
AN962

Implementing Auto Baud on dsPIC30F Devices
INTRODUCTION

All current dsPIC30F devices have a UART peripheral

with Auto Baud capability. The signal on the UART

receive pin (RX pin) can be internally routed to an Input

Capture module to time the edges of the incoming

signal. From that timing the software can set up the

UART at the correct baud rate.

Auto Baud is useful when the baud rate of the incoming

data is unknown and when the oscillator frequency of

the processor is unknown. RC oscillators are often

inaccurate and drift over time so systems with RC

oscillators are ideal candidates for using Auto Baud.

METHOD

The method for doing Auto Baud relies on known data

being received. It is usually possible to use a

communications protocol that sends data specifically

for Auto Baud. The timing of the received data can be

used to calculate the value for the U1BRG or U2BRG

registers that set the UART baud rates.

The two examples in this application note use incoming

data of 0x55 (ASCII ‘U’) to calculate the baud rate

generator value. This particular data byte provides the

maximum number of edges and therefore the greatest

accuracy. Any data byte can be used and the

calculations adapted to suit the data. In general, the

more edges (bit state changes) in the data, the more

accurate the result.

Signals

UART signals are sent least significant bit first,

preceded by a start bit (zero) and followed by a stop bit

(one). There are usually eight bits of data, but other

sizes are possible, and a parity bit can follow the data.

All of this will impact the Auto Baud calculation, but the

data should always be known in advance.

There will always be at least two edges because of the

start and stop bits, but there could be ten or more. In

our example of 0x55 there are ten edges, as shown in

Figure 1.

FIGURE 1: UART SIGNAL FOR 0x55

Timing And Sampling

Equation 1 can be used to calculate the value for

UxBRG after recording the times of the edges and

removing the offset of t0. This equation is derived in

Appendix A using linear regression. The calculation is

performed after the last edge has been recorded and

should be completed before the start bit of the next byte

to ensure that no data is lost. This sets a time limit for

the calculation that should be checked. In some cases

it will be necessary to use a less complex calculation

that can be performed more quickly. Similarly, the time

taken for error checking must also be considered.

EQUATION 1: UxBRG LINEAR REGRESSION CALCULATION

Author: Mike Garbutt

Microchip Technology

Start

t0 = 0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Stop

D0 D1 D2 D3 D4 D5 D6 D7

UxBRG
2 t

1
2t

2
3t

3
… 9t

9
+ + + +() 9 t

1
t
2

t
3

… t
9

+ + + +()–

2640
--- 1–=
 2004 Microchip Technology Inc. DS00962A-page 1

AN962
Errors

It is always good programming practice to check for

errors. It is possible that the incoming signal does not

contain the expected data of 0x55. The error might be

apparent because of a long time period between the

edges and a simple time-out can detect this problem. If

all the edges occur within the acceptable time-out

period, it is still possible that they do not match the

expected sequence. There are several statistical

methods that can show the degree to which the

measured signal deviates from the expected signal.

The mean absolute error has been used in the example

code in Appendix B. If the average of all the deviations

from the expected time measurements is more than 5%

of the bit time, then the data is discarded.

Alternatives

The linear regression method provides excellent

accuracy because it uses all the input capture

measurements. It may be too slow and computationally

intensive for some applications. A simplified method,

also derived in Appendix A, is to take the time

difference between two edges and divide by the

number of bit times to calculate a single bit time.

EQUATION 2: UxBRG SIMPLIFIED

CALCULATION

The code in appendix C uses this alternate method.

Equation 2 uses eight bit times to simplify the

calculation because a simple and efficient right shift

can be used to divide by a power of two. The example

in Appendix C also eliminates some of the error

checking for greater speed at the expense of reliability.

CODE EXAMPLES

The code in Appendix B and Appendix C implements

Auto Baud on an incoming byte of 0x55 (ASCII ‘U’).

The code was developed with the MPLAB® C30

compiler.

Structure

The software has three main parts: the main loop, the

initialization and the interrupt routines.

MAIN LOOP

The main() function has an endless loop to

demonstrate the functioning of the Auto Baud code. It

starts by calling SetupAutoBaud() to initialize all the
peripherals and interrupts used by the Auto Baud

procedure. The code then waits until U1BRG has a

non-zero value, indicating that the Auto Baud

procedure has completed successfully.

The code calculates the actual baud rate from the

U1BRG value and sends a message out the UART to

show the baud rate. It is not necessary to calculate the

baud rate for Auto Baud to work, but it is done for

demonstration purposes.

After waiting for the text to be transmitted, the code

loops back and starts doing the Auto Baud procedure

over again.

INITIALIZATION

The SetupAutoBaud() function initializes the UART1
peripheral, Input Capture 1 module and Timer 3 to do

Auto Baud on the incoming data.

UART1 is turned on and the Auto Baud feature is

enabled. This internally routes the incoming serial data

signal on the U1RX pin to be an input to the Input

Capture 1 module.

Timer 3 is set up to increment on every instruction cycle

for maximum resolution. The period is set to the

maximum value so that the timer rolls over after a full

16-bit count.

The Input Capture 1 module is set up to capture Timer

3 and interrupt on every edge of the incoming signal.

The Input Capture 1 interrupt is turned on.

UxBRG
t
8

t
0

–()

128
------------------- 1–=
DS00962A-page 2  2004 Microchip Technology Inc.

AN962
INTERRUPT ROUTINES

There are two interrupt routines, one for Timer 3 and

one for Input Capture 1.

The Timer 3 interrupt routine counts timer rollover

interrupts since the last input capture event. If there is

more than one rollover between the edges then the

Auto Baud has failed and the procedure starts over.

This happens if there is a large gap between the edges

of the incoming signal.

The Input Capture 1 interrupt routine is at the heart of

the Auto baud procedure. It differs depending on

whether the simple calculation or the more complex

regression calculation is being done.

The interrupt routine starts by saving the time recorded

for the previous edge and reading the new time for the

current edge that has been detected. The timer rollover

count is reset to zero to start a new time out period.

The first capture interrupt enables the Timer 3 interrupt

to check for a time out and initializes the Auto Baud

calculation variables.

Each subsequent capture interrupt is used to subtract

the current capture time from the previous time to get

the time for the current bit. This is done with unsigned

integers so that it does not matter whether the timer

rolled over between captures.

For the simple calculation the bit time is added to a

subtotal until eight bit times have been added together.

For the regression calculation, the bit time is added to

the previously recorded time and stored as the next

element in an array of times. This provides the points

for the regression calculation and the error check later.

The two sums needed for regression are also done in

the interrupt routine.

When the last (tenth) capture interrupt occurs then the

interrupt service routine disables both interrupts,

finishes the Auto Baud calculation and enables the

UART with the new baud rate.

For the simple calculation there is no error checking,

except for the time-outs, and the U1BRG value is

determined directly from the sum of eight bit times. The

number is rounded off by adding 64 before dividing by

128. This effectively adds ½ before truncating. The

division by 128 is done by a seven bit shift

For the regression calculation, the slope and Y

intercept of the regression line is calculated. This is

then used to calculate the expected times that are

subtracted from the actual time measurements for error

checking. If the error is more than 5% then the Auto

Baud procedure is started over. This threshold can be

changed if more or less accuracy is acceptable. Finally,

the U1BRG value is calculated from the slope of the

regression line.

Using The Code

The example code was developed and tested on a

dsPICDEM™ 1.1 board using a dsPIC30F6014 part

running at 29.5 MIPS. The timing allows it to be used

with any standard baud rate down to 600 baud. The

following steps can be used to try out the example

code:

• Connect a standard RS232 cable between a COM

port on a PC and the connector marked “PORT B”

on the dsPICDEM 1.1 board.

• Run a terminal program such as HyperTerminal

on the PC. Ensure that the terminal program is

using the correct COM port.

• Compile, program and run the code on the

dsPIC® device.

• Type “U” in the terminal program.

• The dsPICDEM 1.1 board will respond with the

text “Baud rate: xxxx” where xxxx is the baud rate

being used.

• Change the baud rate and type “U” in the terminal

program again.

• The dsPICDEM 1.1 board will respond with the

new baud rate.
 2004 Microchip Technology Inc. DS00962A-page 3

AN962
Resources Used

The Auto Baud code uses program and data memory,

one input capture module and one timer in addition to

the UART. Very little RAM is used and the timer and

input capture modules can be reused for other

purposes after Auto Baud is complete. Program

memory usage depends on the sophistication of the

calculation. The memory usage shown in Table 1 is the

additional memory used by adding the Auto Baud code

into the application. All MPLAB C30 applications have

a minimum amount of code to handle start-up,

initialization, etc. and this has not been included in the

figures.

MODIFICATIONS AND

IMPROVEMENTS

The code examples provided show two ways to do

Auto Baud on an incoming data byte of 0x55 (ASCII

‘U’). These methods can be adapted to any known

incoming data. All the methods determine a single bit

period by timing the incoming edges. Various degrees

of analysis and error checking can be used to improve

the reliability or the speed.

It is possible to use Auto Baud on unknown data but it

can be difficult to determine a single bit time and to

distinguish the start and stop bits from the data bits.

Ideally the Auto Baud procedure should use some

knowledge of the data in order to simplify the

calculations.

The Auto Baud procedure is done in the background by

interrupts. The flexible interrupt priority structure of the

dsPIC allows the Auto Baud interrupts to be configured

to have minimal impact on the rest of the application.

The timer and input capture resources used for Auto

Baud can be used by the rest of the application after

completion of the Auto Baud calculation.

The alternate interrupt vector table can be used for the

Auto Baud interrupts, allowing the main application to

have its own separate input capture and timer

interrupts.

Both UARTs have Auto Baud capability. Note that

UART1 uses Input Capture 1 and UART2 uses Input

Capture 2 so both UARTs can do Auto Baud at the

same time.

CONCLUSION

The built-in Auto Baud feature makes it simple to

configure the UART for an unknown baud rate. The

process can be done under interrupt control in the

background so it has very little impact on the rest of the

application. The code can be adapted to user

requirements by using a simple calculation for high

speed or a complex calculation with sophisticated error

checking for better reliability.

REFERENCES

dsPIC30F Family Reference Manual (DS70046)

dsPICDEM™ 1.1 Development Board User’s Guide

(DS70099)

MPLAB® C30 C Compiler User’s Guide (DS51284)

TABLE 1: RESOURCES USED BY THE AUTO BAUD CODE

Resource Simple Calculation Regression Calculation

Program memory 321 bytes 834 bytes

Data memory 14 bytes 58 bytes

I/O pins No additional I/O No additional I/O

Peripherals Input Capture 1, Timer 3 Input Capture 1, Timer 3

Maximum interrupt execution time 49 TCY 1486 TCY*

* 618 TCY without mean absolute error calculation
DS00962A-page 4  2004 Microchip Technology Inc.

AN962
APPENDIX A: CALCULATIONS

REGRESSION CALCULATION

The Input Capture module is used to time the edges of

the incoming signal shown in Figure A-1. For a data

byte of 0x55, ten times t0, t1, t2… t9 are collected

starting with t0 = 0 as shown in Figure A-1.

FIGURE A-1: UART SIGNAL FOR 0x55

If the incoming signal is correct, the times will each be

spaced one bit period apart resulting in the straight line

graph in Figure A-2.

FIGURE A-2: GRAPH OF TIME

MEASUREMENTS

The slope of the graph is the measured time period per

bit. The slope can be calculated by subtracting any two

adjacent times. For more accuracy, the first time t0 can

be subtracted from the last time t9 and divided by the

number of bit periods, nine. This will probably be

sufficiently accurate for most application but still only

uses two of the time measurements.

Linear regression can be used to get the most accurate

representation of the slope of the graph. This is a

statistical technique that finds the best fit of a line

though a set of points. Equation A-1 is the linear

regression calculation for the slope m of a line through

n points (x0,y0), (x1,y1), (x2,y2)… (xn,yn).

EQUATION A-1: LINEAR REGRESSION

EQUATION

Substitute 0, 1, 2… 9 for x and t0, t1, t2… t9 for y in this

equation. All the values of x are known, t0 = 0 and n =

10 so the equation reduces to Equation A-2.

The simplified equation requires ten multiplications and

one division which are easily done on the dsPIC30F

devices.

EQUATION A-2: TIME PER BIT PERIOD

Start

t0 = 0 t1 t2 t3 t4 t5 t6 t7 t8 t9

Stop

D0 D1 D2 D3 D4 D5 D6 D7

t0 = 0

t9
t8
t7
t6
t5
t4
t3
t2
t1

0 1 2 3 4 5 6 7 8 9

Bit Period

Time

m
n xy()∑ x y∑∑–

n x
2

∑ x∑()
2

–

---=

m
10 t

1
2t

2
3t

3
… 9t

9
+ + + +() 45 t

1
t
2

t
3

… t
9

+ + + +()–

825
---=

2 t
1

2t
2

3t
3

… 9t
9

+ + + +() 9 t
1

t
2

t
3

… t
9

+ + + +()–

165
---=
 2004 Microchip Technology Inc. DS00962A-page 5

AN962
UxBRG CALCULATION

The slope m of the line is the number of timer counts

per bit period p. If we set up the timer to count

instruction cycles TCY (TCY = 1/FCY) then the bit period

p is expressed in Equation A-3. The reciprocal of the bit

period is the baud rate as shown in Equation A-4.

EQUATION A-3: BIT PERIOD

EQUATION A-4: MEASURED BAUD RATE

The baud rate of the UART is controlled by setting the

UxBRG register. Equation A-5 shows the baud rate in

terms of UxBRG, as expressed in the dsPIC30F Family

Reference Manual.

EQUATION A-5: SPECIFIED BAUD RATE

Combining Equation A-4 and Equation A-5 gives the

UxBRG value in terms of the slope m that is calculated

from the input capture times t0, t1, t2… t9.

Equation A-6 results:

EQUATION A-6: UxBRG VALUE

Equation A-2 and Equation A-6 combine to provide a

single calculation for the UxBRG register value that

corresponds to the incoming baud rate. This is shown

in Equation A-7.

EQUATION A-7: COMPLETE CALCULATION

p m Tcy×=

baud
1

p

1

m Tcy×

Fcy

m
---------= = =

baud
Fcy

16 UxBRG 1+()
--=

UxBRG
m

16
------ 1–=

UxBRG
2 t

1
2t

2
3t

3
… 9t

9
+ + + +() 9 t

1
t
2

t
3

… t
9

+ + + +()–

2640
--- 1–=
DS00962A-page 6  2004 Microchip Technology Inc.

AN962
Simple UxBRG Calculation

Where speed is critical the bit time, which is the slope

m of the signal, can be calculated very quickly from two

time measurements as shown in Equation A-8 below.

EQUATION A-8: BIT TIME SIMPLIFIED

CALCULATION

This equation uses the times of two falling edges in

order to cancel out differences in rise and fall times and

propagation delays. Averaging eight bit periods also

makes the division easier because a simple right shift

can be used to divide. Combining Equation A-6 and

Equation A-8 results in the final simplified calculation

for UxBRG given in Equation A-9 below.

EQUATION A-9: UxBRG SIMPLIFIED

CALCULATION

Error Calculation

There are several statistical techniques to express the

deviation of measured results from their expected

values. The correlation r or the standard deviation δ

can be calculated but this is computationally intensive

and time consuming because there are several square

functions and a square root. A simpler method is the

mean absolute error, an average of the absolute values

of the errors as shown in Equation A-10.

EQUATION A-10: MEAN ABSOLUTE ERROR

The symbol x is the expected value of the measured

signal. We can determine the expected values of all the

times t0, t1, t2… t9 from the graph in Figure A-2. The

slope m of the graph has been calculated in

Equation A-2 and the y intercept b can be calculated

from Equation A-11.

EQUATION A-11: Y INTERCEPT

Substitute 0, 1, 2… 9 for x and t0, t1, t2… t9 for y in this

equation. All the values of x are known, t0 = 0 and n =10

so the equation reduces to Equation A-12. In this case

the y intercept is actually the expected value of t0.

EQUATION A-12: EXPECTED VALUE OF Y

INTERCEPT

This calculation is very easy to perform because it only

uses one multiplication and division and (t1 + t2 +…+ t9)

has already been calculated in Equation A-2 to get the

slope.

Once the slope and intercept are known, all the

expected values can be calculated from the equation of

the line, Equation A-13.

EQUATION A-13: EXPECTED TIMES

Substituting 0, 1, 2… 9 for x0, x1, x2… x9 provides all

the expected values. In software it is easier to add the

slope m to each result to get the next value because the

values of xi increment by one.

m
t
8

t
0

–()

8
-------------------=

UxBRG
t
8

t
0

–()

128
------------------- 1–=

MAE
1

n
--- x x–∑=

b
y∑ m x∑–

n
------------------------------=

t
0

t
1

t
2

t
3

… t
9

+ + + +() 45m–

10
--=

t
i

mx
i

t
0

+=
 2004 Microchip Technology Inc. DS00962A-page 7

AN962
APPENDIX B: SOURCE CODE USING REGRESSION CALCULATION

/***
 *
 * dsPIC30F Auto Baud Source Code
 *

 * FileName: UART Auto Baud by Regression.c
 * Dependencies: p30F6014.h
 * math.h
 * Date: 10/08/2004
 * Processor: dsPIC30F6014
 * Complier: MPLAB C30 1.20.02
 * Company: Microchip Technology, Inc.
 *
 * Software License Agreement
 *
 * The software supplied herewith by Microchip Technology Incorporated
 * (the "Company") for its PICmicro® Microcontroller is intended and
 * supplied to you, the Company's customer, for use solely and
 * exclusively on Microchip PICmicro Microcontroller products. The
 * software is owned by the Company and/or its supplier, and is
 * protected under applicable copyright laws. All rights are reserved.
 * Any use in violation of the foregoing restrictions may subject the
 * user to criminal sanctions under applicable laws, as well as to
 * civil liability for the breach of the terms and conditions of this
 * license.
 *
 * THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
 * Author Date Comment
 *~~
 * Mike Garbutt 10/8/2004 Original (Rev 1.0)
 *
 **/

#include "p30F6014.h" //Standard header file
#include "math.h" //Math library
#define Fcy 29491200 //To allow calculation of baud rate for display

//---
//Prototypes

void SetupAutoBaud(void); //Function to set up UART1, IC1 and TMR3
void CalculateBaud(void); //Function to calculate the U1BRG value

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-

TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-

LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR

SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS00962A-page 8  2004 Microchip Technology Inc.

AN962
//---
//Variables

unsigned int ICCount = 0; //Count the number of Capture events
unsigned int T3Count = 0; //Count the number of Timer 3 interrupts
unsigned int CurrentCapture; //Record time of UART edge
unsigned int PreviousCapture; //Store previous edge time measurement
unsigned int CaptureDifference; //Difference between times of UART edges
long SumXY, SumY; //Intermediate value for regression calculation
long RegressionData[10]; //Data to do linear regression
unsigned long BaudRate; //Calculate the baud rate

//---
//Main routine
//Loops forever detecting the baud rate from incoming UART data of 0x55
//and outputing a message each time the baud rate is calculated.

int main(void)
{

while(1) //Loop forever
{

SetupAutoBaud(); //Set up UART1, IC1 and TMR3 for autobaud
while(U1BRG == 0) {} //Wait for autobaud to complete
BaudRate = (Fcy / 16) / (U1BRG + 1); //See what baud rate is being used
printf("Baud rate: %ld\r", BaudRate); //Output text with the baud rate

while(U1STAbits.TRMT == 0) {} //Wait for transmission to complete
}

} //End of main()

//---
//Set up the peripherals and interrupts to do baud rate detection

void SetupAutoBaud(void)
{

U1BRG = 0; //U1BRG initially unknown
U1MODE = 0x8020; //Enable auto baud detection in UART
U1STA = 0x0000; //Set up rest of UART to default state

ICCount = 0; //Initialize the number of Capture events
IC1CON = 0x0000; //Reset Input Capture 1 module
IC1CON = 0x0001; //Enable Input Capture 1 module
IFS0bits.IC1IF = 0; //Clear Capture 1 interrupt flag
IEC0bits.IC1IE = 1; //Enable Capture 1 interrupt

T3CON = 0x0000; //Timer 3 off
IEC0bits.T3IE = 0; //Clear Timer 3 interrupt enable
T3Count = 0; //Initialize the number of Timer 3 interrupts
PR3 = 0xffff; //Timer 3 period is maximum
T3CON = 0x8000; //Timer 3 on with 1:1 prescaler and internal clock

}

//---
//Calculate value for U1BRG baud rate generator

void CalculateBaud(void)
{

int i; //Index to sum the errors
long Slope; //Slope (bit time) of regression
long Yintercept; //Expected (calculated) time of first edge
long PlotLine; //Expected (calculated) time of each edge
long SumOfErrors = 0; //Sum of all the errors |Measured-Expected|

Slope = (2 * SumXY - 9 * SumY) / 165; //Calculate slope = one bit time
Yintercept = (SumY - Slope * 45) / 10; //Calculate expected time of first edge
 2004 Microchip Technology Inc. DS00962A-page 9

AN962
PlotLine = Yintercept; //Initialize expected time of each edge
for(i=0; i<10; i++) //Loop to add all the absolute errors
{

SumOfErrors += abs(RegressionData[i] - PlotLine);//Calculate and add next error
PlotLine += Slope; //Calculate expected time of next edge

}

if((SumOfErrors * 2) < Slope) //Check if mean absolute error < 5%
{ //(is twice sum of 10 errors < one bit time?)

U1BRG = ((Slope + 8) >> 4) - 1; //Calculate UxBRG (rounding by adding one half)
U1MODE = 0x8000; //Enable UART and disable auto baud detection
U1STA = 0x0400; //Enable transmission

}
else
{
SetupAutoBaud(); //Error too large so start over
}

}
//---
//Input Capture 1 ISR
//Gets time measurements and adds to the sums needed for regression

void _ISR _IC1Interrupt(void)
{

IFS0bits.IC1IF = 0; //Clear Capture 1 interrupt flag
PreviousCapture = CurrentCapture; //Store previous time measurement
CurrentCapture = IC1BUF; //Get new time measurement
T3Count = 0; //Reset the timeout counter
if(ICCount == 0) //Check if first edge
{

IFS0bits.T3IF = 0; //Clear Timer 3 interrupt flag
IEC0bits.T3IE = 1; //Enable Timer 3 interrupt for timeout check
RegressionData[0] = 0; //Initial value for time of first edge
SumY = 0; //Initial value for sum of time measurements
SumXY = 0; //Initial value for sum of bit number x time

}
else //Check if not first edge
{

CaptureDifference = CurrentCapture - PreviousCapture; //Get time difference
RegressionData[ICCount] = RegressionData[ICCount-1] + CaptureDifference;

//Add time difference to prevous time measurement
SumY += RegressionData[ICCount]; //Sum the time measurements
SumXY += RegressionData[ICCount] * ICCount;//Sum the bit number x time measurement

}
ICCount++; //Increment count of edges
if(ICCount == 10) //Check if last edge
{

IEC0bits.IC1IE = 0; //Clear Capture 1 interrupt enable
IEC0bits.T3IE = 0; //Clear Timer 3 interrupt enable
CalculateBaud(); //Calculate the U1BRG value and enable the UART

}
}
//---
//Timer 3 ISR
//Check for timeout indicated by two rollovers since previous input capture

void _ISR _T3Interrupt(void)
{
 IFS0bits.T3IF = 0; //Clear Timer 3 interrupt flag
 T3Count++; //Increment count of interrupts since last capture
 if(T3Count == 2) //Check for too many timer rollovers since last capture
 {
 SetupAutoBaud(); //Timeout so start over
 }
}

DS00962A-page 10  2004 Microchip Technology Inc.

AN962
APPENDIX C: SOURCE CODE USING SIMPLE CALCULATION

/***
 *
 * dsPIC30F Auto Baud Source Code
 *

 * FileName: UART Auto Baud by Simple Calculation.c
 * Dependencies: p30F6014.h
 * math.h
 * Date: 10/08/2004
 * Processor: dsPIC30F6014
 * Complier: MPLAB C30 1.20.02
 * Company: Microchip Technology, Inc.
 *
 * Software License Agreement
 *
 * The software supplied herewith by Microchip Technology Incorporated
 * (the "Company") for its PICmicro® Microcontroller is intended and
 * supplied to you, the Company's customer, for use solely and
 * exclusively on Microchip PICmicro Microcontroller products. The
 * software is owned by the Company and/or its supplier, and is
 * protected under applicable copyright laws. All rights are reserved.
 * Any use in violation of the foregoing restrictions may subject the
 * user to criminal sanctions under applicable laws, as well as to
 * civil liability for the breach of the terms and conditions of this
 * license.
 *
 * THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
 *
 * Author Date Comment
 *~~
 * Mike Garbutt 10/8/2004 Original (Rev 1.0)
 *
 **/

#include "p30F6014.h" //Standard header file
#include "math.h" //Math library
#define Fcy 29491200 //To allow calculation of baud rate for display

//---
//Prototypes

void SetupAutoBaud(void); //Function to set up UART1, IC1 and TMR3
void CalculateBaud(void); //Function to calculate the U1BRG value

//---
//Variables

unsigned int ICCount = 0; //Count the number of Capture events
unsigned int T3Count = 0; //Count the number of Timer 3 interrupts
unsigned int CurrentCapture; //Record time of UART edge
unsigned int PreviousCapture; //Store previous edge time measurement
unsigned int CaptureDifference; //Difference between times of UART edges
unsigned long SumOfBitTimes; //
unsigned long BaudRate; //Calculate the baud rate
 2004 Microchip Technology Inc. DS00962A-page 11

AN962
//---
//Main routine
//Loops forever detecting the baud rate from incoming UART data of 0x55
//and outputing a message each time the baud rate is calculated.

int main(void)
{

while(1) //Loop forever
{

SetupAutoBaud(); //Set up UART1, IC1 and TMR3 for autobaud
while(U1BRG == 0) {} //Wait for autobaud to complete
BaudRate = (Fcy / 16) / (U1BRG + 1); //See what baud rate is being used
printf("Baud rate: %ld\r", BaudRate); //Output text with the baud rate
while(U1STAbits.TRMT == 0) {} //Wait for transmission to complete

}
} //End of main()
//---
//Set up the peripherals and interrupts to do baud rate detection

void SetupAutoBaud(void)
{

U1BRG = 0; //U1BRG initially unknown
U1MODE = 0x8020; //Enable auto baud detection in UART
U1STA = 0x0000; //Set up rest of UART to default state

ICCount = 0; //Initialize the number of Capture events
IC1CON = 0x0000; //Reset Input Capture 1 module
IC1CON = 0x0001; //Enable Input Capture 1 module
IFS0bits.IC1IF = 0; //Clear Capture 1 interrupt flag
IEC0bits.IC1IE = 1; //Enable Capture 1 interrupt

T3CON = 0x0000; //Timer 3 off
IEC0bits.T3IE = 0; //Clear Timer 3 interrupt enable
T3Count = 0; //Initialize the number of Timer 3 interrupts
PR3 = 0xffff; //Timer 3 period is maximum
T3CON = 0x8000; //Timer 3 on with 1:1 prescaler and internal clock

}
//---
//Input Capture 1 ISR
//Gets time measurements and adds to the sum of the bit times
//Calculates U1BRG value after summing eight bit times

void _ISR _IC1Interrupt(void)
{

IFS0bits.IC1IF = 0; //Clear Capture 1 interrupt flag
PreviousCapture = CurrentCapture; //Store previous time measurement
CurrentCapture = IC1BUF; //Get new time measurement
T3Count = 0; //Reset the timeout counter
if(ICCount == 0) //Check if first edge
{

IFS0bits.T3IF = 0; //Clear Timer 3 interrupt flag
IEC0bits.T3IE = 1; //Enable Timer 3 interrupt for timeout check
SumOfBitTimes = 0; //Initial value for sum of the bit times

}
else //Check if not first edge
{

if(ICCount != 9) //Check if not last edge
{

CaptureDifference = CurrentCapture - PreviousCapture; //Get time difference
SumOfBitTimes += CaptureDifference; //Add time difference to sum of times

}
else //Check if last edge

{
IEC0bits.IC1IE = 0; //Clear Capture 1 interrupt enable
IEC0bits.T3IE = 0; //Clear Timer 3 interrupt enable
DS00962A-page 12  2004 Microchip Technology Inc.

AN962
U1BRG = ((SumOfBitTimes + 64) >> 7) - 1; //Calculate UxBRG (with rounding)
U1MODE = 0x8000; //Enable UART and disable auto baud detection
U1STA = 0x0400; //Enable transmission

}
}
ICCount++; //Increment count of edges

}
//---
//Timer 3 ISR
//Check for timeout indicated by two rollovers since previous input capture

void _ISR _T3Interrupt(void)
{

IFS0bits.T3IF = 0; //Clear Timer 3 interrupt flag
T3Count++; //Increment count of interrupts since last capture
if(T3Count == 2) //Check for too many timer rollovers since last capture
{

SetupAutoBaud(); //Timeout so start over
}

}

 2004 Microchip Technology Inc. DS00962A-page 13

AN962
NOTES:
DS00962A-page 14  2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device

applications and the like is provided only for your convenience

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

MICROCHIP MAKES NO REPRESENTATIONS OR WAR-

RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,

WRITTEN OR ORAL, STATUTORY OR OTHERWISE,

RELATED TO THE INFORMATION, INCLUDING BUT NOT

LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,

MERCHANTABILITY OR FITNESS FOR PURPOSE.

Microchip disclaims all liability arising from this information and

its use. Use of Microchip’s products as critical components in

life support systems is not authorized except with express

written approval by Microchip. No licenses are conveyed,

implicitly or otherwise, under any Microchip intellectual property

rights.
 2004 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,

dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,

PRO MATE, PowerSmart, rfPIC, and SmartShunt are

registered trademarks of Microchip Technology Incorporated

in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,

SmartSensor and The Embedded Control Solutions Company

are registered trademarks of Microchip Technology

Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,

dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,

FanSense, FlexROM, fuzzyLAB, In-Circuit Serial

Programming, ICSP, ICEPIC, Migratable Memory, MPASM,

MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,

PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,

PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,

SmartTel and Total Endurance are trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated

in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2004, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00962A-page 15

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00962A-page 16  2004 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support:

http://support.microchip.com

Web Address:

www.microchip.com

Atlanta
Alpharetta, GA

Tel: 770-640-0034

Fax: 770-640-0307

Boston
Westford, MA

Tel: 978-692-3848

Fax: 978-692-3821

Chicago
Itasca, IL

Tel: 630-285-0071

Fax: 630-285-0075

Dallas
Addison, TX

Tel: 972-818-7423

Fax: 972-818-2924

Detroit
Farmington Hills, MI

Tel: 248-538-2250

Fax: 248-538-2260

Kokomo
Kokomo, IN

Tel: 765-864-8360

Fax: 765-864-8387

Los Angeles

Mission Viejo, CA

Tel: 949-462-9523

Fax: 949-462-9608

San Jose

Mountain View, CA

Tel: 650-215-1444

Fax: 650-961-0286

Toronto
Mississauga, Ontario,

Canada

Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney
Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing
Tel: 86-10-8528-2100

Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200

Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506

Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200

Fax: 852-2401-3431

China - Shanghai
Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660

Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507

Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355

Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore
Tel: 91-80-2229-0061

Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631

Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471- 6166

Fax: 81-45-471-6122

Korea - Seoul
Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Singapore
Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Kaohsiung
Tel: 886-7-536-4818

Fax: 886-7-536-4803

Taiwan - Taipei
Tel: 886-2-2500-6610

Fax: 886-2-2508-0102

Taiwan - Hsinchu

Tel: 886-3-572-9526

Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399

Fax: 43-7242-2244-393

Denmark - Ballerup
Tel: 45-4450-2828

Fax: 45-4485-2829

France - Massy
Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Ismaning
Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan
Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

England - Berkshire
Tel: 44-118-921-5869

Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

10/20/04

	Introduction
	Method
	Signals
	Timing And Sampling
	Errors
	Alternatives

	Code Examples
	Structure
	Using The Code
	Resources Used

	Modifications And Improvements
	Conclusion
	References
	Appendix A: Calculations
	Regression Calculation
	UXBRG Calculation
	Simple UxBRG Calculation
	Error Calculation

	Appendix B: Source Code Using Regression Calculation
	Appendix C: Source Code Using Simple Calculation
	Implementing Auto Baud on dsPIC30F Devices
	Worldwide Sales and Service

