INTRODUCTION

The number of applications that utilize white LEDs has steadily increased due to the increased usage of Liquid Crystal Displays (LCDs) in automotive and cellular telephone displays, PDAs, handheld electronic games and computer monitors. In order to view the information on these displays, a light source is needed. Typically, this light source has been provided by Cold Cathode Florescent Tubes (CCFT). However, since designers are tasked with improving efficiency, lowering cost and decreasing size, white LEDs are now being used.

Powering white LEDs, which have a forward drop (V_F) of 3.6V, typically, becomes more difficult when the application requires multiple LEDs. In this Application Note, a solution using the MCP1650 is discussed and shown to be greater than 85% efficient.

DESIGN

The MCP1650 Boost Controller is capable of generating output voltages of over 100V. However, care must be taken when selecting the external MOSFET, Schottky diode and output capacitor as they are subjected to this high boost voltage. The MCP1650 family has numerous features that include soft-start operation, peak inductor current monitoring, scalable external MOSFET, a shutdown pin for external control, low battery detect and a power good output.

The MCP1650 can be configured in either the conventional boost topology (Figure 1), a bootstrapped boost topology or a SEPIC topology. The converter’s topology is determined by the relationship of input-to-output voltage.

![MCP1650 Boost Application Circuit](image-url)

FIGURE 1: MCP1650 Boost Application Circuit.
The feedback voltage \((V_{FB})\) for the MCP1650 is 1.22V. This is only 4% of the total output voltage when powering nine white LEDs. When the voltage developed across the sense resistor \((R_{SENSE})\) is below the internal reference voltage, the internal oscillator is gated on and the external N-channel MOSFET is pulsed on and off to transfer energy from the source to the load. This continues until the voltage across \(R_{SENSE}\) is above the 1.22V threshold, gating off the internal oscillator. The selection of \(R_{SENSE}\) is easily determined by the following equation.

\[
R_{SENSE} = \frac{V_{FB}}{I_{OUT}}
\]

Typical Example

Let's consider a practical application for driving nine white LEDs with the MCP1650 using a single-cell Li-Ion input.

- **Input voltage:** 2.8V to 4.2V
- **Output voltage:** 32.4V \((9 \times V_F)\)
- **Output current:** 20 mA
- **Switching Frequency:** 750 kHz
- **Duty Cycle:** 80% for \(V_{IN} < 3.8V\)
- **Duty Cycle:** 56% for \(V_{IN} > 3.8V\)

From the above equation, \(R_{SENSE}\) is determined to be 61Ω.

Since a high boost ratio is needed, the boost regulator will operate in Discontinuous Current mode. Therefore, the energy going into the inductor every switching cycle must be greater than the energy needed to supply the load for that switching cycle.

\[
P_{OUT} = V_{OUT} \times I_{OUT}
\]
\[
P_{OUT} = 32.4V \times 20mA
\]
\[
P_{OUT} = 0.648 \text{ watts}
\]

\[
P_{IN} = \frac{P_{OUT}}{\text{Efficiency}}
\]
\[
P_{IN} = \frac{0.648 \text{w}}{80%}
\]
\[
P_{IN} = 0.810 \text{ watts}
\]

The peak inductor current is:

\[
I_{PK} = \frac{V_{IN}}{L} \times T_{ON}
\]

Using a standard inductor value of 4.7 µH, the power in the inductor is calculated.

\[
T_{ON} = \left(\frac{1}{F_{SW}} \right) \times \text{Duty Cycle}
\]
\[
I_{PK} (2.8V) = 636 mA
\]
\[
\text{Energy} (2.8V) = 0.951 \mu\text{Joules}
\]
\[
\text{Power} (2.8V) = 0.713W
\]

There is a second operating point that needs to be addressed. That is the case when \(V_{IN}\) is 3.8V and the duty cycle is 56%.

\[
T_{ON} = \left(\frac{1}{F_{SW}} \right) \times \text{Duty Cycle}
\]
\[
I_{PK} (3.8V) = 604 mA
\]
\[
\text{Energy} (3.8V) = 0.857 \mu\text{Joules}
\]
\[
\text{Power} (3.8V) = 0.643W
\]

For both operating points, the inductor power is less than the necessary maximum input power, forcing the converter to operate in Continuous Current mode. Therefore, a 4.7 µH inductor is too large and the peak input current needs to be increased. A 3.3 µH inductor is selected.

\[
T_{ON} = \left(\frac{1}{F_{SW}} \right) \times \text{Duty Cycle}
\]
\[
I_{PK} (3.8V) = 905 mA
\]
\[
\text{Energy} (3.8V) = 1.014 \mu\text{Joules}
\]
\[
\text{Power} (3.8V) = 0.915 \text{W}
\]

Now that the inductor energy is greater than the maximum required input energy, the converter will operate in Discontinuous Current mode.

When selecting the MOSFET, a low \(R_{DSon}\) logic-level N-channel is recommended. Since the input voltage ranges from 2.8V to 4.2V, the MOSFET must have a turn-on voltage as low as 2.8V. However, a lower \(R_{DSon}\) typically results in higher gate charge, leading to slower transition times in the MOSFET, thereby causing increased switching losses. The MOSFET's drain-to-source breakdown voltage must be rated to handle the boost output voltage plus margin.

The boost diode requires very fast turn-on and turn-off characteristics because it switches at the switching frequency of the converter. Schottky diodes are recommended because they are capable of this switching characteristic and have a low forward drop. As with the MOSFET, the Schottky diode must be rated to handle the boost output voltage plus margin.

The input and output capacitor size depends on the respective voltages of the converter. While low value parts are desired because of cost and size, they...
typically result in higher ripple voltages. The capacitors should be chosen to provide an appropriate ripple voltage for the intended application. Ceramic or low effective series resistance (ESR) tantalum capacitors are appropriate for most applications.

COMPONENTS

The following is a list of components that were used in the test circuit.

<table>
<thead>
<tr>
<th>Component</th>
<th>Manufacturer</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>C<sub>IN</sub></td>
<td>Kemet®</td>
<td>C0603C104K8RACTU</td>
</tr>
<tr>
<td>C<sub>OUT</sub></td>
<td>muRata®</td>
<td>GJ232CF50J476ZD01K</td>
</tr>
<tr>
<td>D<sub>1</sub></td>
<td>Diodes Inc.</td>
<td>B130LDI</td>
</tr>
<tr>
<td>L<sub>1</sub></td>
<td>Coilcraft®</td>
<td>DO1813P-332HC</td>
</tr>
<tr>
<td>R<sub>1</sub></td>
<td>Panasonic®</td>
<td>ERJ-3RSJR10V</td>
</tr>
<tr>
<td>R<sub>SENSE</sub></td>
<td>Panasonic®</td>
<td>ERJ-3ENF0610V</td>
</tr>
<tr>
<td>Q<sub>1</sub></td>
<td>Fairchild® Semiconductor</td>
<td>FDN337N</td>
</tr>
<tr>
<td>U<sub>1</sub></td>
<td>Microchip Technology Inc.</td>
<td>MCP1650</td>
</tr>
</tbody>
</table>

SUMMARY

The circuit shown in Figure 1 was constructed with the components listed and nine through-hole white LEDs. The efficiency was measured for different input voltages and output current settings. Figure 2 illustrates the excellent efficiency performance of the MCP1650 boost converter. Since the MCP1650 requires an external MOSFET and Schottky diode, numerous white LEDs can be driven by this boost converter. This is not true of other applications where the MOSFET and/or Schottky diode are integrated into the controller. The maximum number of white LEDs is then limited by the voltage rating of the integrated MOSFET or Schottky diode.

![Figure 2: Circuit Efficiency Over the Input Voltage Range.](image)

REFERENCES

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeeLoq, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECOMEMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rLAB, rPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Web Address: www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0037

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
16200 Addison Road, Suite 255
Addison Plaza
Addison, TX 75001
Tel: 972-818-7243
Fax: 972-818-7245

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

San Jose
6285 Northham Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Unit 32 41 Rawson Street
Epping 2121, NSW
Sydney, Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104

China - Chengdu
Room 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-88768200
Fax: 86-28-88766599

China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7505506
Fax: 86-591-7505521

China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
No. 317 Xian Xia Road
Shanghai, 200051, China
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

Japan
Yusen Shin Yokohama Building 10F
3-17-2, Shin Yokohama, Kohoku-ku,
Yokohama, Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166
Fax: 81-45-471-6122

Korea
1681-1, Youngbo Bldg., 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200
Fax: 82-2-554-5932 or 82-2-554-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 189980
Tel: 65-6334-8870
Fax: 65-6334-8850

Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4817

Tokyo
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175
Fax: 886-2-2545-0139

Worldwide Sales and Service

EUROPE

Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895
Fax: 45-4420-9910

France
Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-63-20

Germany
Kernfeldstrasse 10
D-87737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44

Italy
Via Salvatore Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands
Waegenburgplein 4
NL-5152 JR, Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340

United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

07/12/04