
AN965
Microchip Stack for the ZigBee™ Protocol
INTRODUCTION
ZigBee™ is a wireless network protocol specifically
designed for low rate sensor and control networks.
There are a number of applications that can benefit
from the ZigBee protocol: building automation
networks, home security systems, industrial control
networks, remote metering and PC peripherals are
some of the many possible applications.

Compared to other wireless protocols, the ZigBee
wireless protocol offers low complexity, reduced
resource requirements and most importantly, a
standard set of specifications. It also offers three
frequency bands of operation along with a number of
network configurations and optional security capability.

If you are currently exploring alternatives to your
existing control network technologies such as RS-422,
RS-485 or proprietary wireless protocol, the ZigBee
protocol could be the solution you need.

This application note is specifically designed to assist
you in adopting the ZigBee protocol for your
application. You can use the Microchip Stack for the
ZigBee protocol provided in this application note to
quickly build your application. To illustrate the usage of
the Stack, two working demo applications are included.
You can use these demo applications as a reference or
simply modify and adopt them to your requirements.

The Stack library provided in this application note
implements a PHY-independent application interface.
As a result, you can easily port your application from
one Radio Frequency (RF) transceiver to another
without significant changes.

Commonly asked questions about the Microchip Stack
and its usage, along with their answers, are provided at
the end of this document in “Answers to Common
Questions”.

ASSUMPTION
This document assumes that you are familiar with the C
programming language. This document uses extensive
terminology from the ZigBee and IEEE 802.15.4 specifi-
cation. This document does not discuss the full details of
ZigBee specifications. It does provide a brief overview of
the ZigBee specification. You are advised to read the
ZigBee and IEEE 802.15.4 specifications in detail.

FEATURES

The Microchip Stack for the ZigBee protocol is
designed to evolve with the ZigBee wireless protocol
specifications. At the time this document was
published, version 1.0 of the Stack offered the following
features (for the latest features, refer to the source
code version log file, version.log):

• Based on version 0.8 of ZigBee specifications
• Support for 2.4 GHz frequency band using the

Chipcon CC2420 RF transceiver
• Support for Reduced Function Device (RFD) and

Coordinator
• Implements nonvolatile storage for neighbor and

binding tables in coordinator nodes
• Supports non-slotted star network

• Portable across the majority of the PIC18 family of
microcontrollers

• Cooperative multitasking architecture
• RTOS and application independent
• Out-of-box support for Microchip MPLAB® C18

and Hi-Tech PICC-18™ C compilers
• Modular design to easily add or remove specific

modules

LIMITATIONS

Version 1.0 of the Microchip Stack contains the
following limitations. Please note that MIcrochip is
planning to add new features as time progresses. Refer
to the source code version log file (version.log) for
current limitations.

• Not ZigBee protocol-compliant
• No cluster and peer-to-peer network support
• No security and access control capabilities

• No router functionality
• Does not provide standard profiles; however, it

contains all necessary primitive functions to
create profiles

• Does not support one-to-many bindings

Author: Nilesh Rajbharti
Microchip Technology Inc.
 2004 Microchip Technology Inc. DS00965A-page 1

AN965
TYPICAL ZigBee NODE HARDWARE

To create a typical ZigBee node using the Microchip
Stack, you need at a minimum the following
components:

• One PIC18F microcontroller with an SPI™ interface
• One RF transceiver (see version.log for

supported transceivers) with required external
components

• An antenna – may be PCB trace antenna or
monopole antenna

As shown in Figure 1, the controller connects to the RF
transceiver via the SPI bus and a few discrete control
signals. The controller acts as an SPI master and the
RF transceiver acts as a slave. The controller
implements the IEEE 802.15.4 MAC layer and ZigBee
protocol layers. It also contains application specific
logic. It uses the SPI bus to interact with the RF
transceiver. The Microchip Stack provides a fully
integrated driver which relieves the main application
from managing RF transceiver functions. If you are
using a Microchip reference schematic for a ZigBee
node, you may start using the Microchip Stack without
any modifications. If required, you may relocate some
of the non-SPI control signals to other port pins to suit
your application hardware. In which case, you will have
to modify PHY interface definitions to include the
correct pin assignments.

Version 1.0 of the Microchip Stack uses a CC2420 RF
transceiver manufactured by Chipcon. The CC2420
implements the 2.4 GHz physical layer along with some
of the MAC functions. You may read more about the
CC2420 at the Chipcon Web site (see “References”).

The Microchip reference design for the ZigBee protocol
implements both a PCB trace antenna and a monopole
antenna design. Depending on your choice of antenna,
you will have to remove and solder a few components.
Refer to the “PICDEM™ Z Demo Kit User’s Guide” for
more information (see “References”).

The CC2420 requires a 3.3V voltage supply. The
Microchip reference design uses a 3.3V supply for both
the controller and the RF transceiver. If required, you
may modify this design to use 5V for the controller and
3.3V for the RF transceiver. When using a 5V supply for
the controller, a logic level translator circuit to interface
to and from the CC2420 must be used. Depending on
your requirements, you may either use mains or a bat-
tery power supply. Typically, ZigBee coordinator
devices would operate on mains power supply and end
devices would operate on a battery. When using a
battery power supply, you must make sure that you
operate the CC2420 within the specified voltage range.

Refer to the “PICDEM™ Z Demo Kit User’s Guide” for
a Microchip reference design for a ZigBee node.

FIGURE 1: TYPICAL ZigBee™ NODE HARDWARE (CONTROL SIGNALS ADDED)

P
IC

m
ic

ro
®

RF
XCVR

ANTENNA

SPI™

CONTROL

M
C

U

DS00965A-page 2  2004 Microchip Technology Inc.

AN965
PIC® RESOURCE REQUIREMENTS

The Microchip Stack uses the following I/O pins to
interface to the RF transceiver:

TABLE 1: PIC® MCU TO RF
TRANSCEIVER INTERFACE

For complete program and data memory requirements,
refer to the document version.log located in the
Stack source installation directory.

INSTALLING SOURCE FILES

The complete Microchip Stack source is available for
download from the Microchip web site (see “Source
Code”). The source code is distributed in a single
Windows® installation file (MpZBeeV1.00.00.exe).

Perform the following steps to complete the installation:

1. Execute the file MpZBeeV1.00.00.exe; a
Windows installation wizard will guide you
through the installation process.

2. Before continuing with the installation, you must
accept the software license agreement by
clicking I Accept.

3. After completion of the installation process, you
should see the “Microchip Software Stack for
ZigBee” program group. The complete source
code will be copied in the MpZBee\Source
directory in the root drive of your computer.

4. Refer to the file version.log for the latest
version specific features and limitations.

SOURCE FILE ORGANIZATION

The Microchip Stack consists of multiple source files.
Many of the source files are common to all ZigBee
applications, while some are specific to certain ZigBee
applications only. In addition, the Stack files also
include all source files for all demo applications.

To simplify file management and application develop-
ment, all source files are located in subdirectories
under the Source directory. The following table shows
the directory structure:

TABLE 2: SOURCE FILE DIRECTORY
STRUCTURE

Many of the Stack files contain logic for all supported
types of ZigBee applications; however, only one set of
logic is enabled based on the preprocessor definitions
defined in the zigbee.def file. You may develop multi-
ple ZigBee node applications using the common set of
Stack source files but individual zigbee.def files. For
example, the DemoCoordApp and DemoRFDApp node
applications have their own zigbee.def file in their
respective directory. This approach allows the develop-
ment of multiple applications using common source
files and generates unique hex file depending on
application-specific options.

This approach requires that when you compile an
application project, you provide search paths to include
files from both application and Stack source directories.
The demo application projects supplied with this
application note already include the necessary search
path information.

PIC® I/O Pin RF Transceiver Pin

RB0 (Input) CC2420: FIFO

RB1 (Input) CC2420: CCA (Not Used)

RB2 (Input) CC2420: SFD

RB3 (Input) CC2420: FIFOP

RC0 (Output) CC2420: CSn

RC1 (Output) CC2420: VREG_EN

RC2 (Output) CC2420: RESET

RC3 (Output) CC2420: SCK

RC4 (Input) CC2420: SO

RC5 (Output) CC2420: SI

Directory Name Contents

Stack Microchip Stack source files

DemoCoordApp Demo coordinator application source
files

DemoRFDApp Demo RFD application source files
 2004 Microchip Technology Inc. DS00965A-page 3

AN965
DEMO APPLICATIONS

Version 1.0 of the Microchip Stack includes two
demonstration applications:

1. DemoRFDApp – to demonstrate a typical ZigBee
RFD device application.

2. DemoCoordApp – to demonstrate a typical
ZigBee coordinator device application.

Demo RFD Application Features

Version 1.0 of the demo RFD application implements
the following features:

• Targeted for use with the PICDEM Z demo board
• Demonstrates low-power functionality using

system Sleep and Watchdog functionality
• RS-232 terminal driven menu commands to

configure various options
• RF transceiver performance test functions via

terminal menu commands
• User-configurable simple remote control switch

and LED application on one node
• Uses D2 as transmit/receive activity LED
• Demonstrates custom binding interface

• Automatically supports MPLAB C18 and Hi-Tech
PICC-18 compilers

Demo Coordinator Application Features

Version 1.0 of the demo coordinator application
implements the following features:

• Targeted for use with the PICDEM Z demo board
• RS-232 terminal driven menu commands to

configure various options
• RF transceiver performance test functions via

terminal menu commands
• Creates a non-slotted star network

• Uses D2 as transmit/receive activity LED
• Demonstrates custom binding interfaces
• Automatically supports MPLAB C18 and Hi-Tech

PICC-18 compilers

Building Demo Applications

The demo applications included in this application
note can be built using either the Microchip C18 or the
Hi-Tech PICC-18 compiler. There are a total of four
MPLAB project files – two for each demo application.
The first two letters in the name of the MPLAB project
file identifies the type of compiler being used. For exam-
ple, the project file, MpDemoCoordApp.mcp, uses the
MPLAB C18 compiler, while HtDemoCoordApp.mcp
uses the Hi-Tech PICC-18 compiler.

In addition to using the PIC18F4620 as a device, all
demo application projects also use additional include
paths as defined in the “Build Options” of MPLAB® IDE.
The demo coordinator project uses “..\Stack” and
“..\DemoCoordApp” and the demo RFD project uses
“..\Stack” and “..\DemoRFDApp” as additional
include paths. If you are recreating any of the demo
application projects using MPLAB IDE, you must
manually set these include paths in the MPLAB “Build
Options” dialog box.

Table 3 and Table 4 list the necessary source files
needed to build the demo coordinator and demo RFD
applications.
DS00965A-page 4  2004 Microchip Technology Inc.

AN965
TABLE 3: DEMO COORDINATOR APPLICATION PROJECT FILES

TABLE 4: DEMO RFD APPLICATION PROJECT FILES

Source Files Directory Name Purpose

MpDemoCoordApp.mcp
HtDemoCoordApp.mcp

DemoCoordApp Demo coordinator application project file for MPLAB® IDE

DemoZCoordApp.c DemoCoordApp Main coordinator application file

zigbee.def DemoCoordApp Microchip Stack compile time options file

D1OnCoord.c DemoCoordApp Endpoint task for LED D1 – specific to coordinator node

S2OnCoord.c DemoCoordApp Endpoint task for switch S2 – specific to coordinator node

18f4620i.lkr DemoCoordApp MPLAB C18 linker script file for PIC® microcontroller – not required
for Hi-Tech PICC-18™ compiler

Console.c Stack RS-232 terminal routines used by demo application only

MSPI.c Stack SPI™ master interface

NeighborTable.c Stack Coordinator neighbor and binding table logic

SRAlloc.c Stack Dynamic memory manager used by coordinator only

Tick.c Stack Tick manager used by Stack, available to application

zAPL.c Stack ZigBee™ application layer

zAPS.c Stack ZigBee application support sublayer

ZDO.c Stack ZigBee device object

zMAC.c Stack IEEE 802.15.4 MAC layer

zNVM.c Stack Nonvolatile memory storage routines

zNWK.c Stack ZigBee network layer

zPHYCC2420.c Stack CC2420 specific PHY routines

zProfile.c Stack ZigBee profile routines

Source Files Directory Name Purpose

MpDemoRFDApp.mcp
HtDemoRFDApp.mcp

DemoRFDApp Demo RFD application project file for MPLAB® IDE

DemoZRFDApp.c DemoRFDApp Main RFD application file

zigbee.def DemoRFDApp Microchip Stack compile time options file

D1OnEndDevice.c DemoRFDApp Endpoint task for LED D1 – specific to end device

S2OnEndDevice.c DemoRFDApp Endpoint task for switch S2 – specific to end device

18f4620i.lkr DemoCoordApp MPLAB C18 linker script file for PIC® microcontroller – not
required for Hi-Tech PICC-18™ compiler

Console.c Stack RS-232 terminal routines used by demo application only

MSPI.c Stack SPI™ master interface

Tick.c Stack Tick manager used by Stack, available to application

zAPL.c Stack ZigBee™ application layer

zAPS.c Stack ZigBee application support sublayer

ZDO.c Stack ZigBee device object

zMAC.c Stack IEEE 802.15.4 MAC layer

zNVM.c Stack Nonvolatile memory storage routines

zNWK.c Stack ZigBee network layer

zPHYCC2420.c Stack CC2420 specific PHY routines

zProfile.c Stack ZigBee profile routines
 2004 Microchip Technology Inc. DS00965A-page 5

AN965
The following is a high-level procedure for building
demo applications. This procedure assumes that you
are familiar with MPLAB IDE and will be using MPLAB
IDE to build the applications. If not, refer to your
MPLAB IDE application-specific instructions to create,
open and build a project.

1. Make sure that the source files for the Microchip
Stack are installed. If not, please refer to
“Installing Source Files”.

2. Launch MPLAB IDE and open the appropriate
project file:
Source\DemoCoordApp\??DemoCoordApp.mcp
for the demo coordinator application; or
Source\DemoRFDApp\??DemoRFDApp.mcp
for the demo RFD application.
The exact name of the project file depends on
your choice of compiler. Use “Mp*.mcp” for
MPLAB C18 and “Ht*.mcp” for the Hi-Tech
PICC-18 compiler.

3. Use MPLAB IDE menu commands to build the
project. Note that the demo applications projects
are created to work correctly when the source
files are located in the MpZBee directory in the
root directory of the hard drive. If you have
moved the source files to another location, you
must recreate or modify existing project settings
to build. See “Building Demo Applications”
for more information.

4. The build process should finish successfully. If
not, make sure that your MPLAB IDE and
compiler are set up properly.

Programming Demo Applications
To program a target with either of the two demo
applications, you must have access to a PIC
programmer. The following procedure assumes that
you will be using MPLAB ICD 2 as a programmer. If not,
please refer to your specific programmer instructions.

1. Connect MPLAB ICD 2 to the PICDEM Z demo
board or your target board.

2. Apply power to the target board.
3. Launch MPLAB IDE.
4. Select the PIC device of your choice (required

only if you are importing a hex file previously
built).

5. Enable MPLAB ICD 2 as a programmer.

6. If you want to use a previously built
hex file, simply import the
DemoCoordApp\MpDemoCoordApp.hex file or
the DemoRFDApp\MpDemoRFDApp.hex file. In
order to simplify identification of the demo
coordinator and demo RFD nodes (if you are
using PICDEM Z boards), it is recommended that
you program the MpDemoCoordApp.hex file into
the controller with the “COORD...” label and the
MpDemoRFDApp.hex file into the controller with
the “RFD...” label. If you are programming your
custom hardware, make sure that you use some
identification method to identify the coordinator
and RFD node.

7. If you are rebuilding the hex file, open the
appropriate demo project file and follow the build
procedure to create the application hex file.

8. Both demo application files contain necessary
configuration options required for the PICDEM Z
demo board. If you are programming another
type of board, make sure that you select the
appropriate oscillator mode from the
MPLAB ICD 2 configuration settings menu.

9. Select the Program menu option from the
MPLAB programmer menu to begin
programming the target.

10. After a few seconds, you should see the
message “Programming successful”. If not,
double check your board and MPLAB ICD 2
connection. Refer to MPLAB on-line help for
further assistance.

11. Remove power from the board and disconnect
the MPLAB ICD 2 cable from the target board.

12. Reapply power to the board and make sure that
the D1 and D2 LEDs are lit. If not, double check
your programming steps and repeat, if necessary.

Configuring Demo Applications
If this is the first time you are running either of the two
demo applications, you must first assign a unique node
ID to each board. A node ID is a unique four digit
decimal number to create a unique MAC address. Both
demo applications are built using a Microchip
Organizational Unique Identifier (OUI) number. These
applications use the node ID value to create a unique
64-bit MAC address as required by IEEE 802.15.4
specifications. You may obtain your own OUI number
by applying at the following Web address:

https://standards.ieee.org/regauth/oui/forms/
OUI-form.shtml

To configure the demo applications, you would need
the following tools:

1. A PC with at least one RS-232 port.
2. A PC-based RS-232 terminal program such as

HyperTerminal for Windows® operating system.
3. One DB-9 male-to-female RS-232 cable.

4. Target board(s) with a 9V power supply.
DS00965A-page 6  2004 Microchip Technology Inc.

https://standards.ieee.org/regauth/oui/forms/OUI-form.shtml

AN965
Programming Node ID Value

Perform the following steps for each of the newly
programmed demo applications (This procedure
assumes that you are using the Microsoft®

HyperTerminal program. You may use any terminal
program of your choice provided the required port
settings are set):

1. Connect the target PICDEM Z board to an
available serial port on the computer, using a
straight male-to-female DB9 RS-232 cable.

2. Launch HyperTerminal by selecting Start>
Programs>Accessories >Communications.

3. At the Connection Description dialog box, enter
any convenient name for the connection. Click
OK.

4. At the Connect To dialog box, select the COM
port that the PICDEM Z board is connected to.
Click OK.

5. Configure the serial port connected to the
PICDEM Z node with these settings: 19200 bps,
8 data bytes, 1 Stop bit, no parity and no flow
control.

6. Click OK to initiate the connection.
7. Open the Properties dialog box by selecting File

> Properties.

8. Select the Settings tab and click ASCII Setup...
9. Check “Echo typed characters locally”.

10. Click OK to close all open dialog boxes.
11. Apply power to the node while holding the S3

switch, or press and hold both the RESET and
S3 switches; then release the RESET switch.

The configuration menu, as shown in
Example 1, would appear in the terminal win-
dow (exact header text would depend on the
type of node you are trying to reconfigure and
date of build).

12. Type 1 to change the node ID value.
13. Follow the instructions to enter the node ID

value.
14. Press the RESET switch on the node or type 0 to

exit Configuration mode and run the application.

To confirm that the new node ID was saved properly,
simply reset the board by pushing the RESET button
on the board and make sure that the D1 and D2 LEDs
are not lit. Also make sure that no menu is displayed on
the RS-232 terminal. This confirms that your board is
properly programmed and is ready for further
configurations.

If this is a newly programmed demo RFD board, you
must perform other configurations to observe the full
demo functionality.

EXAMPLE 1: DEMO APPLICATION CONFIGURATION MENU

Programming Binding Configuration

At this point, you are now ready to perform the rest of
the configurations. This requires that you have one
demo coordinator application board and one or more
demo RFD application boards. For simplicity, this
procedure assumes that you have only one demo
coordinator and one demo RFD board. However, you
may easily extend this procedure to any number of
demo RFD boards.

As part of this configuration, you will be associating the
demo RFD application board (an end device) to the
demo coordinator application board. You will also bind

the S2 switch on one board to the D1 LED on another
board. After successful completion of this
configuration, you will be ready to experiment with the
demo applications.

To simplify the binding configuration, the demo RFD
application provides a quick demo binding menu
option. The quick binding option is a single-step
binding operation that demonstrates data flow
between an end device and a coordinator. In addition
to the quick binding menu option, you may also use
on-board switches to create other advanced binding
configurations.

ZigBee Demo RFD Application v1.0 (Microchip Stack for ZigBee v1.0.0)

Built on Nov 11 2004

1. Set node ID...
2. Join a network.
3. Perform quick demo binding (Must perform #2 first)
4. Leave a previously joined network (Must perform #2 first)
5. Change to next channel.
6. Transmit unmodulated signal.
7. Transmit random modulated signal.
0. Save changes and exit.

Enter a menu choice:
 2004 Microchip Technology Inc. DS00965A-page 7

AN965
PERFORMING QUICK DEMO BINDING

The quick demo binding option binds the S2 switch
on the demo RFD board to the D1 LED on the demo
coordinator and the S2 switch on the demo
coordinator to the D1 LED on the demo RFD board.
After completing the quick demo binding, you will be
able to control the D1 LED on the demo coordinator
by pressing the S2 switch on the demo RFD board
and the D1 LED on the demo RFD board by pressing
the S2 switch on the demo coordinator board.

The quick demo binding is primarily designed for a
two-node (one coordinator and one RFD) network
only. If you perform the quick demo binding on
multiple demo RFD boards, the D1 LED on the demo
coordinator will now be controlled by any of the demo
RFD boards. However, the S2 switch on the demo
coordinator will only control the D1 on the last demo
RFD board that performed the quick demo binding.

The quick demo binding option requires the use of a
PC with at least one standard serial port and terminal
software. If you have access to two serial ports and
two serial cables, you may view activity logs from
both the demo coordinator and RFD boards
simultaneously. If you only have one serial port, you
would only connect the RFD board to PC.

Perform the following steps to do quick demo
binding:

1. Remove power from all nodes.
2. Optional: If you have two serial ports and two

serial cables, launch your choice of a PC-based
RS-232 terminal program and select the COM1
port with these settings: 19200 bps, 8-N-1, no
flow control and echo typed characters.

3. Find the demo coordinator board and apply
power to start its normal mode of execution.
Make sure that D1 and D2 are flashed followed
by a brief flash of D2. Optional: If connected to
a serial port, note that the terminal displays the
message “New network successfully
started”.

4. Launch your choice of a PC-based RS-232
terminal program and select the COM2 port with
these settings: 19200 bps, 8-N-1, no flow control
and echo typed characters.

5. Now, while keeping the demo coordinator board
powered, apply power to the demo RFD board
while holding the S3 switch, or press and hold
both the RESET and S3 switches, then release
the RESET switch. You should see a text menu
in the output window of the terminal program.

6. Type 2 to start the “Join a network”
command. Note that the terminal displays the
message “Successfully associated”. If
you do not see this message, make sure that the
demo coordinator node is powered and running
in normal mode. Optional: On the second
terminal connected to the demo coordinator
node, note that the message “A new node has
just joined” is displayed.

7. At this point, the demo RFD node has
successfully joined the network established by
the demo coordinator. You are now ready to
perform the quick demo binding.

8. Type 3 to start the “Perform quick demo
binding” command. Note that the terminal
displays the message “Demo binding
complete”. If you do not see this message,
make sure that demo coordinator node is
powered and running in normal mode.
Optional: On the second terminal connected to
the demo coordinator node, note that the
message “Custom binding successful” is
displayed.

9. Enter 0 to “Save current changes and
exit configuration”. The terminal should
now display “Rejoin successful”.

10. You may now press S2 on the demo RFD node
and observe that the D1 LED on the demo
coordinator node toggles. Similarly, press S2 on
the demo coordinator node and observe that the
D1 LED on the demo RFD node toggles. You will
observe that when you press S2 on the demo
coordinator node, the D1 LED on the demo RFD
node does not toggle immediately. This is due to
the fact that the demo RFD node has to
periodically poll the demo coordinator to obtain
its LED status. The polling period depends on
the watchdog prescaler value programmed into
the demo RFD node. You should also note that
D2 on both the demo RFD node and the demo
coordinator are blinking periodically. This
indicates that the demo RFD node is periodically
polling the demo coordinator for its D2 status.

11. The association and quick demo binding config-
uration are stored permanently in the demo
coordinator Flash memory.

Note: The following procedure assumes that the
demo RFD board is connected to COM1
and the demo coordinator board is
optionally connected to COM2.
DS00965A-page 8  2004 Microchip Technology Inc.

AN965
PERFORMING ADVANCED BINDING

The advanced binding operation uses on-board
switches to create a total of four combinations of
binding configurations among multiple demo RFD
boards. The advanced binding operation does not
require terminal and serial cables. In order to eliminate
duplicate information, the following procedure
assumes that if you want to view activity logs on
terminal window, you have already read the section
“Performing Quick Demo Binding” and understand
how to set up the terminal software.

Perform the following steps to do advanced binding:

1. Remove power from all nodes.

2. Find the demo coordinator board and apply
power to start its normal mode of execution.
Make sure that D1 and D2 are flashed followed
by a brief flash of D2. Optional: If connected to
a serial port, note that the terminal displays “New
network successfully started”.

3. While keeping the demo coordinator board
powered, apply power to the demo RFD board
while holding the S3 switch, or press and hold
both RESET and S3 switches; then release the
RESET switch. Optional: You should see a text
menu in the output window of the terminal
program.

4. Press S2 on the demo RFD node to begin the
association sequence with the demo
coordinator node. Optional: The terminal
window should display “Successfully
associated”.

5. If you have more than one demo RFD node,
press S2 on each demo RFD node to associate
them to the demo coordinator node.

6. Since there are many different possible
combinations of binding a configuration, the
following table is used to describe the necessary
sequence of steps for each combination

7. Press the RESET switch on each demo RFD
node to begin normal execution. If connected to
a terminal program, note that the message
“Rejoin successful” is displayed.

8. Depending on how binding was performed,
press S2 on one node to confirm that D1 on the
same or other node toggles.

TABLE 5: BINDING OPERATION

To Bind Switch S2 On To Bind LED D1 On Result

RFD: Press and hold S3 first, then
press S2 and release S2, followed
by S3

Coordinator: Press and hold S3 first,
then press S2 and release S3,
followed by S2

S3 on RFD controls D1 on
coordinator

Coordinator: Press and hold S3 first,
then press S2 and release S2,
followed by S3

RFD: Press and hold S3 first, then
press S2 and release S3, followed
by S2

S3 on coordinator controls D1 on
RFD

RFD: Press and hold S3 first, then
press S2 and release S2, followed
by S3

RFD: Press and hold S3 first, then
press S2 and release S3, followed
by S2

S3 on RFD controls D1 on same RFD

RFD1: Press and hold S3 first, then
press S2 and release S2, followed
by S3

RFD2: Press and hold S3 first, then
press S2 and release S3, followed
by S2

S3 on RFD #1 controls D1 on RFD #2

Coordinator: N/A Coordinator: N/A Not allowed

Note 1: As each step is performed, LEDs D1 and D2 on the respective node will be toggled between ON and OFF,
to OFF and ON. Also note that the terminal program connected to the RFD node displays the message
“Attempting to bind...” and the terminal connected to the coordinator node displays the message
“Received valid...”.

2: To complete the binding process, you must perform both “To Bind Switch S2 On” and “To Bind LED D1 On”
actions.
 2004 Microchip Technology Inc. DS00965A-page 9

AN965
Executing Demo Applications

Before you can observe the demo application’s
functionality, you must have at least one demo
coordinator and one demo RFD board. You must also
have performed the configuration as described in
“Configuring Demo Applications”.

The demo applications implement a simple remote
control switch and LED functionality. With this function-
ality, you can press the switch on one board and control
the LED on the same or another demo RFD board.

The demo applications are completely stand-alone and
do not require an interface to a host computer.
However, if you have access to a host computer, you
may use it to observe the activity logs of the
applications. An interface to a host computer is useful
to understand and troubleshoot any setup issues you
might have.

Do the following to execute demo applications:

1. Remove power from all boards if it was
previously applied.

2. Locate the demo coordinator node.
3. Optional: Connect the demo coordinator node

to a PC serial port and launch your favorite
terminal program. Select the appropriate COM
port with these settings: 19200 bps, 8-N-1, no
flow control and echo typed characters.

4. Apply power to the demo coordinator node.
Observe that both D1 and D2 flash simulta-
neously, followed by D2 flashing by itself. If
connected to a PC, observe that the terminal
program displays the message “New network
successfully started”.

5. Now locate the demo RFD node.
6. Optional: Connect the demo RFD node to a PC

serial port and launch your favorite terminal
program. Select the appropriate COM port with
these settings: 19200 bps, 8-N-1, no flow control
and echo typed characters.

7. While keeping the demo coordinator node still
powered, apply power to the demo RFD node.
Observe that both LEDs D1 and D2 flash simul-
taneously, followed by multiple flashes of D2. If
connected to a PC, observe that in one to two
seconds, the terminal program displays the
message “Rejoin successful”. If you do not
see any message or see the message “Rejoin
failed”, make sure that you have the coordi-
nator node powered and running properly; reset
the demo RFD node and try again.

8. At this point, the RFD node has successfully
associated with the demo coordinator node.

9. Depending on how the binding configuration
was performed, press S2 on the demo RFD
node and observe that D1 on the same or
another node toggles.

Functional Description of Demo
Applications

Both the demo coordinator and demo RFD applications
demonstrate a simple ZigBee network. The demo coor-
dinator and demo RFD applications form a non-slotted
star network.

When a node is first programmed with any of the demo
applications, on startup, a demo node will automatically
enter into the Configuration mode. You must use a
terminal interface to set a unique node ID. A demo RFD
node needs additional setup, such as association and
binding configuration, to make it fully functional.

FUNCTIONAL DESCRIPTION OF DEMO
COORDINATOR

On power-up, the demo coordinator attempts to
establish a new network by scanning for an empty
channel. As part of its scanning procedure, the demo
coordinator transmits the BEACON_REQ frame
starting from the first channel in the current frequency
band. If there is another coordinator in the same
channel, it would respond to BEACON_REQ and the
original coordinator would consider that channel as
occupied. It would then switch to the next channel and
repeat the procedure until it does not receive any
response to its BEACON_REQ frame. Once a channel
is found to be empty, it selects a random Personal Area
Network (PAN) ID and starts listening on that channel.
At this point a network is said to be established. From
now on, if another coordinator were to broadcast a
BEACON_REQ frame, our original coordinator would
respond and declare its presence.

The demo coordinator is now ready to accept new end
device nodes in its network. When a new end device
wants to join a network, it first sends out a
BEACON_REQ to detect the presence of a
coordinator. Once the end device verifies the presence
of a coordinator on a specific channel, it would begin
association, or the orphan notification procedure, to
join or rejoin the network.

A real world application may not always want to allow
new associations at all times. For example, in a ZigBee
protocol-based control network, you may not want any
new sensor to join your control network. You may want
to first enter into a special mode to control the new
associations. The Microchip demo coordinator
application does not place any restrictions on
associations. Any device may associate or
disassociate at any time. The coordinator does not
have to be put in a special mode to perform these
actions.
DS00965A-page 10  2004 Microchip Technology Inc.

AN965
The demo coordinator also implements a simple switch
and remote controlled LED interface. When a
coordinator is first programmed, the switch and LED
are not bound to any destination. Once the proper
binding procedure is performed, you may press the S2
switch to control the D1 LED on the other end device.
The demo coordinator implements a special sequence
of switch presses to bind the on-board switch and LED
to a remote device. You may initiate the binding
sequence by pressing S2 and S3 simultaneously and
follow the procedure outlined in the section
“Configuring Demo Applications”.

FUNCTIONAL DESCRIPTION OF DEMO RFD

In addition to a unique node ID value, the demo RFD
application requires that you associate it with a nearby
demo coordinator. On power-up, the demo RFD node
attempts to find a nearby demo coordinator. It will scan
all available channels to find a demo coordinator. Once
a demo coordinator is found, it attempts to rejoin its
network. The rejoin attempt will succeed only if this
node was previously joined to that demo coordinator.
This is why you must first join this demo RFD node to a
nearby node before executing the demo RFD node in
normal mode.

The demo RFD node is put in Configuration mode to
join to a new network. Once the node has joined to a
network, you must also bind on-board switch S2 and
D1 LED endpoint to some destination node. See
“Configuring Demo Applications” for more
information on how to perform these configuration
actions.

After a demo RFD node is fully configured, on next
normal execution start-up, it will automatically attempt
to rejoin the nearby demo coordinator. Since it had
already joined the demo coordinator in the past, the
demo coordinator will allow the demo RFD node to
rejoin its network.

Once rejoined to a network, the demo RFD node
enables the Watchdog Timer, disables the RF
transceiver and puts the controller to Sleep.

The demo RFD node uses PORTB interrupt-on-change
functionality to wake itself up when any of the push
buttons is pressed. If S2 was pressed, it sends out a
special MSG data frame (see the ZigBee specification
for more information) to the demo coordinator with the
current switch status. Once the MSG data frame is
acknowledged by the demo coordinator, the demo RFD
node goes back to Sleep.

The demo RFD node may also be awakened by a
Watchdog time-out. Upon exiting controller Sleep, the
demo RFD node polls the demo coordinator for the new
S2 status. If there is a new S2 status, the demo RFD
node will update its D1 LED accordingly.

To further explain how a demo RFD node receives its
S2 status, assume that the S2 switch on the demo RFD
node is bound to the D1 LED on the same node. This
binding configuration would allow us to control D1 by
pressing S2 on the same board. When you press S2 on
the demo RFD node, the demo RFD node would first
send out a switch status update frame to the demo
coordinator. At this point, the demo RFD node does not
know who will receive the switch update frame. It
simply directs the frame to the demo coordinator and
goes back to Sleep. On the coordinator side, when it
receives the switch status frame, it first looks up in its
binding table to see if there is any known destination for
this frame. Since the S2 switch was bound to the D1
LED on the same demo RFD node, the demo
coordinator would find that there is an assigned
destination for this frame and it would simply store the
current switch status frame into its indirect transmit
frame buffer. If there was no binding entry, the demo
coordinator would have discarded the frame. The demo
coordinator would hold the switch status frame in its
indirect transmit frame buffer until either the intended
recipient node retrieves it or a time-out occurs.

Assume that our original demo RFD node wakes up in
time and sends a poll request to the demo coordinator.
The demo coordinator would look in its indirect transmit
buffer and find that there is a frame pending for this
node. It will then transmit the switch status frame to the
demo RFD node and wait for an Acknowledgement.
Once the frame is Acknowledged, it will remove the
switch status frame from its indirect transmit buffer.

The demo RFD node has now received a new switch
status which it had sent out earlier. It would now decode
the switch status and toggle the LED accordingly. Since
there is a time difference between when the switch was
first pressed and when it was polled, you will see a
slight delay in the LED status change.

Since the coordinator stores and forwards a frame to
an appropriate recipient, you may control an LED on a
completely different node by simply changing the
binding table in the coordinator memory.
 2004 Microchip Technology Inc. DS00965A-page 11

AN965
USING THE MICROCHIP STACK

The files accompanying this application note contain
the full source for the Microchip Stack ZigBee protocol
(see “Source Code”). These source files also include
two demo applications: one RFD demo application and
one demo coordinator application.

All applications based on the Microchip Stack must be
written in a cooperative multitasking manner.
Cooperative multitasking architecture consists of a
number of tasks executing in sequence. A cooperative
task would quickly perform its required operation and
return so that the next task would be able to execute.
Because of this requirement, a task that needs to wait
for some external input, or needs to perform a long
operation, should be broken down into multiple
subtasks using a state machine approach. Further
discussion of cooperative multitasking and state
machine programming is beyond the scope of this
document. You should refer to software engineering
literature for more detail.

The Microchip Stack is written to support both the
MPLAB C18 and Hi-Tech PICC-18 C compilers without
any changes. All source files automatically detect the
current compiler in use and adjust its code accordingly.
The Microchip Stack is written in standard ANSI C with
C18 and PICC-18 specific extensions. If required, you
may modify the source files to support your choice of
compiler.

To simplify file management and application
development, all source files are located in
subdirectories under the Source directory. See
“Source File Organization” for more information.

When you develop your application using the Microchip
Stack, it is recommended that you use the demo
application directory structure as a reference and
create your own application-specific subdirectory.

Following are the typical steps you would use to
develop an application based on the Microchip Stack.
Note that these steps assume that you are using
MPLAB IDE and are familiar with the MPLAB IDE
interface.

1. Install the Microchip Stack source as previously
described in the section “Installing Source
Files”.

2. Create your application specific directory in the
MpZBee\Source directory.

3. Depending on whether this is a coordinator appli-
cation or RFD application, copy the zigbee.def
file from either the Source\DemoCoordApp or
Source\DemoRFDApp directory into your
application-specific directory.

4. Modify zigbee.def as per your application
requirements. See “Stack Configuration” for
more information.

5. Use MPLAB IDE to create your application
project and add the Stack source files as per
your ZigBee node functionality. See “Stack
Source Files” for information.

6. If you are using the MPLAB C18 compiler, add
your device specific linker script file.

7. Use the MPLAB Build Option dialog box to set
two additional include search paths:
“..\Stack” and “..\<YourAppDir>”, where
<YourAppDir> is the name of the directory that
contains your application specific zigbee.def
file.

8. Add your application specific source files.
9. Now your application project is ready for build.
DS00965A-page 12  2004 Microchip Technology Inc.

AN965
Stack Source Files

Depending on the type of your application, you would
need to include a specific set of source files in your
project. Table 6 lists all source files needed to build a

typical ZigBee RFD application, and Table 7 lists all
source files needed to build a typical ZigBee
coordinator application.

TABLE 6: TYPICAL RFD APPLICATION FILES

TABLE 7: TYPICAL COORDINATOR APPLICATION FILES

Source Files Purpose

Your App Files Must include main() entry point

zigbee.def Microchip Stack options specific to your application

Console.c RS-232 terminal routines – needed if ENABLE_DEBUG is defined or your application uses
console routines

MSPI.c Master SPI™ interface routines to access RF transceiver

Tick.c Tick manager, used to keep track of time-out and retry conditions

zAPL.c ZigBee™ application layer

zAPS.c ZigBee application support sublayer

ZDO.c ZigBee device object – required if ZigBee remote management is needed

zMAC.c IEEE 802.15.4 MAC layer

zNVM.c Nonvolatile memory storage routines – may be replaced with your own nonvolatile
storage specific file

zNWK.c ZigBee network layer

ZPHY???.c RF transceiver specific routines – zPHYCC2420.c for Chipcon CC2420 and
zPHYZMD44101.c for ZMD 44101 transceiver

zProfile.c ZigBee profile routines – required if standard profile support is needed (not fully
implemented in version 1.00.00)

18f????.lkr Linker script file specific your selection of device – required if using C18

Source Files Purpose

Your App Files Must include main() entry point

zigbee.def Microchip Stack options specific to your application

Console.c RS-232 terminal routines – needed if ENABLE_DEBUG is defined or your application uses
console routines

NeighborTable.c Implements neighbor and binding table

SRAlloc.c Dynamic memory manager to implement indirect transmit buffer

Tick.c Tick manager

zAPL.c ZigBee™ application layer

zAPS.c ZigBee application support sublayer

ZDO.c ZigBee device object – required if ZigBee remote management is needed

zMAC.c IEEE 802.15.4 MAC layer

zNVM.c Nonvolatile memory storage routines – may be replaced with your own nonvolatile storage
specific file

zNWK.c ZigBee network layer

ZPHY???.c RF transceiver specific routines – zPHYCC2420.c for Chipcon CC2420 and
zPHYZMD44101.c for ZMD 44101 transceiver

zProfile.c ZigBee profile routines – Required if standard profile support is needed (not fully
implemented in version 1.00.00)

18f????.lkr Linker script file specific your selection of device – required if using C18
 2004 Microchip Technology Inc. DS00965A-page 13

AN965
Stack Configuration

The Microchip Stack uses many compile time options
to enable/disable many of the core logic and RAM
variables. Exact composition of core logic and RAM
variables is dependent on the type of ZigBee
application. To simplify this compile time configuration,
all compile-time options are maintained in the
zigbee.def file. As part of your application
development, you must modify zigbee.def.

The following section defines all compile time options.
You should review the zigbee.def file for the latest
list of compile time options.

Option Name CLOCK_FREQ

Purpose Defines processor clock frequency. This value is used by Tick.c and Debug.c files to
calculate TMR0 and SPBRG values, respectively. If required, you may also use this in your
application.

Precondition None

Valid Values Must be within the PIC frequency specification.

Example Following line defines CLOCK_FREQ as 4 MHz:
#define CLOCK_FREQ 4000000

Option Name TICK_PRESCALE_VALUE

Purpose Timer0 prescale value. Used by Tick.c file to calculate TMR0 load value.

Precondition None

Valid Values Refer to the PIC device data sheet for possible TMR0 prescale value.

Example Following line sets 2 as TMR0 prescale value:
#define TICK_PRESCALE_VALUE 2

Note None

Option Name TICKS_PER_SECOND

Purpose Number of ticks in one second. This is used by Tick.c file.

Precondition None

Valid Values 1-255. This value must be adjusted depending on TICK_PRESCALE_VALUE.

Example Following line sets 50 ticks in one second:
#define TICKS_PER_SECOND 50

Note None

Option Name BAUD_RATE

Purpose Defines USART baud rate value. This value is used by the Console.c file. You may change
this value as per your application requirements.

Precondition None

Valid Values None

Example Following line defines a 19200 bps baud rate:
#define BAUD_RATE (19200)

Note You must make sure that current selection of baud rate is possible with current selection of
CLOCK_FREQ.
DS00965A-page 14  2004 Microchip Technology Inc.

AN965
Option Name ENABLE_DEBUG

Purpose It enables Debug mode. If defined in zigbee.def file, Debug mode is enabled for all source
files. Alternatively, you may selectively enable individual Debug mode by defining
ENABLE_DEBUG in the beginning of a specific file.

Precondition None

Valid Values None

Example Following line enables Debug mode:
#define ENABLE_DEBUG

Note When ENABLE_DEBUG is defined, your application code will be increased. ENABLE_DEBUG
mode defines many ROM string messages.

Option Name USE_CC24240

Purpose Used to indicate that the Chipcon CC2420 transceiver is in use.

Precondition USE_ZMD44101 must not be defined.

Valid Values None

Example Following line defines that CC2420 is in use:
#define USE_CC2420

Note You must only define USE_CC2420 or USE_ZMD44101. The Stack is designed to use only one
type of RF transceiver at a time.

Option Name USE_ZMD44101

Purpose Used to indicate that ZMD 44101 transceiver is in use (not supported in current version).

Precondition USE_CC2420 must not be defined.

Valid Values None

Example Following line defines that ZMD 44101 is in use:
#define USE_ZMD44101

Note You must only define USE_CC2420 or USE_ZMD44101. The Stack is designed to use only one
type of RF transceiver at a time.

Option Name I_AM_COORDINATOR

Purpose Indicates that this node is a coordinator.

Precondition I_AM_ROUTER and I_AM_END_DEVICE must not be defined.

Valid Values None

Example Following line sets current node as a coordinator:
#define I_AM_COORDINATOR

Note Once I_AM_COORDINATOR is defined, you must not define I_AM_ROUTER and
I_AM_END_DEVICE.

Option Name I_AM_ROUTER

Purpose Indicates that this node is a router (not used in current version).

Precondition I_AM_COORDINATOR and I_AM_END_DEVICE must not be defined.

Valid Values None

Example Following line sets current node as a router:
#define I_AM_ROUTER

Note Once I_AM_ROUTER is defined, you must not define I_AM_COORDINATOR and
I_AM_END_DEVICE. Current version does not support Router functionality.
 2004 Microchip Technology Inc. DS00965A-page 15

AN965
Option Name I_AM_END_DEVICE

Purpose Indicates that this is an end device – may be RFD or FFD (in current version, an end device must
always be RFD).

Precondition I_AM_COORDINATOR and I_AM_ROUTER must not be defined.

Valid Values None

Example Following line sets current node as an end device:
#define I_AM_END_DEVICE

Note Once I_AM_END_DEVICE is defined, you must not define I_AM_COORDINATOR and
I_AM_ROUTER.

Option Name MY_FREQ_BAND_IS_868_MHZ

Purpose Defines 868 MHz as the frequency band of operation (not supported in current version).

Precondition USE_ZMD44101 must be defined (in future versions, there may be more options).

Valid Values None

Example Following line sets 868 MHz frequency band:
#define MY_FREQ_BAND_IS_868_MHZ

Note Once MY_FREQ_BAND_IS_868_MHZ is defined, you must not define
MY_FREQ_BAND_IS_900_MHZ and MY_FREQ_BAND_IS_2400_MHZ. Current version does not
support 868/915 MHz operation.

Option Name MY_FREQ_BAND_IS_900_MHZ

Purpose Defines 915 MHz as the frequency band of operation (not supported in current version).

Precondition USE_ZMD44101 must be defined (in future versions, there may be more options).

Valid Values None

Example Following line sets 915 MHz frequency band:
#define MY_FREQ_BAND_IS_915_MHZ

Note Once MY_FREQ_BAND_IS_915_MHZ is defined, you must not define
MY_FREQ_BAND_IS_868_MHZ and MY_FREQ_BAND_IS_2400_MHZ. Current version does not
support 868/915 MHz operation.

Option Name MY_FREQ_BAND_IS_2400_MHZ

Purpose Defines 2.4 GHz as the frequency band of operation.

Precondition USE_CC2420 must be defined. (In future versions, there may be more options).

Valid Values None

Example Following line sets 2.4 GHz frequency band:
#define MY_FREQ_BAND_IS_2400_MHZ

Note Once MY_FREQ_BAND_IS_2400_MHZ is defined, you must not define
MY_FREQ_BAND_IS_868_MHZ and MY_FREQ_BAND_IS_900_MHZ.

Option Name I_AM_ALT_PAN_COORD

Purpose Indicates that current FFD node can be an alternate PAN coordinator (not supported in current
version).

Precondition None

Valid Values None

Example Following line defines current node as an alternate PAN coordinator:
#define I_AM_ALT_PAN_COORD

Note Current version does not support FFD and alternate PAN coordinator functionality.
DS00965A-page 16  2004 Microchip Technology Inc.

AN965
Option Name I_AM_MAINS_POWERED

Purpose Indicates that current node is AC powered. Normally, coordinator and router device will be AC
powered (not used in current version).

Precondition I_AM_RECHARGEABLE_BATTERY_POWERED and I_AM_DISPOSABLE_BATTERY_POWERED
must not be defined.

Valid Values None

Example Following line indicates that this is a mains powered device:
#define I_AM_MAINS_POWERED

Note Once I_AM_MAINS_POWERED is defined, you must not define
I_AM_RECHARGEABLE_BATTERY_POWERED and I_AM_DISPOSABLE_BATTERY_POWERED.
Current version does not use this information. This information will be used to create standard
node ZigBee profile.

Option Name I_AM_RECHARGEABLE_BATTERY_POWERED

Purpose Indicates that current node is battery-powered (not used in current version).

Precondition I_AM_MAINS_POWERED and I_AM_DISPOSABLE_BATTERY_POWERED must not be defined.

Valid Values None

Example Following line indicates that this is a battery-powered device:
#define I_AM_RECGARGEABLE_BATTERY_OPERATED

Note Once I_AM_RECHARGEABLE_BATTERY_POWERED is defined, you must not define
I_AM_MAINS_POWERED and I_AM_DISPOSABLE_BATTERY_POWERED. Current version does
not use this information. This information will be used to create standard node ZigBee profile.

Option Name I_AM_DISPOSABLE_BATTERY_POWERED

Purpose Indicates that current node is disposable battery-powered (not used in current version).

Precondition I_AM_MAINS_POWERED and I_AM_RECHARGEABLE_BATTERY_POWERED must not be defined.

Valid Values None

Example Following line indicates that this is a disposable battery-powered device:
#define I_AM_DISPOSABLE_BATTERY_POWERED

Note Once I_AM_DISPOSABLE_BATTERY_POWERED is defined, you must not define
I_AM_RECHARGEABLE_BATTERY_POWERED and I_AM_DISPOSABLE_BATTERY_POWERED.
Current version does not use this information. This information will be used to create standard
node ZigBee profile.

Option Name I_AM_SECURITY_CAPABLE

Purpose Indicates that this node uses encryption/decryption to transmit and receive packets (not
supported in current version).

Precondition None

Valid Values None

Example Following line indicates that this node is security capable:
#define I_AM_SECURITY_CAPABLE

Note Current version does not support security.
 2004 Microchip Technology Inc. DS00965A-page 17

AN965
Option Name MY_RX_IS_ALWAYS_ON_OR_SYNCED_WITH_BEACON

Purpose Indicates that this node keeps its receiver always ON or periodically listens for beacon (not
supported in current version).

Precondition MY_RX_IS_PERIODICALLY_ON and MY_RX_IS_ON_WHEN_STIMULATED must not be defined.

Valid Values None

Example #define MY_RX_IS_ALWAYS_ON_OR_SYNCED_WITH_BEACON

Note Current version does not use or support this information.

Option Name MY_RX_IS_PERIODICALLY_ON

Purpose Indicates that this node periodically turns on its receiver (not used in current version).

Precondition MY_RX_IS_ALWAYS_ON_OR_SYNCED_WITH_BEACON and MY_RX_IS_ON_WHEN_STIMULATED
must not be defined.

Valid Values None

Example #define MY_RX_IS_PERIODICALLY_ON

Note Current version does not use this information.

Option Name MY_RX_IS_ON_WHEN_STIMULATED

Purpose To indicate that this node turns on its receiver only when stimulated (not supported in current
version).

Precondition MY_RX_IS_ALWAYS_ON_OR_SYNCED_WITH_BEACON and MY_RX_IS_PERIODICALLY_ON
must not be defined.

Valid Values None

Example #define MY_RX_IS_ON_WHEN_STIMULATED

Note Current version does not use this information.

Option Name MAC_LONG_ADDR_BYTEn

Purpose To define default 64-bit MAC address for this node. There are a total of 8 defines, one for each
byte. The main application may use this value to initialize MAC address or change it at run time
as required.

Precondition None

Valid Values 0-255

Example Set default MAC address of 04:a3:00:00:00:00:01
#define MAC_LONG_ADDR_BYTE0 (0x01)
#define MAC_LONG_ADDR_BYTE1 (0x00)
#define MAC_LONG_ADDR_BYTE2 (0x00)
#define MAC_LONG_ADDR_BYTE3 (0x00)
#define MAC_LONG_ADDR_BYTE4 (0x00)
#define MAC_LONG_ADDR_BYTE5 (0xa3)
#define MAC_LONG_ADDR_BYTE6 (0x04)
#define MAC_LONG_ADDR_BYTE7 (0x00)

Note The Stack source does not automatically set this address. The main application must use this
value to initialize mac address variable, macLongAddr, exposed by MAC layer.
DS00965A-page 18  2004 Microchip Technology Inc.

AN965
Option Name MAX_EP_COUNT

Purpose Defines maximum number of endpoints supported by this device.

Precondition None

Valid Values 1-255 (Must be at least 1. Maximum value depends on available RAM size; each EP takes
5 bytes of RAM.)

Example #define MAX_EP_COUNT (4)

Note There must be at least one EP to support standard ZDO endpoint. Each addition of EP count
increases RAM usage by 5 bytes. There is a maximum limit of 255 endpoints in a given device;
however, actual count will be limited by available RAM.

Option Name MAC_USE_RF_TEST_CODE

Purpose Enables transceiver specific test functions.

Precondition None

Valid Values None

Example #define MAC_USE_RF_TEST_CODE

Note In current version for Chipcon RF transceiver, there are two transceiver test functions – one to
transmit a random modulated signal and another to transmit an unmodulated signal. These
functions are useful to characterize RF circuit performance.

Option Name MAC_USE_SHORT_ADDR

Purpose Applies to end device only (i.e., I_AM_END_DEVICE is defined). This is used by an end device
to request new short address when it associates with a network.

Precondition None

Valid Values None

Example #define MAC_USE_SHORT_ADDR

Note A ZigBee end device based on current version will always request short address from the
coordinator.

Option Name MAC_CHANNEL_ENERGY_THRESHOLD

Purpose Defines the threshold over which a channel is said to be in use (not used in current version).

Precondition None

Valid Values 0-255 (Exact unit depends on RF transceiver.)

Example #define MAC_CHANNEL_ENERGY_THRESHOLD (0x20)

Note None

Option Name MAC_MAX_FRAME_RETRIES

Purpose Sets the maximum frame retries count if no Acknowledge is received.

Precondition None

Valid Values 1-5

Example #define MAC_MAX_FRAME_RETRIES (3)

Note None
 2004 Microchip Technology Inc. DS00965A-page 19

AN965
Option Name MAC_ACK_WAIT_DURATION

Purpose Sets the maximum time this node should wait for Acknowledgement from another node.

Precondition None

Valid Values 1-4,294,967,296 ticks

Example Set ACK wait duration equal to half a second:
#define MAC_ACK_WAIT_DURATION (TICK_SECOND/2)

Note None

Option Name MAC_RESPONSE_WAIT_TIME

Purpose Sets the maximum time this node should wait for response from another node.

Precondition None

Valid Values 1-255 ticks

Example #define MAC_RESPONSE_WAIT_TIME (TICK_SECOND)

Note In a star network, the end device would wait this long to receive response as a result of poll
request.

Option Name MAC_ED_SCAN_PERIOD

Purpose Sets the energy detection period. During this period, the RF receiver is kept ON to measure RF
energy.

Precondition None

Valid Values 1-4,294,967,296 ticks

Example Set 1/4 second as an ED scan period:
#define MAC_ED_SCAN_PERIOD (TICK_SECOND/4)

Note None

Option Name MAC_ACTIVE_SCAN_PERIOD

Purpose Sets the active scan period. During active scan, a node requests beacon from nearby
coordinator(s) and expects coordinator(s) to respond within this period.

Precondition None

Valid Values 1-4,294,967,296 ticks

Example Set 1/2 second as an active scan period:
#define MAC_ACTIVE_SCAN_PERIOD (TICK_SECOND/2)

Note None

Option Name MAC_MAX_DATA_REQ_PERIOD

Purpose Used only when I_AM_COORDINATOR is defined.
Sets the period during which end devices must request their data frame from this coordinator.
You may also think of this as a period where each node in the network must poll the coordinator.

Precondition I_AM_COORDINATOR must be defined.

Valid Values 1-4,294,967,296 ticks

Example Set 10 seconds as max data request period:
#define MAC_MAX_DATA_REQ_PERIOD (TICK_SECOND*10)

Note None
DS00965A-page 20  2004 Microchip Technology Inc.

AN965
Option Name MAX_HEAP_SIZE

Purpose Defines the maximum indirect transmit frame buffer size. The coordinator based on the
Microchip Stack uses dynamic memory manager to allocate individual data frames within the
indirect transmit frame buffer.

Precondition None

Valid Values 128+. Maximum value depends on available RAM.

Example Set 256 bytes big heap size:
#define MAX_HEAP_SIZE (256)

Note This is used by coordinator node only (i.e., I_AM_COORDINATOR is defined).
The exact heap size depends on the MAX_DATA_REQ_PERIOD, the average size of frames and
total number of nodes in a network. A network with longer MAX_DATA_REQ_PERIOD, more
nodes and longer frames should have larger heap size. Typically, the heap size must be large
enough to hold a typical number of frames until they are read by intended recipients. If C18 is in
use, you must modify the linker script file and use the program to define a heap larger than
256 bytes.

Option Name MAX_NEIGHBORS

Purpose Defines the maximum number of nodes supported by this coordinator.

Precondition I_AM_COORDINATOR must be defined.

Valid Values 2+. Maximum value depends on the available program memory. Each additional neighbor
consumes 12 bytes of program memory.

Example Set maximum number of nodes supported in this network:
#define MAX_NEIGHBORS (10)

Note This is used by the coordinator node only (i.e., I_AM_COORDINATOR is defined).
Depending on the total number of nodes and how often they poll the coordinator, you may need
to increase clock frequency of the coordinator to keep up with increased processing
requirements.

Option Name MAX_BINDINGS

Purpose Defines the maximum number of binding requests (binding table size) supported by this
coordinator.

Precondition I_AM_COORDINATOR must be defined.

Valid Values 2-255.
Maximum value depends on available program memory. Each additional binding entry
consumes 12 bytes of program memory.

Example Set maximum binding table size of 10:
#define MAX_BINDINGS (10)

Note This is used by coordinator node only (i.e., I_AM_COORDINATOR is defined).
There may be multiple binding entry per node. Exact binding table size would depend on the
number of nodes in the network and number of binding requests per node.
 2004 Microchip Technology Inc. DS00965A-page 21

AN965
Integrating Your Application

After modifying the compile time configurations as
required by your application, the next step would be to
modify your main application to initialize and run a
Stack state machine. If you are developing a
coordinator node, you should use the
DemoZCoordApp.c file as a reference. For an RFD
node, use the DemoZRFDApp.c file.

CALLBACK FUNCTIONS

In addition to standard API calls, your application must
also implement a number of callback functions. Call-
back functions reside in the main application source
files. The Stack calls these callback functions to notify
or confer with the application before making any appli-
cation-specific decision. All callback function names
are prefixed with “App” to signify callback functions.
The following section discusses each callback function
in more detail.

AppOkayToUseChannel

This callback function asks main application if it should use given channel.

Syntax

BOOL AppOkayToUseChannel(BYTE channel)

Parameters

channel [in]

Channel number that needs to be selected. This value depends on the frequency of bands:

For 2.4 GHz, 11-26

For 915 MHz, 1-10

For 868 MHz, 0

Return Values

TRUE if application wants to use given channel

FALSE, if otherwise

Precondition

None

Side Effects

None

Note

Application must implement this callback function even if it uses all channels in its frequency band. When an application
returns FALSE, the Stack will automatically call this function with next channel until the application returns TRUE.

Example

BOOL AppOkayToUseChannel(BYTE channel)
{

// We are operating in 2.4 GHz band and we only want to use channel 11-15
return (channel <= 15);

}

DS00965A-page 22  2004 Microchip Technology Inc.

AN965
AppMACFrameReceived

This callback function notifies the application that a new valid data frame is received. This is just a notification – the
actual frame may or may not be processed. Application may use this notice to blink an LED or other visual indicator.

Syntax

void AppMACFrameReceived(void)

Parameters

None

Return Values

None

Precondition

None

Side Effects

None

Note

None

Example

void AppMACFrameReceived(void)
{

// RD1 LED is used to indicate receive activities
RD1 = 1;
// Assume that LED will be turned off by the timer interrupt.

}

 2004 Microchip Technology Inc. DS00965A-page 23

AN965
AppMACFrameTransmitted

This callback function notifies the application that a data frame has just been transmitted. Application may use this notice
to blink an LED or other visual indicator.

Syntax

void AppMACFrameTransmitted(void)

Parameters

None

Return Values

None

Precondition

None

Side Effects

None

Note

None

Example

void AppMACFrameTransmitted(void)
{

// RD1 LED is used to indicate transmit activities
RD1 = 1;
// Assume that LED will be turned off by the timer interrupt.

}

DS00965A-page 24  2004 Microchip Technology Inc.

AN965
AppMACFrameTimeOutOccurred

This callback function notifies the application that a remote node did not send Acknowledgement within
MAC_ACK_WAIT_DURATION. Application may use this notice to blink an LED or other visual indicator.

Syntax

void AppMACFrameTimeOutOccurred(void)

Parameters

None

Return Values

None

Precondition

None

Side Effects

None

Note

None

Example

void AppMACFrameTimeOutOccurred(void)
{

// RD2 LED is used to indicate timeout conditions
RD2 = 1;
// Assume the LED will be turned off by the timer interrupt.

}

 2004 Microchip Technology Inc. DS00965A-page 25

AN965
AppOkayToAssociate

This is a callback function to the main application. When an end device is attempting to join an available network, the
Stack would call this function when it finds a coordinator in its radio sphere. In one radio sphere, there could be more
than one coordinator on different channels; in which case, the Stack would repeatedly find those coordinators and call
this function for application’s approval before requesting to join that specific coordinator. The application may decide to
accumulate all nearby coordinators before selecting a specific one to associate.

This callback is available only when I_AM_END_DEVICE is defined.

Syntax

BOOL AppOkayToAssociate(void)

Parameters

None

Return Values

TRUE, the application wants to associate with the current coordinator. Application may check information of current
coordinator by accessing PANDesc variable structure defined in MAC.h file.

FALSE, if otherwise. In this case, the Stack would continue to look for a new coordinator by automatically switching to
next available channel.

Precondition

None

Side Effects

None

Note

None

Example

// Callback resides in main application source file.
BOOL AppOkayToAssociate(void)
{

// Let’s say that we will associate with a coordinator whose first three bytes
// of its MAC is same as mine (i.e. it belongs to my devices)
if (PANDesc.CoordAddress.longAddr.v[0] == macInfo.longAddr.v[0] &&
 PANDesc.CoordAddress.longAddr.v[1] == macInfo.longAddr.v[1] &&
 PANDesc.CoordAddress.longAddr.v[2] == macInfo.longAddr.v[2])

return TRUE;
else

return FALSE;
}

DS00965A-page 26  2004 Microchip Technology Inc.

AN965
AppOkayToAcceptThisNode

This callback function asks the main application if it wants to accept given node into its network. The main application
may implement its private selection criteria to allow new nodes to join its network.

This callback is available only when I_AM_COORDINATOR is defined.

Syntax
BOOL AppOkayToAcceptThisNode(LONG_ADDR *longAddr)

Parameters

longAddr [in]

Pointer to a 64-bit MAC address of node who wants to join this network.

Return Values

TRUE, if application wants to allow the given node to join its network

FALSE, if otherwise

Precondition

None

Side Effects

None

Note

None

Example

// Callback resides in main application source file.
BOOL AppOkayToAcceptThisNode(LONG_ADDR *longAddr)
{

// Let’s say that we will only allow nodes, whose first three bytes of its MAC
// is same as ours (i.e. it belongs to my devices)
if (longAddr->v[0] == macInfo.longAddr.v[0] &&
 longAddr->v[1] == macInfo.longAddr.v[1] &&
 longAddr->v[2] == macInfo.longAddr.v[2])

return TRUE;
else

return FALSE;
}

 2004 Microchip Technology Inc. DS00965A-page 27

AN965
AppNewNodeJoined

This callback function notifies the main application that a new node has just joined its network.

This callback is available only when I_AM_COORDINATOR is defined.

Syntax

void AppNewNodeJoined(LONG_ADDR *nodeAddr, BOOL bIsRejoined)

Parameters

nodeAddr [in]

Pointer to a 64-bit MAC address of node who has just joined the network.

bIsRejoined [in]

Indicates if this is a familiar node or new node.

Return Values

None

Precondition

None

Side Effects

None

Note

When a new node joins the network, a new entry is created into neighbor table. However, the entry is not fully saved
until the APLCommitTableChanges function is called. An application may not always want to allow a new node to join
its network. The coordinator may be put in a special mode to allow a new node to join its network. To provide this
flexibility, the Microchip Stack requires that you call APLCommitTableChanges() to commit the actual association
request. Exact decision as to when to call this function depends on your application logic.

Example

// Callback resides in main application source file.
void NewNodeJoined(LONG_ADDR *nodeAddr, BOOL bIsRejoined)
{

// If this node is new, save its association information to NVM.
if (bIsRejoined == FALSE)
{

APLCommitTableChanges();
}
// Else don’t do anything.

}

DS00965A-page 28  2004 Microchip Technology Inc.

AN965
AppNodeLeft

This callback function notifies the main application that a familiar node has just left the network.

This callback is available only when I_AM_COORDINATOR is defined.

Syntax

void AppNodeLeft(LONG_ADDR *nodeAddr)

Parameters

nodeAddr [in]

Pointer to a 64-bit MAC address of node who has just left the network.

Return Values

None

Precondition

None

Side Effects

None

Note

When a new node leaves the network, the corresponding association and binding table entries must be removed.
Once associated entries are removed, the changes must be committed to permanently save the changes.

Example

// Callback resides in main application source file.
void AppNodeLeft(LONG_ADDR *nodeAddr)
{

// Before this function was called, the stack has already deleted table entries
// for this node. We just need to commit the changes.
APLCommitTableChanges();

}

 2004 Microchip Technology Inc. DS00965A-page 29

AN965
ZigBee PROTOCOL OVERVIEW

ZigBee is a standard wireless network protocol
designed for low rate control networks. Some of the
applications for the ZigBee protocol include building
automation networks, building security systems,
industrial control networks, remote meter reading and
PC peripherals. The following sections provide a brief
overview of the ZigBee protocol that is relevant in
understanding Microchip Stack functionality. Interested
readers should refer to the ZigBee web site
(www.zigbee.org) for more information.

IEEE 802.15.4

The ZigBee protocol uses IEEE 802.15.4 specifications
as its Medium Access Layer (MAC) and Physical Layer
(PHY). The IEEE 802.15.4 defines a total of three
frequency bands of operations: 2.4 GHz, 915 MHz and
868 MHz. Each frequency band offers a fixed number
of channels. For example, the 2.4 GHz frequency band
offers a total of 16 channels (channel 11-26), 915 MHz
offers 10 channels (channel 1-10) and 868 MHz offers
1 channel (channel 0).

The bit rate of the protocol depends on the selection of
frequency of operation. The 2.4 GHz band provides
250 kbps, 915 MHz provides 40 kbps and 868 MHz
provides a 20 kbps data rate. The actual data through-
put would be less than the specified bit rate due to the
packet overhead and processing delays.

The maximum length of an IEEE 802.15.4 MAC packet
is 127 bytes. Each packet consists of header bytes and
a 16-bit CRC value.

The 16-bit CRC value verifies the frame integrity. In
addition, IEEE 802.15.4 optionally uses an Acknowl-
edged data transfer mechanism. With this method, all
frames with a special ACK flag set are Acknowledged
by its receiver. This makes sure that a frame is in fact
delivered. If the frame is transmitted with an ACK flag
set and the Acknowledgement is not received within a
certain time-out period, the transmitter will retry the
transmission for a fixed number of times before declar-
ing an error. It is important to note that the reception of
an Acknowledgement simply indicates that a frame
was properly received by the MAC layer. It does not,
however, indicate that the frame was processed cor-
rectly. It is possible that the MAC layer of the receiving
node received and Acknowledged a frame correctly,
but due to the lack of processing resources, a frame
might be discarded by upper layers. As a result, many
of the upper layers and application require additional
Acknowledgement response.

Network Configurations

A ZigBee wireless network may assume many types of
configurations. A star network configuration consists of
one coordinator node (a “master”) and one or more end
devices (“slaves”). The coordinator is a special variant
of a Full Function Device (FFD) that implements a
larger set of ZigBee services. The end devices may be
FFD or a Reduced Function Device (RFD). An RFD is
the smallest and simplest ZigBee node. It implements
only a minimal set of ZigBee services. In a star network,
all end devices communicate to the coordinator only. If
an end device needs to transfer data to another end
device, it sends its data to the coordinator and the coor-
dinator, in turn, forwards the data to the intended
receiver end device.

In addition to the star network, a ZigBee network may
also assume peer-to-peer, cluster, or mesh network
configurations. The cluster and mesh network are also
known as a multi-hop network, due to their abilities to
route packets between multiple networks, while the star
network is called a single-hop network.

As with any network, a ZigBee network is a multi-
access network, meaning that all nodes in a network
have equal access to the medium of communication.
There are two types of multi-access mechanisms. In a
non-beacon enabled network, all nodes in a network
are allowed to transmit at any time as long as the
channel is Idle. In a beacon enabled network, nodes
are allowed to transmit in predefined time slots only.
The coordinator periodically begins with a superframe
identified as a beacon frame and all nodes in the
network are expected to synchronize to this frame.
Each node is assigned a specific slot in the superframe
during which it is allowed to transmit and receive its
data. A superframe may also contain a common slot
during which all nodes compete to access the channel.

The current version of the Microchip Stack supports
non-beacon star network configuration only.
DS00965A-page 30  2004 Microchip Technology Inc.

AN965
Network Association

ZigBee networks can be ad-hoc, meaning that a new
network is formed and unformed as needed. In a star
network configuration, end devices would always
search for a network before they can perform any data
transfer. A new network is first established by a coordi-
nator. On start-up, a coordinator searches for other
coordinators nearby and if none is found, it establishes
its own network and selects a unique 16-bit PAN ID.
Once a new network is established, one or more end
devices are allowed to associate with the network. The
exact decision to allow or disallow new associations
depends on the coordinator.

Once a network is formed, it is possible that due to the
physical changes, more than one network may overlap
and a PAN ID conflict may arise. In that situation, a
coordinator may initiate a PAN ID conflict resolution
procedure and one of the coordinators would change
its PAN ID and/or channel. The affected coordinator
would instruct all of its end devices to make the neces-
sary changes. The current version of the Microchip
Stack does not support PAN ID conflict resolution.

Depending on system requirements, a coordinator may
store all of the network associations in nonvolatile
memory, called a neighbor table. In order to connect to
a network, an end device may either execute the
orphan notification procedure to locate its previously
associated network or execute the association proce-
dure to join a new network. In the case of the orphan
notification procedure, the coordinator will recognize a
previously associated end device by looking up its
neighbor table.

Once associated to a network, an end device may
choose to disassociate from the network by performing
the disassociate procedure. If required, a coordinator
itself may also initiate a disassociate procedure to force
a node to leave the network.

The current version of the Microchip Stack supports
new association and orphan notification procedures. It
only supports a network leave procedure initiated by an
end device.

Endpoints, Interfaces, Clusters,
Attributes and Profiles

A typical ZigBee node may support multiple features
and functionality. For example, an I/O node may have
multiple digital and analog inputs/outputs. Some of the
digital inputs may be used by a remote controller node
and others may be used by another remote controller
node. This arrangement creates a truly distributed
control network. To facilitate data transfer between the
I/O node and two controller nodes, the applications in
all nodes must maintain multiple data links. In order to
reduce cost, a ZigBee node uses only one radio chan-
nel and multiple endpoint/interfaces to create multiple
virtual links or channels.

One ZigBee node supports 31 endpoints (numbered
0-31) and 8 interfaces (numbered 0-7). The endpoint 0
is reserved for device configuration and endpoint 31 is
reserved for broadcasts only. This leaves a total of
30 endpoints for application use. For each endpoint,
there can be a total of 8 interfaces. Thus, in reality, an
application may have up to 240 virtual channels in one
physical channel.

A typical ZigBee node would also have many attributes.
For example, our I/O node contains attributes called
digital input #1, digital input #2, analog input #1, etc.
Each attribute would have its own value. For example,
the digital input #1 attribute may have a value of ‘1’ or ‘0’.
A collection of attributes is called a cluster. Each cluster
is assigned a unique cluster ID in the entire network.
Each cluster may have up to 65,536 attributes.

The ZigBee protocol also defines a term called profile. A
profile is synonymous to the description of a distributed
application. It describes a distributed application in terms
of the packets it must handle and actions it must per-
form. A profile is described using a descriptor, which is
nothing but a complex structure of various values. It is
the profile that makes ZigBee devices interoperable.
The ZigBee Alliance has defined many standard profiles,
such as remote control switch profile, light sensor profile,
etc. Any node that conforms to one of these standard
profiles will be interoperable with other nodes imple-
menting the same profile. The current version of the
Microchip Stack does not provide any standard profile
functionality. If required, you may easily write a coopera-
tive task function that implements the desired profile.
You may also create your own custom profile (or distrib-
uted application) that works with your proprietary nodes
only. The demo application provided with this application
note implements a custom distributed application of a
remote controlled LED, where an LED of one node is
controlled by a switch on another node. Each profile can
define up to 256 clusters and as we saw earlier, each
cluster can have up to 65,536 attributes. This flexibility
allows a node to have a very large number of attributes
(or I/O points).

Endpoint Binding

As mentioned earlier, end devices in a star network
always communicate to the coordinator only. The coor-
dinator is responsible for forwarding the data packet
sent from an endpoint from one node to the appropriate
endpoint(s) in the receiving end device. As you might
have guessed, when a new network is established, the
coordinator must be told how to create source and
destination endpoint links. The ZigBee protocol defines
a special procedure called endpoint binding. As a part
of the binding process, a remote network/device
manager-like node may ask the coordinator to modify
its binding table. The coordinator node maintains a
binding table that essentially contains a logical link
between two or more endpoints. Each link is uniquely
defined by its source endpoint and cluster ID.
 2004 Microchip Technology Inc. DS00965A-page 31

AN965
For example, if the data from digital input #1 of our I/O
node needs to be sent to control channel #1 of the
controller node, we must ask the coordinator to create a
binding table entry that consists of digital input #1 end-
point of the I/O node as a source and control channel #1
of the controller node as a destination. Once a binding
table entry is created, any time the I/O node sends data
from its digital input #1 endpoint, the coordinator node
will look up its binding table and forward the packet to the
control channel #1 endpoint of the controller node. Both
digital input #1 and control channel #1 will share a
common cluster ID. Depending on how the binding table
is created, it is possible to multicast data from one end-
point to multiple endpoints on multiple nodes. The
current version of the Microchip Stack does not support
such multicast binding table entries.

The ZigBee protocol defines a special software object,
called the ZigBee Device Object (ZDO), that provides
binding services among other services. Only the ZDO
running on the coordinator will provide the binding
services. A remote network/device manager would
issue a special binding request directed to the ZDO
(endpoint 0) to create or modify a binding table entry.
As per the ZigBee specifications, a PC or other high-
end controller running special ZigBee node software
may act as a network manager.

If you do not want to create or use a special network
manager node, you may write your own custom binding
services that simplify the binding procedure. The demo
applications included with this application note imple-
ment a simple custom binding method. It enables each
node to send its own binding request to the coordinator
node to the endpoint 0 and defines its own custom
cluster ID. For more information, please see the
CUSTOM_DEMO_BIND cluster ID in the ZDO.c file.
According to this custom binding procedure, the end
device must be in Configuration mode to send binding
requests. The coordinator can receive and originate its
own binding requests in normal mode of execution.

When a certain sequence of switch presses is detected,
the end device sends out a special binary data structure
using the CUSTOM_DEMO_BIND as a cluster ID (refer to
“Configuring Demo Applications” to learn about the
Configuration mode and binding sequence). It directly
sends the binding request packet to the endpoint 0 of the
coordinator. The ZDO in the demo coordinator receives
the packet identified as the CUSTOM_DEMO_BIND
cluster ID and delegates the processing to the
ProcessCustomBind function. This function is actually
implemented in the DemoCoordApp.c file. You may
easily follow the execution logic of the
ProcessCustomBind function to fully understand the
custom binding concept. You may use this custom
binding logic as it is or write your own using it as a
reference.

Data Transfer Mechanism

Depending on the type of network, exact mechanisms
to transfer data to and from the end device differ. In a
non-beacon star network, when an end device wants to
send a data frame, it simply waits for the channel to
become idle. Upon detecting an Idle channel condition,
it transmits its frame to the coordinator. If a coordinator
wants to send data to an end device, it holds the data
frame in its transmit buffer until the intended end device
explicitly polls for the data. This method ensures that
the receiver of the end device is turned ON and it is
capable of receiving data from the coordinator.

In a peer-to-peer network, each node must either keep
their receiver ON all the time or agree upon an interval
period during which they will switch ON their receivers.
This will allow a node to transmit a data frame and
ensure that the frame will be received by the other
node.

The fact that the end device must poll the coordinator
for its data, rather than keep its receiver ON, allows the
end devices to lower their power requirement. Depend-
ing on the application requirements, an end device may
spend most of its time sleeping and only periodically
wake-up to transmit or receive data. The one disad-
vantage to this approach is that the coordinator must
hold all data frames in its internal buffer until the
intended end device wakes up and polls for the data. If
a network contains many end devices that sleep for
long time, the coordinator must keep the data frame for
that long period. Depending on the number of nodes
and rate of data frame exchanges, this would drasti-
cally increase the coordinator RAM requirements. A
coordinator may selectively decide to hold a specific
frame for a long time, or a short time, based on the
device descriptor for the end device. The ZigBee
protocol requires that all end devices will maintain
various descriptors that describe various aspects of
their features and capabilities. The current version of
the Microchip Stack does not support descriptors.
DS00965A-page 32  2004 Microchip Technology Inc.

AN965
STACK ARCHITECTURE

The Microchip Stack is written in the C programming
language, intended for both MPLAB C18 and Hi-Tech
PICC-18 compilers. Depending on which is used, the
source files automatically make the required changes.
The Microchip Stack is designed to run on Microchip’s
PIC18F family of microcontrollers only. The Microchip
Stack uses internal Flash program memory to store its
configurable MAC address, network table and binding
table. Consequently, you must use a self-
programmable Flash memory microcontroller. If
required, you may modify the Nonvolatile Memory
(NVM) routines to support any other type of NVM and
not use a self-programmable microcontroller. In
addition, the Stack is targeted to run on the PICDEM Z
demonstration board. However, it can be easily ported
to any hardware equipped with a compatible
microcontroller.

FIGURE 2: MICROCHIP STACK
ARCHITECTURE

Stack Layers

The Microchip Stack divides its logic into multiple layers
as defined by the ZigBee specification. The code
implementing each layer resides in a separate source
file, while the services and Application Programming
Interfaces (APIs) are defined in the include file.

The current version of the Stack does not implement a
security layer. Each layer defines a set of easy to
understand functions to its immediate upper layer. To
create an abstraction and modularity, a top-level layer
always interacts with a layer immediately below it
through well-defined APIs. A C header file for a specific
layer (zAPS.h, for example) defines all APIs supported
by that specific layer. With that in mind, a user
application would always interact with the Application
Programming Support (APS) layer and Application
Layer (APL). Many of the APIs provided by each layer
are simply C macros that call functions one layer down.
This method avoids the typical overhead associated
with modularization.

Stack APIs

The Microchip Stack consists of many modules. A
typical application would always interface to the
Application Layer (APL) and the Application Support
Sublayer (APS). However, if required, you may easily
interface to other modules and/or customize them as
needed. The following sections provide detailed API
descriptions of the APL and APS modules only. If
required, you may learn the details of APIs for other
modules in their respective header files. For up-to-date
information, you should refer to the actual source files.

APPLICATION LAYER (APL)

The APL module provides the high-level Stack
management functions. A user application would use
this module to manage the Stack functionality. The
zAPL.c file implements the APL logic and the zAPL.h
file defines the APIs supported by the APL module. A
user application would include the zAPL.h header file
to access its APIs.

User Application ZDO (ZDO.*)

APL (zAPL.*) APS (zAPS.*)

NWK (zNWK.*)

MAC (zMAC.*)

PHY (zPHY.h)
 2004 Microchip Technology Inc. DS00965A-page 33

AN965
APLInit

This function initializes all Stack modules. It also initializes APL state machine.

Syntax

void APLInit(void)

Parameters

None

Return Values

None

Precondition

None

Side Effects

None

Note

On POR, RF transceiver is powered down. You must call APLEnable() to enable RF transceiver.

Example

// Initialize stack
APLInit();
DS00965A-page 34  2004 Microchip Technology Inc.

AN965
APLIsIdle

This macro is used to detect if it is okay to disable APL and other modules.

Syntax

BOOL APLIsIdle(void)

Parameters

None

Return Values

TRUE, if APL is Idle and can be disabled

FALSE, if otherwise

Precondition

APLInit() is called.

Side Effects

None

Example

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// Enter into main application loop
while(1)
{

// Let stack execute
ZAPLTask();

// If stack is idle, disable it and put micro to sleep
if (APLIsIdle())
{

APLDisable();

// May be now the micro should go to sleep...
SLEEP();

...
}

 2004 Microchip Technology Inc. DS00965A-page 35

AN965
APLEnable

This macro is used to enable Stack modules and RF transceiver.

Syntax

void APLEnable(void)

Parameters

None

Return Values

None

Precondition

APLInit() is called.

Side Effects

None

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();
DS00965A-page 36  2004 Microchip Technology Inc.

AN965
APLDisable

This macro is used to disable RF transceiver and other Stack modules.

Syntax

void APLDisable(void)

Parameters

None

Return Values

None

Precondition

I_AM_END_DEVICE is defined and APLInit() is called.

Side Effects

All pending receptions are lost.

Note

Only end devices should disable RF transceiver to conserve power. Coordinator and router devices should always keep
their RF transceiver ON.

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// Enter into main application loop
while(1)
{

// Let stack execute
ZAPLTask();

// If stack is idle, disable it and put micro to sleep
if (APLIsIdle())
{

APLDisable();

// May be now the micro should go to sleep...
SLEEP();

...
}

 2004 Microchip Technology Inc. DS00965A-page 37

AN965
APLTask

This is a cooperative task function that calls each Stack module task function sequentially. Calls to this function allow
the Stack to fetch and process incoming data packets.

Syntax

BOOL APLTask(void)

Parameters

None

Return Values

TRUE, if the function has completed its task and is ready in Idle state

FALSE, if otherwise

Precondition

APLInit() is called.

Side Effects

None

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

// Now perform your app task(s)
ProcessIO();

// If stack is idle, disable it and put micro to sleep
if (APSIsIdle())
{

APSDisable();

// May be now the micro should go to sleep...
SLEEP();

...
}

DS00965A-page 38  2004 Microchip Technology Inc.

AN965
APLNetworkInit

This macro starts the new network initialization. You must repeatedly call APLIsNetworkInitComplete to let the
state machine run and determine if network initialization is complete.

Syntax

void APLNetworkInit(void)

Parameters

None

Return Values

None

Precondition

I_AM_COORDINATOR is defined and APLInit() is called.

Side Effects

None

Note

Must call APLIsNetworkInitComplete() to determine if network initialization is complete.

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// A coordinator will always try to set its own network.
APLNetworkInit();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

if (APLIsNetworkInitComplete())
...

}

 2004 Microchip Technology Inc. DS00965A-page 39

AN965
APLIsNetworkInitComplete

This macro executes the network initialization state machine and indicates if network initialization is complete. This is a
cooperative task – you must call it repeatedly until it returns TRUE.

Syntax

BOOL APLIsNetworkInit(void)

Parameters

None

Return Values

TRUE, if network initialization is complete. TRUE does not indicate success, it simply means that network initialization is
complete. You must call GetLastZError() to determine if it was successful or not.

FALSE, if otherwise

Precondition

I_AM_COORDINATOR is defined and APLNetworkInit() is called.

Side Effects

None

Note

A return value of TRUE simply indicates that a network initialization process is complete. An initialization process may
be complete because either it has succeeded or failed. Call GetLastZError() to determine if process was successful.

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// A coordinator will always try to set its own network.
APLNetworkInit();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

if (APLIsNetworkInitComplete())
{

// Check to see if it was successful
if (GetLastZError() == ZCODE_NO_ERROR)
{

// A network is established
...

}
else
{

// New network could not be established
// Do application specific recovery

...
}

DS00965A-page 40  2004 Microchip Technology Inc.

AN965
APLNetworkForm

This macro instructs network layer to form a new network on the current channel.

Syntax

void APLNetworkForm(void)

Parameters

None

Return Values

None

Precondition

I_AM_COORDINATOR is defined and APLIsNetworkInitCompleted() = TRUE and
GetLastZError() = ZCODE_NO_ERROR.

Side Effects

None

Note

None

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// A coordinator will always try to set its own network.
APLNetworkInit();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

if (APLIsNetworkInitComplete())
{

// Check to see if it was successful
if (GetLastZError() == ZCODE_NO_ERROR)
{

// Network init is successful – form it
APLNetworkForm();
...

}
else
{

// New network could not be established
// Do application specific recovery

...
}

 2004 Microchip Technology Inc. DS00965A-page 41

AN965
APLPermitAssociation

This macro allows end devices to associate to network.

Syntax

void APLPermitAssociation(void)

Parameters

None

Return Values

None

Precondition

I_AM_COORDINATOR is defined and APLNetworkForm() is called.

Side Effects

None

Note

Depending on the application requirements, you may or may not want to allow a new device to join your network.

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// A coordinator will always try to set its own network.
APLNetworkInit();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

...

// At this point, a new network is formed.

// If in config mode, allow new associations
if (bInConfigMode)
{

APLPermitAssociation();
}

...
}

DS00965A-page 42  2004 Microchip Technology Inc.

AN965
APLDisableAssociation

This macro disallows new devices from joining the network. This is complementary of APLPermitAssociation.

Syntax

void APLDisableAssociation(void)

Parameters

None

Return Values

None

Precondition

I_AM_COORDINATOR is defined and APLNetworkForm() is called.

Side Effects

None

Note

When running in normal mode, a coordinator may not want to allow any new devices to join the network. In this case,
you would call this function to stop any device from joining the network.

When a network is first formed, new associations are disabled by default.

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// A coordinator will always try to set its own network.
APLNetworkInit();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

...

// At this point, a new network is formed.

// If in config mode, allow new associations
if (bInConfigMode)

APLPermitAssociation();
else

APLDisableAssocation();

...
 2004 Microchip Technology Inc. DS00965A-page 43

AN965
APLCommitTableChanges

This macro saves all association and binding requests received so far and writes them in Flash program memory. Once
associations are committed, the coordinator would remember its nodes and allow them to rejoin the network in the
future.

Syntax

void APLCommitAssociation(void)

Parameters

None

Return Values

None

Precondition

I_AM_COORDINATOR is defined.

Side Effects

Modifies the network and binding table information header.

Note

Once APLPermitAssociation is called, all new association requests are automatically written into Flash memory.
However, they are marked valid only after they are committed using this macro. Once associations are committed, they
are marked valid and from then on, corresponding end devices will be allowed to rejoin the network in the future.

Example

...

// Initialize stack
APLInit();
// Enable RF transceiver
APLEnable();
// A coordinator will always try to set its own network.
APLNetworkInit();
// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

...

// At this point, a new network is formed.

// If in config mode, allow new associations
if (bInDebugMode)

APLPermitAssociation();
else

APLDisableAssocation();

// After some predetermined time, stop accepting
// new association requests
if (bAssocTimeOut)
{

APLCommitAssociations();
}
...
DS00965A-page 44  2004 Microchip Technology Inc.

AN965
APLJoin

This macro is used by an end device to join to one of the many potentially available networks. This macro simply starts
the “Join” state machine. You must repeatedly call APLIsJoinComplete to allow the state machine to execute and
determine if the join is complete.

This macro is available only when I_AM_END_DEVICE is defined.

Syntax

void APLJoin(void)

Parameters

None

Return Values

None

Precondition

I_AM_END_DEVICE is defined.

Side Effects

None

Note

An end device must always join a network before it will be allowed to participate in network communication. In a typical
system, you may not want your end device to join any available network but a familiar one. In that case, the end device
will attempt to join a new network in special “Configuration” mode only. Once an end device becomes a member of a
network, it would simply “rejoin” that network in the future.

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// If in special mode, start the join procedure
if (bInConfigMode)

NWKJoin();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

// Check to see if join is complete
if (bInConfigMode)
{

if (APLIsJoinComplete())
{

...
}

 2004 Microchip Technology Inc. DS00965A-page 45

AN965
APLIsJoinComplete

This macro is used by the end device to determine if a previously started join process is complete.

Syntax

BOOL APLIsJoinComplete(void)

Parameters

None

Return Values

TRUE, if join process is complete – must call GetLastZError() to determine if it was successful

FALSE, if otherwise

Precondition

I_AM_END_DEVICE is defined and APLJoin() is called.

Side Effects

None

Note

A return value of TRUE simply indicates that a join process is complete. A join process may be complete because either
it has succeeded or failed. Call GetLastZError() to determine if process was successful.

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// If in special mode, start the join procedure
if (bInDebugMode)

NWKJoin();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

// Check to see if join is complete
if (bInDebugMode)
{

if (APLIsJoinComplete())
{

// Check to see if it is successful
if (GetLastZError() == ZCODE_NO_ERROR)
{

...
}

DS00965A-page 46  2004 Microchip Technology Inc.

AN965
APLRejoin

This macro is used by the end device to start the rejoin process. When running in normal mode, an end device should
rejoin to a previously joined network unless your application requires it to find and join a new network on every start-up.

Syntax

void APLRejoin(void)

Parameters

None

Return Values

None

Precondition

I_AM_END_DEVICE is defined and APLInit() and APLEnable() are called.

Side Effects

Marks that the node is not currently associated.

Note

In normal mode, an end device would simply rejoin the already joined network. A device must have joined at least one
network before it can successfully rejoin a network. In addition, the previously joined network must be in its radio sphere
to be able to successfully rejoin it.

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// If in special mode, start the join procedure
if (bInConfigMode)

APLJoin();

else
// Else initiate rejoin process.
APLRejoin();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

...
}

 2004 Microchip Technology Inc. DS00965A-page 47

AN965
APLIsRejoinComplete

This macro is used by the end device to determine if a previously started rejoin process is complete. This is a
cooperative task; the end device must call this macro repeatedly.

Syntax

BOOL APLIsRejoinComplete(void)

Parameters

None

Return Values

TRUE, if rejoin process is complete. Call GetLastZError to determine the success/fail status.

FALSE, if otherwise

Precondition

I_AM_END_DEVICE is defined and APLRejoin() is called.

Side Effects

None

Note

To determine if this node successfully rejoined previously known network or not, call GetLastZError().

Example

...

// Initialize stack
APLInit();

// Enable RF transceiver
APLEnable();

// If in special mode, start the join procedure
if (bInConfigMode)

NWKJoin();

else
// Else initiate rejoin process.
NWKRejoin();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

if (APLIsRejoinComplete())
{

if (GetLastZError() == ZCODE_NO_ERROR)
{

// Successfully rejoined the network
...
DS00965A-page 48  2004 Microchip Technology Inc.

AN965
APLLeave

This macro is used by the end device to initiate the leave sequence from an existing network.

Syntax

void APLLeave(void)

Parameters

None

Return Values

None

Precondition

I_AM_END_DEVICE is defined.

Side Effects

None

Note

This macro simply sets up the state machine for leave procedure. You must repeatedly call APLIsLeaveComplete()
to complete the leave procedure.

Example

...

// Start the leave process.
APLLeave();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

if (APLIsLeaveComplete())
{

if (GetLastZError() == ZCODE_NO_ERROR)
{

// Successfully left the network
...
 2004 Microchip Technology Inc. DS00965A-page 49

AN965
APLIsLeaveComplete

This macro is used by the end device to determine if previously started leave process is complete or not.

Syntax

BOOL APLIsLeaveComplete(void)

Parameters

None

Return Values

TRUE, if leave process is complete

FALSE, if otherwise

Precondition

I_AM_END_DEVICE is defined.

Side Effects

None

Note

A return value of TRUE may not always mean that the leave attempt was successful. You must call GetLastZError()
to determine if leave was indeed successful.

Example

...

// Start the leave process.
APLLeave();

// Enter into main application loop
while(1)
{

// Let stack execute
APLTask();

if (APLIsLeaveComplete())
{

if (GetLastZError() == ZCODE_NO_ERROR)
{

// Successfully left the network
...
DS00965A-page 50  2004 Microchip Technology Inc.

AN965
APPLICATION SUPPORT SUBLAYER (APS)

The APS layer primarily provides the ZigBee endpoint
interface. An application would use this layer to open or
close one or more endpoints and retrieve or send the
data. It also provides primitives for Key Value Pair
(KVP) and Message (MSG) data transfer.

The APS layer also maintains the binding table. The
binding table provides a logical link between the
endpoint and cluster ID pair between two nodes in a
network. When a coordinator is first programmed, the
binding table is empty. The main application must call
the appropriate binding APIs to create new binding
entries. See the DemoCoordApp and DemoRFDApp
demo applications for working examples. The
Microchip APS layer stores binding tables into Flash
memory. The Flash programming routines are located
in the zNVM.c file. If required, you may replace NVM
routines with your NVM-specific routines to support
different types of NVM.

The APS layer also maintains an “indirect transmit
buffer” RAM to store indirect frames until they are
requested by intended recipients. According to the
ZigBee specification, in a star network, an RFD device
would always forward its data frame to the coordinator.

The RFD device may not know about the intended recip-
ient of that data frame. The exact recipient of a data
frame is determined by the binding table entry. Once the
coordinator receives the data frame, it looks up its
binding table to determine the intended recipient. If a
recipient exists for this data frame, it would place that
frame in its indirect transmit frame buffer until the
intended recipient explicitly requests it. Depending on
the frequency of requests, the coordinator must keep the
data frame in its indirect transmit frame buffer. The exact
time is defined by the MAC_MAX_DATA_REQ_PERIOD
compile time option defined in the zigbee.def file.
Note that the longer a node takes to request its data, the
longer the packet would need to remain in an indirect
transmit buffer. A longer data request time would require
a larger indirect buffer area. The indirect frame buffer
consists of a design time allocated fixed size of RAM
heap. The size of the buffer is defined by the
MAX_HEAP_SIZE compile time option in the
zigbee.def file. A new data frame is added by
dynamically allocating RAM from the indirect transmit
frame buffer. The dynamic memory management allows
the efficient use of an indirect transmit frame buffer area.
The dynamic memory management routines are located
in the SRAlloc.c file.

APSInit

This function initializes APS layer by clearing its internal data variables. A user application does not need to call this
function. Call to APLInit automatically calls this function.

Syntax

void APSInit(void)

Parameters

None

Return Values

None

Precondition

None

Side Effects

None

Note

None

Example

// Following is part of APLInit() in zAPL.c
APSInit();
...
 2004 Microchip Technology Inc. DS00965A-page 51

AN965
APSTask

This is an APS cooperative task function. Application does not have to call this function – it is automatically called when
application calls APLTask.

Syntax

BOOL APSTask(void)

Parameters

None

Return Values

TRUE, if there are no outstanding states to execute

FALSE, if otherwise

Precondition

None

Side Effects

None

Note

None

Example

// Following is part of APLTask() in zAPL.c
APSTask();
...
DS00965A-page 52  2004 Microchip Technology Inc.

AN965
APSDisable

This macro clears any outstanding endpoint receive flags and prepares APS module for processor Sleep. The
application does not have to call this macro directly – it is automatically called when APLDisable macro is called.

Syntax

void APSDisable(void)

Parameters

None

Return Values

None

Precondition

None

Side Effects

None

Note

None

Example

// Following is a definition of APLDisable macro
#define APLDisable() … APSDisable() …
 2004 Microchip Technology Inc. DS00965A-page 53

AN965
APSOpenEP

This function allows main application to open an endpoint. In ZigBee protocol, data is exchanged via endpoints.

Syntax

EP_HANDLE APSOpenEP(BYTE srcEP,
BYTE clusterID,
BYTE destEP,
BOOL bDirect)

Parameters

srcEP [in]

Indicates the source endpoint number – must be between 0-31.

clusterID [in]

Indicates the cluster ID to which endpoint is bound.

destEP [in]

Indicates the destination endpoint to which the source EP is connected. This value is used when bDirect is set
TRUE.

bDirect [in]

Indicates that this endpoint is a direct connection to the specified destination EP. The destination node depends on
how current endpoint will be bound.

Return Values

Handle to an opened endpoint. Application would use this handle to access this endpoint in future.

Precondition

APSInit() is already called.

Side Effects

Marks an empty endpoint as “in use” and total available endpoint count is decreased by one.

Note

The endpoint is synonymous to one end of a virtual channel. To complete the virtual channel, there would be two
endpoints – source and destination (i.e., one-to-one connection). In advanced applications, there may be more than one
endpoint (i.e., one-to-many connection), in which case, a data packet may be received by multiple receivers. The current
version of the Stack does not support one-to-many endpoints. In ZigBee terminology, a connection is defined by a
source endpoint and a cluster identifier (or cluster ID). The cluster ID is simply a number that identifies a collection of
data variables that will be exchanged over a virtual channel. You may also think of a cluster ID as an added virtual
channel within the original virtual channel. As a result, now you may have multiple cluster IDs for a given set of source
and destination endpoints, thus creating multiple virtual subchannels within one virtual channel. The virtual connection
may be established via a coordinator (i.e., indirect connection) or directly to a node (i.e., direct connection). The current
version of the Stack supports indirect connection and direct connection to/from an end device to the coordinator only.
You may not use this version of the Stack to establish peer-to-peer connection between two end devices. When a
connection is defined as direct (i.e., bDirect = TRUE), you must supply destination endpoint information. For indirect
connection (i.e., bDirect = FALSE), destination endpoint information is not necessary. The exact destination endpoint
will be defined by the binding process.

To complete the definition of a channel, we must also provide source and destination node address information. This
function automatically uses the current node address as the source node; however, the destination node address is not
defined. When you call this function, you are creating a part of a virtual channel that is missing the destination address
information. As per the ZigBee specification, the originator of the channel does not have to know the destination node
address. You must create a binding table entry into the coordinator node that binds the source endpoint from this node
to a destination endpoint on another node of your choice.

Example

EP_HANDLE hMyEP;
hMyEP = APSOpenEP(20, 5, 0, FALSE); // srcep = 20, clusterid = 5, destEP = N/A, Indirect
DS00965A-page 54  2004 Microchip Technology Inc.

AN965
APSSetEP

This function sets the given endpoint as an active endpoint. All subsequent function calls will operate on this (i.e., active)
endpoint.

Syntax

void APSSetEP(EP_HANDLE h)

Parameters

h [in]

Endpoint handle that is to be set active.

Return Values

None

Precondition

None

Side Effects

After this call, APSCloseEP(), APSPut(), APSBeginMSG(), APSBeginKVP() and other endpoint related functions
operate on given endpoint.

Note

None

Example

// Set hMyEP as active endpoint
APSSetEP(hMyEP);
...
 2004 Microchip Technology Inc. DS00965A-page 55

AN965
APSCloseEP

This function allows the main application to close an already open endpoint that is currently active.

Syntax

void APSCloseEP(void)

Parameters

None

Return Values

None

Precondition

APSSetEP() is called.

Side Effects

Marks given endpoint as free.

Note

None

Example

// Must first set the desired EP as an active to make sure that you close only that EP
APSSet(hMyEP);
// Close active endpoint
APSCloseEP();
...
DS00965A-page 56  2004 Microchip Technology Inc.

AN965
APSBeginMSG

This function begins MSG data frame. MSG is a special data transfer mechanism defined by the ZigBee specification.
The MSG format allows an application to transfer a stream of binary data bytes. MSG is useful for transferring a
proprietary data stream or file data. See the ZigBee specification for more detail.

Syntax

TRANS_ID APSBeginMSG(BYTE length)

Parameters

length [in]

Total number of bytes to be sent in this MSG frame.

Return Values

A sequential transaction ID to identify current MSG frame.

TRANS_ID_INVALID if there was an error beginning the MSG frame.

Precondition

APSSetEP() is called.

Side Effects

None

Note

Application must know the exact number of bytes it wants to send as part of the MSG service. After this function call,
The application must load actual data bytes using APSPut.

Example

// Set the active EP.
APSSetEP(hMyEP);

// Initiate MSG frame of 20 data bytes
myTransID = APSBeginMSG(20);
...
 2004 Microchip Technology Inc. DS00965A-page 57

AN965
APSBeginKVP

This function begins a Key Value Pair (KVP) data frame. KVP is a special data transfer mechanism defined by the
ZigBee specification. KVP allows the main application to transfer variable-value pair data. KVP is useful when the data
being exchanged is simple variable, value format. For example, a node with a temperature sensor may exchange
temperature channel and corresponding temperature value. Typically, KVP is used by the standard ZigBee profile
applications to standardize the format and the meaning of data transfer. See ZigBee specification for more detail.

Syntax

TRANS_ID APSBeginKVP(TRANS_TYPE type,
 TRANS_DATA dataType,
 WORD attribId)

Parameters

type [in]

Transaction type. Must be one of the following:

dataType[in]

Transaction data type. Must be one of the following:

attribId[in]

16-bit attribute ID that specifies specific attribute within the target node.

Return Values

Sequential transaction ID used to send this transaction. TRANS_ID_INVALID if there was an error beginning the KVP
frame.

Precondition

APSSetEP() is called.

Type Purpose

TRANS_SET Set a variable value

TRANS_EVENT Set an event

TRANS_GET_ACK Request an ACK

TRANS_SET_ACK Send an ACK

TRANS_EVENT_ACK Send an event ACK

TRANS_GET_RESP Send Get response

TRANS_SET_RESP Send Set response

TRANS_EVENT_RESP Send event response

Type Purpose

TRANS_NO_DATA There is no value

TRANS_UINT8 Contains 8-bit unsigned value

TRANS_INT8 Contains 8-bit signed value

TRANS_ERR An error has occurred

TRANS_UINT16 Contains 16-bit unsigned value

TRANS_INT16 Contains 16-bit signed value

TRANS_SEMI_PRECISE Contains 16-bit semi-precise value – based on IEEE 754

TRANS_ABS_TIME Contains 32-bit value – number of seconds passed since January 1, 2000
DS00965A-page 58  2004 Microchip Technology Inc.

AN965
Side Effects

This function does not start the frame transmission. You must call zero or more APSPut as per attribute value
requirement, followed by APSSend to begin the transmission.

Note

None

Example

// First of all make sure that desired EP is made active.
APSSetEP(hMyEP);

// Assume that current node has two attributes - ‘0’ meaning that switch is pushed and
// ‘1’ meaning that switch is open.
// We want to send our switch status to a remote node that is already properly bound.
// When we first opened the EP, we had already specified srcEP and clusterID.
// As a result, we just have to load the current attribute value
// Since the attribute itself explains the state of the switch, we will not transmit any
// data for this attribute. You may have an attribute (e.g. Temperature) that might
// assume different values. In that case, you will pass appropriate TRANS_DATA type and
// load corresponding value using APSPut().
APSBeginKVP(TRANS_SET, TRANS_NO_DATA, swValue);
...
 2004 Microchip Technology Inc. DS00965A-page 59

AN965
APSIsPutReady

This function is used by the application to determine if it is okay to load a new frame.

Syntax

BOOL APSIsPutReady(void)

Parameters

None

Return Values

TRUE, if it is okay to start loading a new frame

FALSE, if otherwise

Precondition

APSSetEP() is called.

Side Effects

None

Note

None

Example

// Set the active EP
APSSetEP(hMyEP);

// Check to see if we can load new frame
if (APSIsPutReady())
{

APSPut(0x55);
APSPut(0xaa);

}
...
DS00965A-page 60  2004 Microchip Technology Inc.

AN965
APSSetClusterID

This function sets the cluster ID associated for the current endpoint transmission.

Syntax

void APSSetClusterID(BYTE clusterID)

Parameters

clusterID[in]

Cluster ID to be set.

Return Values

None

Precondition

APSIsGetReady() = TRUE

Side Effects

None

Note

Endpoint number and cluster ID form a unique pair. ZigBee applications communicate using this unique pair. ZigBee
specification recommends that application maintain a binding entry for each such unique pair. If there exists an endpoint
that communicates using multiple cluster ID, the ZigBee specification recommends that application maintain multiple
binding entries even if they are all associated with one endpoint. To conserve RAM usage, the Microchip Stack, instead,
uses only one binding entry per an endpoint no matter how many cluster IDs it uses. As a result, if an endpoint uses
multiple cluster IDs, it must specifically set a cluster ID for each of its transmissions. Similarly, it would fetch the
cluster ID from a received frame and process it accordingly.

Example

// Set active EP
APSSetEP(hMyEP);

// Check to see if we can load new frame
if (APSIsPutReady())
{

// A cluster ID value is set when we first called APSOpenEP. However, if an EP
// uses multiple cluster ids to communicate, we would set cluster ID here.
APSSetClusterID(0x02);

APSPut(0x55);
APSPut(0xaa);

}
...
 2004 Microchip Technology Inc. DS00965A-page 61

AN965
APSPut

This function loads given byte into the current transmit buffer.

Syntax

void APSPut(BYTE v)

Parameters

v [in]

Data byte that is to be loaded into frame buffer.

Return Values

None

Precondition

APSIsPutReady() == TRUE

Side Effects

None

Note

This function simply loads the given bytes into the transmit buffer. You must call APSSend to begin the frame
transmission.

Example

// Set active EP
APSSetEP(hMyEP);

// Check to see if we can load new frame
if (APSIsPutReady())
{

APSPut(0x55);
APSPut(0xaa);

}
...
DS00965A-page 62  2004 Microchip Technology Inc.

AN965
APSPutArray

This function loads a given array of bytes into transmit buffer.

Syntax

void APSPutArray(BYTE *v, BYTE length)

Parameters

v [in]

Data bytes that are to be loaded into transmit buffer.

length [in]

Number of bytes to be loaded into transmit buffer.

Return Values

None

Precondition

APSIsPutReady() == TRUE

Side Effects

None

Note

This function simply loads the given bytes into the transmit buffer. You must call APSSend to begin the frame
transmission.

Example

// Set active EP
APSSetEP(hMyEP);

// Check to see if we can load new frame
if (APSIsPutReady())
{

// Prepare the array
myBuffer[0] = 0x55;
myBuffer[1] = 0xaa;

// Now load it.
APSPutArray(myBuffer, 2);

}
...
 2004 Microchip Technology Inc. DS00965A-page 63

AN965
APSSend

This function transmits the current transmit buffer.

Syntax

void APSSend(void)

Parameters

None

Return Values

None

Precondition

APSIsPutReady() == TRUE and at least one APSPut() or APSPutArray() is called.

Side Effects

None

Note

Once a frame is transmitted, its frame sequence number is held in the Acknowledgement queue to identify its
Acknowledgement frame. Caller must repeatedly call APSIsConfirmed to check for Acknowledgement and remove it
from queue after it is Acknowledged or timed out.

Example

// Set the active EP
APSSetEP(hMyEP);

// Check to see if we can load new frame
if (APSIsPutReady())
{

myBuffer[0] = 0x55;
myBuffer[1] = 0xaa;

APSPutArray(myBuffer, 2);

// Send it
APSSend();

}
...
DS00965A-page 64  2004 Microchip Technology Inc.

AN965
APSIsConfirmed

This function checks to see if active frame is Acknowledged by remote node.

Syntax

BOOL APSIsConfirmed(void)

Parameters

None

Return Values

TRUE, if active frame is Acknowledged

FALSE, if otherwise

Precondition

I_AM_END_DEVICE is defined and APSSetEP() is called.

Side Effects

None

Note

This function is available to end devices only. An end device sends all of its data frame to the coordinator and it must
wait for an Acknowledgment from the coordinator. If a coordinator sends data frame, it is immediately held in the indirect
transmit buffer until the intended recipient end device explicitly polls it. That is why when a coordinator sends data frame,
it is said to be Acknowledged immediately and there is no need to confirm it by calling APSIsConfirmed.

Example

// Set active EP
APSSetEP(hMyEP);

// Check to see if active frame is acknowledged.
if (APSIsConfirmed())
{

// Now remove it
APSRemoveFrame();

}
...
 2004 Microchip Technology Inc. DS00965A-page 65

AN965
APSIsTimedOut

This function checks to see if Acknowledgement time-out has occurred.

Syntax

BOOL APSIsTimedOut(void)

Parameters

None

Return Values

TRUE, if active frame is timed out

FALSE, if otherwise

Precondition

APSSend() is called.

Side Effects

None

Note

None

Example

// Set the active EP
APSSetEP(hMyEP);

// Check to see if active frame is timed out.
if (APSIsTimedOut())
{

// Now remove it
APSRemoveFrame();

}
...
DS00965A-page 66  2004 Microchip Technology Inc.

AN965
APSRemoveFrame

This macro removes the active frame from the Acknowledgement queue.

Syntax

void APSRemoveFrame(void)

Parameters

None

Return Values

None

Precondition

APSSend() is called.

Side Effects

None

Note

When a frame is first sent, its frame sequence number is stored in Acknowledgement queue managed by MAC layer.
When an Acknowledgement frame is received, the MAC layer compares its frame sequence number with items in
Acknowledgement queue. If a match is found, corresponding entry in queue is said to be confirmed. When a frame is
Acknowledged or timed out or not needed, the application must call this function to remove it from the queue.

Example

// Set the active EP
APSSetEP(hMyEP);

// Check to see if active frame is acknowledged.
if (APSIsConfirmed())
{

// Now remove it
APSRemoveFrame();

}
...
 2004 Microchip Technology Inc. DS00965A-page 67

AN965
APSIsGetReady

This function checks to see if the active endpoint has any receive data pending.

Syntax

BOOL APSIsGetReady(void)

Parameters

None

Return Values

TRUE, if some receive data is pending

FALSE, if otherwise

Precondition

APSSetEP() is called.

Side Effects

None

Note

None

Example

// Check to see if hMyEP has received any data
APSSetEP(hMyEP);
if (APSIsGetReady())
{

// Get it
myDataByte = APSGet();

...

// Now discard it
APSDiscardRx();

}
...
DS00965A-page 68  2004 Microchip Technology Inc.

AN965
APSGetDataLen

This function retrieves remaining data bytes in current receive frame associated with the active endpoint.

Syntax

BYTE APSGetDataLen(void)

Parameters

None

Return Values

Number of bytes remaining to be fetched.

Precondition

APSIsGetReady() = TRUE

Side Effects

None

Note

None

Example

// Check to see if hMyEP has received any data
APSSetEP(hMyEP);
if (APSIsGetReady())
{

// Get total data bytes in this frame
myDataLen = APSGetdataLen();

// Get it all
APSGetArray(myData, myDatLen);

...

// Now discard it
APSDiscardRx();

}
...
 2004 Microchip Technology Inc. DS00965A-page 69

AN965
APSGet

This function fetches one data byte from the receive buffer.

Syntax

BYTE APSGet(void)

Parameters

None

Return Values

Actual data byte that was fetched.

Precondition

APSIsGetReady() = TRUE

Side Effects

None

Note

None

Example

// Check to see if hMyEP has received any data
APSSetEP(hMyEP);
if (APSIsGetReady())
{

// Get it
myDataByte = APSGet();

...

// Now discard it
APSDiscardRx();

}
...
DS00965A-page 70  2004 Microchip Technology Inc.

AN965
APSGetArray

This function retrieves an array of data bytes from the receive buffer.

Syntax

BYTE APSGetArray(BYTE *buffer, BYTE count)

Parameters

buffer [out]

Buffer to hold the array of data.

count [in]

Total number of bytes to fetch.

Return Values

Actual number of bytes fetched.

Precondition

APSIsGetReady() = TRUE

Side Effects

None

Note

None

Example

// Check to see if hMyEP has received any data
APSSetEP(hMyEP);
if (APSIsGetReady())
{

// Get total data bytes in this frame
myDataLen = APSGetdataLen();

// Get it all
APSGetArray(myData, myDatLen);

...

// Now discard it
APSDiscardRx();

}
...
 2004 Microchip Technology Inc. DS00965A-page 71

AN965
APSDiscardRx

This function removes current received frame from the receive buffer.

Syntax

void APSDiscardRx(void)

Parameters

None

Return Values

None

Precondition

APSIsGetReady() = TRUE

Side Effects

None

Note

None

Example

// Check to see if hMyEP has received any data
APSSetEP(hMyEP);
if (APSIsGetReady())
{

// Get total data bytes in this frame
myDataLen = APSGetdataLen();

// Get it all
APSGetArray(myData, myDatLen);

...

// Now discard it
APSDiscardRx();

}
...
DS00965A-page 72  2004 Microchip Technology Inc.

AN965
APSGetClusterID

This function retrieves a cluster ID associated for current endpoint reception.

Syntax

BYTE APSGetClusterID(void)

Parameters

None

Return Values

Cluster ID associated with received endpoint data.

Precondition

APSIsGetReady() = TRUE

Side Effects

None

Note

None

Example

// Check to see if hMyEP has received any data
APSSetEP(hMyEP);
if (APSIsGetReady())
{

// Retrieve cluster ID in this data frame.
myClusterID = APSGetCluserID();

// Get total data bytes in this frame
myDataLen = APSGetdataLen();

// Get it all
APSGetArray(myData, myDatLen);

...

// Now discard it
APSDiscardRx();

}
...
 2004 Microchip Technology Inc. DS00965A-page 73

AN965
NETWORK LAYER

The Network Layer (NWK) is responsible to establish
and maintain network connection. It independently
handles incoming data request, association,
disassociation and orphan notification requests.

A typical application would not need to make direct
calls to the NWK layer. If required, you may refer to the
NWK.c and NWK.h files for a detailed description of
NWK APIs.

ZigBee DEVICE OBJECT

The ZigBee Device Object (ZDO) opens and handles
the EP 0 interface. The ZDO is responsible for
receiving and processing various requests from a
remote device. Unlike other endpoints, EP 0 is always
opened on start-up and assumed to be bound to any
incoming data frames that are directed to EP 0.

The ZDO object allows remote device management
services. A remote device manager would issue
requests to EP 0 and the ZDO would process those
requests. Some examples of remote services are
NWK_ADDR_REQ (give me your network address),
NODE_DESC_REQ (give me your node descriptor) and
BIND_REQ (bind this source EP, cluster ID and
destination EP). Some of the requests are available to
the coordinator device only. Refer to the ZDO.c file for
the complete list. You should also refer to the ZigBee
specification for more information.

An application would not need to call any of the ZDO
functions directly except to initialize it on start-up. If
required, you may refer to the ZDO.c and ZDO.h files
for detailed descriptions of ZDO APIs.

ZigBee DEVICE PROFILE LAYER

The ZigBee device profile layer provides standard
ZigBee profile services. It defines and processes
descriptor requests. A remote device may request any
of the standard descriptor information via the ZDO
interface. Upon receiving such requests, ZDO would
call a profile object to retrieve the corresponding
descriptor value. In the current version, the device
profile layer is not fully implemented.

An application would not need to call any of the profile
functions directly. If required, you may refer to the
zProfile.c and zProfile.h files for detailed
description of APIs.

MEDIUM ACCESS CONTROL LAYER

The Medium Access Control (MAC) layer implements
functions required by the IEEE 802.15.4 specification.
The MAC layer is responsible for interacting with the
Physical Layer (PHY). In order to support different
types of RF transceivers, the Microchip Stack
separates PHY interactions in its separate file. There is
a separate file for each supported transceiver. Note
that due to the differences in RF transceiver
capabilities, MAC and PHY files are not completely
independent. The MAC file adjusts some of its logic
based on the current RF transceiver.

In the current version of the Stack, the zPHYCC2420.c
file implements Chipcon CC2420, 2.4 GHz transceiver-
specific functions. In the future, as support for new RF
transceivers is added, a new PHY file will be added. All
RF transceiver PHY files use the zPHY.h file as their
main interface to the MAC layer.

A typical application would not need to make direct
calls to the MAC layer. If required, you may refer to the
MAC.c, MAC.h, and PHY.h files for detailed
descriptions of MAC/PHY APIs.

CONCLUSION

The Microchip Stack for ZigBee Protocol provides a
modular, easy to use library that is application and
RTOS independent. It is specifically designed to
support more than one RF transceiver with minimal
changes to upper layer software. Applications can be
easily ported from one RF transceiver to another. In
addition, it automatically supports MPLAB C18 and
Hi-Tech PICC-18 C compilers. If required, it can be
easily modified to support other compilers.

REFERENCES

• “Chipcon CC2420”
http://www.chipcon.com

• “ZigBee™ Protocol Specification”
http://www.zigbee.org

• “PICDEM™ Z Demo Kit User’s Guide” (DS51524)
http://www.microchip.com

• “IEEE 802.15.4 Specification”
http://www.ieee.org

SOURCE CODE

The complete source code, including any demo
applications and necessary support files, is available
for download as a single archive file from the Microchip
corporate web site, at

www.microchip.com
DS00965A-page 74  2004 Microchip Technology Inc.

http://www.chipcon.com
http://www.zigbee.org
http://www.ieee.org
http://www.microchip.com
http://www.microchip.com

AN965
ANSWERS TO COMMON QUESTIONS
Q: Is the Microchip Stack for the ZigBee protocol

ZigBee protocol-compliant?

A: No. The current version of the Microchip Stack is
not ZigBee protocol-compliant.

Q: How do I get the source code for the Microchip
Stack for ZigBee protocol?

A: You may download it from the Microchip web site
(www.microchip.com) from either the AN965 or
PICDEM Z page.

Q: How do I get target hardware design files?
A: You may download it from the PICDEM Z page

on the Microchip web site.

Q: What tools do I need to develop a ZigBee
application using the Microchip Stack?

A: You would need:
• At least one PICDEM Z demo kit or at least

two of your own ZigBee nodes
• Complete source code for the Microchip Stack

for the ZigBee protocol
• Either the MPLAB C18 or Hi-Tech PICC-18 C

Compiler
• MPLAB IDE software

• A device debugger and programmer such as
MPLAB ICD 2

Q: How much program and data memory does a
typical ZigBee node require?

A: The exact program and data memory require-
ment depends on the type of node and compiler
selected. In addition, the sizes may change as
new features and improvements are added.
Please refer to version.log file more detail.

Q: What is the minimum processor clock requirement
for running the ZigBee coordinator and end
devices?

A: Normally, the ZigBee coordinator should run at a
higher speed as it must be prepared to handle
packets from multiple nodes. The coordinator
clock speed depends on the number of the
nodes in the network. The demo coordinator
uses 16 MHz (4 MHz with 4 x PLL) and found to
be supporting at least 10 nodes. We have not
characterized the clock frequency and number of
nodes in the network. The end device does not
have to run as fast as the coordinator. A simple
end device may be run at just 4 MHz.

Q: Can I use the internal RC oscillator to run the
Microchip Stack?

A: Yes, you may use the internal RC oscillator to
run the Microchip Stack. If your application
requires a stable clock to perform time-sensitive
operations, you must make sure that the internal
RC oscillator meets your requirement or you may
periodically calibrate the internal RC oscillator to
keep it within your desired range.

Q: What is the typical radio range for PICDEM Z
boards?

A: The exact radio range depends on the type of RF
transceiver and the type of antenna in use. For a
Chipcon 2.4 GHz-based node with a PCB trace
antenna, you should expect to get about a
100-meter line-of-sight. When placed inside a
building, the actual range would reduce due to
walls and other structural barriers.

Q: I have an existing application that uses a wired
protocol, such as RS-232, RS-485, etc. How do I
convert it to a ZigBee protocol-based application?

A: You would need to develop one ZigBee coordina-
tor and one more ZigBee end device application.
The coordinator is required to create and manage
a network. If your existing network has one main
controller and multiple end devices or sensor
devices, your main controller would become a
ZigBee coordinator and sensor devices would
become ZigBee end devices. You must make
sure that the radio range offered by a specific RF
transceiver is acceptable to your application.

Q: I have now created a coordinator and multiple
end devices. How do I bind the devices so I can
transfer data among devices?

A: There are two approaches to this issue. You
may either write your custom binding logic or
use a standard ZigBee device manager
interface to create/modify a binding table entry
in the coordinator table. At the time this docu-
ment was published, there was no standard
ZigBee device manager available on the market.
The demo applications included with this
application note use a custom binding mecha-
nism, where binding requests are sent using a
MSG frame. Refer to the custom binding func-
tions, InitCustomBind, StartCustomBind
and IsCustomBindComplete, in the
DemoRFDApp.c file. The demo coordina-
tor also contains logic to process custom bind-
ing requests. See the ProcessCustomBind
function in the DemoCoordApp.c file for more
information.

Q: How do I obtain the ZigBee and IEEE 802.15.4
specification documents?

A: The IEEE 802.15.4 specification is freely
available from the IEEE web site.

At the time this document was published, the
ZigBee specifications were not released and
were available to ZigBee members only. Check
the ZigBee web site for information on obtaining
the released specifications.
 2004 Microchip Technology Inc. DS00965A-page 75

AN965
NOTES:
DS00965A-page 76  2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WAR-
RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
 2004 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK,
MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail,
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel and Total
Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00965A-page 77

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00965A-page 78  2004 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com

Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307

Boston
Westford, MA
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104

China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599

China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521

China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393

China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760

China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571

China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062

India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632

Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102

Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

10/20/04

	Introduction
	Assumption
	Features
	Limitations
	Typical ZigBee Node Hardware
	FIGURE 1: Typical ZigBee™ Node Hardware (Control Signals Added)

	PIC® Resource Requirements
	TABLE 1: PIC® MCU to RF Transceiver Interface

	Installing Source Files
	Source File Organization
	TABLE 2: Source File Directory Structure

	Demo Applications
	Demo RFD Application Features
	Demo Coordinator Application Features
	Building Demo Applications
	TABLE 3: Demo Coordinator Application Project Files
	TABLE 4: Demo RFD Application Project Files

	Programming Demo Applications
	Configuring Demo Applications
	Programming Node ID Value
	EXAMPLE 1: Demo Application Configuration Menu

	Programming Binding Configuration
	Performing Quick Demo Binding
	Performing Advanced Binding
	TABLE 5: Binding Operation

	Executing Demo Applications
	Functional Description of Demo Applications
	Functional Description of Demo Coordinator
	Functional Description of Demo RFD

	Using the Microchip Stack
	Stack Source Files
	TABLE 6: Typical RFD Application Files
	TABLE 7: Typical Coordinator Application Files

	Stack Configuration
	Integrating Your Application
	Callback Functions
	AppOkayToUseChannel
	AppMACFrameReceived
	AppMACFrameTransmitted
	AppMACFrameTimeOutOccurred
	AppOkayToAssociate
	AppOkayToAcceptThisNode
	AppNewNodeJoined
	AppNodeLeft

	ZigBee Protocol Overview
	IEEE 802.15.4
	Network Configurations
	Network Association
	Endpoints, Interfaces, Clusters, Attributes and Profiles
	Endpoint Binding
	Data Transfer Mechanism

	Stack Architecture
	FIGURE 2: Microchip Stack Architecture
	Stack Layers
	Stack APIs
	Application Layer (APL)
	APLInit
	APLIsIdle
	APLEnable
	APLDisable
	APLTask
	APLNetworkInit
	APLIsNetworkInitComplete
	APLNetworkForm
	APLPermitAssociation
	APLDisableAssociation
	APLCommitTableChanges
	APLJoin
	APLIsJoinComplete
	APLRejoin
	APLIsRejoinComplete
	APLLeave
	APLIsLeaveComplete

	Application Support Sublayer (APS)
	APSInit
	APSTask
	APSDisable
	APSOpenEP
	APSSetEP
	APSCloseEP
	APSBeginMSG
	APSBeginKVP
	APSIsPutReady
	APSSetClusterID
	APSPut
	APSPutArray
	APSSend
	APSIsConfirmed
	APSIsTimedOut
	APSRemoveFrame
	APSIsGetReady
	APSGetDataLen
	APSGet
	APSGetArray
	APSDiscardRx
	APSGetClusterID

	Network Layer
	ZigBee Device Object
	ZigBee Device Profile Layer
	Medium Access Control Layer
	Conclusion
	References
	Source Code
	Answers to Common Questions
	Worldwide Sales and Service

