MICROCHIP

AN945

A CANopen Sack for PIC18 ECAN™ Microcontrollers

Author: Ross M. Fosler
Microchip Technology Incorporated

INTRODUCTION

CANopen is a field bus protocol based on the Control-
ler Area Network (CAN). As the name implies, it is a
open network standard accepted throughout the world.
While created as a field bus protocol for industrial
automation, CANopen finds use in a wide range of
other non-industrial applications. There are so many
possibilities, in fact, that it is possible to write volumes
on specialized uses of the protocol.

Rather than being specific to one narrow application or
even one field, we present here a more generalized
approach: a generic communication stack based on
CANopen that can be tailored to the user’s needs. This
article focuses only on what is covered in the CAN in
Automation (CiA) standard DS-301. In fact, most of the
discussion is limited to the predefined areas of the
specification, with emphasis on understanding how the
code provided with this application note functions and
how users might develop an application on the
CANopen Stack. To help illustrate this, a simple exam-
ple application is developed based on the CiA DS-401
specification, Generic /O Modules. The additional
code provided is solely for demonstration; thus there is
no detailed discussion of the demonstration code.
However, code examples with comments from the
demo application are frequently used throughout this
document.

All code provided with this application note is
developed for the PIC18F8680 and PIC18F4680
families of devices, which include ECAN technology as
part of their peripheral set. It is designed to compile with
Microchip’s C18 v2.30 (or greater) compiler. Although
developed for these specific device families, the code
is adaptable to other PIC18 families with CAN.

It is expected that the reader already has some
knowledge of CANopen, or has access to the latest
CANopen standard (listed in the References section) to
refer to for theory and/or critical terminology. The infor-
mation covered in this application note leans towards
understanding the implementation and developing on
that foundation, rather than discussing the many details
of CANopen.

OVERVIEW OF THE STACK

The CANopen Stack provides the lower layers of the
protocol. Some of the features of this design include:

« Embedded state machine for handling all
communications between all nodes and objects

« Default Service Data Object (SDO) Server

* Up to 4 transmit and 4 receive Process Data
Objects (TPDOs and RPDOs)

« Explicit and Segmented Messaging Support

« Statically-mapped PDO support

 Structured dictionary for the PDOs and SDO

» Node Guard/Life Guard

* SYNC consumer

» Heartbeat Producer

« ECAN Driver support

As this list shows, the CANopen Stack discussed here
is designed for applications that are typically more
“slave”. This design is more static in nature, which
leads to more efficient code with better effective use of
code space.

In addition, the actual CANopen code is broken into a
series of smaller source and header files, all written in
C. This allows users to select the appropriate services
that they may need for their application and selectively
build a project tailored to their specific requirements. A
complete list of source files is presented in Table 1.

Of course, the actual application and some aspects of
the communications must still be developed by the
user. The provided CANopen Stack code affords a
base on which the application may be built.

© 2004 Microchip Technology Inc.

DS00945A-page 1

AN945

TABLE 1: CANopen SOURCE FILES

File Name

Description

CO_CANDRV.c

CO_CANDRV.h

ECAN module driver. These files may be replaced by other device-specific drivers, if
required.

CO_COMM.c Communications management services. Required for all applications.

CO_COMM.h

CO_DEV.c Device specific files. Users must edit this file for their device.

CO_DEV.h

CO_DICT.c The object dictionary. Required for all applications.

CO_DICT.h

CO_DICT.def

CO_MAIN.c CANopen main services. Required for all applications.

CO_MAIN.h

CO_MEMIO.c Memory copy functions used by the dictionary. Required for all applications.

CO_MEMIO.h

CO_NMT.c Network management communications endpoint.

CO_NMT.h

CO_NMTE.c Node Guard, Heartbeat and Boot-up communications endpoint.

CO_NMTE.h

CO_PDO.c General PDO services.

CO_PDO.h

CO_PDOl.c PDO object handling endpoints. Provided in a template format that requires

CcO PDO1.h development by the user for the specific application. Must be used with the general

CO_PDO2 e PDO services files.

CO_PDO2.h

CO_PDO3.c

CO_PDO3.h

CO_PDO4.c

CO_PDO4.h

CO_SDOl.c Default server SDO communications endpoint.

CO_SDO1.h

CO_SYNC.c Consumer synchronization communications endpoint.

CO_SYNC.h

CO_TOOLS.c Tools for converting Microchip and CANopen CAN identifier formats. For better

CcO TOOLS.h process performance, all COB IDs are stored internally in the Microchip format. When
- COB ID is presented due to a request, then the ID is converted to CANopen.

CO_ABERR.h Common error definitions. Required for all applications.

DS00945A-page 2

© 2004 Microchip Technology Inc.

AN945

CANopen FIRMWARE MODEL

The firmware is designed in three levels, as shown in
Figure 1. The lowest level is the ECAN driver providing
hardware abstracted CAN support. The communica-
tions management level is the primary interface
endpoint

between the driver and the individual

handling.

Besides the application, there is also the dictionary. In
it resides outside of the communication
object, and is directly connected to the SDO endpoint.

essence,

The Driver

At the lowest level is the ECAN driver, which serves as
an abstracted hardware interface. It is implemented by
the source files CO_CANDRV.c and CO_CANDRV.h.

The driver handles all ECAN hardware related function-
ality, and conveniently abstracts much of the complex
filtering that is part of the CAN protocol. This is

discussed in greater detail later in this document.

FIGURE 1:

Communications Management

The communications manager is part of the total
communications object. It is provided to capture any
events from the ECAN driver and the higher application
levels, and dispatch these to the appropriate handling
communications sub-objects and functions. Essen-
tially, opening, closing, transmitting to, and receiving
from an endpoint is all directed by the communications
manager. Communications management is provided in
the files CO_COMM.c and CO_COMM.h.

The manager has knowledge of what state each
endpoint is in as well as the state of the device globally.
Thus it can block messages to endpoints as necessary
based on local or global state.

Another feature of the manager is that it uses a single-
byte “handle” method supported by the driver to
decode message events. The handle is of a particular
structure designed to accelerate performance; it is
significantly faster that decoding the 11-bit or 29-bit
CAN identifier in order to determine the handling
function for a particular message.

BASIC FIRMWARE MODEL OF THE CANopen STACK

Application

Application
Object

Application
Object

Application
Object

Application

Application Object

Object

A

Sync Events
Node Guard/
Heartbeat Events

State Change
Events and Requests
Mappable Process Data

Heartbeat

Node Guard
Boot-up

SYNC

Communication

Communications,

ECAN™ Driver

© 2004 Microchip Technology Inc.

DS00945A-page 3

AN945

Endpoints

The CANopen specification defines several possible
endpoints. The five endpoint objects listed below are
implemented in this example; others may be made
available in the future.

e The Default Server SDO

e Up to four Static PDOs

e Synchronization Consumer
* Network Management Slave
* Node Guard or Heartbeat

SERVER SDO COMMUNICATION

The default server SDO (Service Data Object) is
provided. The SDO communications path is directly
linked to the object dictionary; SDO messages contain
information that relates the SDO to a particular object.
Data in every message is decoded, validated, and (if
valid) eventually executed.

There are essentially two basic operations: read and
write. Thus each complete SDO transfer (which may be
multiple messages) will either read or write a single
object referenced in the dictionary. The default SDO is
contained in the source files co_spoi.c and
CO_SDOl.h.

FIGURE 2:

PDO COMMUNICATION

The PDO (Process Data Object) communications path
is linked directly to the applicable application object or
objects. Thus the path is assumed by the device and no
path information is contained within the communica-
tion. Essentially the data is mapped internally to one or
more objects. Data is either statically mapped (com-
piled) or dynamically mapped (set at runtime). One
message can contain data from more than one object.

The firmware provided with this application note
supports the four default PDOs. Overall PDO services
are provided in the source files co_pPpo.c and
Co_PDO.h. The additional files co_PDOn.c and
Cco_pDoOn.h (where n may have a value of 1 to 4) are
used to implement the individual PDOs. These are
provided in template form, and must be developed to
meet the application requirements.

NETWORK MANAGEMENT CONSUMER

A Network Management (NMT) slave is provided as
required by the specification. The NMT Object receives
commands to change the state of the device or reset
the device’s application and/or communications.
Figure 2 shows the CANopen state machine, as well as
the commands that trigger state changes.

Network management is provided in the source files
CO_NMT.c and CO_NMT.h.

STATE MACHINE FOR A CANopen DEVICE

Start .

Reset Communication

Reset
Application

Application

Reset
Application

___ Stop Remote Node
| >

Start Remote Node

Initialization

Communication

Operational

Enter Preoperational

Stop Remote Node

Note: Unlabeled transitions (shown with darker lines) are automatic and do not require an external event.

Reset Application

Reset

Communication

Reset
Communication

Start Remote Node .
I —| Preoperational

Enter Preoperational

DS00945A-page 4

© 2004 Microchip Technology Inc.

AN945

NODE GUARD/HEARTBEAT

There is a single Node Guard or Heartbeat endpoint as
required by the CANopen specifications. They both
exist in code; however, only one of these Watchdog
methods are enabled at any given time (also defined in
the specifications).

Node Guard and Heartbeat endpoint functionality is
provided in the source files CO_NMTE.c and
CO NMTE.h.

SYNCHRONIZATION CONSUMER

One synchronization consumer (SYNC) is provided. The
SYNC message is simply an event to the application to
generate any synchronized PDO messages.

The source files CcO_SYNC.c and CO_SYNC.h
contain the SYNC object.

The Dictionary

The object dictionary functions as a central information
database for the device. Every object within the device
is represented within the dictionary by an index, sub-
index, and some access information. An object can be
as simple as a single byte of data or a more complex
data structure. Table 2 shows the basic areas of the
dictionary that are defined by index in the CANopen
specification.

The development and definition of dictionary objects is
discussed in greater detail in “ Objects and the Object
Dictionary” (page 36).

TABLE 2: LOCATION RANGES WITHIN
THE OBJECT DICTIONARY
Index Object

0001-001F | Static Data Type

0020-003F | Complex Data Types

0040-005F | Manufacturer Specific Data Types

0060-007F | Device Profile Static Data Types

0080-009F | Device Profile Complex Data Types

00AO-OFFF | Reserved

1000-1FFF | Communication Profile Area

2000-5FFF | Manufacturer Specific Profile Area

6000-9FFF | Standardized Profile Area

AO000-FFFF | Reserved

By using the index, any defined object can be
accessed. From the network point of view, access to an
object is provided through the SDO or PDO endpoint as
shown in Figure 1. CANopen dictionary functionality is
implemented with these files:

e CO DICT.c

e CO DICT.h

e CO DICT.def

* CO_STD.def

* CO_MFTR.def

e CO_PDO.def

Standard Device Objects

The standard device objects, although not shown in
Figure 1, are required by the specification. The stan-
dard objects include information such as status, the
device name, serial number, and version information.
They are provided in the source files cCO_DEV.c and
CO DEV.h.

Application Objects

At the upper level of the stack is the application object,
which must be defined for the specific application and
included in the dictionary. The actual objects are
defined and written by users for their specific
application.

Other Firmware

There are other files provided to define standard data
types, define errors, support memory copy functions,
and supply COB ID conversion tools. They are:

e CO_TOOLS.
e CO_TOOLS.
e CO_MEMIO.
* CO_MEMIO.
* CO_ABERR.
* CO_TYPES.

[= = = SO T = HNe]

© 2004 Microchip Technology Inc.

DS00945A-page 5

AN945

COMPILE TIME SETUP

There are a total of 40 compile time options available to
configure the source code for a particular application.
Most of these are used to configure the factors that
control the CAN bit rate (Phase Segment timing,
Synchronization Jump Width, baud rate prescaler,
etc.). All of the options are listed in Table 3.

Setting Device Information

The CANopen specification identifies a number of
objects that identify a particular device. Device specific
information is provided through a simple set of data that
is referenced from the object dictionary. This information
must be included in developing the application. Table 4
lists these objects.

TABLE 3:

COMPILE TIME OPTIONS

Name

Description

CAN BITRATEO_BRGCON1

CAN BITRATEO_BRGCON2

CAN BITRATEO_BRGCON3

The default bit rate setting for the application. The BRGCON values correspond to
the configurations for that BRGCON registers, and determine all the required
parameters for the CAN bit rate. Users should refer to the appropriate data sheet
for detailed information on the configuration of these registers.

CAN BITRATEn BRGCON1

CAN_ BITRATEn BRGCON2

CAN BITRATEn BRGCON3

Bit rate setting n, where n has a valid range of 1 through 8. These are optional
settings that may be used in place of the default bit rate. As with the default bit
rate, the BRGCON values correspond to the settings for that BRGCON register.

CAN BITRATEnN

Enables the use of bit rate setting n.

CAN MAX RCV_ENDP

Sets the maximum allowed receive endpoints within the driver. The recommended
value is 8 to support all the receive endpoints within CANopen. It is possible to set
this as high as 16.

CO_NUM_OF_PDO

This sets the number of PDOs supported. The valid range is 1 through 4.

CO_SPEED_UP_CODE

Enables some in-line assembly of the user’s application code. Execution
performance can be improved by setting this option.

CO_SDO1_MAX_ RX_BUF

Sets the maximum buffer space used by the default SDO. A good value for this is
the largest writable object.

CO_SDO1_MAX SEG_TIME

Sets the maximum time for the SDO watchdog to wait for a completed segment
before resetting the SDO state machine.

TABLE 4:

STANDARD DEVICE OBJECTS

Object Name

Description

rom unsigned long rCO DevType

The device type

rom unsigned char rCO_DevName []

The name of the device

rom unsigned char rCO DevHardwareVer []

The hardware version

rom unsigned char rCO DevSoftwareVer []

The software version

rom unsigned char rCO DevIdentityIndx

The device identity index

rom unsigned long rCO DevVendorID

The vendor ID

rom unsigned long rCO_DevProductCode

The product code

rom unsigned long rCO_DevRevNo

The revision number

rom unsigned long rCO DevSerialNo

The device serial number

unsigned char uCO_DevErrReg

The device error register

unsigned long uCO_DevManufacturerStatReg

The manufacturer specific status register

DS00945A-page 6

© 2004 Microchip Technology Inc.

AN945

WRITING THE APPLICATION

There is significant work that goes into developing an
application and communications according to the
CANopen specifications. The firmware provided
eliminates some of the effort by providing some of the
lower-level communications handling. Aside from the
work necessary to develop the application itself, the
following items must be developed for the application.

« Define the application objects in the dictionary
» Develop handling for complex objects

» Develop handling functions for the necessary
CANopen communications events

» Develop PDOs
This section introduces the “toolbox” provided by the
associated firmware. All the event functions and

services are described for any application that may
need them.

mCO_ProcessAllEvents

Main Services

The CANopen protocol is started by calling the
mCO_InitAll() function. This issues a CAN driver
Reset and causes the boot-up message to be sent.
However, prior to starting the CANopen protocol, the
default communications specific parameters must be
set to their appropriate state. For example, the node_id
and baud rate are critical for proper messaging. Other
settings include the Node Guard settings, Heartbeat
settings, the device error object, as well as the
manufacturer specific status.

Once started, all processing occurs through the
functions mCO_ProcessAllEvents () and
mCO_ProcessAllTimeEvents (). The first handles
all general communications related processing like
sending and receiving CAN messages for each
endpoint. The later function handles communication
endpoints that have specific time requirements such as
the NMTE (Heartbeat/Node Guard) and any PDO
endpoint. The mCO_ProcessAllEvents () function
should be called as often as possible to capture all
messaging events from the driver. The
mCO_ProcessAllTimeEvents () function should be
called at 1 ms intervals.

This is the main routine from which all events are processed. From this, transmit and receive events are processed
within the Communications Manager. This function must be called as often as possible to process any communications
events. How often this needs to be called is highly dependent on the driver and the necessity to respond to driver events

before overflow.

Syntax

void mCO ProcessAllEvents (void)

Parameters
None

Return Values
None

Example

(See following page)

© 2004 Microchip Technology Inc.

DS00945A-page 7

AN945

Example

void main (void)

{
// Perform any application specific initialization

TimerInit () ; // Init my timer

mSYNC SetCOBID (0x12) ; // Set the SYNC COB ID (MCHP format)
mCO_SetNodeID (0x01) ; // Set the node_id
mCO_SetBaud (0x00) ; // Set the baudrate
mNMTE_SetHeartBeat (0x00); // Set the initial heartbeat
mNMTE_SetGuardTime (0x00); // Set the initial guard time
mNMTE_SetLifeFactor (0x00); // Set the initial life time
mCO_InitAll(); // Initialize CANopen to run
while (1)

{

// Process CANopen events

mCO_ProcessAllEvents () ;

// Process application specific functions

// 1lms timer events

if (TimerIsOverflowEvent ())

{
// Process timer related events
mCO_ProcessAllTimeEvents() ;

// Perform other time functions

DS00945A-page 8 © 2004 Microchip Technology Inc.

AN945

mCO_ProcessAllTimeEvents

This is the main routine from which all low-resolution time-related events are processed. This function must be called
every 1 ms. High-resolution events (typically in the us region) must be handled in the application. Internally this function
ensures that all objects in the stack that require time control get a tick event.

Syntax

void mCO ProcessAllTimeEvents (void)

Parameters
None

Return Values
None

Example

Refer to the example provided in mCO_ProcessAllEvents.

mCO InitAll

This function must be called after setting up all initial object parameters. It will issue a Reset to the CAN driver and start
opening the required communications. Once called, the node will be live on the network and the boot-up message will
be sent.

Syntax
void mCO InitAll (void)

Parameters
None

Return Values
None

Example

Refer to the example provided in mCO_ProcessAllEvents.

mCO_SetNodeID

Call this function to set the node_id. node_id must be an unsigned char with the Most Significant bit reserved. In
addition, the CANopen specifications reserve the NodelD 00h; valid values for the NodelD range from 01h to 7Fh. This
function must be called prior to mCO_InitAll () to effectively set the ID.

Syntax
void mCO SetNodeID (unsigned char node id)

Parameters

unsigned char node_id: The node_id for this node, valid range from 01h to 7Fh.

Return Values
None

Example

Refer to the example provided in mCO_ProcessAllEvents.

© 2004 Microchip Technology Inc. DS00945A-page 9

AN945

mCO_GetNodeID

Call this function to get the current ID used by the stack. The ID is returned as an unsigned char.
Syntax

unsigned char node id mCO_GetNodeID (void)

Parameters

None
Return Values

unsigned char node id: The node_id for this node, valid range from 01h to 7Fh.

Example
None

mCO_SetBaud

Call this function to set the baud rate of the node. The value must be between 0 and 8 inclusive. Any other value will
default to the 0 setting. The exact baud rate is determined by the CAN driver definitions (page 46). This function must
be called prior to mcO_InitAll () to change the baud rate.

Syntax

void mCO_SetBaud (unsigned char bitrate)

Parameters

unsigned char bitrate

Return Values

None

Example

Refer to the example provided in mCO_ProcessAllEvents.

mCO_GetBaud

Call this function to get the current baud rate used by this node. The baud rate is returned as an unsigned char. The
exact baud rate is determined by the CAN driver definitions (see “ECAN™ Driver”, page 46).

Syntax

unsigned char mCO_SetBaud (void)

Parameters

None

Return Values

unsigned char: The current bit rate setting used by the node.

Example
Refer to the example provided in mCO_ProcessAllEvents.

DS00945A-page 10 © 2004 Microchip Technology Inc.

AN945

PDO Events and Services

This section describes the functions used for PDO
support. All of these are essentially low-level
communications support such as opening, closing,
and communicating with specific PDO endpoints.
Before discussing these functions, however, a
review of how to develop these data objects is in
order.

PDO DEVELOPMENT

A critical part of the application design task is developing
PDOs. Some decisions have to be made regarding what
features to support: choosing between dynamic and
static PDO mapping, selecting a Transmission Synchro-
nization mode, and whether or not to support inhibit time.
The CANopen Stack source code provided includes a
base set of tools to support PDO communication for
which such features can be built on.

The critical points for developing PDO support includes
developing code to handle these items:

« PDO Communications events

« PDO Mapping

* PDO Synchronization

« PDO Event and Inhibit time

EXAMPLE 1: PDO DICTIONARY ENTRY

PDO Communications Events

Every enabled PDO will have some communications
events to support setting the typical aspects of the
PDO. Events are actually call back functions specified
in the dictionary to handle specific PDO communica-
tions parameters. For example, a master sends a
request via an SDO to a slave device to change the
type of the PDO (refer to the specifications for informa-
tion on communication types). The request is passed
upwards through the stack to the dictionary and
eventually to the function that handles access to the
type.

Example 1 and Example 2 demonstrate the link
between the dictionary and the actual function
CO_COMM _TPDOl TypeAccessEvent (). Example 1
shows the entry in the dictionary. Example 2 shows the
actual callback. In this case the example demonstrates
support only for types 0 to 240, 254, and 255. (The
PDO transmission types are shown in Table 5.) Note
that none of the events are discussed in detail since
they are created by the application designer and thus,
handled by the designer’s firmware.

{0x1800, 0x00,CONST, 1, { (rom unsigned char *)&uDemoTPDOlLen}},\\
{0x1800,0x01,RW | FUNC,4,{(rom unsigned char *)&CO_COMM TPDOl COBIDAccessEvent}},\\
{0x1800,0x02,RW | FUNC,1,{(rom unsigned char *)&CO_COMM TPDOl TypeAccessEvent}}

© 2004 Microchip Technology Inc.

DS00945A-page 11

AN945

EXAMPLE 2: EVENT HANDLER

void CO_COMM_TPDOl_ TypeAccessEvent (void)
unsigned char tempType;
switch (mCO_DictGetCmd())
//case DICT OBJ INFO:// Get information about the object
// The application should use this to load the
// structure with length, access, and mapping.

// Dbreak;
// Write the Type to the buffer
break;
tempType = * (uDict.obj->pReqgBuf) ;
{

uDemoSyncCount = uDemoSyncSet

}

else

{
}

uDemoSyncSet = tempType;

break;

case DICT OBJ READ: // Read the object
* (uDict.obj->pReqgBuf) = uDemoSyncSet;
case DICT_OBJ WRITE: // Write the object
if ((tempType >= 0) && (tempType <= 240))
// Set the new type and resync

tempType;

if ((tempType == 254) || (tempType == 255))

else {mCO DictSetRet (E_PARAM RANGE);} //error

TABLE 5: PDO TRANSMISSION TYPES
PDO Transmission Sync Character
Transmission
Type i i Remote
Cyclic Acyclic Synchronous Asynchronous Request
0 X X
1 through 240 X X
241 through 251 Reserved
252 X X
253 X X
254 X
255 X
PDO Mapping directly from ROM. It is assumed that the static data

PDO mapping can be either static or dynamic. No code
is provided specifically for support for either. However,
no code is really necessary to represent static
mapping. Thus, static code is significantly easier and
requires less processing to support. Dynamic PDO
mapping is more challenging because it requires refer-
encing the dictionary one or multiple times per PDO.
Only static mapping is demonstrated for this version of
the CANopen Stack.

Example 3 shows the entry within the dictionary. The
actual mapping is just ROM data as shown in
Example 4. Any requests through the default SDO to
the mapping data in the dictionary will read static data

stored in ROM is of the mapping format specified in the
CANopen specifications and described in Figure 3.

FIGURE 3: MAPPING FORMAT FOR
ROM DATA
| Index |Subindex Size (bits)|
\; Y A Y Y)
16 bits 8 hits 8 bits

DS00945A-page 12

© 2004 Microchip Technology Inc.

AN945

EXAMPLE 3: PDO MAPPING DICTIONARY ENTRY

0x1600,0x05,CONST, 4,
0x1600,0x06,CONST, 4,
0x1600,0x07,CONST, 4,
0x1600,0x08,CONST, 4,

#define DICTIONARY PDOl1_ RX MAP
{ox1600,0x00,CONST, 1,
{0x1600,0x01, CONST, 4,
{0x1600, 0x02, CONST, 4,
{ox1600,0x03,CONST, 4,

{0x1600,0x04,CONST, 4,

{

{

{

{

{ (rom
(rom
(rom
(rom
(rom
(rom
(rom
(rom
(

D e R

rom

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char
char
char
char
char
char

\\
*)&rMaxIndexZ}}
*) &URPDO1Map} }, \
*) &uPDO1Dummy }
*) &UPDO1Dummy }
*) &UPDO1Dummy }
*) &uPDO1Dummy }
*) &UPDO1Dummy }
*) &UPDO1Dummy }
*) &uPDO1Dummy }

1

}
b\
b\
b\
b\
b\
}

EXAMPLE 4: DICTIONARY STRUCTURE

rom unsigned long uPDOlDummy =

rom unsigned long uTPDOlMap = 0x60000108;
rom unsigned long uRPDOl1Map = 0x62000108;
0x00000008;

© 2004 Microchip Technology Inc.

DS00945A-page 13

AN945

Synchronization

PDOs can be synchronized by linking their function to
the SYNC object. Synchronization depends on the
transmission type. The types defined by the specification
are listed in Table 5.

Synchronization is simply a matter of using the
CO_CoMMSyncEvent () function to handle the PDO
endpoint. This is discussed in more detail in the section
on sync events (page 27).

mRPDOOpen

Timers

The event timer is supported while the inhibit timer is
left up to the application designer to provide. This is
primarily due to the fine time resolution required
(100 ps). If the application requires the event timer, it is
possible to handle the CO_PDO1LSTimerEvent () to
get 1 ms tick events.

Open the RPDO endpoint where n represents the PDO number. There are only 4 PDOs available. Typically this function
would be called within a RPDO communications object write event. Essentially a PDO communications object write
event is generated when a node on the network is requesting to start PDO communications.

Syntax

void mRPDOOpen (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
None

Example
(See following page)

DS00945A-page 14

© 2004 Microchip Technology Inc.

AN945

Example

// Process access events to the COB ID
void CO_COMM RPDOl1l COBIDAccessEvent (void)

{

switch (mCO DictGetCmd())
case DICT OBJ READ: // Read the object
// Translate MCHP COB to CANopen COB
mTOOLS_MCHP2CO (mRPDOGetCOB (1)) ;

// Return the COBID
* (unsigned long *) (uDict.obj->pRegBuf) = mTOOLS GetCOBID() ;
break;

case DICT OBJ WRITE: // Write the object
// Translate the COB to MCHP format
mTOOLS CO2MCHP (* (unsigned long *) (uDict.obj->pRegBuf)) ;

// If the request is to stop the PDO
if ((* (UNSIGNED32 *) (&mTOOLS_ GetCOBID())) .PDO_DIS)
{
// BAnd if the COB received matches the stored COB and type then close
if (! ((mTOOLS_GetCOBID() * mRPDOGetCOB (1)) & OxFFFFEFFF))
{
// but only close if the PDO endpoint was open
if (mRPDOIsOpen (1)) {mRPDOClose (1) ;}

// Indicate to the local object that this PDO is disabled
(* (UNSIGNED32 *) (&mRPDOGetCOB(1))) .PDO DIS = 1;

}

else {mCO DictSetRet (E_PARAM RANGE);} //error

}

// Else if the RPDO is not open then start the RPDO
else
{
// And if the COB received matches the stored COB and type then open
if (! ((mTOOLS_GetCOBID() “ mRPDOGetCOB(1l)) & OXFFFFEFFF))
{
// but only open if the PDO endpoint was closed
if (!mRPDOIsOpen (1)) {mRPDOOpen (1);}

// Indicate to the local object that this PDO is enabled
(* (UNSIGNED32 *) (&mRPDOGetCOB(1))) .PDO_DIS = 0;

}

else {mCO_DictSetRet (E_PARAM RANGE);} //error

}

break;

© 2004 Microchip Technology Inc. DS00945A-page 15

AN945

mRPDOIsOpen

Query to determine if the RPDO is open. Typically this should be called within a PDO communications object event.
Syntax

BOOL mRPDOIsOpen (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
TRUE: The RPDO is open and accepting messages.
FALSE: The RPDO is closed and will not accept messages.

Example

Refer to the example provided in mRPDOOpen.

mRPDOClose

Close the RPDO endpoint. Typically this should be called within a PDO communications object event.

Syntax

void mRPDOClose (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example

Refer to the example provided in mRPDOOpen.

mRPDOIsGetRdy
This function queries the Communications Manager for any new received PDOs where n represents the PDO number.

Syntax
BOOL mRPDOnIsGetRdy (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
TRUE: Data has been received and is ready to be processed.
FALSE: No data is available yet.

Example
(See following page)

DS00945A-page 16 © 2004 Microchip Technology Inc.

AN945

Example

void DemoProcessEvents (void)

{

unsigned char change;
unsigned char rise;
unsigned char fall;

// Read the input port
(* (UNSIGNED8 *)uLocalXmtBuffer).bits.b0 = PORTBbits.RB5;
(* (UNSIGNED8 *)uLocalXmtBuffer).bits.bl = PORTBbits.RB4;

// Determine the change if any

change = ulI0inDigiInOld * uLocalXmtBuffer[0];
// Determine if there were any rise events

rise = (uIOinIntRise & change) & uLocalXmtBuffer[0];
// Determine if there were any fall events

fall = (uIOinIntFall & change) & ~uLocalXmtBuffer[0];

// Determine if there were any change events

change = (uIOinIntChange & change) ;

// Cycle the current value to the old

uI0inDigiInOld = uLocalXmtBuffer[0];

// If any of these are true then indicate an interrupt condition

if (ulOinIntEnable & (change | rise | fall)) uDemoState.bits.bl = 1;

if (uDemoState.bits.bl)

{

switch (uDemoSyncSet)
{
case 0: // Acyclic synchronous transmit
// Set a synchronous transmit flag
uDemoState.bits.b2 = 1;
break;
case 254: // Asynchronous transmit
case 255:
// Reset the asynchronous transmit flag
uDemoState.bits.b0 = 1;
break;

// If ready to send
if (mTPDOIsPutRdy (1) && uDemoState.bits.b0)

// Tell the stack that data is loaded for transmit
mTPDOWritten (1) ;

// Reset any synchronous or asynchronous flags
uDemoState.bits.b0 = 0;
uDemoState.bits.bl = 0;

// If any data has been received
if (mRPDOIsGetRdy (1))

// Write out the first byte of the buffer
LATD = uLocalRcvBuffer[0];

// PDO read, free the driver to accept more data
mRPDORead (1) ;

© 2004 Microchip Technology Inc.

DS00945A-page 17

AN945

mRPDORead

This function is called to indicate to the Communications Manager that the last message it received has been read and
processed as necessary. This allows the Communications Manager to accept another PDO message from the driver.
The application could simply copy the data or even process the data in-line.

Syntax

void mRPDORead (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
Return Values

None

Example
Refer to the example provided in mRPDOIsGetRdy () .

mRPDOSetCOB

This function sets the RPDO COB ID, where n represents the PDO number (valid range from 1 to 4). This could be set
prior to opening the PDO. The COB ID must be in the Microchip standard format.

Syntax
void mRPDOSetCOB (const unsigned char PDOnum, unsigned long rpdoCOB)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
unsigned long rpdoCOB: The COB ID received by this PDO.

Return Values

None

Example
(See following page)

DS00945A-page 18 © 2004 Microchip Technology Inc.

AN945

Example

void DemolInit (void)

{

// Port D is all output

LATD = 0;
TRISD = 0;
uDemoSyncSet = 255;

ulOinFilter = 0;
uIOinPolarity = 0;

1;

uIO0inIntChange =

uIOinIntRise = 0;

ulIOinIntFall = 0;

ulIOinIntEnable = 1;

uI0inDigiInOld = uLocalXmtBuffer[0] = 0;

uLocalRcvBuffer[1]
uLocalRcvBuffer [2]
uLocalRcvBuffer[3]
uLocalRcvBuffer[4]
uLocalRcvBuffer[5]
uLocalRcvBuffer[6]
uLocalRcvBuffer [7]

// Convert to MCHP

ulLocalXmtBuffer[1]
ulLocalXmtBuffer [2]
uLocalXmtBuffer [3]
uLocalXmtBuffer[4]
uLocalXmtBuffer [5]
uLocalXmtBuffer [6]
ulLocalXmtBuffer [7]

mTOOLS CO2MCHP (mCOMM_GetNodeID () .byte +

// Store the COB

mTPDOSetCOB (1, mTOOLS GetCOBID()) ;

// Convert to MCHP

mTOOLS CO2MCHP (mCOMM_GetNodeID () .byte +

// Store the COB

mRPDOSetCOB (1, mTOOLS GetCOBID()) ;

// Set the pointer to the buffers

mTPDOSetTxPtr (1,

// Set the pointer to the buffers

mRPDOSetRxPtr (1,

// Set the length
mTPDOSetLen (1, 8);

1]
O O O O O o o

0xC0000180L) ;

0xC0000200L) ;

(unsigned char *) (&uLocalXmtBuffer[0])) ;

(unsigned char *) (&uLocalRcvBuffer[0])) ;

© 2004 Microchip Technology Inc.

DS00945A-page 19

AN945

mRPDOGetCOB
This function gets the RPDO COB ID currently used.

Syntax
unsigned long mRPDOGetCOB (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
unsigned long: The COB ID received by this PDO.

Example
Refer to the example provided in mRPDOOpen.

mRPDOGetLen

This function gets the length of the last received PDO.

Syntax

unsigned char mRPDOGetLen (const unsigned char PDOnum)

Parameters
const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
unsigned char: The length of the message, valid values from O to 8 bytes.

Example
None

mRPDOGetRxPtr

This function gets the stored pointer to the local receive buffer. The pointer must be set prior to opening communications
to the endpoint. When communications is open all messages will be stored in the location referenced by this pointer.

Syntax

unsigned char * mRPDOGetRxPtr (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
unsigned char *pRXBUF

Return Values

unsigned char *: Pointer to the buffer space

Example

None

DS00945A-page 20 © 2004 Microchip Technology Inc.

AN945

mRPDOSetRxPtr

This function sets the pointer to the local receive buffer. The pointer must be set prior to opening communications to the
endpoint. When communications are open all messages will be stored in the location referenced by this pointer.

Syntax
void mRPDOSetRxPtr (const unsigned char PDOnum, unsigned char *pRXBUF)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
unsigned char *pRXBUF

Return Values

None

Example
Refer to the example provided in mRPDOSetCOB () .

mTPDOOpen

Open the TPDO endpoint. There are only four PDOs available. Typically this should be called within a TPDO commu-
nications object write event. Essentially a PDO communications object write event is generated when a node on the
network is requesting to start PDO communications.

Syntax

void mTPDOnOpen (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example
(See following page)

© 2004 Microchip Technology Inc. DS00945A-page 21

AN945

Example

// Process access events to the COB ID
void CO_COMM TPDOl COBIDAccessEvent (void)
{
switch (mCO _DictGetCmd())
{
case DICT OBJ READ: // Read the object
// Translate MCHP COB to CANopen COB
mTOOLS_MCHP2CO (mTPDOGetCOB (1)) ;

// Return the COBID
* (unsigned long *) (uDict.obj->pRegBuf) = mTOOLS GetCOBID() ;
break;

case DICT OBJ WRITE: // Write the object
// Translate the COB to MCHP format
mTOOLS CO2MCHP (* (unsigned long *) (uDict.obj->pRegBuf)) ;

// If the request is to stop the PDO
if ((* (UNSIGNED32 *) (&mTOOLS_ GetCOBID())) .PDO_DIS)
{
// BAnd if the COB received matches the stored COB and type then close
if (! ((mTOOLS_GetCOBID() * mTPDOGetCOB (1)) & OxFFFFEFFF))
{
// but only close if the PDO endpoint was open
if (mTPDOIsOpen (1)) {mTPDOClose (1) ;}

// Indicate to the local object that this PDO is disabled
(* (UNSIGNED32 *) (&mTPDOGetCOB(1))) .PDO DIS = 1;
}

else {mCO DictSetRet (E_PARAM RANGE);} //error

}

// Else if the TPDO is not open then start the TPDO
else
{
// And if the COB received matches the stored COB and type then open
if (! ((mTOOLS_ GetCOBID() * mTPDOGetCOB(1l)) & OXFFFFEFFF))
{
// but only open if the PDO endpoint was closed
if (!mTPDOIsOpen (1)) {mTPDOOpen (1);}

// Indicate to the local object that this PDO is enabled
(* (UNSIGNED32 *) (&mTPDOGetCOB(1))) .PDO_DIS = 0;

}

else {mCO_DictSetRet (E_PARAM RANGE);} //error

}

break;

DS00945A-page 22 © 2004 Microchip Technology Inc.

AN945

mTPDOIsOpen
Query to determine if the TPDO is open. Typically this should be called within a PDO communications object event.

Syntax
BOOL mTPDOIsOpen (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
TRUE: The Communications Manager is ready to accept new data.
FALSE: The Communications Manager is busy transmitting the previous message.

Example
Refer to the example provided in mTPDOOpen () .

mTPDOClose

Close the TPDO endpoint where n represents the PDO number (valid range from 1 to 4). Typically this should be called
within a PDO communications object event.

Syntax

void mTPDOClose (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example
Refer to the example provided in mTPDOOpen () .

mTPDOIsPutRdy

This function queries the Communications Manager for an available slot for transmitting a PDO. This function will return
true if the manager is ready to accept a message to send on the bus.

Syntax
BOOL mTPDOIsPutRdy (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
TRUE: The Communications Manager is ready to accept new data.
FALSE: The Communications Manager is busy transmitting the previous message.

Example
Refer to the example provided in mRPDOIsGetRdy ().

© 2004 Microchip Technology Inc. DS00945A-page 23

AN945

mTPDOWritten

Indicates to the Communications Manager that a message has been loaded for the manager to send. This allows the
Communications Manager to queue the message for transmission. The CO_ PDOTXFinEvent () event function is called
when the message is placed on the bus.

Syntax

void mTPDOWritten (const unsigned char PDOnum)
Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
None

Example
Refer to the example provided in mRPDOIsGetRdy ().

mTPDOSetCOB

This function sets the TPDO COB ID. This should be set prior to sending a TPDO. The COB ID must be in the Microchip
standard format.

Syntax
void mTPDOSetCOB (const unsigned char PDOnum, unsigned long tpdoCOB)

Parameters
const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
unsigned long tpdoCOB: The COB ID to be sent.

Return Values
None

Example
Refer to the example provided in mMRPDOSetCOB () .

mTPDOGetCOB

This function gets the TPDO COB ID currently used.

Syntax

unsigned long mTPDOnGetCOB (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
unsigned long: The COB ID currently used by this PDO.

Example
Refer to the example provided in mRPDOSetCOB () .

DS00945A-page 24 © 2004 Microchip Technology Inc.

AN945

mTPDOSetLen

This function sets the TPDO data length. The length must be between 0 and 8.

Syntax

unsigned long mTPDOnSetLen (const unsigned char PDOnum, unsigned char length)

Parameters
const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
unsigned char length: The length of the PDO, must be from O to 8 bytes.

Return Values

None

Example
Refer to the example provided in mRPDOSetCOB () .

mTPDOGetTxPtr

This function gets the pointer currently pointing to the local transmit buffer. When transmitting, all messages will be
transmitted from the location referenced by this pointer.

Syntax

unsigned char * mTPDOGetTxPtr (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

unsigned char *: Returns the currently used pointer to the buffer

Example
None

mTPDOnSetTxPtr

This function sets the pointer to the local transmit buffer. When transmitting, all messages will be transmitted from the
location referenced by this pointer.

Syntax
void mTPDOnSetTxPtr (const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values
None

Example
Refer to the example provided in mRPDOIsGetRdy ().

© 2004 Microchip Technology Inc. DS00945A-page 25

AN945

CO_PDOnLSTimerEvent

This is the timer event callback function. This function is called every 1 ms if the PDO is enabled. Typically the
application could use this for the PDO event timer function specified in CANopen.

Syntax
void CO_PDOnLSTimerEvent (void)

Parameters
None

Return Values
None

Example
None

CO_ PDOnTXFinEvent

This is the transmit finished event callback function. This event is generated when a message that was queued to
transmit has been placed on the CAN.

Syntax
void CO_PDOnTxFinEvent (void)

Parameters
None

Return Values

None

Example

None

DS00945A-page 26 © 2004 Microchip Technology Inc.

AN945

SYNC Events and Services

There is only one event that is received from the SYNC
object; it is the cO_coMMSyncEvent (). This event is
generated only when a SYNC message is received,
and it is used for synchronized PDO processing. This
event should be handled in the application’s PDO
message processing.

CO_COMMSyncEvent

There are only two services useful for SYNC object
support. The most important part is to set the COB ID
for the SYNC object before initializing the CANopen
communications since the endpoint is automatically
opened upon initialization.

This is the only event that is generated from the SYNC object. This event is generated only when a SYNC message is
received, and it is used for synchronized PDO processing. This event should be handled in the application’s PDO

message processing.

Syntax
void CO_COMMSyncEvent (void)

Parameters

None

Return Values

None

Example

This is a simple example of a handling function for a variable synchronous PDO Type that is cyclic in nature. This is
defined by a PDO Type (TPDO communications parameter at subindex 2) that is between 1 and 240 inclusive.

void CO_COMMSyncEvent (void)

{

// Process only if in a synchronous mode

if ((uDemoSyncSet == 0) && (uDemoState.bits.b2))

{

// Reset the synchronous transmit and transfer to async

uDemoState.bits.b2 0;
uDemoState.bits.b0 = 1;

}

else

if ((uDemoSyncSet >= 1) && (uDemoSyncSet <=

{

// Adjust the sync counter
uDemoSyncCount--;

// If time to generate sync

if (uDemoSyncCount == 0)
// Reset the sync counter
uDemoSyncCount = uDemoSyncSet;

// Start the PDO transmission
uDemoState.bits.b0 = 1;

240))

© 2004 Microchip Technology Inc.

DS00945A-page 27

AN945

mSYNC SetCOBID

This function is used to set the COB ID for the SYNC object. This should be called at least once before initializing to
properly set the COB ID within the firmware.

Syntax
void mSYNC_ SetCOBID (unsigned long SYNC COB)

Parameters
The COB ID in the Microchip format.
unsigned long SYNC COB

Return Values

None

Example

Refer to the example provided in mCO_ProcessAllEvents.

mSYNC GetCOBID
This function is used to get the COB ID currently used for the SYNC object.

Syntax
unsigned long mSYNC GetCOBID (void)

Parameters

None

Return Values
unsigned long SYNC COB: The COB ID in the Microchip format.

Example
None

DS00945A-page 28 © 2004 Microchip Technology Inc.

AN945

Network Management Events and
Services

Network management is provided through the NMT
object, which essentially encompasses the node state
machine (see Figure 2).

mNMT Start

There are a handful of services provided to enter the
node into a particular state. However, the state will
change through normal network management requests
from the NMT master. When a state is changed due to
a request from the master, then an event is generated.
All the events and services are listed below.

Call this function to start communications that have been stopped. Typically this is automatically called by the NMT
managing routines as a result of a NMT request from the master to set the appropriate state.

Syntax
void mNMT Start (void)

Parameters

None

Return Values

None

Example

None

mNMT Stop

Call this function to stop a node that was in the operational or preoperational state. Typically this is automatically called
by the NMT managing routines as a result of a NMT request from the master to set the appropriate state.

Syntax
void mNMT_ Stop (void)

Parameters

None

Return Values
None

Example
None

© 2004 Microchip Technology Inc.

DS00945A-page 29

AN945

mNMT GotoPreopState

Call this function to place the node into the preoperational state. Typically this is automatically called by the NMT
managing routines as a result of an NMT request from the master to set the appropriate state.

Syntax

void mNMT GotoPreopState (void)

Parameters
None

Return Values
None

Example
None

mNMT GotoOperState

Call this function to place the node into the operational state. Typically this is automatically called by the NMT managing
routines as a result of an NMT request from the master to set the appropriate state.

Syntax
void mNMT GotoOperState (void)

Parameters
None

Return Values

None

Example

None

mNMT StateIsStopped

Query to determine if the node is currently in a stopped state.

Syntax
BOOL mNMT StateIsStopped(void)

Parameters

None

Return Values
TRUE: If node is in STOPPED state.
FALSE: If node is in PREOPERATIONAL or OPERATIONAL state.

Example
None

DS00945A-page 30 © 2004 Microchip Technology Inc.

AN945

mNMT StateIsOperational

Query to determine if the node is currently in the operational state.

Syntax
BOOL mNMT StateIsOperational (void)

Parameters

None

Return Values
TRUE: If node is in OPERATIONAL state.
FALSE: If node is STOPPED or PREOPERATIONAL state.

Example

None

mNMT StateIsPreOperational

Query to determine if the node is currently in the operational state.

Syntax
BOOL mNMT StateIsPreOperational (void)

Parameters
None

Return Values
TRUE: If node isin PREOPERATIONAL state.
FALSE: If node is in STOPPED or OPERATIONAL state.

Example
None

CO NMTsStateChangeEvent

This callback function is called when the state of the system has been changed through Network Management Request.

Syntax
void CO_NMTStateChangeEvent (void)

Parameters
None

Return Values
None

Example
None

© 2004 Microchip Technology Inc.

DS00945A-page 31

AN945

CO_NMTResetEvent

This callback function is called when a communications Reset has been requested. The communications is
automatically reset after this event is handled.

Syntax
void CO_NMTStateChangeEvent (void)

Parameters
None

Return Values
None

Example
None

CO NMTAppResetRequest

This callback function is called when an application Reset has been requested. How this event is handled depends on
the application design. After handling this event the CO_COMMResetEvent () event will be generated. The
communications are automatically reset after the CO_COMMResetEvent () eventis handled.

Syntax
void CO_NMTAppResetRequest (void)

Parameters

None

Return Values

None

Example

None

DS00945A-page 32 © 2004 Microchip Technology Inc.

AN945

Node Guard/Heartbeat Events and
Services

A combined Node Guard/Heartbeat object is provided
as required by the specification. There are a small
number of services provided to initialize and get
information about the object.

mNMTE SetHeartBeat

There is only one possible event generated by the
Node Guard/Heartbeat object, which relates specifi-
cally to the node guard half of the object. The
CO_NMTENodeGuardErrEvent () function is called
when the lifetime of the object has been exceeded. The
lifetime is defined in the specification as the product of
the lifetime factor and the guard time.

Call this function to set the Heartbeat. The Heartbeat is an unsigned long in the format specified by the CANopen
specifications. This should be set prior to initializing communications.

Syntax

void mNMTE_ SetHeartBeat (unsigned long HeartBeat)

Parameters

unsigned long HeartBeat

Return Values

None

Example
None

mNMTE GetHeartBeat

Use this function to return the current Heartbeat setting. An unsigned long is returned.

Syntax
unsigned long mNMTE GetHeartBeat (void)

Parameters

None

Return Values

unsigned long HeartBeat

Example
None

© 2004 Microchip Technology Inc.

DS00945A-page 33

AN945

mNMTE SetGuardTime

Call this function to set the guard time. The guard time is an unsigned long in the format specified by the CANopen
specifications. This should be set prior to initializing communications.

Syntax
void mNMTE_ SetGuardTime (unsigned long GuardTime)

Parameters
None

Return Values
None

Example
None

mNMTE GetGuardTime

Use this function to return the current guard time setting. An unsigned long is returned.
Syntax

unsigned long mNMTE GetGuardTime (void)

Parameters
None

Return Values

unsigned long GuardTime

Example
None

mNMTE SetLifeFactor

Use this function to return the current guard time setting. An unsigned long is returned.

Syntax

void mNMTE_ SetLifeFactor (unsigned char LifeFactor)

Parameters
None

Return Values

None

Example

None

DS00945A-page 34 © 2004 Microchip Technology Inc.

AN945

mNMTE GetLifeFactor
Use this function to return the current guard time setting. An unsigned char long is returned.

Syntax
unsigned char mNMTE GetLifeFactor (void)

Parameters

None

Return Values

unsigned char LifeFactor

Example
None

CO_NMTENodeGuardErrEvent

This callback function is called when there is a node guard event. A node guard event occurs when a node guard
message is not received within the defined lifetime (the product of life time factor and guard time). How this event is
handled is dependent on the application.

Syntax
void CO_NMTENodeGuardErrEvent (void)

Parameters
None

Return Values

None

Example

None

© 2004 Microchip Technology Inc. DS00945A-page 35

AN945

Objects and the Object Dictionary

In this design each dictionary entry is a structure within
program memory. Within each structure is the neces-
sary information to identify the object and its location.
The identity is flexible enough that more than simple
data types, arrays, and structures can be defined as
objects. A function can be defined as an object as well,
and this is where the true flexibility lies for complex
objects.

THE OBJECT STRUCTURE

An object defined in the Object Dictionary is stored in
program memory; its structure is shown in Example 5.
This structure contains enough information to describe
any object.
« index: the index of the object
« subindex: the subindex of the object
« ctl: the control byte. This defines the type of

object.
« len: the length of the object in bytes.
« *pROM: a pointer to the object or object handling

function. The pointer should always be cast to
rom unsigned char *.

EXAMPLE 5: DICTIONARY STRUCTURE
typedef struct DICTIONARY OBJECT TEMPLATE

{

int index;

char subindex;
unsigned char ctl;
unsigned int len;
rom unsigned char * pROM;

}DICT _OBJECT TEMPLATE;

unsigned
unsigned

OBJECT GROUPS

The Object Dictionary is broken into groups for faster
dictionary searching. Thus every entry within the
Obiject Dictionary must be stored within the appropriate
group. Table 6 identifies all the groups. Any entries in
the dictionary should be placed in numerical order
within the appropriate group.

OBJECT CONTROL BITS

How an object is handled within the dictionary depends
on its control bits. An object could be read/write, read
only, or even functionally defined to accommodate very
unique objects. Table 7 defines the bits of the object
control byte.

To easily manipulate individual bits within the control
byte, a series of symbolic bit modifiers have been
provided. Table 8 provides the logical AND modifiers to
control the object. These can be combined manually to
form a specific control. For example, the following
statement defines an object that is readable, writable,
defined as a function, and mappable:

RD & WR & N_ROM & N _EE & FDEF & MAP &
N_FSUB

In a similar fashion, Table 9 provides the typical logical
OR maodifier definitions to control the object. These can
also be combined with the bit names shown in Table 8.
For example, the following statement defines an object
that is readable, writable, defined as a function, and
mappable (same as previous):

RW | FUNC | MAP BIT

Several examples of the usage of bit modifiers are
shown in Example 6, in entries 4, 8, 9 and 10.

{
{
{
{
{
{
{
{
{
{
{
{
{
{

0x100D, 0x00,FUNC | RW,1,{ (rom unsigned char *)& CO COMM NMTE LifeFactorAccessEvent}} \\

0x1017,0x00,FUNC | RW,2,{(rom unsigned char *)& CO COMM NMTE HeartBeatAccessEvent}}, \\
0x1018,0x00,CONST, 1, { (rom unsigned char *)&rCO DevIdentityIndx}}, A\
0x1018,0x01, CONST, 4, { (rom unsigned char *)&rCO DevVendorID}}, \\
0x1018,0x02,CONST, 4, { (rom unsigned char *)&rCO_DevProductCode}}, \\
0x1018,0x03,CONST, 4, { (rom unsigned char *)&rCO DevRevNo}}, A\
0x1018,0x04,CONST, 4, { (rom unsigned char *)&rCO_DevSerialNo}}

EXAMPLE 6: DICTIONARY OBJECT ENTRY EXAMPLE

#define DICTIONARY DEVICE_ INFO W\
{0x1000, 0x00, CONST, 4, { (rom unsigned char *)&rCO _DevType}}, \\
0x1001,0x00,RO,1, { (rom unsigned char *)&uCO DevErrReg}}, \\
0x1002,0x00,R0, 4, { (rom unsigned char *)&uCO DevManufacturerStatReg}}, \\
0x1005,0x00,FUNC | RW,4,{ (rom unsigned char *)& CO COMM SYNC COBIDAccessEvent}}, \\
0x1008,0x00,CONST, 24, { (rom unsigned char *)&rCO _DevName}}, A\
0x1009,0x00, CONST, 4, { (rom unsigned char *)&rCO DevHardwareVer}}, \\
0x100A,0x00,CONST, 4, { (rom unsigned char *)&rCO DevSoftwareVer}}, \\
0x100C, 0x00,FUNC | RW,2,{ (rom unsigned char *)& CO COMM NMTE GuardTimeAccessEvent}}, \\

DS00945A-page 36

© 2004 Microchip Technology Inc.

AN945

TABLE 6: OBJECT GROUPS

Object Group Name Index Description

DICTIONARY_DATA_TYPES 0000h | Data types defined in the object dictionary. Although
data types are defined within the object dictionary, the
specification indicates that support is not required.

DICTIONARY_DEVICE_INFO 1000h | This group is within the CANopen communications
section and contains the device specific information
including COBIDs, certain endpoints, and status.

DICTIONARY_SDO 1200h | One group for SDO parameters is provided.

DICTIONARY_PDO1_RX_COMM 1400h | Individual groups are provided for four RPDO

DICTIONARY_PDO2_RX_COMM 1401h |COommunications parameters.

DICTIONARY_PDO3_RX_COMM 1402h

DICTIONARY_PDO4_RX_COMM 1403h

DICTIONARY_PDO1_RX_MAP 1600h | Individual groups are provided for four RPDO mapping

DICTIONARY_PDO2_RX_MAP 1601h |Parameters.

DICTIONARY_PDO3_RX_MAP 1602h

DICTIONARY_PDO4_RX_MAP 1603h

DICTIONARY_PDO1_TX_COMM 1800h | Individual groups are provided for four TPDO

DICTIONARY_PDO2_TX_COMM 1801h |communications parameters.

DICTIONARY_PDO3_TX_COMM 1802h

DICTIONARY_PDO4_TX_COMM 1803h

DICTIONARY_PDO1_TX_MAP 1A00h |Individual groups are provided for four TPDO mapping

DICTIONARY_PDO2_TX_MAP 1A01h |Parameters.

DICTIONARY_PDO3_TX_MAP 1A02h

DICTIONARY_PDO4_TX_MAP 1A03h

DICTIONARY_MANUFACTURER_SPECIFIC_1 | 2000h | These groups are provided for manufacturer specific

DICTIONARY_MANUFACTURER_SPECIFIC_2 | 3000h |obijects.

DICTIONARY_MANUFACTURER_SPECIFIC_3 | 4000h

DICTIONARY_MANUFACTURER_SPECIFIC_4 | 5000h

DICTIONARY_STANDARD_1 6000h | These groups are provided for CANopen standard

DICTIONARY_STANDARD_2 7000h |objects.

DICTIONARY_STANDARD_3 8000h

DICTIONARY_STANDARD_4 9000h

© 2004 Microchip Technology Inc.

DS00945A-page 37

AN945

TABLE 7: CONTROL BIT DEFINITIONS
Bits Name Description

Bit 0 RD_BIT This bit defines the read access of the object. If this bit is set then the object is readable
from a node on the network.

Bit 1 WR_BIT | This bit defines the write access of the object. If this bit is set then the object is writable by
a node on the network.

Bit 2 ROM_BIT | This bit defines an object that is located within ROM. Setting this bit does not imply the
object cannot be written. This only defines the location where this bit is stored.

Bit 3 EE_BIT This bit defines an object that is located in EEPROM. Note, no automatic handling is
provided at this time for EEPROM. If the EE_BIT is set then the FDEF_BIT should also be
set so the dictionary access tools know that the application designer is handling access to
EEDATA memory through a custom function.

Bit 4 FDEF_BIT | This bit defines an object that is functionally defined. Typically objects are defined by a
function if they have special rules that cannot be defined by a single static type. For
example, an object that triggers an event when read should be functionally defined. Or if an
object can change read-write access level based on application dependent events or states
should also be functionally defined. Also note, if this bit is set then all other bits can be
defined within the object handling function, except the FSUB_BIT.

Bit 5 MAP_BIT | This bit defines the mappability of the object. Thus if this bit is set then the object can be
mapped into a PDO.

Bit 6 FSUB_BIT | This bit defines whether the entire subindex array is functionally defined. Thus for a
particular index there will be only one entry in the dictionary. And all requests to access any
subindex are handled by the object’s access handling function. This is useful for objects
where all of the subindices have the same functionality but require different parameter
values; therefore, only one entry is required in the dictionary file.

Bit 7 reserved |reserved at this time

TABLE 8: LOGIC AND BIT DEFINITIONS TABLE 9: LOGIC OR BIT DEFINITIONS
Bits Description Bits Description

RD Allow read CONST ROM based read-only object

N_RD Read not allowed RW Readable and writable object

WR Write allowed RO Read-only object

N_WR Write not allowed WO Write-only object

ROM ROM based object RW_EE Readable and writable EEDATA object

N_ROM Not a ROM based object RO_EE Read-only object in EEDATA

EE EEDATA based object WO_EE Write-only object in EEDATA

N_EE Not an EEDATA based object FUNC Functionally defined object

FDEF Functionally defined object

N_FDEF Not a functionally defined object

MAP Mappable object

N_MAP Not a mappable object

FSUB Functionally defined subindex

N_FSUB Not a functionally defined subindex

DS00945A-page 38

© 2004 Microchip Technology Inc.

AN945

SIMPLE OBJECTS

The dictionary provides support for simple objects.
Simple objects are essentially objects that operate
within the realm of a normal data type. This includes
any data type supported by the compiler as well as
arrays.

A simple object is defined in the object dictionary by
referencing the object within the dictionary. This is
illustrated by the first dictionary entry in Example 7. A
read request to this object will return the data stored in
uCO_DevManufacturerStatReg; a write request
will return an error, since this is a read-only object.

FUNCTIONALLY DEFINED OBJECT

Obijects are defined by a function when the object has
some properties that do not follow a standard data type
or array defined in the C language. For example, a
variable unsigned char MyObj that has no unusual
conditions does not need to be defined by a function;
however, if in MyOb7j bit 7 enables the write to MyOb7,
then this would require special handling and must be
defined by a function, similar to COB IDs.

An object is defined by a function when the FDEF_BIT
is set in its control byte. This is demonstrated with the
second dictionary entry in Example 7, which defines
the COB ID for the SYNC object. In this case, the
function _CO_COMM_SYNC_COBIDAccessEvent () Is
called when there is a request to access the object at
index 1005h, subindex 0x00.

EXAMPLE 7:

WRITING AN OBJECT HANDLING FUNCTION

An object is referenced through an SDO, PDO, or
through some application access. If the object is
defined by a function then the function defined in the
dictionary will be called when the object is referenced.
There are three possible events that the object
handling function can handle when referenced:

« Read control: Read the control bits defined by the
function. This applies to all bits except the
FSUB_BIT and FDEF_BIT bits; these bits must be
defined for the object within the dictionary.

* Read: Read the object if it is readable.
» Write: Write the object if it is writable.

Example 8 demonstrates what a typical handling
function looks like. Example 9 is an example of a
handler for the TPDO1 COB ID object.

An object handling function is provided with functions
and a structure to process requests to or from. The
functions are mCO_DictGetCmd () and
mCO_DictSetRet (). The first is used to retrieve the
command, and the second is used to return any errors to
the requestor. Table 11 lists the errors that can be
returned. In the case of a successful request, then no
response is necessary; the dictionary assumes success.

The requestor will set a pointer in the dictionary
(uDict.obj) to its local DICT_OBJ structure. This
structure contains information about the object as well
as the requestor. The structure is defined in Table 8.
Example 8 demonstrates usage of the structure with an
object handling function.

EXAMPLES OF OBJECT DEFINITIONS

Simple Object Definition:

Functionally Defined Object:

{0x1002,0x00,RO0, 4, { (rom unsigned char *)&uCO DevManufacturerStatReg}}

{0x1005,0x00,FUNC | RW,4,{(rom unsigned char *)& CO_COMM SYNC COBIDAccessEvent}

© 2004 Microchip Technology Inc.

DS00945A-page 39

AN945

TABLE 10: DICT_OBJ UDICT STRUCTURE
Element Type Description
pRegBuf unsigned char * Pointer to the requestor’s buffer. This is the pointer to the requestor’s data when
writing an object. When reading, this is the pointer to the requestor’s buffer
space.
regLen unsigned int Number of bytes requested. This should never exceed the length of the object.
reqOffst |unsigned int Starting point for the request. This is provided to support partial requests due to
low buffer space. This is most useful for read requests; for write requests this
would be unlikely since partially writing an object is not always desirable. Also,
this parameter does not need to be supported if the number of bytes in the object
is less than 8.
index unsigned int CANopen Index.
subindex |unsigned char CANopen subindex.
ctl enum DICT_CTL | Memory access type.
len unsigned int Size of the object in bytes.
p union DICT_PTRS | Pointers to objects.
TABLE 11: ERROR DEFINITIONS
Name Description
E_SUCCESS Success, no error
E_TOGGLE Toggle bit not alternated
E_SDO_TIME SDO protocol timed out
E_CS_CMD Client/server command specifier not valid or unknown

E_MEMORY_OUT

Out of memory

E_UNSUPP_ACCESS

Unsupported access to object

E_CANNOT_READ

Attempt to read a write only object

E_CANNOT_WRITE

Attempt to write a read-only object

E_OBJ_NOT_FOUND

Object does not exist in the object dictionary

E_OBJ_CANNOT_MAP

Object cannot be mapped to the PDO

E_OBJ_MAP_LEN

The number and length of the objects to be mapped would exceed PDO length

E_GEN_PARAM_COMP

General parameter incompatibility

E_GEN_INTERNAL_COMP

General internal incompatibility in the device

E_HARDWARE

Access failure due to a hardware error

E_LEN_SERVICE

Data type does not match, length of service parameter does not match

E_LEN_SERVICE_HIGH

Data type does not match, length of service parameter too high

E_LEN_SERVICE_LOW

Data type does not match, length of service parameter too low

E_SUBINDEX_NOT_FOUND

Subindex does not exist

E_PARAM_RANGE

Value range of parameter exceeded (only for write access)

E_PARAM_HIGH

Value of parameter too high

E_PARAM_LOW

Value of parameter too low

E_MAX_LT_MIN

Maximum value is less than minimum value

E_GENERAL General error

E_TRANSFER Data cannot be transferred or stored to the application

E_LOCAL_CONTROL Data cannot be transferred or stored to the application because of local control
E_DEV_STATE Data cannot be transferred or stored to the application because of the present

device state

DS00945A-page 40

© 2004 Microchip Technology Inc.

AN945

EXAMPLE 8: FUNCTIONAL OBJECT HANDLING
void MyObjectHandlingFunction (void)

{

switch (mCO_DictGetCmd())
{
case DICT_OBJ INFO:// Get information about the object
// Code in this request type should modify the type of access. For
// example, if the object can change from RO to RW based on a particular
// state of the application then this would be handled here. In most
// situations this can be omited since the object info is static;
// static information is supported directly by the dictionary.
break;
case DICT OBJ READ: // Read the object
// This is the object read request. Code in this request type should
// handle any data movement and/or events based on the Read.
break;
case DICT OBJ WRITE: // Write the object
// This is the object write request. Code in this request type should
// handle any data movement and/or events based on the Write.
break;

© 2004 Microchip Technology Inc. DS00945A-page 41

AN945

EXAMPLE 9: FUNCTIONAL OBJECT HANDLING EXAMPLE

void CO_COMM_TPDO1l_COBIDAccessEvent (void)
switch (mCO_DictGetCmd())
case DICT_OBJ READ: // Read the object
// Translate MCHP COB to CANopen COB
mTOOLS_MCHP2CO (mTPDOGetCOB (1)) ;

// Return the COBID

* (unsigned long *) (uDict.obj->pRegBuf) = mTOOLS_GetCOBID() ;
break;

case DICT OBJ WRITE: // Write the object
// Translate the COB to MCHP format
mTOOLS_CO2MCHP (* (unsigned long *) (uDict.obj->pReqBuf)) ;

// If the request is to stop the PDO
if ((* (UNSIGNED32 *) (&mTOOLS_GetCOBID())) .PDO_DIS)

{

// And if the COB received matches the stored COB and type then close

if (! ((mTOOLS_GetCOBID () * mTPDOGetCOB (1)) & OxFFFFEFFF))

// but only close if the PDO endpoint was open
if (mTPDOIsOpen (1)) {mTPDOClose (1) ;}

// Indicate to the local object that this PDO is disabled
(* (UNSIGNED32 *) (&mTPDOGetCOB(1))) .PDO_DIS = 1;

}

else {mCO DictSetRet (E_PARAM RANGE);} //error

// Else if the TPDO is not open then start the TPDO
else

{

// And if the COB received matches the stored COB and type then open

if (! ((mTOOLS_GetCOBID () * mTPDOGetCOB (1)) & OxFFFFEFFF))

// but only open if the PDO endpoint was closed
if (!mTPDOIsOpen (1)) {mTPDOOpen (1) ;}

// Indicate to the local object that this PDO is enabled
(* (UNSIGNED32 *) (&mTPDOGetCOB(1))) .PDO_DIS = 0;

}

else {mCO DictSetRet (E_PARAM RANGE);} //error
}

break;

DS00945A-page 42 © 2004 Microchip Technology Inc.

AN945

DICTIONARY SERVICES

There are several services for dictionary management
available for use by the SDO endpoint. If necessary,
they may also be used for dynamic PDO mapping.

mCO DictObjectRead

This function reads the object defined by myObj. To use this, the object information must be stored locally as a
DICT_OBJ structure then passed to the mCO_DictObjectRead () function. Internally only the reference is used.

Within the DICT_OBJ structure is the information necessary for receiving data from the object. Some of this information
must be provided by the calling function and other information must be provided by the dictionary. The
mCO_DictObjectDecode () function must be called prior to calling mCO_DictObjectRead () to get the access and
reference information stored in the dictionary. Other information must be provided by the user. The following table
describes the structure and the source of information for each element.

TABLE 12: DICT_OBJ STRUCTURE

Element Type Provided by Description
pRegBuf unsigned char * User Pointer to the requestors buffer
regLen unsigned int User Number of bytes requested
reqOffst |unsigned int User Starting point for the request
index unsigned int User CANopen Index
subindex |unsigned char User CANopen subindex
ctl enum DICT_CTL |mCO_DictObjectDecode () Memory access type
len unsigned int mCO_DictObjectDecode () Size of the object in bytes
P union DICT_PTRS | mCO_DictObjectDecode () Pointers to objects
Syntax

void mCO DictObjectRead (DICT OBJ myObj)

Parameters
DICT OBJ myObj

Return Values

None. Use mCO_DictGetRet () to retrieve the error code.

Example

void MyFunc (void)

{
DICT OBJ myLocalObj;
unsigned char localArray[20];
// Specify the object
myLocalObj.index = 0x1008L;
myLocalObj.subindex = 0x00;

// Get the information stored in the dictionary

mCO DictObjectDecode (myLocalObj) ;

// Specify the local space and what data to read

myLocalObj.pRegBuf = localArray;
myLocalObj.reglLen = 0x8;
myLocalObj.reqOffst = 0x0;

// Read the object

mCO DictObjectRead (myLocalObj) ;

© 2004 Microchip Technology Inc.

DS00945A-page 43

AN945

mCO DictObjectWrite

This function writes the object defined by myObj. To use this, the object information must be stored locally as a
DICT_OBJ structure then passed to the mCO_DictObjectWrite () function. Internally only the reference is used.

Syntax
void mCO DictObjectWrite (DICT OBJ myObj)

Parameters

DICT OBJ myObj : The object structure shown in Table 12.

Return Values
None. Use mCO_DictGetRet () to retrieve the error code.

Example

The basic usage is similar to the example given for mCO_DictObjectRead () (page 43).

mCO DictObjectDecode

This function is used to fill in any static information for a particular object that resides within the dictionary. An object
defined by myObj must be declared locally and passed to the function. The function will take the index and sub index
information and search for it within the dictionary. If the object is found then a pointer, length, and some control informa-
tion will be loaded within the myOb7 structure; refer to Table 12. Status information is returned and can be retrieved with
the mCO_DictGetRet () function.

Syntax
void mCO DictObjectDecode (DICT OBJ myObj)
Parameters

DICT OBJ myObj : The object structure shown in Table 12.

Return Values
None. Use mCO_DictGetRet () to retrieve the error code.

Example

The basic usage is similar to the example given for mCO_DictObjectRead () (page 43).

DS00945A-page 44 © 2004 Microchip Technology Inc.

AN945

mCO DictGetCmd

This function is used to retrieve the command for an object. There are only three commands: DICT OBJ_INFO,

DICT OBJ_READ, and DICT OBJ_ WRITE.

Syntax
enum DICT OBJECT REQUEST mCO DictGetCmd (void)

Parameters
None

Return Values

DICT OBJ_INFO: Read object control information.
DICT OBJ_ READ: Read the object.
DICT OBJ_ WRITE: Write the object.

Example
Refer to the code in Example 9 (page 42).

mCO DictGetRet

This function is used to get the return status of a dictionary operation.

Syntax

unsigned char mCO_DictGetRet (void)

Parameters

None

Return Values
All the possible errors are listed in Table 11 (page 40).

Example
None

mCO DictSetRet

This function is used to set the return status of a dictionary operation. This is only used within an object handling

function.

Syntax
void mCO DictSetRet (unsigned char retval)

Parameters

unsigned char retVal: The return status of the object request. All the possible errors are listed in Table 11

(page 40).

Return Values

None

Example
Refer to the code in Example 9 (page 42).

© 2004 Microchip Technology Inc.

DS00945A-page 45

AN945

ECAN™ DRIVER

The functions in this section describe the functional
interface of the ECAN driver. Note that the driver
provided with the CANopen Stack has been specifically

mCANEventManager

designed for PIC18F devices with ECAN technology. It
is also possible to use an external CAN controller, and
therefore a different driver with different function calls. In
this event, the user will need to provide an appropriate
driver.

This is an event handling function. All queued events are processed from within this function. This function is called
within the CANopen Stack when CO_ProcessAllEvents is called.

Syntax

void mCANEventManager (void)

Parameters
None

Return Values
None

Example

None

mCANReset

This function resets CAN communications and sets the appropriate bit rate. This function is called from within the
CANopen Stack when a Reset request is received either from the application or the NMT master.

Syntax
void mCANReset (unsigned char CANBitRate)

Parameters
None

Return Values
None

Example
None.

mCANOpenComm

This function opens CAN communications. This function should be treated as a request. Depending on the bus activity,

communications may not be opened immediately.

Syntax
void mCANOpenComm (void)

Parameters
None

Return Values
None

Example
None

DS00945A-page 46

© 2004 Microchip Technology Inc.

AN945

mCANCloseComm

This function closes CAN communications.
Syntax

void mCANCloseComm (void)
Parameters

None

Return Values
None

Example
None

mCANIsCommOpen

This function can be used to query the driver to determine if communications are opened or closed.

Syntax
BOOL mCANIsCommOpen (void)

Parameters
None

Return Values
TRUE: Communications are opened.
FALSE: Communications are closed.

Example

None.

mCANErrIsOverFlow

This function is used to query the driver for a receive buffer overflow condition. If an overflow condition is found then the
condition can be removed by calling the mCANErrClearOverFlow function. When an overflow condition has
happened one or more messages have been lost. How this is handled depends on the application; the specification
does not require a particular method for handling this condition.

Syntax
void mCANErrIsOverFlow (void)

Parameters
None

Return Values
TRUE: A receive buffer has overflowed.
FALSE: A receive buffer has not overflowed.

Example
None

© 2004 Microchip Technology Inc. DS00945A-page 47

AN945

mCANErrClearOverFlow

Remove the receive buffer overflow condition.
Syntax

void mCANErrClearOverFlow (void)

Parameters

None

Return Values
None

Example
None

mCANSetBitRate

This function sets the current bit rate. The bit rate is not changed immediately; it is actually queued in the driver until the
driver and CAN hardware are ready to accept a change. Typically this is only called once at start-up.

Syntax
void mCANSetBitRate (unsigned char CANBitRate)

Parameters

unsigned char CANBitRate: This can be any value; however, only values 0 through 8 are considered valid. All other
values will automatically default to the bit rate identified by option 0. All 9 options are defined in the file CO_DEFS . DEF.

Return Values

None

Example

None

mCANGetBitRate
This function returns the current bit rate used by the driver.

Syntax
unsigned char mCANGetBitRate (void)

Parameters

None

Return Values

unsigned char: The current bit rate. Only values 0 through 8 are valid; however, the function may return other values if
mCANSetBitRate () was passed a value other than the valid values.

Example
None

DS00945A-page 48 © 2004 Microchip Technology Inc.

AN945

mCANOpenMessage

This function scans the available mailbox space for an open slot. The CAN identifier must be passed in along with a
unique non-zero handle to that identifier. If a slot is found then all messages containing the provided CAN identifier will
be received and the handle will be used to identify the message. The handle will also be returned to the caller if found,;
otherwise, the return will be zero. The calling function must maintain the handle if the endpoint is to be released at a
later time without a Reset.

The CAN identifier is added but not activated until the bus and the driver are ready. In future CAN modules this queuing
functionality may be removed, depending on available hardware support.

Syntax

void mCANOpenMessage (unsigned char MsgTyp, unsigned long COBID, unsigned char hRet)
Parameters

unsigned char MsgTyp: The unique handle to the identifier. It must be non-zero.

unsigned long COBID: The CAN identifier of the message to be allowed.

Return Values

unsigned char hRet:The return status. This will be either O or the handle.

Example
None

mCANCloseMessage

This function scans the mailbox space for the handle. If found, the CAN identifier is removed from the receive list.

The CAN identifier is only queued to be removed from the list. Thus messages may still be received until the driver can
fully remove the CAN identifier from the hardware. In future CAN modules this queuing functionality may be removed
depending on hardware support.

Syntax
void mCANCloseMessage (unsigned char hMsg)

Parameters

unsigned char hMsg: The handle to the message.

Return Values

None

Example
None

© 2004 Microchip Technology Inc. DS00945A-page 49

AN945

mCANIsGetRTR

This function queries the driver for the RTR condition of the current message. The function mCANIsGetReady should
be called prior to this request to set the current message.

Syntax
void mCANIsGetRTR (void)

Parameters
None

Return Values
None

Example
None

mCANIsGetReady

This function scans for a receive event. If found, it places a handle associated to the receive buffer into an internal
register which can be accessed by mCANFetchRetStat. Otherwise, it returns zero. If a valid message is waiting, it
should be processed prior to calling the function again.

Buffer access on successive receive related calls is assumed, i.e., the handle is not required for associated read
functions. For example, calls to mCANGetDataLen () and mCANGetDataByten () functions assume the most current
received message data is being requested.

Syntax
void mCANIsGetReady (void)

Parameters

None

Return Values
None

Example
None

mCANReadMessage

Calling this function indicates to the driver that the current message has been processed, and the driver is now free to
use the buffer for a new message. The function mCANIsGetReady should have been called prior to this request to set
the current message.

Syntax
void mCANReadMessage (void)

Parameters

None

Return Values
None

Example
None

DS00945A-page 50 © 2004 Microchip Technology Inc.

AN945

mCANGetPtrRxCOB
This function retrieves the pointer to the current identifier. It also points to the whole message stored in Microchip format.

Syntax
unsigned char * mCANGetPtrRxCOB (void)

Parameters

None

Return Values

unsigned char *: Returns a pointer to the received CAN identifier.

Example
None

mCANGetPtrRxData

This function retrieves the pointer to the current data.

Syntax

unsigned char * mCANGetPtrRxData (void)

Parameters
None

Return Values

unsigned char *: Returns a pointer to the received data.

Example
None

mCANGetDataLen

This function retrieves the length of the current message or RTR request.
Syntax

unsigned char mCANGetDataLen (void)

Parameters
None

Return Values
unsigned char: Length of message or RTR request.

Example
None

© 2004 Microchip Technology Inc. DS00945A-page 51

AN945

mCANGetDataByten

This represents a total of eight functions, where the trailing n can represents values from 0 to 7. Each will return the
corresponding data byte of the message received.

Syntax
unsigned char mCANGetDataByten (void)

Parameters
None

Return Values

unsigned char: The data byte.

Example
None

mCANIsPutReady

This function scans for an available output buffer. If successful, the handle passed is the same as the handle returned;
otherwise a zero is returned. The function mCANFetchRetStat must be called to get the return value.

Syntax
void mCANIsPutReady (putHndl)

Parameters
unsigned char putHndl: The handle of the message.

Return Values

None

Example

None

mCANIsPutFin

This function queries the driver for any message that has been placed on the bus and returns the handle to the message
that was sent. The function mCANFetchRetStat must be used to get the handle to the message.

This function should only be called one time for a transmit indication. Calling this function a second time after receiving
an indication may not return the same handle.

Syntax
void mCANIsPutFin (void)

Parameters
None

Return Values

None

Example

None

DS00945A-page 52 © 2004 Microchip Technology Inc.

AN945

mCANSendMessage

This function is used to indicate to the driver that the data, length, and CAN identifier have been loaded and are ready
to be sent.

Syntax
void mCANSendMessage (void)

Parameters
None

Return Values
None

Example
None

mCANGetPtrTxCOB

This function gets the pointer to the transmit CAN identifier buffer.

Syntax
unsigned char * mCANGetPtrTxCOB (void)

Parameters
None

Return Values

unsigned char *: The pointer to the CAN identifier transmit buffer.

Example
None

mCANGetPtrTxData

This function gets the pointer to the transmit data buffer.

Syntax
unsigned char * mCANGetPtrTxData (void)

Parameters
None

Return Values

unsigned char *: A pointer to the data transmit buffer.

Example

None

© 2004 Microchip Technology Inc. DS00945A-page 53

AN945

mCANPutDataLen

This function sets the data length or the RTR request length.

Syntax
void mCANPutDatalLen (unsigned char CANlen)

Parameters

unsigned char CANlen: The length or the RTR request length of the message.

Return Values
None

Example
None

mCANPutDataByten

This represents a total of eight functions, where the trailing n represents values from 0 to 7. Each can be used to set
the corresponding byte to be sent.

Syntax
void mCANPutDataByten (unsigned char CANDat)

Parameters
unsigned char CANDat: Data byte.

Return Values
None

Example
None

mCANFetchRetStat

This function is used to get the status of a function that returns status. The functions that return status are noted.

Syntax
unsigned char mCANFetchRetStat (void)

Parameters
None

Return Values

unsigned char: The status of the last operation.

Example

None

DS00945A-page 54 © 2004 Microchip Technology Inc.

AN945

FINISHING THE APPLICATION

Of course there are still some CAN specific details that
need to be handled. Here are some points to
remember:

« Objects: Define and develop all objects and
handling functions and link them to the dictionary.
Objects that are defined by a function require of
course extra coding because of the handling
function; however, these types of objects are
highly flexible.

« Dictionary: Place all objects within their proper
place within the dictionary. Properly define the
control, length, and the reference information for
the objects.

* PDOs: These still must be defined and
developed. Remember that PDOs can be static or
dynamic; static methods will always be code and
process-efficient but are obviously not flexible like
dynamic PDOs. There are also a number of PDO
transmission types that depend on the specific
application. For these reasons, only a base set of
tools are provided so the designer can develop
the most efficient code for the application.

< Timing: Provide a time base by using one of the
timers or some external time source.

« Initialization: Develop proper initialization code.
Many objects need to be initialized from some
static source such as ROM, EEPROM, or even
switches connected to input pins.

« Main Processing: Develop efficient cooperative
design practices in order to properly capture and
handle all events.

e Events: There are numerous events. Ensure
proper handling is in place where necessary. For
example, Reset requests from the network are
provided as events to the application. It is left up
to the application designer to decide how to
handle a Reset request.

» Compile Time Setup: Set up the appropriate
compile time options to achieve optimal resource
usage and efficiency.

RESOURCE USAGE

Device resources used by the stack are highly depen-
dent on the compile time options, as well as compiler
optimizations. The application designer should expect
the stack to consume about 7000 to 10,000 bytes of
program memory and 300 bytes of data memory with
optimization.

Using all of the optimizations available in the MPLAB®
C18 Compiler (v2.30.01), the demonstration
application provided with this application note requires
7434 bytes of program memory and 314 bytes of data
memory.

CONCLUSION

Developing a CANopen device can be an arduous task.
By using the CANopen Stack and its tools, a good portion
of the work is already accomplished by removing much of
the CANopen and CAN specific communications
management. This allows the applications designer to
focus a much greater percentage of his or her effort on
the application, and less on the specifics of CANopen.

REFERENCES

DS-301 (v 4.02), “CANopen Communication Profile for
Industrial Systems Based on CAL”". Erlangen: CAN in
Automation e.V., 2002.

M. Farsi and M. Barbosa, CAN Implementation:
Applications to Industrial Networks. Baldock,
Hertfordshire: Research Studies Press, 2000.

© 2004 Microchip Technology Inc.

DS00945A-page 55

AN945

APPENDIX A: SOFTWARE
DISCUSSED IN THIS
APPLICATION NOTE

Because of the number of individual modules and their
size, a complete source code listing of the CANopen
Stack is not provided here. Interested users are invited
to download the.zip archive file, including all source
and header files, from the Microchip corporate web site
at:

www.microchip.com

DS00945A-page 56

© 2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’'s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicity or otherwise, under any intellectual
property rights.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

=—1S0/TS 16949:2002 —

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEeLOQ, microlD, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,
SmartSensor and The Embedded Control Solutions Company
are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,
PICLAB, PICtail, PowerCal, Powerinfo, PowerMate,
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,
SmartTel and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

Q Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

© 2004 Microchip Technology Inc.

DS00945A-page 57

MICROCHIP

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199

Tel: 480-792-7200

Fax: 480-792-7277

Technical Support: 480-792-7627
Web Address: www.microchip.com

Atlanta

3780 Mansell Road, Suite 130
Alpharetta, GA 30022

Tel: 770-640-0034

Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180
Itasca, IL 60143

Tel: 630-285-0071

Fax: 630-285-0075

Dallas

16200 Addison Road, Suite 255
Addison Plaza

Addison, TX 75001

Tel: 972-818-7423

Fax: 972-818-2924

Detroit

Tri-Atria Office Building

32255 Northwestern Highway, Suite 190
Farmington Hills, Ml 48334

Tel: 248-538-2250

Fax: 248-538-2260

Kokomo

2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles

25950 Acero St., Suite 200
Mission Viejo, CA 92691
Tel: 949-462-9523

Fax: 949-462-9608

San Jose

1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444

Fax: 650-961-0286

Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd
Unit 32 41 Rawson Street

Epping 2121, NSW

Sydney, Australia

Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

China - Beijing

Unit 706B

Wan Tai Bei Hai Bldg.

No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China

Tel: 86-10-85282100

Fax: 86-10-85282104
China - Chengdu

Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200

Fax: 86-28-86766599
China - Fuzhou

Unit 28F, World Trade Plaza
No. 71 Wusi Road

Fuzhou 350001, China

Tel: 86-591-7503506

Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road

Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200

Fax: 852-2401-3431

China - Shanghai

Room 701, Bldg. B

Far East International Plaza

No. 317 Xian Xia Road

Shanghai, 200051

Tel: 86-21-6275-5700

Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China

Tel: 86-755-82901380

Fax: 86-755-8295-1393

China - Shunde

Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao

Rm. B505A, Fullhope Plaza,

No. 12 Hong Kong Central Rd.

Qingdao 266071, China

Tel: 86-532-5027355 Fax: 86-532-5027205
India

Divyasree Chambers

1 Floor, Wing A (A3/A4)

No. 11, O’Shaugnessey Road

Bangalore, 560 025, India

Tel: 91-80-22290061 Fax: 91-80-22290062
Japan

Yusen Shin Yokohama Building 10F

3-17-2, Shin Yokohama, Kohoku-ku,
Yokohama, Kanagawa, 222-0033, Japan

Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku

Seoul, Korea 135-882

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934

Singapore

200 Middle Road

#07-02 Prime Centre

Singapore, 188980

Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan

Kaohsiung Branch

30F-1No.8

Min Chuan 2nd Road

Kaohsiung 806, Taiwan

Tel: 886-7-536-4816

Fax: 886-7-536-4817

Taiwan

Taiwan Branch

11F-3, No. 207

Tung Hua North Road

Taipei, 105, Taiwan

Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
Taiwan

Taiwan Branch

13F-3, No. 295, Sec. 2, Kung Fu Road
Hsinchu City 300, Taiwan

Tel: 886-3-572-9526

Fax: 886-3-572-6459

EUROPE

Austria

Durisolstrasse 2

A-4600 Wels

Austria

Tel: 43-7242-2244-399

Fax: 43-7242-2244-393
Denmark

Regus Business Centre
Lautrup hoj 1-3

Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France

Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage

91300 Massy, France

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79
Germany

Steinheilstrasse 10

D-85737 Ismaning, Germany
Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy

Via Salvatore Quasimodo, 12
20025 Legnano (MI)

Milan, Italy

Tel: 39-0331-742611

Fax: 39-0331-466781
Netherlands
Waegenburghtplein 4
NL-5152 JR, Drunen, Netherlands
Tel: 31-416-690399

Fax: 31-416-690340

United Kingdom

505 Eskdale Road

Winnersh Triangle
Wokingham

Berkshire, England RG41 5TU
Tel: 44-118-921-5869

Fax: 44-118-921-5820

07/12/04

DS00945A-page 58

© 2004 Microchip Technology Inc.

	Introduction
	Overview of the Stack
	TABLE 1: CANopen Source Files

	CANopen Firmware Model
	The Driver
	Communications Management
	FIGURE 1: Basic Firmware Model of the CANopen Stack

	Endpoints
	Server SDO Communication
	PDO Communication
	Network Management Consumer
	FIGURE 2: State Machine for a CANopen Device

	Node Guard/Heartbeat
	Synchronization Consumer

	The Dictionary
	TABLE 2: Location Ranges Within The Object Dictionary

	Standard Device Objects
	Application Objects
	Other Firmware

	Compile Time Setup
	Setting Device Information
	TABLE 3: Compile Time Options
	TABLE 4: Standard Device Objects

	Writing the Application
	Main Services
	PDO Events and Services
	PDO Development
	EXAMPLE 1: PDO Dictionary Entry
	EXAMPLE 2: Event Handler
	TABLE 5: PDO Transmission Types
	FIGURE 3: Mapping Format for ROM Data
	EXAMPLE 3: PDO Mapping Dictionary Entry
	EXAMPLE 4: Dictionary Structure

	SYNC Events and Services
	Network Management Events and Services
	Node Guard/Heartbeat Events and Services
	Objects and the Object Dictionary
	The Object Structure
	EXAMPLE 5: Dictionary Structure

	Object Groups
	Object Control Bits
	EXAMPLE 6: Dictionary Object Entry Example
	TABLE 6: Object Groups
	TABLE 7: Control Bit Definitions
	TABLE 8: Logic and Bit Definitions
	TABLE 9: Logic or Bit Definitions

	Simple Objects
	Functionally Defined Object
	Writing an Object Handling Function
	EXAMPLE 7: Examples of Object Definitions
	TABLE 10: DICT_OBJ Udict Structure
	TABLE 11: Error Definitions
	EXAMPLE 8: Functional Object Handling
	EXAMPLE 9: Functional Object Handling Example

	Dictionary Services
	TABLE 12: DICT_OBJ Structure

	ECAN™ Driver
	Finishing the Application
	Resource Usage
	Conclusion
	References
	Appendix A: Software Discussed in This Application Note
	Worldwide Sales and Service

