

PIC16C5X Disassembler

Electromechanical Timer
Replacements

PROGRAM DEFINITION

DIS16 is an intelligent and easy-to-use disassembler
for PIC16C5X microcontrollers. It produces a compact
assembler source code from the binary data down-
loaded from a microcontroller's ROM and stored in a
file.

FEATURES

• Supported processors: PIC16C54, PIC16C55,
PIC16C56, PIC16C57, PIC16C58

Processor can be automatically detected from the
code.

• Supported file formats:
- Intel® HEX Format (INHX8M, extension

HEX)
- Intel Split HEX Format (INHX8S, extensions

HXL/HXH)
- Raw binary file (BIN)

• Symbolic names for special-purpose registers
(F00-F07) and flags in the STATUS register (F03)
that enhances program readability.

• Intelligent program tracing that is used to:
- Find and mark unreachable parts of a

program
- Detect multiple jumps (GOTO and CALL)
- Tell apart program CODE from DATA

tables
- Determine required processor type, if

none is specified
- Detect and mark illegal instructions

• Generating useful comments automatically

Use of DIS16 disassembler requires an IBM PC/AT® or
compatible computer, running MS-DOS® v4.1 or
greater.

RUNNING DIS16

DIS16 can be invoked through the command line as
follows:

DIS16 [options[+|-|argument]] filename

Where filename is a name of a file that contains pro-
gram code, and options are used to pass some addi-
tional instructions to the disassembler.

The following file formats are supported:

• Intel HEX format (INHX8M, extension HEX)
• Intel split HEX format (INHX8S, extensions

HXL/HXH)
• Raw binary file (BIN)

The program produces the following output files:

Author: Arsen Torbarina
University of Electrical Engineering
Zagreb, Croatia

Note: It is not necessary to write the filename
extension, since the program determines
the correct extension by itself.

filename.ASM Assembler listing, compatible with
MPASM assembler;

filename.LST Listing file suitable for printing and
analyzing. Contains both HEX
and symbolic code;

filename.ERR Error file for details about the
encountered errors and warnings

Note: All the previously existing files with the
same names will be overwritten without
any notice or warning.

Intel is a registered trademark of Intel Corporation.
IBM PC/AT is a registered trademark of IBM.
MS-DOS is a registered trademark of Microsoft Corporation.
 1997 Microchip Technology Inc. DS4060A/1_013-page 1-1

Microchip Technology Incorporated, has been granted a non-exclusive, worldwide license to reproduce, publish and distribute all submitted materials, in
either original or edited form. The author has affirmed that this work is an original, unpublished work and that he/she owns all rights to such work. All
property rights, such as patents, copyrights and trademarks remain with author.

Electromechanical Timer Replacements

OPTIONS

ENHANCING THE PROGRAM READABLITY

There are several mechanisms that DIS16 uses to enhance the program readability:

Symbolic names

Disassembler generates a table of used symbols, such as file registers and STATUS register bits, and assigns them sym-
bolic names as shown below:

1. Destination at “Byte-oriented file register operations”
 W EQU 0 ;Destination is W
 F EQU 1 ;Destination is f

2. File register names
 INDF EQU 0x00 ;Indirect data addressing
 RTCC EQU 0x01 ;Real Time Clock/Counter
 PC EQU 0x02 ;Program Counter
 STATUS EQU 0x03 ;Status register
 FSR EQU 0x04 ;File Select Register
 PORTA EQU 0x05 ;Port A address
 PORTB EQU 0x06 ;Port B address
 PORTC EQU 0x07 ;Port C address [16C55,57]
 or F07 EQU 0x07 ;General purpose [16C54,56,58]
 F08 EQU 0x08 ;General purpose register
 ,,,,,
 F1F EQU 0xlF ;General purpose register

3. STATUS register bit names
 C EQU 0 ;Carry bit
 DC EQU 1 ;Digit Carry bit
 Z EQU 2 ;Zero bit
 NOT_PD EQU 3 ;NOT Power Down bit
 NOT_TO EQU 4 ;NOT Time- Out bit
 PA0 EQU 5 ;Page- bit 0
 PA1 EQU 6 ;Page- bit 1
 PA2 EQU 7 ;Page- bit 2 (not used)

Option Description [Default]

/? or /h Display help

/c [+|-] Set instructions case: +UPPER, -LOWER [UPPER]

/p <procar> Specify processor type, where <procar> is:
16C[54|55|56|57|58]

[autodetect]

/b = blsize Set minimum block size that will be presented using assem-
bler's FILL statement

[3]

/d:addrl [-addr2] [,addr3 [-addr4]…] Force the code located between specified addresses to be
interpreted as DATA (do not trace those addresses)
(e.g. /d:20-2F, lE0, lF0-lFF)

/1 [+|-] Enable or disable listing file [On]

/e [+|-] Enable or disable error file [On]

/q [+|-] Enable or disable quiet mode (suppresses screen output) [Off]
DS4060A/1_013-page 1-2  1997 Microchip Technology Inc.

Electromechanical Timer Replacements

Generating Comments

There are three groups of comments that can be gen-
erated automatically by DIS16:

1. Warnings:

WARNING – Presumed value

Next to 'PROCESSOR xxxxx' statement, where no
processor type is given, so the processor type had
to be automatically determined. It always gives the
cheapest processor required.

WARNING – PORTC not supported by this pro-
cessor

Occurs when 'TRIS PORTC' is encountered in the
code for a PIC16C54, PIC16C56 or 1PIC6C58
processor.

2. Errors:

ERROR – More than 12 bits

Occurs if an instruction contains more than 12 bits,
since PIC16C5X instructions have only 12 bits.

ERROR – Illegal instruction

Occurs if a code, *not* previously defined as DATA
(see “Specifying DATA Fields Manually”) does not
correspond to any of the defined instructions.

To prevent this error, all the addresses where it
occurs define as DATA using the /d option.

3. Remarks:

Addresses forced to be interpreted as DATA.

Below this, follows a list of the addresses that have
been defined as DATA addresses. See also “Spec-
ifying DATA Fields Manually.”

Unreachable code

The code below (to the first blank line) most prob-
ably will not be executed. However, it doesn't
always have to be true, since DIS16 will not trace
jumps made by modifying INDF and PC registers
(e.g., MOVF PC). See also ‘GOTO and CALL state-
ments.’

Could be…

List of credible jump destinations, written next to a
GOTO or CALL instruction. Occurs only if there was
multiple page addressing detected and there are
more possible destinations (e.g., 'Could be L020
L220 L620'). See also "GOTO and CALL state-
ments".

Compacting Blocks with FILL Statement
(/b Option)

If DIS16 encounters a byte that fills a block larger or
equal to a given value, it will use a FILL statement to
present it in the assembler code. That value is by
default set to 3, but you can change it using the /b
option (e.g. /b=10 will present all the blocks larger or
equal to 10 bytes with a FILL statement). This value
must be at least 2.

NOP (or $000 code) blocks will not be presented by an
FILL statement and will be treated as unused space.
An ORG instruction will be used instead to set address
of the code that comes afterwards.

If a byte that repeats is an instruction without a comma
inside (e.g., SLEEP or CLRW f), then the following syn-
tax will be used:

 FILL (instruction),repeats

But, if the instruction contains a comma
(e.g., MOVF f,d), then just its code will be written,
instead of the instruction itself, and the instruction will
be written as comment, next to the FILL statement:

 FILL Ox330,0x4 ; RRF FlO,F

It had to be done that way, because the MPASM assem-
bler wouldn't accept it otherwise. See Example 1 for
additional information.
 1997 Microchip Technology Inc. DS4060A/1_013-page 1-3

Electromechanical Timer Replacements

EXAMPLE 1: DISASSEMBLING ORIGINAL SOURCE CODE

Let's take an assembler source like this one:

; --------- original source code ---------
 processor 16c54
 org OxOOO
start rrf OxlO,1
 rrf OxlO,1
 rrf OxlO,1
 rrf OxlO,1 ; Divide F10 by 16
 movf OxlO,O
 btfsc Ox03,2 ; Skip if ZERO
 goto notzero
 goto zero
notzero incf Oxll, 1 ; Increment F11 if not zero
 goto start
 org 0x100
zero incf 0x12,1 ; Increment F12 if zero
 movef 0x11,0 ; Copy F11 to W
 movewf 0x10 ; Copy W to F10
 goto start ; and do it again.
 fill (clrf 11),0x1f0-$; Fill to Oxlef with 'CLRF 1'
 end

If you compiled it, and disassembled it again using DIS16, you would get the following output:

; - - - - - - - - - Generated by DIS16 v1.00.00b Disassembler - - - - - - - -

 PROCESSOR 16C54 ; WARNING - Presumed value!

W EQU 0
F EQU 1
z EQU 2
STATUS EQU 0x03
F10 EQU 0x10
F11 EQU 0x11
F12 EQU 0x12

 ORG OxOOO
L000 FILL 0x330,0x4 ; RRF F10,F
 MOVF F10,W
 BTFSC STATUS,Z
 GOTO L008
 GOTO L100

L008 INCF Fll,F
 GOTO L000

 ORG OxlOO
L100 INCF F12,F
 MOVF Fll,W
 MOVWF F10
 GOTO L000

; Unreachable code

L104 FILL (CLRF F11),0xEC

END
DS4060A/1_013-page 1-4  1997 Microchip Technology Inc.

Electromechanical Timer Replacements
TRACING THE PROGRAM

There is an intelligent trace algorithm applied on the
input code, that is used to:

• Find and mark unreachable parts of a program
• Determine possible destination pages in GOTO

and CALL
• Determine required processor type, if none is

specified
• Detect and mark illegal instructions

After loading, DIS16 starts to follow instruction by
instruction of the loaded program, starting from the
highest available address (for 16C57 it will be $7FF).
Every time it encounters a “skip if…” branch statement
it branches and continues from the both possible
addresses.

Although the tracer follows all the jumps, it cannot get
stuck into an endless loop, since each address can be
visited only up to 5 times. When it encounters an
address which has been executed more than that, the
tracer closes that branch and returns to the point
BEFORE it entered the branch.

GOTO and CALL Statements

When a GOTO or CALL statement occurs, DIS16 disas-
sembler will test which pages that instruction may point
to. It is done by testing whether in the previous steps
the Indirect Data

Addressing register (INDF) or STATUS register (that
contains page select bits) have been modified. If so,
then it will be tested whether the possible destination
addresses on all the available pages contain something
other than a NOP J4F instruction. So they will be con-
sidered as credible destinations for jump and thus writ-
ten in the comment next to the GOTO or CALL
instruction.

For example, DIS16 could produce an output like this
one:

STATUS EQU 0x03

 L000 ORG OxOOO

 ;(some code)

 MOVWF STATUS

 ,,,,

 CALL 0x020 ;Could be L020 L220

 CALL 0x020 ;Could be L030 L630

 GOTO 0x030

 L020 ,,,,

 ,,,,

 L030

 ORG 0x220

 L220

 RETLW 0

 ORG 0x630

 L630

 END

You can see that in the CALL 0x020 instruction there
are two addresses that are considered as destinations,
since both of them point to a code other than NOP. There
is the same situation with the CALL 0x030 instruction.

However, in the GOTO L000 statement, there is only
one possibility (and that is L000), since addresses
0x200, 0x400, and 0x600 contain no code.

Unreachable Parts

Any code that was never reached during the tracing
procedure will be marked with an “Unreachable code”
remark. However, it doesn't always mean that the code
cannot be reached (see the Note in the previous para-
graph).

Note: This algorithm is not 100% reliable, since
there always could be some exceptions
(e.g., if a GOTO deliberately points to a NOP
statement), but in most cases it will give
satisfying results.

Furthermore, DIS16 will not consider
jumps made by writing directly to PC (F02)
or INDF (F00).
 1997 Microchip Technology Inc. DS4060A/1_013-page 1-5

Electromechanical Timer Replacements
Specifying DATA Fields Manually

Since the tracer treats all the code by default as execut-
able instructions, sometimes you will have to tell to the
disassembler which addresses are to be treated as
DATA and not to be traced.

EXAMPLE 2: MANUALLY SPECIFYING DATA FIELDS USING TEST.HEX

If you using the following file (test.hex)

 :08000000000A44004100540015
 :020008004100B5
 :00000001FF

and you try to disassemble it by typing only:

 DIS16 test.bin

you will get the following output:

 ORG 0x000
 L000 GOTO L000
 ; Unreachable code
 L001 DW 0x044 ;ERROR - Illegal instruction
 DW 0x041 ;ERROR - Illegal instruction
 DW 0x054 ;ERROR - Illegal instruction
 DW 0x041 ;ERROR - Illegal instruction
 END

But if you tell the disassembler that the code between addresses $001 and $004 is DATA section by typing:

DIS16 test.hex /d:1- 4

the following output is produced:

 ; Addresses forced to be interpreted as DATA:
 ; 0x001 - 0x004

 ORG 0x000
 L000 GOTO L000
 DW 0x044 ; 'D'
 DW 0x041 ; 'A'
 DW 0x054 ; 'T'
 DW 0x041 ; 'A'

END

You can also specify up to 100 different DATA areas, such as in:

 DIS16 prog.hex /d:100- lFF,210,250- 25F

See also "Compacting blocks with FILL statement'

Note: Data blocks will never be marked with the "Unreachable code" comment.
DS4060A/1_013-page 1-6  1997 Microchip Technology Inc.

Electromechanical Timer Replacements
Determining Processor Type

Although advisable, it is not always necessary to spec-
ify the processor type, since DIS16 can determine by
itself the cheapest processor required for the given pro-
gram. The choice is made regarding the program length
and the used ports.

For example, if it encounters a TRIS 7 (initialize Port C)
instruction, it is obvious that it requires a 16C55 or
16C57 processor. Besides, if the program contains up
to 1K, the suggested processor will be 16C55.

Illegal Instructions

Any encountered illegal instruction (e.g., $001,
$041-$04F) that was not previously defined as DATA
(see “Specifying DATA Fields Manually”) will be pre-
sented using a DW statement.

Also there will be an “ERROR - Illegal instruction” com-
ment added next to the DW statement and to the ERR
file.
 1997 Microchip Technology Inc. DS4060A/1_013-page 1-7

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or
warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other
intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip logo and name are registered trademarks
of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

40160A/1_013-page 8



 1997 Microchip Technology Inc.

AMERICAS

Corporate Office

Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 602-786-7200 Fax: 602-786-7277

Technical Support:

 602 786-7627

Web:

 http://www.microchip.com

Atlanta

Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307

Boston

Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575

Chicago

Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Microchip Technology Inc.
14651 Dallas Parkway, Suite 816
Dallas, TX 75240-8809
Tel: 972-991-7177 Fax: 972-991-8588

Dayton

Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Los Angeles

Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 714-263-1888 Fax: 714-263-1338

New York

Microchip Technology Inc.
150 Motor Parkway, Suite 416
Hauppauge, NY 11788
Tel: 516-273-5305 Fax: 516-273-5335

San Jose

Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto

Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

Hong Kong

Microchip Asia Pacific
RM 3801B, Tower Two
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431

India

Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-4036 Fax: 91-80-559-9840

Korea

Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai

Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700
Fax: 86 21-6275-5060

Singapore

Microchip Technology Taiwan
Singapore Branch
200 Middle Road
#10-03 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C

Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886 2-717-7175 Fax: 886-2-545-0139

EUROPE

United Kingdom

Arizona Microchip Technology Ltd.
Unit 6, The Courtyard
Meadow Bank, Furlong Road
Bourne End, Buckinghamshire SL8 5AJ
Tel: 44-1628-851077 Fax: 44-1628-850259

France

Arizona Microchip Technology SARL
Zone Industrielle de la Bonde
2 Rue du Buisson aux Fraises
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Müchen, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy

Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-39-6899939 Fax: 39-39-6899883

JAPAN

Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

7/29/97

 Printed on recycled paper.All rights reserved. ©1997, Microchip Technology Incorporated, USA. 8/97

M

W

ORLDWIDE

 S

ALES

 & S

ERVICE

	PROGRAM DEFINITION
	FEATURES
	RUNNING DIS16
	OPTIONS
	ENHANCING THE PROGRAM READABLITY
	Symbolic names
	Generating Comments
	Compacting Blocks with FILL Statement (/b Option)

	TRACING THE PROGRAM
	GOTO and CALL Statements
	Unreachable Parts
	Specifying DATA Fields Manually
	Determining Processor Type
	Illegal Instructions

	Worldwide Sales & Service

