ever wait. By writing the entire
software with this concept in mind, you can write soft-
ware with virtually unlimited task-capacity. You can run
fairly accurate PWMs together with other timers; All
based on one timer. At the same time, you can imple-
ment the code supplied in this document to de-bounce
some keys... and you can add software RS-232
‘communication — simultaneously. Of course, as you
add functions to the software, the clock-speed may
need some adjustment.

One of the things I've used it for, is interfacing to dis-
plays in fairly time-critical applications. Displays do tend
to be slow, and a PICmicro™ spend most of its time
waiting when updating an entire display.

To make full use of this kind of programming, a mes-
sage-based program-loop really helps the multitasking
work. Both the message-based program-loop and the
“no-wait” programming method uses very few instruc-
tions per loop, and this makes it easy to write large pro-
grams that uses very little time per pass.

SUPPLIED FUNCTIONS

e char Debounce();

This function will check the current key-buffer and
last valid key-press. If test fails, a zero is returned;
Meaning ‘no key'.

e voi d Put Key(char k)

This function will push the currently pressed key
(not de-bounced) into the key buffer.

e char ReadKeyboard()

This is the function that must handle the test for
which key that is currently pressed, and make sure
that it's pushed into the buffer. The return value
should be the returned value from char
Debounce() .

e void nain()

In this example, this function handles the calling of
char ReadKeyboard(). This may of course be
handled by any function your software requires.
Either way, the calling function must call the
char ReadKeyboard() function at appropriate
intervals for your application.

MICROCHIP TOOLS USED

MPLAB v3.22.02
Assembler/Compiler version

CC5X v2.1H (C-Compiler). The generated ASM-
code assembles with MPASMWIN v1.50. A
straight cut n’ paste from this document will work.

I
Microchip Technology Incorporated, has been granted a nonexclusive, worldwide license to reproduce, publish and distribute all submitted materials, in
either original or edited form. The author has affirmed that this work is an original, unpublished work and that he/she owns all rights to such work. All

property rights, such as patents, copyrights and trademarks remain with author.

0 1997 Microchip Technology Inc.

DS40160A/3_010-page 1

Sensor Interface

Graphical Representation

e———— 20 ——»

data-bit——»

Data |—

Clock

cycles [A 2 8—
Text f— e sync-bit data-bit

This chart shows the data output (top-most line) as a function of clock-cycles (middle-line) with

its respective sections denoted at the bottom.

DS40160A/3_010-page 2

00 1997 Microchip Technology Inc.

Sensor Interface

APPENDIX A: SuOURCE CODE

Al CC5X v2.1H C-source

#i nclude "c:\bruker\dag_s\progs\12c508. h"

#defi ne BOOL bit

#pragma BOOL COLO @GPIO.0 /'l Assigned keyboard-colum 0
#pragma BOOL COL1 @GPIO 1 /'l Assigned keyboard-colum 1
#pragma BOOL ROM @GPl O 2 /1 Assigned keyboard-row 0
#pragma BOOL ROM @GPl O 3 /1 Assigned keyboard-row 1
char retval; /1 This is used to sinulate

/'l return values on a 12-bit core.
char Last Val i dKey; /1 This is used to test for

/1 changes in valid key-presses.
char KBuf 1, KBuf 2, KBuf 3, KBuf 4; /1 Buffer for de-bouncing. Set

/1 this buffer to whatever your
/1 application requires.

/* This function will check the current contents of the buffer,
and the last valid key-press. Returns the current valid
key-press, or zero if it’s not a valid key. */

char Debounce()

{
retval =0;
i f (KBuf1l!=KBuf2) return 0x00; /1 Check buffer
i f (KBuf2!=KBuf3) return 0x00; /'l Check buffer
i f (KBuf3!=KBuf4) return 0x00; /'l Check buffer
i f (LastValidKey==KBuf1) return 0xO00; /1 Check | ast de-bounced
/1 val ue agai nst current
/'l de-bounced val ue.
Last Val i dKey=KBuf 1; /1 Set this key-press
/1 as valid.
r et val =KBuf 1, /'l Return de-bounced
return O; /'l key-press
}
/* This function will put the current key-press in the de-bounce
buffer */
voi d Put Key(char k)
{
KBuf 1=KBuf 2; /1 PUSH val ue
KBuf 2=KBuf 3; /1 PUSH val ue
KBuf 3=KBuf 4; /1 PUSH val ue
KBuf 4=k; /1 PUSH val ue
}

/* This is the main function that checks the keyboard and handl es
all events. This function is provided as a guide-line on how
to use the other de-bouncing features. */

char ReadKeyboard()

{

COL0=1; COL1=0;

i f (ROWD)

{ PutKey('1");
goto _FOUND_ONE;

}

if (ROAL)

{ PutKey('2');
got o _FOUND_ONE;

}

COL0=0; COL1=1;

/1l Key ‘1 detected

/1 Key ‘2’ detected

0 1997 Microchip Technology Inc.

DS40160A/3_010-page 3

Sensor Interface

i f (ROWD)
{ PutKey('3"); /1 Key ‘3 detected
got o _FOUND_ONE;

}
if (ROA)
{ PutKey('4'); /]l Key ‘4 detected
goto _FOUND_ONE;
}
COL1=0;
Put Key(0x00) ; /1 1f no key were pressed

_FOUND_ONE:
C0L0=0; COL1=0;

Debounce(); /1 De-bounce, and return
return O; /'l de-bounced val ue.

}

/* The nain() function is provided so the programw || conpile if
you do a cut n' paste fromthis source into your editor. */
voi d main()

{
do {
ReadKeyboard(); /1 By executing this line at
switch(retval) /1 certain intervals, keyboard
/1 will be de-bounced.
{
case '1': break; /1 Test
case '2': break; /] Test
case '3': break; /1 Test
case '4': break; /1 Test
}
/* Do sonething else while
wai ting for valid key-press */
} while(l);
}

DS40160A/3_010-page 4 00 1997 Microchip Technology Inc.

Sensor Interface

A2 MPASM-code generated by CC5X v2.1H

; CC5X Version 2.1H, Copyright (c) B. Knudsen Data
; Cconpiler for the PICL6CXX microcontroller fanmly
*kkkkkkkkkkkkk 1 Aug 1997 14 38 *kkkkkkkkkkkkk

processor 12C508

Zero_ EQU 2

(o0 X0] EQU O
caLl EQU 1
ROWD EQU 2
ROM EQU 3
retval EQU 0x08
Last Val i dkey EQU 0x09
KBuf 1 EQU OxO0A
KBuf 2 EQU 0x0B
KBuf 3 EQU 0x0C
KBuf 4 EQU 0x0D
k EQU 0x07

GOTO mai n

; FILE C\TEMP\tenp.c
;#include "c:\bruker\dag_s\progs\12¢c508. h"

s #define BOOL bit

; #pragna BOOL COLO @GPPI O. 0 /'l Assigned keyboard-col um 0

; #pragna BOOL COL1 @GPPI O 1 /'l Assigned keyboard-colum 1

; #pragna BOOL ROM @ GPI O. 2 /1 Assigned keyboard-row 0

; #pragna BOOL ROM @ GPI O. 3 /1 Assigned keyboard-row 1

;char retval; /1 This is used to sinulate

; /'l return values on a 12-bit core.
; char Last Val i dKey; /1 This is used to test for

; /'l changes in valid key-presses.

; char KBuf 1, KBuf 2, KBuf 3, KBuf 4; /1 Buffer for de-bouncing. Set

; /1 this buffer to whatever your
; /1 application requires.

;/* This function will check the current contents of the buffer,
and the last valid key-press. Returns the current valid
; key-press, or zero if it’s not a valid key. */

; char Debounce()
o
Debounce
. retval =0;
CLRF retval

;1 f (KBuf 1!l =KBuf 2) return 0x00; /'l Check buffer

MOVF KBuf 1, W
XORWF KBuf 2, W
BTFSS 0x03, Zero_
RETLW . 0

MOVF KBuf 2, W
XORWF KBuf 3, W
BTFSS 0x03, Zero_
RETLW . O

i f (KBuf2!=KBuf3) return 0x00; /1 Check buffer

;i f (KBuf3!'=KBuf4) return 0x00; /1 Check buffer

MOVF KBuf 3, W
XORWF KBuf 4, W
BTFSS 0x03, Zero_
RETLW . 0

0 1997 Microchip Technology Inc.

DS40160A/3_010-page 5

Sensor Interface

;i f (LastVal i dKey==KBuf 1)
MOVF Last Val i dkey, W
XORWF KBuf 1, W
BTFSC 0x03, Zero_

return 0x00;// Check | ast de-bounced

RETLW . 0
; /1 val ue agai nst current
; /'l de-bounced val ue.
; Last Val i dKey=KBuf 1; /1 Set this key-press
MOVF KBuf 1, W
MOWWF Last Val i dKey
; /1 as valid.
r et val =KBuf 1; /'l Return de-bounced
MOWF r et val
; return O; /'l key-press
RETLW . 0
0}
;/* This function will put the current key-press in the de-bounce
; buffer */
;voi d Put Key(char k)
A
Put Key
MOWAF k
; KBuf 1=KBuf 2; /1 PUSH val ue
MOVF KBuf 2, W
MOWWAF KBuf 1
;. KBuf 2=KBuf 3; /1 PUSH val ue
MOVF KBuf 3, W
MOV KBuf 2
;. KBuf 3=KBuf 4; /1 PUSH val ue
MOVF KBuf 4, W
MOV KBuf 3
KBuf 4=k; /1 PUSH val ue
MOVF k, W
MOWWAF KBuf 4
0}
RETLW . 0
;/* This is the main function that checks the keyboard and handl es
; all events. This function is provided as a guide-line on how
; to use the other de-bouncing features. */
; char ReadKeyboar d()
A
ReadKeyboar d
; COLO=1; COL1=0;
BSF 0x06, COLO
BCF 0x06, COL1
;i f (ROAD)
BTFSS 0x06, RON
GOro nbo1
{ PutKey('1"); /1 Key ‘1 detected
MOVLW . 49
CALL Put Key
got o _FOUND_ONE;
GOTO nDO5
;i f (ROAL)
n001 BTFSS 0x06, ROM
GOTO D02
{ PutKey('2"); /] Key ‘2" detected
MOVLW . 50
CALL Put Key
got o _FOUND_ONE;
GOTO nDO5

v}
© C0L0=0; COL1=1;

DS40160A/3_010-page 6

00 1997 Microchip Technology Inc.

Sensor Interface

nD02 BCF 0x06, COLO
BSF 0x06, COL1

BTFSS 0x06, RO
GOro nbo3

MOVLW . 51
CALL Put Key

GOTO D05

n003 BTFSS 0x06, ROAL
GOTO D04
MOVLW . 52
CALL Put Key

GOTo0 nDO5

nD04 BCF 0x06, COL1

MOVLW . O
CALL Put Key

if (ROWD)

{ PutKey('3");

got o _FOUND_ONE;

}
if (ROM)

{ PutKey('4');

got o _FOUND_ONE;

}
COL1=0;

Put Key(0x00) ;

. _FOUND_ONE:

n005 BCF 0x06, COLO
BCF 0x06, COL1

CALL Debounce

RETLW . 0

v}

COL0=0; COL1=0;

Debounce();

return O;

/1 Key ‘3 detected

/1 Key ‘4 detected

/1

If no key were pressed

/1 De-bounce, and return

/'l de-bounced val ue.

;/* The main() function is provided so the programwi |l conpile if
you do a cut n' paste fromthis source into your editor. */

;void nain()

o

do {
ReadKeyboar d();

nD06 CALL ReadKeyboard

MOVF retval , W
XORLW . 49

BTFSC 0x03, Zero_
GOro nbo6
XORLW . 3

BTFSC 0x03, Zero_
GOro nbo6
XORLW . 1

BTFSC 0x03, Zero_
GOro nbo6
XORLW . 7

BTFSC 0x03, Zero_
GOro nbo6

GOro D06

switch(retval)

{
case '1': break;
case '2': break;
case '3': break;

/1 By executing this line at

/1 By executing this line at

/1
/1

/1
/1
/1

cert
Wil |

Test
Test
Test

ain intervals, keyboard
be de- bounced.

0 1997 Microchip Technology Inc.

DS40160A/3_010-page 7

Sensor Interface

case '4': break; /1 Test

}
/* Do sonething else while

wai ting for valid key-press */
} while(1);
0}

END

DS40160A/3_010-page 8 00 1997 Microchip Technology Inc.

Sensor Interface

NOTES:

0 1997 Microchip Technology Inc. DS40160A/3_010-page 9

Sensor Interface

DS40160A/3_010-page 10 00 1997 Microchip Technology Inc.

