INTRODUCTION

This application note describes how to provide sensorless BLDC motor control with the dsPIC30F2010 Digital Signal Controller. The technique used is based on another Microchip application note: Using the dsPIC30F for Sensorless BLDC Control (AN901).

This application note explains how to apply the dsPIC30F2010 device to the hardware and software described in AN901, which uses the dsPIC30F6010 device and dsPICDEM™ MC1 Motor Control Development Board. The 80-pin dsPIC30F6010 has 144 Kbytes of Flash Program Memory, 8 Kbytes of RAM available and abundant I/O. The 28-pin dsPIC30F2010, on the other hand, has limited I/O, only 12 Kbytes of Flash program memory and 512 bytes of RAM. As you can see, the resources are finite.

This application note prescribes changes to the hardware, software and user interface described in AN901 to facilitate the easy transfer of the code to the dsPIC30F2010 device. You will want to thoroughly review AN901 for details on BLDC sensorless design using the dsPIC30F. Functionally, the code does not change, so all BLDC control functions available and described in AN901 are still the same.

HARDWARE REQUIRED

You will need the following hardware to implement the described motor control application:

- PICDEM™ MCLV Development Board (Figure 1)
- Hurst DMB0224C10002 CL B 6403 24 V BLDC Motor
- 24 VDC Power Supply

You can purchase these items from Microchip as a complete kit or as individual components. Check the Development Tools section of the Microchip web site for ordering information.

HARDWARE MODIFICATIONS

Figure 2 is a simplified block diagram for a Sensorless BLDC motor control application. This diagram will help you develop your own hardware, if you so choose, to drive a sensorless BLDC motor. Schematics for the PICDEM MCLV board are included in Appendix A.
Except for the dsPIC30F2010 device, the basic block diagram is exactly the same as that used in AN901.

- A pot selects the demand for the speed.
- VBus voltage is sensed as Vdc using resistor pairs R63/R64. Vdc/2 is used as the “zero-crossing” voltage for back EMF sensing.
- Feedback voltage is sensed using resistor pairs R34/R36, R41/R44 and R49/R52.
- Current feedback is provided through a simple operational amplifier circuit (U10A)
- Fault input is received through a comparator circuit (U7D) connected with the current feedback circuit. The current is sensed using a 0.1 ohm resistor (R26). The current gain is 11 and the threshold of the comparator can be adjusted using pot R60.

You can very easily adjust the values of the resistors to accommodate the current capabilities of the motor being used for the application. The motor drive circuit, on the other hand, is designed to drive a 24V BLDC motor. You can change the drive requirement of the motor (refer to the PICDEM™ MCLV Development Board User’s Guide for details on how to change the hardware for use with motors greater or less than 24V).

On the low side, the voltage limit is 10V. On the high side, the voltage limit is 40V. It is important to note that the heat sink on the IGBTs have very limited heat dissipation, so high power requirements may not be easily met with the PICDEM MCLV board.

To use the PICDEM MCLV board for this application, use the jumper settings shown in Table 1 and the motor connections shown in Table 2.

TABLE 1: JUMPER SETTINGS FOR PICDEM™ MCLV BOARD

<table>
<thead>
<tr>
<th>Jumper</th>
<th>Sensorless Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>J7, J11, J13</td>
<td>Short between 2-3</td>
</tr>
<tr>
<td>J15</td>
<td>Open</td>
</tr>
<tr>
<td>J8, J12, J14</td>
<td>Open</td>
</tr>
<tr>
<td>J10, J16, J17, J19</td>
<td>Open</td>
</tr>
</tbody>
</table>

TABLE 2: MOTOR CONNECTIONS

<table>
<thead>
<tr>
<th>Connector J9 Label</th>
<th>Sensorless Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Phase C (Red)</td>
</tr>
<tr>
<td>M2</td>
<td>Phase A (White)</td>
</tr>
<tr>
<td>M3</td>
<td>Phase B (Black)</td>
</tr>
<tr>
<td>G</td>
<td>Ground (Green) If available</td>
</tr>
</tbody>
</table>

The colors referenced in Table 2 are as per the Hurst 24V motor available from Microchip. The ground wire is sometimes not available on some motors.

Once the code is developed and downloaded to the system, you will need to press switch S2 to start and stop the motor. The pot marked REF (R14) sets the demand for the speed. It is rotated clockwise to increase the speed of the motor.

Due to the limited I/O on the dsPIC30F2010, the LEDs on the board are not used to signal fault conditions. Instead, fault conditions are displayed on Windows® HyperTerminal® on your PC using the serial port.
PROGRAMMING THE dsPIC30F2010

The dsPIC30F2010 can be programmed using the PICDEM MCLV board. Due to the limited I/O resources on the dsPIC30F2010, the serial port is shared with the programming pins. When you are ready to program the part, DIP switch S4 should have its TAB in the PRGM direction. When programming is completed, the DIP switches must be moved to the DEBUG position to execute the code. If the IDC2 is connected to the PICDEM MCLV board as a debugger, then the connector at J6 should be attached. If, however the ICD2 is being used as a programmer, then the connector at J6 should be unplugged from the ICD2 for normal execution.

The following configuration settings are required for the applications to work on a PICDEM MCLV board:

Oscillator Source: Primary Oscillator
Primary Oscillator Mode: XT w/PLL 8x
Comm Channel Select: EMUC2 and EMUD2

Other settings can be enabled or disabled as needed, or modified in the application.

SOFTWARE MODIFICATIONS:

The software has not been modified significantly from that described in AN901. However, the user interface to the LCD and the debug routines have been removed. The LCD interface has been replaced by the Serial User Interface mentioned in the next section. The User Interface does add to the code space and will require a dsPIC30F3010 device during the development stage of the application.

During the development mode you must set:
#define DEVELOPMODE TRUE

This setting in the def.s file allows for all the conditional statements in the code to automatically enable the UART and run the user interface mode. Once the code has been fully developed, you can then select:
#define DEVELOPMODE FALSE

This setting in the def.s file disables the serial user interface and hard codes the parameters to Flash memory.

To ensure that the code fits into the dsPIC30F2010, you must use the space optimization option in the C30 compiler options. From the MPLAB Main menu, select Project>Build Options>Project. When the Build Options dialog displays, select the MPLAB® C30 tab and set Categories>Optimization>Optimization level>s (for space optimized).

USER INTERFACE

The user interface is necessary to tune the different parameters used in the sensorless BLDC motor control applications. There are 45 user parameters that can be modified in the applications. For more details on these parameters, their functions/uses and how to tune them, refer to the Using the dsPIC30F for Sensorless BLDC Control (AN901) application note.

In AN901, the user parameters are modified using an LCD display and key switches. Since an LCD display is not available on the PICDEM MCLV board, the user interface has been modified to a 2 wire serial interface.

The new user interface for this application uses the RS-232 port on the dsPIC30F2010 connected to a communication terminal (e.g., Windows HyperTerminal) running at 19200 Baud.

The communication terminal is then used to change parameters in the user interface. All the parameters in AN901 that were set on the PICDEM MC1 Motor Control Development Board using the LCD screen can now be set through the serial interface.

Table 3 lists the parameter names, abbreviations and descriptions. A total of 45 control parameters are available for the user interface.

The parameters are categorized by:

- **Motor Parameters** - parameters that relate to the motor
- **Starting Parameters** - parameters that relate to the starting ramp
- **Control Parameters** - parameters that relate to the different PI or PID control parameters used in the software
- **Limit Parameters** - parameters that relate to the various limit settings in the software
- **Board Parameters** - parameters that relate to the components on the board and how they interact with the software

Note: The source code for this application is available on the Microchip web site (www.Microchip.com), appended to the electronic (pdf) version of this application note.
<table>
<thead>
<tr>
<th>For This Parameter</th>
<th>Type This Abbreviation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Parameters</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| DIRECTION | DD 0 or DD 1 | 0 = Forward
1 = Backward |
| No. Motor Poles | MP <Value> | Number of Motor Poles |
| Blanking Count | BC <Value> | |
| Windmilling Dem | WD <Value> | |
| **Starting Parameters** | | |
| Lock Pos.1 Time | LP1T <Value> | In 10-msec intervals |
| Lock Pos.2 Time | LP2T <Value> | In 10-msec intervals |
| Lock Pos.1 Dem | LP1D <Value> | In PWM duty cycle percentage |
| Lock Pos.2 Dem | LP2D <Value> | In PWM duty cycle percentage |
| Ramp Start Speed | RSS <Value> | Ramp Start Speed in RPM |
| Ramp End Speed | RES <Value> | Ramp End Speed in RPM |
| Ramp Start Dem | RSD <Value> | In PWM duty cycle percentage |
| Ramp End Dem | RED <Value> | In PWM duty cycle percentage |
| Ramp Duration | RD <Value> | In 10 msec intervals |
| Tolerance Check | TC <Value> | |
| Auto Re-acquire | ARA 0 or ARA 1 | 0 = disable
1 = enable |
| Starting Control | SC 0 and SC 1 | 0 = Voltage Control
1 = Current Control |
| Acquire Method | AM 0 or AM 1 | 0 = Method 1
1 = Method 2 |
| ZeroX Enable Spd | ZXES <Value> | Speed at which zero crossing is enabled |
TABLE 3: MOTOR CONTROL PARAMETERS (CONTINUED)

<table>
<thead>
<tr>
<th>For This Parameter</th>
<th>Type This Abbreviation</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL MODE</td>
<td>CM 0,</td>
<td>0 = Closed Volts</td>
</tr>
<tr>
<td></td>
<td>CM 1,</td>
<td>1 = Closed Current</td>
</tr>
<tr>
<td></td>
<td>CM 2 or</td>
<td>2 = Open Volts</td>
</tr>
<tr>
<td></td>
<td>CM 3</td>
<td>3 = Open Current</td>
</tr>
<tr>
<td>Phase Adv. Enable Spd</td>
<td>PAES <Value></td>
<td></td>
</tr>
<tr>
<td>Phase Adv. Slope</td>
<td>PAS <Value></td>
<td></td>
</tr>
<tr>
<td>Current P Gain</td>
<td>CKP <Value></td>
<td></td>
</tr>
<tr>
<td>Current I Gain</td>
<td>CKI <Value></td>
<td></td>
</tr>
<tr>
<td>Current D Gain</td>
<td>CKD <Value></td>
<td></td>
</tr>
<tr>
<td>Speed P Gain</td>
<td>SKP <Value></td>
<td></td>
</tr>
<tr>
<td>Speed I Gain</td>
<td>SKI <Value></td>
<td></td>
</tr>
<tr>
<td>Voltage Demand</td>
<td>VD <Value></td>
<td></td>
</tr>
<tr>
<td>Volts P Gain</td>
<td>VKP <Value></td>
<td></td>
</tr>
<tr>
<td>Volts I Gain</td>
<td>VKI <Value></td>
<td></td>
</tr>
<tr>
<td>Limit Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stall Time Limit</td>
<td>STL <Value></td>
<td></td>
</tr>
<tr>
<td>Over Speed Limit</td>
<td>OSL <Value></td>
<td>Over Speed Limit in RPM</td>
</tr>
<tr>
<td>Over Volts Limit</td>
<td>OVL <Value></td>
<td></td>
</tr>
<tr>
<td>Over Current Lim</td>
<td>OCL <Value></td>
<td></td>
</tr>
<tr>
<td>Board Parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Scale X</td>
<td>CSX <Value></td>
<td></td>
</tr>
<tr>
<td>Current Scale /</td>
<td>CSD <Value></td>
<td></td>
</tr>
<tr>
<td>Volts Scale X</td>
<td>VSX <Value></td>
<td></td>
</tr>
<tr>
<td>Volts Scale /</td>
<td>VSD <Value></td>
<td></td>
</tr>
<tr>
<td>Zero X Level Thd</td>
<td>ZXL <Value></td>
<td></td>
</tr>
<tr>
<td>Acquire Threshold</td>
<td>AT <Value></td>
<td></td>
</tr>
<tr>
<td>Acquire Level Td</td>
<td>AL <Value></td>
<td></td>
</tr>
<tr>
<td>Rotation Timeout</td>
<td>RT <Value></td>
<td></td>
</tr>
<tr>
<td>Pot / for Duty</td>
<td>PDD <Value></td>
<td></td>
</tr>
<tr>
<td>Pot / for Current</td>
<td>PDC <Value></td>
<td></td>
</tr>
<tr>
<td>Pot X for Speed</td>
<td>PXS <Value></td>
<td></td>
</tr>
<tr>
<td>Braking Ramp T</td>
<td>BRT <Value></td>
<td></td>
</tr>
</tbody>
</table>
USING THE SERIAL USER INTERFACE

The user parameters can only be modified during the standby or reset state of the system. When the motor is running, the communications terminal displays the speed and the percentage duty cycle of the PWM. The terminal must be connected to the PICDEM MCLV board at the RS232 connector (J1) and set to operate with these parameters:

- Bits per second: 19200
- Data bits: 8
- Parity: None
- Stop bits: 1
- Flow control: None

The command set is case sensitive. If you type a command incorrectly, the message shown in Figure 3 displays.

To get more information about the command set, type ?? <Return>

In response, the message shown in Figure 4 prompts for a more specific request.

To get information about a specific category of commands, type a question mark followed by the letter that corresponds to the command set category.

FIGURE 3: INCORRECT COMMAND MESSAGE

FIGURE 4: COMMAND SET HELP MENU
Motor Parameters

Motor Parameters are displayed by typing:

?M<Return>

The response message lists the motor parameters and displays their current value, as shown in Figure 5. To change any of the parameters, you type the parameter abbreviation followed by the new value (separated by a space).

The DIRECTION parameter (DD) uses only two parameter values: ‘0’ or ‘1’. To change the direction of the motor rotation, you type:

DD<Space>1<Return>

Note that DD is upper case and there is a space between the parameter abbreviation and the value 1.

The command and its response are shown in Figure 6. The value has changed from ‘00000’ to ‘00001’ (the opposite direction).

Suppose you want to change the number of motor poles from 10 to 8. You would type:

MP<Space>8<Return>

This command and its response are shown in Figure 7. The value has changed from ‘00010’ to ‘00008’.

FIGURE 5: MOTOR PARAMETERS

FIGURE 6: MOTOR DIRECTION COMMAND AND RESPONSE
Control Parameters:
The Control Parameters and their current values are displayed in response to the ‘?C’ command, as shown in Figure 8.

To change a control parameter, type the parameter abbreviation followed by the desired value. For example, if the Speed Integral Gain needs to go from 40 to 200, you would type ‘SKI 200’.
Starting Parameters

The Starting Parameters fine tune the sensorless starting algorithm and are probably the most often modified parameters. Because some of the parameters are varied by tens of milliseconds, please note the comments in Table 3 and carefully review AN901.

FIGURE 9: STARTING PARAMETERS

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Parameter Abbreviation</th>
<th>Parameter Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lock Pos.1 Time</td>
<td>LP1T</td>
<td>00050</td>
</tr>
<tr>
<td>Lock Pos.2 Time</td>
<td>LP2T</td>
<td>00050</td>
</tr>
<tr>
<td>Lock Pos.1 Dem.</td>
<td>LP1D</td>
<td>00050</td>
</tr>
<tr>
<td>Lock Pos.2 Dem.</td>
<td>LP2D</td>
<td>00050</td>
</tr>
<tr>
<td>Ramp Start Speed</td>
<td>RSS</td>
<td>00100</td>
</tr>
<tr>
<td>Ramp End Speed</td>
<td>RES</td>
<td>02000</td>
</tr>
<tr>
<td>Ramp Start Dem.</td>
<td>RSD</td>
<td>00052</td>
</tr>
<tr>
<td>Ramp End Dem.</td>
<td>RED</td>
<td>00068</td>
</tr>
<tr>
<td>Ramp Duration</td>
<td>RD</td>
<td>00100</td>
</tr>
<tr>
<td>Tolerance Check</td>
<td>TC</td>
<td>00090</td>
</tr>
<tr>
<td>Auto Re-acquire</td>
<td>ARA</td>
<td>00001</td>
</tr>
<tr>
<td>Starting Control</td>
<td>SC</td>
<td>00001</td>
</tr>
<tr>
<td>Acquire Method</td>
<td>AM</td>
<td>00000</td>
</tr>
<tr>
<td>ZeroX Enable Spd</td>
<td>ZMES</td>
<td>00400</td>
</tr>
</tbody>
</table>
Limit Parameters
The limit parameters are shown in Figure 10.

FIGURE 10: LIMIT PARAMETERS

Board Parameters
The board parameters are shown in Figure 11. Refer to AN901 for details on these parameters.

FIGURE 11: BOARD PARAMETERS
Run Time Mode

As noted before, the parameters can be viewed in Standby mode only. During the actual operation of the motor, the speed of the motor and the percentage Duty Cycle being used by the motor PWM are constantly updated, as shown in Figure 12.

FIGURE 12: RUN TIME DISPLAY OF SPEED AND PWM DUTY CYCLE

Fault Condition

If a fault condition occurs during the starting or operation of the motor, it is reported as shown in Figure 13. The faults reported include:

- FAILED TO START
- OVER CURRENT
- OVER VOLTAGE
- HARDWARE TRIP
- OVER SPEED
- SENSORLESS LOST
- STALLED

To reset the fault or stop the motor, you must press S2 on the board. When the system resets, you can edit the necessary parameters.

FIGURE 13: FAULT MESSAGE
CONCLUSION

The 28-pin dsPIC30F2010 is an ideal low-cost solution to control a sensorless BLDC motor. Using the flexible serial user interface described in this application note, you can fine-tune the application parameters required to start and run a sensorless BLDC motor application as described in detail in AN901.
FIGURE A-2: BLDC MOTOR CONTROL BOARD (SHEET 1 OF 2)
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOC, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rtPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermostat, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rFAB, rPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance and WiperLock are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
Printed on recycled paper.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: http://support.microchip.com
Web Address: www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066

China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang
Tel: 011-604-646-8870
Fax: 011-604-646-5086

Philippines - Manila
Tel: 011-632-634-9065
Fax: 011-632-634-9069

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE

Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

04/20/05