INTRODUCTION

This application note discusses using the MCP23008 and MCP23S08 GPIO Expanders with a 6-pin PIC10F202 microcontroller unit (MCU). The discussion is based on the MCP23X08 Evaluation Board, P/N: MCP23008DM.

An I/O expander is used to increase the I/O capability of microcontrollers. The microcontroller performs the master functions for the serial interface (either through the appropriate hardware interface or via a software-implemented interface). The MCP23X08 acts as a slave device.

The MCP23X08 8-bit GPIO family consists of two devices which differ only in the serial interface:
- MCP23008 - \(^{I^2C}\)™ interface
- MCP23S08 - SPI™ interface

In addition to the serial interface listed, the MCP23X08 implements the following features:
- 8-bit GPIO bidirectional port
- Hardware address pins for allowing multiple MCP23X08 devices on the same bus
- Interrupt output with programmable polarity and function
- Configurable interrupt sources
- Reset input
- Polarity inversion capability for automatically inverting the polarity on the port.

This application note does not detail all of the features of the MCP23X08. Refer to the MCP23008/MCP23S08 Data Sheet, "8-Bit I/O Expander with Serial Interface" (DS21919), for more information.

The PIC10F202 communicates with the MCP23008 using the \(^{I^2C}\) protocol, and with the MCP23S08 using the SPI protocol.

FIGURE 1: GPIO EXPANDER EXAMPLE

[Diagram of GPIO expander example]
INTERFACING TO THE MCP23X08

The MCP23008 has an I²C interface. While this application note does not discuss the I²C protocol in detail, an overview as it relates to the MCP23008 is provided.

Interfacing using the I²C™ Protocol

DEVICE ADDRESSING

The I²C specification describes two addressing formats: 10-bit addressing and 7-bit addressing. The MCP23008 is compatible with the 7-bit addressing format. The MCP23008 slave address contains four fixed bits and three user-defined hardware address bits (pins A2, A1 and A0). Figure 2 shows the control byte format for the MCP23008. Refer to the MCP23008/MCP23S08 Data Sheet, “8-Bit I/O Expander with Serial Interface” (DS21919), for more information.

FIGURE 2: MCP23008 CONTROL BYTE

START AND STOP CONDITIONS

START Condition:
Data transfers are initiated by the master issuing a START condition during a bus idle period. To generate a START condition, both the clock (SCL) and data (SDA) start out high. SDA is then brought low, generating the START condition. See Figure 3.

STOP Condition:
Data transfers are terminated (and the bus released) by the master issuing a STOP condition. To generate a STOP condition, SCL starts out high and SDA starts out low. SDA is then brought high, generating a STOP condition. See Figure 3.
WRITING TO THE MCP23008

The Write operation (Figure 4) proceeds as follows:

- Master issues a start condition
- Master sends device opcode (slave address + R/W bit) with the R/W bit cleared
- MCP23008 sends an ACK
- Master sends the register address of the MCP23008
- MCP23008 sends an ACK
- Master sends the data (8 bits)
- MCP23008 sends an ACK
- Master issues a STOP condition

Note: While the MCP23008 is capable of sequential writes and reads, this application note only implements byte writes and reads.

Refer to the MCP23008/MCP23S08 Data Sheet, “8-Bit I/O Expander with Serial Interface” (DS21919), for more information about sequential operations.

FIGURE 4: MCP23008 (I²C™ INTERFACE) BYTE WRITE OPERATION

READING FROM THE MCP23008

Read operations (Figure 5) start with the write command, as shown in the upper-half of Figure 4. The remaining sequence follows:

- Master issues a re-start condition (which is basically the same as a START condition)
- Master sends device opcode (slave address + R/W bit) with the R/W bit set
- MCP23008 sends an ACK
- Master clocks data out of the MCP23008
- Master sends a No-ACK (NACK). Note, if another byte is to be read, the master would send an ACK instead
- Master sends a STOP condition

FIGURE 5: MCP23008 (I²C™ INTERFACE) BYTE READ OPERATION
Interfacing using the SPI™ Protocol

DEVICE ADDRESSING

The MCP23S08 slave address contains five fixed bits and two user-defined hardware address bits (pins A1 and A0). Figure 6 shows the control byte format for the MCP23008. Refer to the MCP23008/MCP23S08 Data Sheet, “8-Bit I/O Expander with Serial Interface” (DS21919), for more information.

WRITING TO THE MCP23S08

The Write operation (Figure 7) is begun by lowering CS. The Write command (slave address with R/W bit cleared) is then clocked into the device. The opcode is then followed by an address and at least one data byte.

READING FROM THE MCP23S08

Like the write operation, the read operation (Figure 7) is started by lowering CS. The read command (slave address with R/W bit set) is then clocked into the device. The opcode is followed by an address and at least one data byte is clocked out of the device.
FIRMWARE DISCUSSION

For this application note, the I\(^2\)C and SPI drivers are implemented in firmware.

The firmware code is written in Microchip MPASM™ Assembler and MPLAB® IDE version 6.62 and is available free-of-charge on the Microchip web site (www.microchip.com).

Table 1 shows the files used.

Table 1: MPASM™ ASSEMBLER SOURCE CODE FILES

<table>
<thead>
<tr>
<th>File Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010R1.ASM</td>
<td>Main source code</td>
</tr>
<tr>
<td>00010R1.LKR</td>
<td>Linker script</td>
</tr>
</tbody>
</table>

Table 2: SUBROUTINES

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I2CByteWrite</td>
<td>Writes a byte to the MCP23008 (I(^2)C™)</td>
</tr>
<tr>
<td>I2CByteRead</td>
<td>Reads a byte from the MCP23008 (I(^2)C)</td>
</tr>
<tr>
<td>I2CClockByte</td>
<td>Clocks 8-bits in the I(^2)C format. The data to be clocked is placed in “DataByte” variable</td>
</tr>
<tr>
<td>I2CStart</td>
<td>Applies a start condition (I(^2)C)</td>
</tr>
<tr>
<td>I2CStop</td>
<td>Applies a stop condition (I(^2)C)</td>
</tr>
<tr>
<td>I2CACK</td>
<td>The PIC10F202 sends an ACK on the I(^2)C bus.</td>
</tr>
<tr>
<td>NoACK</td>
<td>The PIC10F202 sends a No ACK (NACK) on the I(^2)C bus</td>
</tr>
<tr>
<td>IsACK?</td>
<td>Detects if the MCP23008 generated an ACK</td>
</tr>
<tr>
<td>SPIByteWrite</td>
<td>Writes a byte to the MCP23S08 (SPI™)</td>
</tr>
<tr>
<td>SPIByteRead</td>
<td>Reads a byte from the MCP23S08 (SPI)</td>
</tr>
<tr>
<td>SPIClockByte</td>
<td>Clocks 8-bits in the SPI format. The data to be clocked is placed in “DataByte” variable</td>
</tr>
<tr>
<td>ClockMode00</td>
<td>Sets the SPI clock in idle high. This is called at the beginning and end of the SPIByteWrite and SPIByteRead routines.</td>
</tr>
</tbody>
</table>
FIGURE 8: MAIN PROGRAM FLOW

Start

Init_PIC

Init_MCP23S08

Init_MCP23008

Check Toggle Switch

MCP23S08 or MCP23008

Set serial mode to I^2C™ interface

Set serial mode to SPI™ interface

Configure MCP23008 to inputs so it does not interfere

Configure MCP23S08 to inputs so it does not interfere

Set serial mode to SPI interface

Set serial mode to I^2C interface

Read inputs

Write outputs to match inputs

Read inputs

Write outputs to match inputs
FIGURE 9: I^2C™ BYTE WRITE

1. **START Condition**
 - call I2C_Start

2. Send Opcode
 - R/W = 0
 - movlw OPCODE
 - iorlw AnPINS
 - movwf TempData
 - movlw WRITECMD
 - iorwf TempData, 1
 - call I2CClockByte

3. Check for ACK
 - call IsACK?

4. Send Address
 - movf Addr,w
 - movwf TempData
 - call I2CClockByte

5. Check for ACK
 - call IsACK?

6. Send Data
 - movf DataByte,w
 - movwf TempData
 - call I2CClockByte

7. Check for ACK
 - call IsACK?

8. **STOP Condition**
 - call I2CStop

FIGURE 10: I^2C™ BYTE READ

1. **START Condition**
 - call I2C_Start
 - movlw OPCODE
 - iorlw AnPINS
 - movwf TempData
 - movlw WRITECMD
 - iorwf TempData, 1
 - call I2CClockByte

2. Check for ACK
 - call IsACK?

3. Send Address
 - movf Addr,w
 - movwf TempData
 - call I2CClockByte

4. Check for ACK
 - call IsACK?

5. Send Data
 - movf DataByte,w
 - movwf TempData
 - call I2CClockByte

6. Check for ACK
 - call IsACK?

7. **STOP Condition**
 - call I2CStop

8. **R/W = 0**
 - Restart
 - Send Opcode
 - R/W = 0

9. Check for ACK
 - call IsACK?

10. Send Address
 - movf Addr, w
 - movwf TempData
 - call I2CClockByte

11. Check for ACK
 - call IsACK?

12. Send Opcode
 - R/W = 1

13. Check for ACK
 - call IsACK?

14. Clock out data
 - movlw 0xFF
 - movwf TempData
 - call I2CClockByte

15. Send a No ACK
 - call NoACK

16. **STOP Condition**
 - call I2CStop
FIGURE 11: SPI™ BYTE WRITE

<table>
<thead>
<tr>
<th>Set Clock Low for Mode 00</th>
<th>call ClockMode00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower CS</td>
<td>movf RAMTRIS,w</td>
</tr>
<tr>
<td></td>
<td>iorlw CS_L</td>
</tr>
<tr>
<td></td>
<td>movwf RAMTRIS</td>
</tr>
<tr>
<td></td>
<td>tris GPIO</td>
</tr>
<tr>
<td>Send Opcode R/W = 0</td>
<td>movlw OPCODE</td>
</tr>
<tr>
<td></td>
<td>iorlw AnPINS</td>
</tr>
<tr>
<td></td>
<td>movwf TempData</td>
</tr>
<tr>
<td></td>
<td>movlw WRITECMD</td>
</tr>
<tr>
<td></td>
<td>iorwf TempData, 1</td>
</tr>
<tr>
<td></td>
<td>call SPIClockByte</td>
</tr>
<tr>
<td>Send Address</td>
<td>movf Addr,w</td>
</tr>
<tr>
<td></td>
<td>movwf TempData</td>
</tr>
<tr>
<td></td>
<td>call SPIClockByte</td>
</tr>
<tr>
<td>Send Data</td>
<td>movf DataByte,w</td>
</tr>
<tr>
<td></td>
<td>movwf TempData</td>
</tr>
<tr>
<td></td>
<td>call SPIClockByte</td>
</tr>
<tr>
<td>Set Clock Low for Mode 00</td>
<td>movf RAMTRIS,w</td>
</tr>
<tr>
<td></td>
<td>andlw CS_H</td>
</tr>
<tr>
<td></td>
<td>movwf RAMTRIS</td>
</tr>
<tr>
<td></td>
<td>tris GPIO</td>
</tr>
<tr>
<td>Raise CS</td>
<td>call ClockMode00</td>
</tr>
</tbody>
</table>

FIGURE 12: SPI™ BYTE READ

<table>
<thead>
<tr>
<th>Set Clock Low for Mode 00</th>
<th>call ClockMode00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower CS</td>
<td>movf RAMTRIS,w</td>
</tr>
<tr>
<td></td>
<td>iorlw CS_L</td>
</tr>
<tr>
<td></td>
<td>movwf RAMTRIS</td>
</tr>
<tr>
<td></td>
<td>tris GPIO</td>
</tr>
<tr>
<td>Send Opcode R/W = 1</td>
<td>movlw OPCODE</td>
</tr>
<tr>
<td></td>
<td>iorlw AnPINS</td>
</tr>
<tr>
<td></td>
<td>movwf TempData</td>
</tr>
<tr>
<td></td>
<td>movlw READCMD</td>
</tr>
<tr>
<td></td>
<td>iorwf TempData, 1</td>
</tr>
<tr>
<td></td>
<td>call SPIClockByte</td>
</tr>
<tr>
<td>Send Address</td>
<td>movf Addr,w</td>
</tr>
<tr>
<td></td>
<td>movwf TempData</td>
</tr>
<tr>
<td></td>
<td>call SPIClockByte</td>
</tr>
<tr>
<td>Read Data</td>
<td>movlw 0xFF</td>
</tr>
<tr>
<td></td>
<td>movf TempData,f</td>
</tr>
<tr>
<td></td>
<td>call SPIClockByte</td>
</tr>
<tr>
<td>Set Clock Low for Mode 00</td>
<td>movf RAMTRIS,w</td>
</tr>
<tr>
<td></td>
<td>andlw CS_H</td>
</tr>
<tr>
<td></td>
<td>movwf RAMTRIS</td>
</tr>
<tr>
<td></td>
<td>tris GPIO</td>
</tr>
<tr>
<td>Raise CS</td>
<td>call ClockMode00</td>
</tr>
</tbody>
</table>
APPLICATION BOARD

Evaluation Board Overview

The MCP23008/MCP23S08 Evaluation Board is a simple demonstration of some of the MCP23X08 capabilities. The board consists of a 6-pin PIC10F202 and two MCP23X08 devices (1 – MCP23008 with an I²C interface and 1 – MCP23S08 with a SPI interface). Additionally, there is a 4-bit DIP switch, four output LEDs, three headers and several unpopulated jumpers. Refer to Figure 13 for more information regarding the following topics.

PICmicro® MCU, MCP23X08 AND SELECTOR SWITCH

The PIC10F202 communicates with either device, depending on a selector switch setting. When the switch (SW1) is placed in the left position, the MCP23008 is selected for communication. When placed in the right position, the MCP23S08 is selected.

INPUT SWITCHES AND OUTPUT LEDS

The board is populated with a 4-bit DIP switch and four LEDs. The switches are connected to four GPIO pins configured as inputs, while the LEDs are connected to four GPIO pins configured as outputs.

HEADERS AND JUMPERS

There are two headers that are associated with the MCP23X08 and one header for the Baseline Flash Microcontroller Programmer (BFMP) board, which is used to program the PIC10F202.

Note: MPLAB® ICD 2 can also be used with this header if the standard ICD 2 cable is modified to a flat connector.

There are several jumpers (not populated) on the board. The purpose of the jumpers is to isolate the MCP23X08 pins from the PIC10F202, LEDs and switches so that another MCU can be used to evaluate the MCP23X08.

Note: All of the jumper locations (except for JP10) are shorted on the bottom of the board by default. The trace on the bottom of the board must be cut, and the location populated, if the jumper is to have a function.

FIGURE 13: BLOCK DIAGRAM OF MCP23X08 EVALUATION BOARD

When an input switch is toggled, the corresponding LED is toggled. This is explained more in the following sections.

Note: All jumpers (except JP10) are shorted by default with a trace on the bottom of the board.
FIGURE A-2: BOARD SCHEMATIC - (SHEET 2 OF 4)
FIGURE A-4: BOARD SCHEMATIC - (SHEET 4 OF 4)
APPENDIX B: EVALUATION BOARD FIRMWARE

For the latest version of the MCP23X08 Evaluation Board firmware, visit the Microchip web site at www.microchip.com.
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks
The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rFLAB, rPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.
© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company’s quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
WORLDWIDE SALES AND SERVICE

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com</td>
<td>Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755</td>
<td>India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062</td>
<td>China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104</td>
<td>Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599</td>
<td>China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521</td>
<td>China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431</td>
<td>China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066</td>
<td>Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829</td>
</tr>
<tr>
<td>China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431</td>
<td>China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393</td>
<td>China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760</td>
<td>China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760</td>
<td>France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79</td>
</tr>
<tr>
<td>China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571</td>
<td>China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571</td>
<td>China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205</td>
<td>Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934</td>
<td>Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td>Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387</td>
<td>Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850</td>
<td>Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803</td>
<td>Taiwan - Taichung
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102</td>
<td>Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781</td>
</tr>
<tr>
<td>Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608</td>
<td>Taiwan - Taipei
Tel: 886-2-572-9526
Fax: 886-3-572-6459</td>
<td>Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459</td>
<td>Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340</td>
<td>England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820</td>
</tr>
<tr>
<td>San Jose
Mission Viejo, CA
Tel: 650-215-1444
Fax: 650-961-0286</td>
<td>Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509</td>
<td>Worldwide Sales and Service</td>
<td>10/20/04</td>
<td>© 2005 Microchip Technology Inc.</td>
</tr>
</tbody>
</table>