

Bright Idea Light Timer, Junior

Electromechanical
Switch Replacement
Microchip Technology Incorporated, has been granted a nonexclusive, worldwide license to reproduce, publish and distribute all submitted materials, in
either original or edited form. The author has affirmed that this work is an original, unpublished work and that he/she owns all rights to such work. All

APPLICATION OPERATION

Overview

The “Bright Idea” Light Timer, Jr. (BILTJR) is a digital
version of the venerable lamp on/off timers that you use
when you go on vacation to make it look like someone
is home. I use two of these old timers (but not for much
longer!) on an everyday basis, just so I don't have to
turn lamps on by their switches when it gets dark and
turn them off when I go to bed. The BILTJR has an
advantage over the old lamp timers: it can be pro-
grammed to turn lights on and off at different times for
each day of the week. It features 1 or 2 pairs of on/off
times per day for 6 days with 10-minute resolution. The
seventh day of the week shares its on/off times with the
first day. The circuit consists of a PIC12C508 and a Dal-
las® DS1202 Serial Timekeeping chip, with very few
required support components. The timer times are
reprogrammable at any time using a connection to a
PC’s parallel port to the Dallas chip's battery-backed
RAM.

Theory of Operation

The BILTJR is prepared for use by programming the on
and off times for the various days of the week, as well
as the current time and day of the week. This is done by
connecting the circuit to a PC parallel port via the pro-
gramming cable and running the programming soft-
ware.

The on and off times are programmed with 10-minute
resolution from midnight (0:00) to midnight of the follow-
ing day (24:00). For example, if on-time #1 is set for 8
p.m. (20:00) and off-time #1 is set for 9:40 p.m. (21:40),
the light output will be on between those times. The light
is always extinguished as one day rolls over into the
next, so programming either off-time as 24:00 will keep
the light on until the day changes. The light can be kept
on through midnight by programming off-time #2 for day
x to be 24:00 and on-time #1 of day x+1 to be 0:00.

Each day of the week can have 0, 1 or 2 pairs of on/off
times for the light connected to the output of the
BILTJR. To have the connected light remain off for the
entire day, program 24:00 for on-time #1, off-time #1,
on-time #2, and off-time #2. To have the light come on
and go off only one time during the day, program on-
time #1 and off-time #1 with the desired times, and pro-
gram 24:00 for on-time #2 and off-time #2. To have the
light come on and go off two times during the day, pro-
gram the desired times for on-time #1, off-time #1, on-
time #2, and off-time #2.

Once the circuit is programmed, while power is applied
the output will follow the programmed times. For any
given day, it will be off/low before on-time #1, on/high
after on-time #1 but before off-time #1, off/low after off-
time #1 but before on-time #2, on/high after on-time #2
but before off-time #2, and off/low after off-time #2. The
programming of the on/off times is held in non-volatile
memory (battery-backed RAM) so the settings are not
lost when the main power supply is removed.

The BILTJR circuit described herein has an LED and
resistor for testing purposes. In a real application, the
LED and resistor would be replaced by some circuitry
to switch a 110 volt AC line. Also, the power supply for
the circuit would also be derived from the household AC
line voltage.

Author: Scott A. Sumner
Eveningware, Inc.
Sterling Heights, MI
email: sasumner@bigfoot.com
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-1

property rights, such as patents, copyrights and trademarks remain with author.

Electromechanical Switch Replacement

HARDWARE

The BILTJR circuit consists of a PIC12C508 8-pin
microcontroller, a DS1202 serial timekeeping chip, an
output indicator LED, a resistor, a crystal, a battery,
some diodes, some decoupling capacitors, and a cable
connection header.

The light on/off output is connected to the GP5 I/O pin,
and the chip select output, clock output, and data I/O
lines for accessing the DS1202 are connected to GP2,
GP1, and GP0, respectively. GP4 is a no-connect for
now, future expansion may configure it as a light over-
ride/toggle switch input. The lines

to access the DS1202 are also brought to a connector
for ease of connecting a programming cable. Ground
and the PIC's GP3/MCLR input are brought to this con-
nector as well. During programming, the PIC12C508 is
held in reset by a jumper built into the programming
cable so the PC parallel port (hopefully with some buff-
ering!) can drive the DS1202 lines without interference
from the PIC.

For non-volatile storage of the setup data, a 3 volt bat-
tery is used to maintain the DS1202's time and RAM
storage areas. One diode prevents the battery from
providing power to the PIC12C508 when the main cir-
cuit supply is down and one diode prevents the battery
from presenting a load to the main supply when the
supply is on. A 32.768 KHz watch crystal creates an
accurate timetable for the timekeeping chip and com-
pletes the DS1202 connections.

The PIC12C508 is configured to use the internal 4MHz
RC oscillator, and the GP3/MCLR pin is programmed to
function as an MCLR input. For testing, it was neces-
sary to program the on/off times using the PIC12C508
itself. Since this circuit was meant to be generic, all I/O
was left as logic level. No power supply circuit was
included in this circuit for the same reason; thus, a
external +5V supply is necessary to power the circuit.

The test bed for the BILTJR was a PIC16C84-based cir-
cuit which will not be described in detail; however, its
schematic is enclosed. The '84-based circuit is a super-
set of the PIC12C508 schematic described above. It
adds an RS-232 port for debugging purposes.

Software

The software was originally written for a PIC12C508 or
PIC16C84 application. For ease of testing (the inevita-
ble compile-burn-test cycle), an PIC16C84 was used
for most of the testing for “Junior”. That is why there are
a lot of ifdef in the code; either the PIC12C508 or the
PIC16C84 version can still be built.

The software consists of subroutines, some start-up
code, and an infinite loop. The utility subroutines are for
reading the clock and data areas of the DS1202 time-
keeping chip and other various things such as binary-
to-bcd conversions. The start-up code gets the
PIC12C508 up and running and the infinite loop does
the actual light timer output control. The loose flow dia-

gram below illustrates the functionality of the infinite
loop. That and the well-commented source code make
the program flow easy to follow for the most part.

The only obscure parts of the software are the storage
of the on/off time data and the day of the week in the
DS1202. This is described below:

Byte 0: day 1/7 on time #1
Byte 1: day 1/7 off time #1
Byte 2: day 1/7 on time #2
Byte 3: day 1/7 off time #2
Byte 4: day 2 on time #1
 …
Byte 22: day 6 on time #2
Byte 23: day 6 off time #2

The time bytes stored in the DS1202 RAM are format-
ted as follows:

• HHHHHTTT (MS bit to LS bit) where HHHHH is
the hour and TTT is the number of ten-minute
blocks.

For example, 10:40pm is stored as b'10110100'
where b'10110' is the hour (22) and b'100' is the ten-
minutes (4).

• The valid range for HHHHH is b'00000' - b'11000'
(0, 1, …, 24).

• The valid range for TTT is b'000' - b'101' (0, 10, …,
50).

• The day of the week is stored in the clock area of
the DS1202 as follows:

Day 1: Sunday
Day 2: Monday
Day 3: Tuesday
Day 4: Wednesday
Day 5: Thursday
Day 6: Friday
Day 7: Saturday

MICROCHIP HARDWARE
DEVELOPMENT TOOLS USED

All debugging was done using the PIC16C84 test bed
circuit..

Assembler/Compiler version

MPLAB 3.22.00 development software with MPASM
version 1.50.

Note 1: Day 7 (Saturday) duplicates the time
schedule set for Day 1 (Sunday).

2: The day numbering scheme shown above
is just one possible scenario; you could
have Day 1 be Wednesday (and then Day
2 would be Thursday, etc., in which case
Tuesday (Day 7) would be have the same
on/off schedule as Wednesday (Day 1).
DS40160A/2_015-page 2-2  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

SOFTWARE OVERVIEW

The following is a loose description of what the software
does once the PIC12C508 has come out of reset and
has had its hardware registers and RAM variables ini-
tialized. Only logic concerned with the application is
described and only in the most general terms for ease
of understanding. Things like resetting the watchdog
timer, etc., are left out for clarity.

(A) once per minute, do the following:
read the present time (hours, minutes, and day of week) from DS1202
subtract 1 from day of week to put it in the range 0 - 6
if day of week is 6, set the local copy to be day 0 (now day ranges 0 - 5)
if day of week has changed since last time through
 turn output off
 set state variable to be before on #1 time
 (B) calculate an index into DS1202 RAM (day of week * 4 + state)
 read DS1202 RAM location index to retrieve next output change time
 convert next change hours and ten-minutes to binary coded decimal
if state is after off #2 time, go to (A)
if the present time is equal to the next change time
 toggle the state of the output shadow bit
 advance to the next state
 if the state is not after off #2 time, go to (B)
update the real output from the output shadow bit
go to (A)
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-3

Electromechanical Switch Replacement

GRAPHICAL HARDWARE REPRESENTATION

+5 V

CONNECT PIN
1 OF PIC12C508
TO +5V, PIN 8
TO GROUND,
PLACE 0.1uF
CAPACITOR
BETWEEN

CONNECT PIN 4 OF
DS1202 TO GROUND,
LEAVE PIN 1
UNCONNECTED,
CONNECT 0.1uF
CAPACITOR BETWEEN
PINS 8 AND 4

LED AND
RESISTOR FOR
TESTING
PURPOSES

TO PC
PARALLEL
PORT FOR
PROGRAMMING
DS1202
BATTERY
BACKED RAM
(REMOVE FOR
NORMAL
OPERATION)

BRIGHT IDEA
LIGHT TIMER JR.

TO DS1202 PIN 8

CS1202
DAT1202
CLK1202 LIGHT

Y1
32.768 KHz

U2

DS1202

CLK7

RST
5

X1
2

X2
3

DATA
6

U1

PIC12C508

GP5/OSC1
2

GP4/OSC2
3

GP3/MCLR
4

GP0
7

GP2
5 GP1
6

D3

LED

R1

1K

J1
1
2
3
4
5

JP1

1
2
3
4
5

D1

1N4148

D2

1N4148

BT1
+3V

+5 V

+5 V

+5 V

+5 V

MALE

CONNECT
TO PC
RS-232
PORT THRU
A NULL
MODEM
CABLE

LED AND
RESISTOR FOR
TESTING
PURPOSES

CONNECT
0.1uF
CAPACITOR
BETWEEN PINS
14 AND 5 ON
PIC16C84

FOR FUTURE
EXPANSION

TO PC
PARALLEL
PORT FOR
PROGRAMMING
DS1202
BATTERY
BACKED RAM
(REMOVE FOR
NORMAL
OPERATION)

BRIGHT IDEA
LIGHT TIMER
JR. (TEST
BED)

TO DS1202 PIN 8

CONNECT PIN 4 OF
DS1202 TO GROUND,
LEAVE PIN 1
UNCONNECTED,
CONNECT 0.1uF
CAPACITOR BETWEEN
PINS 8 AND 4

PCDTR
PCTXD

CS1202

CLK1202

LIGHT
RXD232
TXD232
DTR232_

OVRIDE_
DAT1202

PCRXD

Y2

32.768 KHz

U3

DS1202

CLK
7

RST
5

X1
2

X2
3

DATA
6

C3

.1uF

C1

.1uF

C2

.1uF

C4

.1uF

U1

MAX202E

C2+
C2-
C1+
C1-

V+

V-

4
5
1
3

13

14

8

7 10

9

11

12

2

6

R1

10 K

S1

C5

33 pF

U2

PIC16C84

RA2
1

RA3
2

RA4/T0CKI
3

MCLR/Vpp
4

Vss/GND
5

RB0
6

RB1
7

RB2
8

RB3
9

RB4
10RB5
11RB6/CLOCK
12RB7/DATA
13Vdd/+5V
14OSC2/CLKOUT
15OSC1/CLKIN
16RA0
17RA1
18

C6

33 pF

D1

LED

Y1

4 MHz

R2

1K

JP1

1
2
3
4
5

J1

1
2
3
4
5

D1

1N4148

D2

1N4148

BT1

+3V

P1

CONNECTOR DB9

5
9
4
8
3
7
2
6
1

DS40160A/2_015-page 2-4  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

APPENDIX A: SOURCE CODE

;/----------------------\
;| Assembler directives |
;\----------------------/

;comment out one or the other of the two following lines
; list p=16C84 ;build code for 16C84 microcontroller
 list p=12C508 ;build code for 12C508 microcontroller

 list r=DEC ;default radix is decimal
 list x=ON ;expand inline macros
; errorlevel 1,-302 ;turn off msgs caused by .inc file
; errorlevel 1,-205 ;turn off directive found in column 1 msgs

;/--------------------------\
;| Assembly control #define |
;\--------------------------/

 ifdef __16C84
#define DEBUG ;include debugging code with 16C84 version
 endif

;/---------------------------------\
;| Processor specific include file |
;\---------------------------------/

 ifdef __16C84
#include "p16c84.inc"
 else ;__12C508
#include "p12c508.inc"
 endif

;/----------------------------\
;| General system information |
;\----------------------------/

;assembled using MPASM 1.50

;time byte data is stored in DS1202 RAM area as follows:
;byte 0: day 1/7 on time #1
;byte 1: day 1/7 off time #1
;byte 2: day 1/7 on time #2
;byte 3: day 1/7 off time #2
;byte 4: day 2 on time #1
;...
;byte 23: day 6 off time #2

;format for time byte:
;HHHHHTTT (MS bit to LS bit) where HHHHH is the hour and TTT is the number
; of ten-minute blocks
;for example, 10:40pm is stored as b'10110100' where b'10110' is the
; hour (22) and b'100' is the ten-minutes (4)
;valid range for HHHHH is b'00000' - b'11000' (0, 1, ..., 24)
;use b'11000' as off time #2 to keep output on until midnight
;valid range for TTT is b'000' - b'101' (0, 10, ..., 50)

;day 1: sunday
;day 2: monday
;day 3: tuesday
;day 4: wednesday
;day 5: thursday
;day 6: friday
;day 7: saturday
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-5

Electromechanical Switch Replacement

;note: day 7 (saturday) duplicates the time schedule set for day 1 (sunday)
;note: the day numbering scheme shown above is just one possible scenario;
; you could have day 1 be wednesday (and then day 2 would be thursday, etc.,
; in which case tuesday (day 7) would be the same as wednesday (day 1)

;/---------------------------\
;| System timing information |
;\---------------------------/

;clock speed: 4MHz
;instruction clock speed: 4MHz / 4 = 1MHz
;time per non-branching instruction: 1us
;time per branching instruction: 2us

ITIMENS equ 1000 ;non-branching instruction time in ns

;/-------\
;| Fuses |
;\-------/

 ifdef __16C84

 __config _HS_OSC & _WDT_ON & _PWRTE_ON & _CP_OFF

 else ;__12C508

 __config _MCLRE_ON & _CP_OFF & _WDT_ON & _IntRC_OSC

 endif

;/--\
;| Miscellaneous equates, #defines, macro definitions |
;\--/

 ifdef __16C84
MINRAM equ h'0c' ;first RAM location
MAXRAM equ h'2f' ;last RAM location
MAXROM equ h'03ff' ;last program word
 else ;__12C508
MINRAM equ h'07' ;first RAM location
MAXRAM equ h'1f' ;last RAM location
MAXROM equ h'01fe' ;last program word
 endif

RESET equ h'0000' ;location where jump to on reset

#define subwl sublw ;fix for microchip's bad mnemonic
#define SUBWL sublw ; both upper and lower case

SKPLTZ macro ;used after a subtract instruction, this macro
 btfsc STATUS,C ; will skip the next instruction if the result
 endm ; of the subtraction is < 0

SKPGEZ macro ;used after a subtract instruction, this macro
 btfss STATUS,C ; will skip the next instruction if the result
 endm ; of the subtraction is >= 0

#define INSTRS (((usec*1000)/ITIMENS)-4)
DELAYUS macro usec ;this macro forms a wrapper around the delay
 ; subroutine, autocalculating the parameters
 ; needed by that subroutine using the
 ; argument to this macro (the approximate
 ; number of microseconds to delay);
DS40160A/2_015-page 2-6  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

 if INSTRS < 20
 error "delay time is too small!"
 endif
 if INSTRS > 65535
 error "delay time is too large!"
 endif
 if low ((INSTRS / 4) * 4) != low INSTRS
 messg "delay will not be quite exact!"
 endif
 movlw low INSTRS
 movwf dlyL
 movlw high INSTRS
 movwf dlyH
 call delay
 endm

;/--\
;| Microchip's one-line special instruction mnemonics |
;\--/

;CLRC, SETC, CLRDC, SETDC, CLRZ, SETZ, SKPC, SKPNC,
;SKPDC, SKPNDC, SKPZ, SKPNZ, TSTF, MOVFW
;(can use in upper or lower case)

;/--\
;| Equates for RAM variables in page 0 (h'0c' to h'2f') |
;\--/

 cblock MINRAM
;note: sec1202 thru wp1202 must remain in order & contiguous
sec1202 ;seconds to read/write from/to DS1202
min1202 ;minutes to read/write from/to DS1202
hr1202 ;hours to read/write from/to DS1202
day1202 ;days to read/write from/to DS1202
mon1202 ;months to read/write from/to DS1202
dow1202 ;day of the week to read/write from/to DS1202
yr1202 ;years to read/write from/to DS1202
wp1202 ;write enable/disable the DS1202 clock
;note: sec1202 thru wp1202 must remain in order & contiguous
addrEe ;PIC12C508 eeprom address to read/write
dataEe ;PIC12C508 eeprom data to write
eye ;loop counter variable
jay ;loop counter variable
kay ;loop variable used by clkByte subroutine
adr1202 ;address in DS1202 to read or write
dat1202 ;data value read from or to write into DS1202
temp ;temporary storage
bitVars ;unrelated one-bit variables
prevMin ;last minute value from DS1202 variable
state ;on#/off# state variable
chgHrs ;hours of next state change variable
chgMins ;ten minutes of next state change variable
prevDay ;variable used to detect when day changes
bcdL ;LSB of result of binary to BCD conversion
bcdH ;MSB of result of binary to BCD conversion
ENDRAM1 ;dummy value used to see if over RAM limit
 endc
 ifdef __16C84
 cblock ENDRAM1
txData ;RS-232 transmit data value
dlyH ;variable used by delay subroutine
dlyL ;variable used by delay subroutine
dlyTemp ;variable used by delay subroutine
ENDRAM2 ;dummy value used to see if over RAM limit
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-7

Electromechanical Switch Replacement

 endc
 endif

 ifdef __16C84

 if (ENDRAM2 - 1 > MAXRAM)
 error "too many RAM variables defined!"
 endif

 else ;__12C508

 if (ENDRAM1 - 1 > MAXRAM)
 error "too many RAM variables defined!"
 endif

 endif

;/---\
;| I/O port bit #defines and data direction equates for port a |
;\---/

 ifdef __16C84

#define RXD232 PORTA,4 ;RS-232 receive data (i) (o.c. out./s.t. in.)
#define TXD232 PORTA,3 ;RS-232 transmit data (o)
#define DTR232_ PORTA,2 ;RS-232 data terminal ready (i)
#define UNUSED1 PORTA,1 ;unused (o)
#define LIGHT PORTA,0 ;;solid state relay control to power light (o)
PORTAIO equ b'00010100' ;direction bits for port A (3 MSBs don't care)

 endif

;/---\
;| I/O port bit #defines and data direction equates for port b |
;\---/

 ifdef __16C84

#define UNUSED2 PORTB,7 ;unused (i) (weak pull-up)
#define UNUSED3 PORTB,6 ;unused (i) (w.p.u.)
#define UNUSED4 PORTB,5 ;unused (i) (w.p.u.)
#define OVRIDE_ PORTB,4 ;override toggle pushbutton (i) (w.p.u.)
#define CS1202 PORTB,3 ;chip select for DS1202 clock chip (o)
#define IOPIN 2 ;line that is both an input and an output
#define DAT1202 PORTB,IOPIN ;serial data line to DS1202 clock chip (i/o)
#define CLK1202 PORTB,1 ;serial clock line to DS1202 clock chip (o)
#define UNUSED5 PORTB,0 ;unused (o)

PORTBIO equ b'11110100' ;direction bits for port B

 if (PORTBIO < b'11000000')
 error "to do in-circuit programming, rb7 and rb6 must be inputs!"
 endif

 endif

;/--\
;| I/O port bit #defines and data direction equates for gpio port |
;\--/

 ifdef __12C508

#define LIGHT GPIO,5 ;solid state relay control to power light (o)
DS40160A/2_015-page 2-8  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

#define UNUSED GPIO,4 ;override toggle pushbutton (i)
#define RESET_ GPIO,3 ;reset line for PIC12C508 (i) (w.p.u)
#define CS1202 GPIO,2 ;chip select for DS1202 clock chip (o)
#define DAT1202 GPIO,1 ;serial data line to DS1202 clock chip (i/o)
#define CLK1202 GPIO,0 ;serial clock line to DS1202 clock chip (o)

DATAINP equ b'00011010' ;direction bits for gpio port (DAT1202 input)
DATAOUT equ b'00011000' ;direction bits for gpio port (DAT1202 output)

 endif

;/----------------------------\
;| Equate for option register |
;\----------------------------/

 ifdef __12C508
OPTREG equ b'11001000' ;disable wake-up, diable pull-ups, 1:1 w-dog
 endif

;/-------------------------------------\
;| DS1202 equates and bit definitions |
;\-------------------------------------/

BURSTRD equ b'10111111' ;burst read clock portion of DS1202
BURSTWR equ b'10111110' ;burst write clock portion of DS1202

RD1202 equ 0 ;read/not write bit in DS1202 command
RAM1202 equ 6 ;RAM/not clock bit in DS1202 command

SEC1202 equ b'00000' ;DS1202 seconds register address

CTL1202 equ b'00111' ;DS1202 control register address
WEN1202 equ b'00000000' ;data to allow clock writes to DS1202
WPR1202 equ b'10000000' ;data to disallow clock writes to DS1202

;/-----------------------\
;| Miscellaneous equates |
;\-----------------------/

 ifdef __16C84
#define CR 13 ;carriage return ASCII code
#define LF 10 ;line feed ASCII code
 endif

#define PREON1 0 ;state before on time #1
#define PREOFF1 1 ;state after on time #1 but before off time #1
#define PREON2 2 ;state after off time #1 but before on time #2
#define PREOFF2 3 ;state after on time #2 but before off time #2
#define PSTOFF2 4 ;state after off time #2

;/-------------------------\
;| bitVars bit definitions |
;\-------------------------/

#define RAMNCLK bitVars,0 ;access DS1202 RAM/not clock indicator
#define LITESHD bitVars,1 ;output on/off shadow bit

;--

;/-----------------------------------\
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-9

Electromechanical Switch Replacement

;| Setup reset and interrupt vectors |
;\-----------------------------------/

 org RESET ;reset sends execution here

 ifdef __12C508
 movwf OSCCAL ;trim internal RC oscillator
 endif

 goto initHW ;assure jump over hardcoded isr

;--

;/--\
;| Routine for sending a data byte serially at 9600 baud. |
;| |
;| Inputs: w, data to send |
;| |
;| Outputs: none |
;| |
;| Calls: none |
;\--/

 ifdef __16C84

send232 movwf txData ;save data to send

 movlw 8 + 1 + 1 ;8 bits of data, 1 start, 1 stop bit
 movwf jay

loop232 movlw high jmpStrt ;get high order bits of program counter
 movwf PCLATH ; and save so adding to pc low works ok
 decf jay,w

jmpStrt addwf PCL,f ;determine what to do and take the same
 goto stop ; amount of time no matter what
 FILL (goto rotate),8
jmpEnd goto start

stop goto $ + 1 ;waste 3 cycles (includes nop at send1L1)
 goto send1L1 ;sending a stop bit (stop bit is logic 1)

rotate rrf txData,f ;figure out value of data bit to send
 SKPNC
 goto send1L1
 goto send0

start goto $ + 1 ;waste 3 cycles
 nop
 goto send0 ;sending a start bit (start bit is logic 0)

send1L1 nop ;equalize inter-bit delays
send1 bsf TXD232 ;output a 1
 goto endLoop

send0 bcf TXD232 ;output a 0
 goto endLoop ;equalize inter-bit delays

endLoop DELAYUS 86 ;104 us (1 bit time) - 18 us (loop time)

 decfsz jay,f ;skip next if done with data and framing bits
 goto loop232 ;not done, go get another bit

 return
DS40160A/2_015-page 2-10  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

 if (high jmpStrt != high jmpEnd)
 error "jump table crosses page boundary in subroutine send232!"
 endif

 endif ;__16C84

;/--\
;| Routine for burst reading clock data from the Dallas 1202 Serial |
;| Timekeeping chip. |
;| |
;| Inputs: none |
;| |
;| Outputs: sec1202 thru wp1202 |
;| |
;| Calls: none |
;\--/

rdClock bsf CS1202 ;activate the chip by selecting it
 bcf CLK1202 ;start out with the clock low

 movlw sec1202 ;point indirect addressing to the first byte
 movwf FSR ; in PIC12C508 RAM to fill

 movlw 8 ;command to DS1202 is 8 bits long
 movwf jay

 movlw BURSTRD ;burst read clock data command
 movwf sec1202

 ifdef __16C84
 bsf STATUS,RP0
 bcf TRISB,IOPIN ;make the data i/o pin an output temporarily
 bcf STATUS,RP0
 else ;__12C508
 movlw DATAOUT
 tris GPIO ;make the data i/o pin an output temporarily
 endif

rdLoop1 bcf CLK1202 ;lower the clock

 bcf DAT1202 ;assume command bit is going to be a 0
 rrf sec1202,f ;look at actual command bit
 SKPNC ;skip next if it really was 0
 bsf DAT1202 ;not a 0, correct it to be a 1

 bsf CLK1202 ;command data gets clocked in on rising edge

 decfsz jay,f ;skip next if clocked in all 8 command bits
 goto rdLoop1 ;continue clocking in command bits

 ifdef __16C84
 bsf STATUS,RP0 ;done outputting command to DS1202
 bsf TRISB,IOPIN ;revert data i/o pin back to an input
 bcf STATUS,RP0
 else
 movlw DATAINP ;__12C508
 tris GPIO ;revert data i/o pin back to an input
 endif

 movlw 8 ;we're getting 8 bytes of data from DS1202
 movwf jay

rdLoop2 movlw 8 ;each byte is 8 bits
 movwf kay
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-11

Electromechanical Switch Replacement

rdLoop3 bcf CLK1202 ;clock out a data bit on clock falling edge

 CLRC ;assume data bit is going to be a 0
 btfsc DAT1202 ;skip next if actual data bit was a 0
 SETC ;not a 0, correct it to be a 1
 rrf INDF,f ;rotate data bit into current PIC12C508 RAM location

 bsf CLK1202 ;raise the clock in preparation of next bit

 decfsz kay,f ;skip next if done with current data byte
 goto rdLoop3 ;keep working on getting current data byte

 incf FSR,f ;point to destination for next data byte

 decfsz jay,f ;skip next if done getting all data bytes
 goto rdLoop2 ;contine getting next data byte

 bcf CLK1202 ;leave the clock low
 bcf CS1202 ;deselect the clock chip
 retlw 0

;/--\
;| Routine for burst writing clock data to the Dallas 1202 Serial |
;| Timekeeping chip. |
;| |
;| Inputs: sec1202 thru wp1202 |
;| |
;| Outputs: none |
;| |
;| Calls: none |
;| |
;| Note: Need to write-enable DS1202 before & write-protect it after |
;\--/

 ifdef __16C84

wrClock bsf CS1202 ;activate the chip by selecting it
 bcf CLK1202 ;start out with the clock low

 movlw sec1202 ;point indirect addressing to the first byte
 movwf FSR ; in PIC12C508 RAM to get data from

 movlw 8 ;command to DS1202 is 8 bits long
 movwf jay

 movlw BURSTWR ;burst write clock data command
 movwf eye

 bsf STATUS,RP0
 bcf TRISB,IOPIN ;make the data i/o pin an output temporarily
 bcf STATUS,RP0

wrLoop1 bcf CLK1202 ;lower the clock

 bcf DAT1202 ;assume command bit is going to be a 0
 rrf eye,f ;look at actual command bit
 SKPNC ;skip next if it really was 0
 bsf DAT1202 ;not a 0, correct it to be a 1

 bsf CLK1202 ;command data gets clocked in on rising edge

 decfsz jay,f ;skip next if clocked in all 8 command bits
 goto wrLoop1 ;continue clocking in command bits
DS40160A/2_015-page 2-12  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

 movlw 8 ;we're putting 8 bytes of data in the DS1202
 movwf jay

wrLoop2 movlw 8 ;each byte is 8 bits
 movwf kay

wrLoop3 bcf CLK1202 ;lower the clock

 bcf DAT1202 ;assume data bit is going to be a 0
 rrf INDF,f ;rotate data bit from current PIC12C508 RAM location
 SKPNC ;skip next if it really was 0
 bsf DAT1202 ;not a 0, correct it to be a 1

 bsf CLK1202 ;clock in the data bit

 decfsz kay,f ;skip next if done with current data byte
 goto wrLoop3 ;keep working on getting current data byte

 incf FSR,f ;point to destination for next data byte

 decfsz jay,f ;skip next if done getting all data bytes
 goto wrLoop2 ;contine getting next data byte

 ifdef __16C84
 bsf STATUS,RP0 ;done outputting command to DS1202
 bsf TRISB,IOPIN ;revert data i/o pin back to an input
 bcf STATUS,RP0
 else ;__12C508
 movlw DATAINP
 tris GPIO ;revert data i/o pin back to an input
 endif

 bcf CLK1202 ;leave the clock low
 bcf CS1202 ;deselect the clock chip

 retlw 0

 endif

;/--\
;| Routine for reading 1 byte of data from the Dallas 1202 Serial |
;| Timekeeping chip. |
;| |
;| Inputs: adr1202 |
;| bitVars bit RAMNCLK (read from RAM/not clock area of DS1202) |
;| |
;| Outputs: dat1202 |
;| |
;| Calls: none |
;\--/

rd1202 bsf CS1202 ;activate the chip by selecting it
 bcf CLK1202 ;start out with the clock low

 movlw 8 ;command to DS1202 is 8 bits long
 movwf jay

 MOVFW adr1202 ;don't destroy DS1202 address
 movwf temp ;turn address into a valid DS1202 command
 rlf temp,f ; byte
 bsf temp,RD1202 ;set read/not write bit in DS1202 command
 bsf temp,7 ;this bit is always set in valid command

 bsf temp,RAM1202 ;assume writing to RAM area of DS1202
 btfss RAMNCLK ;skip next if really writing to RAM area
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-13

Electromechanical Switch Replacement

 bcf temp,RAM1202 ;really writing to clock area of DS1202

 ifdef __16C84
 bsf STATUS,RP0
 bcf TRISB,IOPIN ;make the data i/o pin an output temporarily
 bcf STATUS,RP0
 else ;__12C508
 movlw DATAOUT
 tris GPIO ;make the data i/o pin an output temporarily
 endif

r1202lp bcf CLK1202 ;lower the clock

 bcf DAT1202 ;assume command bit is going to be a 0
 rrf temp,f ;look at actual command bit
 SKPNC ;skip next if it really was 0
 bsf DAT1202 ;not a 0, correct it to be a 1

 bsf CLK1202 ;command data gets clocked in on rising edge

 decfsz jay,f ;skip next if clocked in all 8 command bits
 goto r1202lp ;continue clocking in command bits

 ifdef __16C84
 bsf STATUS,RP0 ;done outputting command to DS1202
 bsf TRISB,IOPIN ;revert data i/o pin back to an input
 bcf STATUS,RP0
 else ;__12C508
 movlw DATAINP
 tris GPIO ;revert data i/o pin back to an input
 endif

 movlw 8 ;retrieving 8 bits of data
 movwf jay

r1202l2 bcf CLK1202 ;clock out a data bit on clock falling edge

 CLRC ;assume data bit is going to be a 0
 btfsc DAT1202 ;skip next if actual data bit was a 0
 SETC ;not a 0, correct it to be a 1
 rrf dat1202,f ;rotate data bit into current PIC12C508 RAM

 bsf CLK1202 ;raise the clock in preparation of next bit

 decfsz jay,f ;skip next if done retrieving data byte
 goto r1202l2 ;keep working on getting data byte

 bcf CLK1202 ;leave the clock low
 bcf CS1202 ;deselect the clock chip
 retlw 0

;/--\
;| Routine for writing 1 byte of data to the Dallas 1202 Serial Timekeeping |
;| chip. |
;| |
;| Inputs: adr1202 (the address in the DS1202 to write) |
;| dat1202 (the data to write to the specified address) |
;| |
;| bitVars bit RAMNCLK (write to RAM/not clock area of DS1202) |
;| |
;| Outputs: none |
;| |
;| Calls: none |
;| |
;| Note: Need to write-enable DS1202 before & write-protect it after |
DS40160A/2_015-page 2-14  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

;\--/

 ifdef __16C84

wr1202 bsf CS1202 ;activate the chip by selecting it
 bcf CLK1202 ;start out with the clock low

 movlw 16 ;command & data to DS1202 are each 8 bits
 movwf jay

 MOVFW adr1202 ;don't destroy DS1202 address
 movwf temp ;turn address into a valid DS1202 command
 rlf temp,f ; byte
 bcf temp,RD1202 ;clear read/not write bit in DS1202 command
 bsf temp,7 ;this bit is always set in valid command

 bsf temp,RAM1202 ;assume writing to RAM area of DS1202
 btfss RAMNCLK ;skip next if really writing to RAM area
 bcf temp,RAM1202 ;really writing to clock area of DS1202

 bsf STATUS,RP0
 bcf TRISB,IOPIN ;make the data i/o pin an output temporarily
 bcf STATUS,RP0

w1202lp bcf CLK1202 ;lower the clock

 bcf DAT1202 ;assume command bit is going to be a 0
 rrf temp,f ;look at actual command bit
 SKPNC ;skip next if it really was 0
 bsf DAT1202 ;not a 0, correct it to be a 1

 bsf CLK1202 ;command data gets clocked in on rising edge

 movlw 9 ;jay will be 9 when we've clocked out 8 bits
 xorwf jay,w
 SKPZ ;skip next if done with 8 bit command
 goto w1202ov ;keep working on command bits
 MOVFW dat1202 ;done with command bits, switch to data bits
 movwf temp

w1202ov decfsz jay,f ;skip next if clocked in all 16 bits
 goto w1202lp ;continue clocking in command bits

 bsf STATUS,RP0 ;done outputting command to DS1202
 bsf TRISB,IOPIN ;revert data i/o pin back to an input
 bcf STATUS,RP0

 bcf CLK1202 ;leave the clock low
 bcf CS1202 ;deselect the clock chip
 retlw 0

 endif

;/--\
;| Routine for converting a BCD digit (0 - 9) to ASCII. |
;| |
;| Inputs: w (the BCD digit (only lower nibble is relevant)) |
;| |
;| Outputs: w (the converted ASCII code) |
;| |
;| Calls: none |
;\--/

 ifdef __16C84
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-15

Electromechanical Switch Replacement

bcd2asc andlw h'0f' ;clear upper nibble
 iorlw h'30' ;set bits 4 & 5 to make valid ASCII code
 return

 endif ;__16C84

;/--\
;| Routine for converting a 1-byte binary value to a 2-byte binary-coded |
;| decimal value (2 digits) (taken from AN526 "PIC12C508 16C5X/16CXX |
;| Math Utility Routines" from Microchip . |
 | Embedded Control Handbook, page 5-119) |
;| |
;| Inputs: w, the binary value to convert (h'00'-h'63') |
;| |
;| Outputs: bcdH,bcdL |
;| |
;| Calls: none |
;\--/

bin2bcd clrf bcdH
 movwf bcdL
gtenth movlw 10
 subwf bcdL,w
 btfss STATUS,C
 goto endBcd
 movwf bcdL
 incf bcdH,f
 goto gtenth
endBcd return

;/--\
;| Routine for generating a programmable delay (routine written by Philip |
;| Doucet - obtained from Electronics Design - August 8, 1994, page 26ES) |
;| This "delay" subroutine requires three registers. The 16-bit argument |
;| is in dlyH and dlyL. Minimum value of the argument is 20. Register |
;| dlyTemp is needed for temporary storage. This routine will delay 20 |
;| or more instruction cycles. For exact accuracy, the delay parameter |
;| must be a multiple of 4. |
;| |
;| Inputs: # of instructions to delay in dlyL and dlyH |
;| |
;| Outputs: none |
;| |
;| Calls: none |
;\--/

 ifdef __16C84

delay movlw 20 ;subtract minimum # of instructions to
 subwf dlyL,f ; execute this routine from requested delay
 SKPC ;check for borrow & decrement high byte if
 decf dlyH,f ; there was one
 CLRC ;divide by 4 to determine how many times to
 rrf dlyL,f ; execute dlyL loop
 CLRC
 rrf dlyL,f
 movf dlyH,f ;check to see if dlyH = 0 & skip dlyH loop if
 SKPNZ ; it is
 goto delay3
 nop ;nop equalizes timing between paths
delay1 movlw 62 ;since each dlyH loop needs 256 cycle, or 64
 movwf dlyTemp ; times thru inner loop of cycles, minus
 nop ; cycle setup, so 64 - 2 = 62
 goto delay2 ;add a 2 cycle delay
DS40160A/2_015-page 2-16  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

delay2 nop ;inner loop for dlyH
 decfsz dlyTemp,f
 goto delay2
 nop
 decfsz dlyH,f ;outer loop for dlyH
 goto delay1
 nop
delay3 movf dlyL,f ;if dlyL = 0, skip loop
 SKPNZ
 goto dlyEnd
 nop
delay4 nop ;loop for dlyL
 decfsz dlyL,f
 goto delay4
 nop
dlyEnd return ;return from subroutine

 endif ;__16C84

;--

;Do PIC12C508 initialization here, including setting up I/O and configuring control
; registers. Timer 0 is set up as a timer to drive the application clock at
; 64 ticks per second and to blink the LEDs when necessary. ;Clear system
; interrupt flags, and enable interrupts (they are disabled on reset or
; powerup). Other initialization is self-explanatory.

initHW

 ifdef __16C84

 clrf PORTA ;set port output latches to a known state
 clrf PORTB

 bcf INTCON,GIE ;disable all interrupt sources

 bcf EEADR,7 ;avoid higher than necessary current drain
 bcf EEADR,6

 bsf STATUS,RP0 ;select page 1 (powerup default is page 0)

 bcf OPTION_REG,NOT_RBPU ;enable weak pullups on port B

 bsf OPTION_REG,T0CS ;select external source for timer 0
 bsf OPTION_REG,T0SE ;select falling edge as timer 0 increment

 bsf OPTION_REG,PSA ;assign prescaler to watchdog timer
 bcf OPTION_REG,PS2
 bcf OPTION_REG,PS1
 bcf OPTION_REG,PS0 ;1:1 prescale watchdog timer (18 ms)

 MOVFW TRISA
 andlw b'11100000'
 iorlw PORTAIO ;port A input/output pin configuration
 movwf TRISA ; (leave 3 most-significant bits alone)

 movlw PORTBIO ;port B input/output pin configuration
 movwf TRISB

 bcf STATUS,RP0 ;set default page back to 0

 else ;__12C508

 clrf GPIO ;set port output latches to a known state
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-17

Electromechanical Switch Replacement

 movlw OPTREG
 option ;disable wake-up, disable pull-ups, 1:1 w-dog

 movlw DATAINP
 tris GPIO ;gpio port input/output pin configuration

 endif

endHW

;--

;Set up initial variables and define initial conditions here.

initSW movlw h'ff'
 movwf prevDay ;initialize to an invalid value
 movwf prevMin ;initialize to an invalid value

 bcf CS1202 ;make sure DS1202 is deselected

 movlw WPR1202 ;this variable never changes; it is needed
 movwf wp1202 ; for the burst write

 bcf LITESHD ;shadow bit for output starts out off
 bcf LIGHT ;make sure light output starts out off

 ifdef __16C84
 bsf TXD232 ;set RS-232 transmit line to marking state
 endif

endSW

;--

 ifdef DEBUG

 movlw CTL1202 ;hard program DS1202 with '84 instead of
 movwf adr1202 ; using the PC's parallel port for easier
 movlw WEN1202 ; debugging
 movwf dat1202
 bcf RAMNCLK
 call wr1202 ;allow writes to DS1202

 movlw h'45'
 movwf sec1202

 movlw h'58'
 movwf min1202

 movlw h'23'
 movwf hr1202

 movlw h'20'
 movwf day1202

 movlw h'11'
 movwf mon1202

 movlw h'1'
 movwf dow1202
DS40160A/2_015-page 2-18  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

 movlw h'96'
 movwf yr1202

 call wrClock ;initialize clock time in DS1202

 movlw 0
 movwf adr1202
 movlw h'ba'
 movwf dat1202
 bsf RAMNCLK
 call wr1202

 movlw 1
 movwf adr1202
 movlw h'bb'
 movwf dat1202
 bsf RAMNCLK
 call wr1202

 movlw 2
 movwf adr1202
 movlw h'bc'
 movwf dat1202
 bsf RAMNCLK
 call wr1202

 movlw 3
 movwf adr1202
 movlw h'bd'
 movwf dat1202
 bsf RAMNCLK
 call wr1202

 movlw 4
 movwf adr1202
 movlw h'0'
 movwf dat1202
 bsf RAMNCLK
 call wr1202

 movlw 5
 movwf adr1202
 movlw h'1'
 movwf dat1202
 bsf RAMNCLK
 call wr1202

 movlw 6
 movwf adr1202
 movlw h'2'
 movwf dat1202
 bsf RAMNCLK
 call wr1202

 movlw 7
 movwf adr1202
 movlw h'3'
 movwf dat1202
 bsf RAMNCLK
 call wr1202

 movlw CTL1202
 movwf adr1202
 movlw WPR1202
 movwf dat1202
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-19

Electromechanical Switch Replacement

 bcf RAMNCLK
 call wr1202 ;disallow writes to DS1202

 endif ;DEBUG

infLoop clrwdt ;pet the dog to keep him happy

 call rdClock ;get current day and time info

 MOVFW prevMin ;retrieve old minute data
 xorwf min1202,w ;compare to current minute data
 SKPNZ ;skip next if minute has changed
 goto infLoop ;we're still in the same minute

 MOVFW min1202 ;minute has changed
 movwf prevMin ;update old minute so we remember next time

 ifdef DEBUG
 MOVFW hr1202 ;output HH:MM to RS-232 port
 movwf bcdL
 rrf bcdL,f
 rrf bcdL,f
 rrf bcdL,f
 rrf bcdL,w
 call bcd2asc
 call send232
 MOVFW hr1202
 call bcd2asc
 call send232
 movlw ':'
 call send232
 MOVFW min1202
 movwf bcdL
 rrf bcdL,f
 rrf bcdL,f
 rrf bcdL,f
 rrf bcdL,w
 call bcd2asc
 call send232
 MOVFW min1202
 call bcd2asc
 call send232
 movlw CR
 call send232
 movlw LF
 call send232
 endif

 decf dow1202,f ;convert day with range 1 - 7 to 0 - 6
 movlw 6
 xorwf dow1202,w ;compare current day of week with 6
 SKPNZ ;skip next if not 6
 clrf dow1202 ;wrap day 6 to be the same as day 0

 MOVFW dow1202 ;retrieve day of week in range 0 - 5
 xorwf prevDay,w ;has the day changed on us?
 SKPNZ ;skip next if it has
 goto sameDay

 MOVFW dow1202 ;day changed
 movwf prevDay ;set previous day variable to same as current

 movlw PREON1 ;since day changed we are before on time #1
 movwf state ;remember that

 bcf LITESHD ;turn output device off
DS40160A/2_015-page 2-20  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

rdNxChg MOVFW dow1202 ;calculate next output transition time
 movwf temp
 CLRC
 rlf temp,f
 CLRC
 rlf temp,f ;calculate day of week * 4

 MOVFW state
 addwf temp,w ;w = day of week * 4 + state
 movwf adr1202 ;store index as RAM location to read in DS1202

 bsf RAMNCLK
 call rd1202 ;read DS1202 RAM location [day * 4 + state]

 MOVFW dat1202 ;retrieve HHHHHTTT binary data
 movwf temp ;save it for rotating
 rrf temp,f ;rotate to get CHHHHHTT
 rrf temp,f ;rotate to get CCHHHHHT
 rrf temp,w ;rotate to get CCCHHHHH
 andlw b'00011111' ;mask to get 000HHHHH
 call bin2bcd ;convert to 2 BCD digits
 rlf bcdH,f ;rotate MS BCD digit to get 000MMMMC
 rlf bcdH,f ;rotate MS BCD digit to get 00MMMMCC
 rlf bcdH,f ;rotate MS BCD digit to get 0MMMMCCC
 rlf bcdH,w ;rotate MS BCD digit to get MMMMCCCC
 andlw b'11110000' ;mask to get MMMM0000
 iorwf bcdL,w ;combine to get MMMMLLLL hours
 movwf chgHrs ;save for comparison to current hours later

 clrf temp ;clear the addition accumulator
 MOVFW dat1202 ;retrieve HHHHHTTT binary data
 andlw b'00000111' ;mask out hours to get 00000TTT
 movwf eye ;i = TTT = number of ten minute blocks
 movlw 10 ;add 10 to accumulated sum each time thru
addLoop TSTF eye ;i down to 0 yet?
 SKPNZ ;skip next if i > 0
 goto addDone ;i down to 0, now have minutes calculated
 addwf temp,f ;sum = sum + 10
 decf eye,f ;i = i - 1
 goto addLoop ;continue adding
addDone MOVFW temp ;retrieve minutes
 call bin2bcd ;;convert to 2 BCD digits
 rlf bcdH,f ;rotate MS BCD digit to get 000MMMMC
 rlf bcdH,f ;rotate MS BCD digit to get 00MMMMCC
 rlf bcdH,f ;rotate MS BCD digit to get 0MMMMCCC
 rlf bcdH,w ;rotate MS BCD digit to get MMMMCCCC
 andlw b'11110000' ;mask to get MMMM0000
 iorwf bcdL,w ;combine to get MMMMLLLL minutes
 movwf chgMins ;save for comparison to current minutes later

sameDay MOVFW state ;retrieve current state
 xorlw PSTOFF2 ;is current state after off time #2?
 SKPNZ ;skip next if not
 goto infLoop ;time is after 2nd turn off time, recycle

chkTime MOVFW chgHrs
 subwf hr1202,w ;w = current hours - next change hours
 SKPGEZ ;skip next if current >= next change
 goto updShdw ;go update output from shadow bit
 SKPZ ;skip next if current equals change
 goto change ;go toggle shadow output bit
 MOVFW chgMins
 subwf min1202,w ;w = current minutes - next change ten minutes
 SKPGEZ ;skip next if current >= next change
 goto updShdw ;go update output from shadow bit
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-21

Electromechanical Switch Replacement

 SKPZ ;skip next if current equals next change
 goto updShdw ;go update output from shadow bit

change btfss LITESHD ;skip next if shadow bit is currently on
 goto shdwOn ;shadow bit off, go turn it on
 bcf LITESHD ;turn shadow bit off
 goto endChg ;done with shadow bit, get out of this section
shdwOn bsf LITESHD ;turn shadow bit on
endChg

 incf state,f ;advance to next state in the on/off machine

 MOVFW state
 xorlw PSTOFF2 ;are we now after off time #2?
 SKPZ ;skip next if we are
 goto rdNxChg ;haven't turned off for the last time today;
 ; need to read the next time for state change

updShdw btfss LITESHD ;skip next if shadow says output should be on
 goto outOff ;output should be off so go make it so
 bsf LIGHT ;turn output on
 goto endUpdt ;done with output, get out of this section
outOff bcf LIGHT ;turn output off
endUpdt

 goto infLoop ;repeat ad nauseum

;--

;/------------------------------\
;| End of program watchdog fill |
;\------------------------------/

endProg fill (goto wdReset),(MAXROM - $)
 org MAXROM ;set breakpoints on endProg thru wdtRst
wdReset goto wdReset ;force watchdog to fire

;--

;/--------------\
;| End assembly |
;\--------------/

 end
DS40160A/2_015-page 2-22  1997 Microchip Technology Inc.

Electromechanical Switch Replacement

NOTES:
 1997 Microchip Technology Inc. DS40160A/2_015-page 2-23

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or
warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other
intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks
of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

M

All rights reserved. © 1997, Microchip Technology Incorporated, USA. 9/97 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602-786-7200 Fax: 602-786-7277
Technical Support: 602 786-7627
Web: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 972-991-7177 Fax: 972-991-8588

Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 714-263-1888 Fax: 714-263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516-273-5305 Fax: 516-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong
Microchip Asia Pacific
RM 3801B, Tower Two
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431

India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-4036 Fax: 91-80-559-9840

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700
Fax: 86 21-6275-5060

Singapore
Microchip Technology Taiwan
Singapore Branch
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2-717-7175 Fax: 886-2-545-0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44-1628-851077 Fax: 44-1628-850259

France
Arizona Microchip Technology SARL
Zone Industrielle de la Bonde
2 Rue du Buisson aux Fraises
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Müchen, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-39-6899939 Fax: 39-39-6899883

JAPAN
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

8/29/97

WORLDWIDE SALES & SERVICE
DS40160A/2_015-page 2-24  1997 Microchip Technology Inc.

	Application operation
	Overview
	Theory of Operation

	Hardware
	Software

	Microchip Hardware Development Tools Used
	Assembler/Compiler version

	Software Overview
	Graphical hardware representation

