OVERVIEW

This 99 minute timer replaces the electro-mechanical timer. The hardware is made simple and economical. The timer is very simple to operate. Two 7-segment displays are provided to display minutes from 0 to 99. To simplify operation, only two push-on switches are provided to set minutes. Each switch is dedicated to each display.

“TENS OF MIN SW” increments tens of minutes display from 0 through 9 at each push and “UNITS OF MIN SW” increments units of minutes displays from 0 through 9 at each push. Debouncing of switches is taken care by software.

APPLICATION OPERATION

The TMR0 prescaler is set to x16. Software checks TMR0 for 250 rollovers, which happens every 4 msec. 4 msec is counted 25 times to generate 100 msec, from which seconds and minutes are generated.

Every 100 msec the keyboard is read and the required minutes display (TENS or UNITS) is incremented at the rate of 2 Hz.

If the displayed minutes is equal to 0 then relay is put off and UNITS DISPLAY’s decimal point is not flashing to indicate the timer is off.

If displayed minutes is not equal to 0, then a relay is turned on and UNITS DISPLAY’s decimal point is flashed to indicate the timer is active. During this mode the display decrements every minute till it reaches 0, where the relay is put off.

Note 1: Total instruction time [one loop]: Approximately 375 µsec, maximum.

2: Set Processor configuration word as 0000 0000 1010b.
 a) MCLR tied to VDD (internally).
 b) Code protection off.
 c) WDT disabled.
 d) Internal RC oscillator.

Author: Milind Hareshwar Patil
Tata Institute Of Fundamental Research
Mumbai, Maharashtra
India
email: milindhp@tifrvax.tifr.res.in

99 Minute Timer

Electromechanical Timer Replacement
FIGURE 1: SCHEMATIC

MORTICHIP TOOLS USED

Assembler/Comilier Version

MPASM 1.50 released.
APPENDIX A: SOURCE CODE

; define ram ports and data ; ***************************** ;
DEFINE PORT
;
; DEFINE PORTS

gp0 equ 0
gp1 equ 1
gp2 equ 2
gp3 equ 3
gp4 equ 4
gp5 equ 5

; DISPLAY PORT

disp_data equ gp0
disp_clk equ gp1
disp_strobe equ gp2

; KEYBOARD PORT

units_key equ gp3	units_key equ gp3
tens_key equ gp4
tens_key equ gp4

; RELAY PORT

relay equ gp5

; DEFINE RAM
**
units equ 08h ; minutes unit display
tens equ units+1 ; minutes tens display
counter_4ms equ tens+1 ; incremented every 4 msec
counter_100ms equ counter_4ms+1 ; incremented every 100 msec
seconds equ counter_100ms+1
oldkey equ seconds+1 ; for key debouncing
newkey equ oldkey+1 ; ------- ,, -------
key equ newkey+1 ; key pressed data
digit_inc equ key+1 ; inc units display if bo = 1
digit_inc equ key+1

tmr_comp equ digit_inc+1 ; tmr0 comparator register
scrtch0 equ tmr_comp+1
scrtch1 equ scrtch0+1
scrtch2 equ scrtch1+1

; DEFINE FLAGS AND BITS
**
b0 equ 0
b1 equ 1
b2 equ 2
b3 equ 3
b4 equ 4
b5 equ 5
b6 equ 6
b7 equ 7

; KEY

equ b0
equ b1
equ b2
units_key equ b3
tens_key equ b4

; digit_inc

units_inc equ b0
tens_inc equ b1

; equ b3
; equ b4
; equ b5
; equ b6
; equ b7

;**
#define data_hi bsf GPIO, disp_data
#define data_lo bcf GPIO, disp_data
#define clk_hi bsf GPIO, disp_clk
#define clk_lo bcf GPIO, disp_clk
#define strobe_hi bsf GPIO, disp_strobe
#define strobe_lo bcf GPIO, disp_strobe
#define relay_on bsf GPIO, relay
#define relay_off bcf GPIO, relay
;************* EOF DEF_RAM.ASM *************

;************** EOF SUBS.ASM **************

; read key port in key
read_keys movf newkey, w ;debouncing taken care by s/w
 movwf oldkey
 movf GPIO, w ;read newkeys
 andlw 00011000b ;gp3, gp4 are key ports
 movwf newkey
 comf newkey, f ;complement since active low
 andwf oldkey, w ;key=oldkey AND compl(newkey)
 movwf key
 ;indicate to display routine units or tens key pressed
 btfsc key, units_key
 bsf digit_inc, units_inc
 btfsc key, tens_key
 bsf digit_inc, tens_inc
 return

;*************** EOF SUBS.ASM **************************

;init_ports movlw 0 ;all lo
 movwf GPIO
 movlw 00011000b ;port g0-g2,g5 o/p & gp3,gp4 i/p
 tris GPIO
 clrf TMR0 ;clr tmr0 & prescaler
 movlw 11000011b ;tmr0 enable with 1:16 prescaler
 option
 return

;*************** EOF TABLES.ASM **************************

;7 segments decoded data. lo is segment on & hi is segment off
get_seg addwf PCL, f
; ABCDEFGP ;P is decimal point
 retlw 00000011b ;0
 retlw 10011111b ;1
 retlw 000101101b ;2
 retlw 000011011b ;3
 retlw 10011001b ;4
 retlw 01001001b ;5
 retlw 01000001b ;6
 retlw 00011111b ;7
 retlw 00000001b ;8
 retlw 00011001b ;9
dec_pt equ 11111110b ;decimal point bit

;*************** EOF TABLES.ASM **************************
; TIMER.ASM

; ********

; [milindhp@tifrvax.tifr.res.in]

; Set Processor configuration word as = 0000 0000 1010 b.
; a] -MCLR tied to VDD (internally).
; b] Code protection off.
; c] WDT disabled.
; d] Internal RC oscillator [4 MHZ].

list p=12c508, r=dec
include "d:\pic\mpasm\p12c508.inc"

;define ram
include "def_ram.asm"

;processor start
org 0
goto start

;define legends and table
include "tables.asm"

;subroutines
include "subs.asm"

;initialize and start
start
 clrf key
 clrf oldkey
 clrf newkey
 clrf digit_inc
 clrf units
 clrf tens
 clrf counter_4ms
 clrf counter_100ms
 clrf seconds
 movlw 250
 ; 4000us tmr0 (1:16 prescaler * 250)
 movwf tmr_comp
 call init_ports
 ; init ports & timer
 movf tmr_comp, w
 ; is tmr0 = tmr_comp (4 msec over?)
 xorwf TMR0, w
 btfss STATUS, Z
 ; skip if = 250
 goto main
 movlw 250
 addwf tmr_comp, f
 incf counter_4ms, f
 movlw 25
 xorwf counter_4ms, w
 ; is 4ms * 25 = 100ms over?
 btfss STATUS, Z
 ; skip if 100ms
 goto main21
 clrf counter_4ms
 ; 1 sec over
 incf seconds, f
 movlw 60
 xorwf seconds, w
 ; is 1 minute over?
 btfss STATUS, Z
 ; skip if 1 min over
 goto main21

; *********** 100 MSEC OVER **

; *********** 1 MINUTE OVER **

; process relay and display
; if tens & units both = 0 then rly off and out
; else relay on & decrement display & out
movf tens, w
iorwf units, w
btfss STATUS, Z
goto main1
relay_off
goto main21
main1
 relay_on
 movf units, f
 btfss STATUS, Z
 goto main2
 movlw 9
 movwf units
 decf tens, f
 goto main21

;************************** EXECUTED EVERY 100 MSEC ***************
main21
call read_keys

;** DISPLAY ROUTINE TO BE EXECUTED EVERY 500 MSEC **
;process display every 500 msec
;if unit key pressed increment unit display
;if tens key pressed increment tens display
;flash unit display's dec. pt. every second if units & tens
;not equal to zero i.e. indicate timer is active
;execute display routine in counter_100ms = 0 or 5
movf counter_100ms, w
 btfsc STATUS, Z
 goto main3
 xorlw 5
 btfss STATUS, Z
 goto main

;if units_key pressed then inc units display between 0 thr. 9
;if tens_key pressed then inc tens display between 0 thr. 9
main3
 btfss digit_inc, units_inc
 goto main4
 bcf digit_inc, units_inc
;inc units display. if units = 10 then units = 0
 incf units, f
 movlw 10
 xorwf units, w
 btfsc STATUS, Z
 ;skip if not equal
 clrf units

main4
 btfss digit_inc, tens_inc
 goto main5
 bcf digit_inc, tens_inc
;inc tens display. if tens = 10 then tens = 0
 incf tens, f
 movlw 10
 xorwf tens, w
 btfsc STATUS, Z
 ;skip if not equal
 clrf tens

;convert decimal in units & tens to decoded segment data
;for led display in scrtch1 & 2 for transmission
main5
 movf tens, w
 call get_seg
 movwf scrtch1
 movf units, w
 call get_seg
 movwf scrtch2

;flash (toggle) decimal point every 500ms if timer active
;i.e. if timer not equal to zero i.e. relay on, then flash
;decimal point else, do not to indicate relay off
movf tens, w
 iorwf units, w
 btfsc STATUS, Z
 ;skip to flash dp
 goto main6
 ;jmp if 0 to no flash
 movf counter_100ms, f
 btfss STATUS, Z
 ;toggle-on dec pt if counter_100ms = 0
 goto main6
 ;else jmp out to toggle-off

;flash dp of units display
movlw dec_pt
 andwf scrtch2, f
; transmit data from scrtch1 thr scrtch1 to display circuit (msb first).
main6 movlw 16 ; no of bit to tx
 movwf scrtch0
main61 rlf scrtch2, f ; check msb
 rlf scrtch1, f
 btfsc STATUS, C ; data hi if cy=1 else lo
 goto main62
 data_lo
 goto main63
main62 data_hi
main63 nop ; delay
 nop
 clk_hi ; toggle clk to push data
 nop
 clk_lo
 nop
 decfsz scrtch0, f ; next bit
 goto main61
 strobe_hi ; strobe data nop
 nop
 strobe_lo
 data_lo ; leave data lo
 goto main
end
; ************* EOF MAIN.ASM *******************************