
 2004 Microchip Technology Inc. DS00945A-page 1

AN945

INTRODUCTION

CANopen is a field bus protocol based on the Control-
ler Area Network (CAN). As the name implies, it is a
open network standard accepted throughout the world.
While created as a field bus protocol for industrial
automation, CANopen finds use in a wide range of
other non-industrial applications. There are so many
possibilities, in fact, that it is possible to write volumes
on specialized uses of the protocol.

Rather than being specific to one narrow application or
even one field, we present here a more generalized
approach: a generic communication stack based on
CANopen that can be tailored to the user’s needs. This
article focuses only on what is covered in the CAN in
Automation (CiA) standard DS-301. In fact, most of the
discussion is limited to the predefined areas of the
specification, with emphasis on understanding how the
code provided with this application note functions and
how users might develop an application on the
CANopen Stack. To help illustrate this, a simple exam-
ple application is developed based on the CiA DS-401
specification, Generic I/O Modules. The additional
code provided is solely for demonstration; thus there is
no detailed discussion of the demonstration code.
However, code examples with comments from the
demo application are frequently used throughout this
document.

All code provided with this application note is
developed for the PIC18F8680 and PIC18F4680
families of devices, which include ECAN technology as
part of their peripheral set. It is designed to compile with
Microchip’s C18 v2.30 (or greater) compiler. Although
developed for these specific device families, the code
is adaptable to other PIC18 families with CAN.

It is expected that the reader already has some
knowledge of CANopen, or has access to the latest
CANopen standard (listed in the References section) to
refer to for theory and/or critical terminology. The infor-
mation covered in this application note leans towards
understanding the implementation and developing on
that foundation, rather than discussing the many details
of CANopen.

OVERVIEW OF THE STACK

The CANopen Stack provides the lower layers of the
protocol. Some of the features of this design include:

• Embedded state machine for handling all
communications between all nodes and objects

• Default Service Data Object (SDO) Server

• Up to 4 transmit and 4 receive Process Data
Objects (TPDOs and RPDOs)

• Explicit and Segmented Messaging Support
• Statically-mapped PDO support
• Structured dictionary for the PDOs and SDO

• Node Guard/Life Guard
• SYNC consumer
• Heartbeat Producer

• ECAN Driver support

As this list shows, the CANopen Stack discussed here
is designed for applications that are typically more
“slave”. This design is more static in nature, which
leads to more efficient code with better effective use of
code space.

In addition, the actual CANopen code is broken into a
series of smaller source and header files, all written in
C. This allows users to select the appropriate services
that they may need for their application and selectively
build a project tailored to their specific requirements. A
complete list of source files is presented in Table 1.

Of course, the actual application and some aspects of
the communications must still be developed by the
user. The provided CANopen Stack code affords a
base on which the application may be built.

Author: Ross M. Fosler
Microchip Technology Incorporated

A CANopen Stack for PIC18 ECANTM Microcontrollers

AN945

DS00945A-page 2 2004 Microchip Technology Inc.

TABLE 1: CANopen SOURCE FILES

File Name Description

CO_CANDRV.c ECAN module driver. These files may be replaced by other device-specific drivers, if
required.CO_CANDRV.h

CO_COMM.c Communications management services. Required for all applications.

CO_COMM.h

CO_DEV.c Device specific files. Users must edit this file for their device.

CO_DEV.h

CO_DICT.c The object dictionary. Required for all applications.

CO_DICT.h

CO_DICT.def

CO_MAIN.c CANopen main services. Required for all applications.

CO_MAIN.h

CO_MEMIO.c Memory copy functions used by the dictionary. Required for all applications.

CO_MEMIO.h

CO_NMT.c Network management communications endpoint.

CO_NMT.h

CO_NMTE.c Node Guard, Heartbeat and Boot-up communications endpoint.

CO_NMTE.h

CO_PDO.c General PDO services.

CO_PDO.h

CO_PDO1.c PDO object handling endpoints. Provided in a template format that requires
development by the user for the specific application. Must be used with the general
PDO services files.

CO_PDO1.h

CO_PDO2.c

CO_PDO2.h

CO_PDO3.c

CO_PDO3.h

CO_PDO4.c

CO_PDO4.h

CO_SDO1.c Default server SDO communications endpoint.

CO_SDO1.h

CO_SYNC.c Consumer synchronization communications endpoint.

CO_SYNC.h

CO_TOOLS.c Tools for converting Microchip and CANopen CAN identifier formats. For better
process performance, all COB IDs are stored internally in the Microchip format. When
COB ID is presented due to a request, then the ID is converted to CANopen.

CO_TOOLS.h

CO_ABERR.h Common error definitions. Required for all applications.

 2004 Microchip Technology Inc. DS00945A-page 3

AN945

CANopen FIRMWARE MODEL

The firmware is designed in three levels, as shown in
Figure 1. The lowest level is the ECAN driver providing
hardware abstracted CAN support. The communica-
tions management level is the primary interface
between the driver and the individual endpoint
handling.

Besides the application, there is also the dictionary. In
essence, it resides outside of the communication
object, and is directly connected to the SDO endpoint.

The Driver

At the lowest level is the ECAN driver, which serves as
an abstracted hardware interface. It is implemented by
the source files CO_CANDRV.c and CO_CANDRV.h.

The driver handles all ECAN hardware related function-
ality, and conveniently abstracts much of the complex
filtering that is part of the CAN protocol. This is
discussed in greater detail later in this document.

Communications Management

The communications manager is part of the total
communications object. It is provided to capture any
events from the ECAN driver and the higher application
levels, and dispatch these to the appropriate handling
communications sub-objects and functions. Essen-
tially, opening, closing, transmitting to, and receiving
from an endpoint is all directed by the communications
manager. Communications management is provided in
the files CO_COMM.c and CO_COMM.h.

The manager has knowledge of what state each
endpoint is in as well as the state of the device globally.
Thus it can block messages to endpoints as necessary
based on local or global state.

Another feature of the manager is that it uses a single-
byte “handle” method supported by the driver to
decode message events. The handle is of a particular
structure designed to accelerate performance; it is
significantly faster that decoding the 11-bit or 29-bit
CAN identifier in order to determine the handling
function for a particular message.

FIGURE 1: BASIC FIRMWARE MODEL OF THE CANopen STACK

NMT
Communications

SDO
Communications

PDO
Communications

Application

ECAN™ Driver

Dictionary

Heartbeat
Node Guard

Boot-up
SYNC

S
yn

c
E

ve
nt

s

N
od

e
G

ua
rd

/

S
ta

te
 C

ha
ng

e

Application
Object

E
ve

nt
s

an
d

R
eq

ue
st

s

H
ea

rt
be

at
 E

ve
nt

s

Communication

M
ap

pa
bl

e
P

ro
ce

ss
 D

at
a

Application
Object

Application
Object

Application
Object

Application
Object

AN945

DS00945A-page 4 2004 Microchip Technology Inc.

Endpoints

The CANopen specification defines several possible
endpoints. The five endpoint objects listed below are
implemented in this example; others may be made
available in the future.

• The Default Server SDO

• Up to four Static PDOs
• Synchronization Consumer
• Network Management Slave

• Node Guard or Heartbeat

SERVER SDO COMMUNICATION

The default server SDO (Service Data Object) is
provided. The SDO communications path is directly
linked to the object dictionary; SDO messages contain
information that relates the SDO to a particular object.
Data in every message is decoded, validated, and (if
valid) eventually executed.

There are essentially two basic operations: read and
write. Thus each complete SDO transfer (which may be
multiple messages) will either read or write a single
object referenced in the dictionary. The default SDO is
contained in the source files CO_SDO1.c and
CO_SDO1.h.

PDO COMMUNICATION

The PDO (Process Data Object) communications path
is linked directly to the applicable application object or
objects. Thus the path is assumed by the device and no
path information is contained within the communica-
tion. Essentially the data is mapped internally to one or
more objects. Data is either statically mapped (com-
piled) or dynamically mapped (set at runtime). One
message can contain data from more than one object.

The firmware provided with this application note
supports the four default PDOs. Overall PDO services
are provided in the source files CO_PDO.c and
CO_PDO.h. The additional files CO_PDOn.c and
CO_PDOn.h (where n may have a value of 1 to 4) are
used to implement the individual PDOs. These are
provided in template form, and must be developed to
meet the application requirements.

NETWORK MANAGEMENT CONSUMER

A Network Management (NMT) slave is provided as
required by the specification. The NMT Object receives
commands to change the state of the device or reset
the device’s application and/or communications.
Figure 2 shows the CANopen state machine, as well as
the commands that trigger state changes.

Network management is provided in the source files
CO_NMT.c and CO_NMT.h.

FIGURE 2: STATE MACHINE FOR A CANopen DEVICE

PreoperationalOperationalStopped

Initialization

Reset Reset

Reset

Reset Communication

Reset

Reset Application

Enter Preoperational

Stop Remote Node

Stop Remote Node

Start Remote Node Enter Preoperational

Start Remote Node

Application Communication

Communication
Reset

Reset
Communication

Note: Unlabeled transitions (shown with darker lines) are automatic and do not require an external event.

Start

Application

Application

 2004 Microchip Technology Inc. DS00945A-page 5

AN945

NODE GUARD/HEARTBEAT

There is a single Node Guard or Heartbeat endpoint as
required by the CANopen specifications. They both
exist in code; however, only one of these Watchdog
methods are enabled at any given time (also defined in
the specifications).

Node Guard and Heartbeat endpoint functionality is
provided in the source files CO_NMTE.c and
CO_NMTE.h.

SYNCHRONIZATION CONSUMER

One synchronization consumer (SYNC) is provided. The
SYNC message is simply an event to the application to
generate any synchronized PDO messages.

The source files CO_SYNC.c and CO_SYNC.h
contain the SYNC object.

The Dictionary

The object dictionary functions as a central information
database for the device. Every object within the device
is represented within the dictionary by an index, sub-
index, and some access information. An object can be
as simple as a single byte of data or a more complex
data structure. Table 2 shows the basic areas of the
dictionary that are defined by index in the CANopen
specification.

The development and definition of dictionary objects is
discussed in greater detail in “Objects and the Object
Dictionary” (page 36).

TABLE 2: LOCATION RANGES WITHIN
THE OBJECT DICTIONARY

By using the index, any defined object can be
accessed. From the network point of view, access to an
object is provided through the SDO or PDO endpoint as
shown in Figure 1. CANopen dictionary functionality is
implemented with these files:

• CO_DICT.c

• CO_DICT.h

• CO_DICT.def

• CO_STD.def

• CO_MFTR.def

• CO_PDO.def

Standard Device Objects

The standard device objects, although not shown in
Figure 1, are required by the specification. The stan-
dard objects include information such as status, the
device name, serial number, and version information.
They are provided in the source files CO_DEV.c and
CO_DEV.h.

Application Objects

At the upper level of the stack is the application object,
which must be defined for the specific application and
included in the dictionary. The actual objects are
defined and written by users for their specific
application.

Other Firmware

There are other files provided to define standard data
types, define errors, support memory copy functions,
and supply COB ID conversion tools. They are:

• CO_TOOLS.c

• CO_TOOLS.h

• CO_MEMIO.c

• CO_MEMIO.h

• CO_ABERR.h

• CO_TYPES.h

Index Object

0001-001F Static Data Type

0020-003F Complex Data Types

0040-005F Manufacturer Specific Data Types

0060-007F Device Profile Static Data Types

0080-009F Device Profile Complex Data Types

00A0-0FFF Reserved

1000-1FFF Communication Profile Area

2000-5FFF Manufacturer Specific Profile Area

6000-9FFF Standardized Profile Area

A000-FFFF Reserved

AN945

DS00945A-page 6 2004 Microchip Technology Inc.

COMPILE TIME SETUP

There are a total of 40 compile time options available to
configure the source code for a particular application.
Most of these are used to configure the factors that
control the CAN bit rate (Phase Segment timing,
Synchronization Jump Width, baud rate prescaler,
etc.). All of the options are listed in Table 3.

Setting Device Information

The CANopen specification identifies a number of
objects that identify a particular device. Device specific
information is provided through a simple set of data that
is referenced from the object dictionary. This information
must be included in developing the application. Table 4
lists these objects.

TABLE 3: COMPILE TIME OPTIONS

TABLE 4: STANDARD DEVICE OBJECTS

Name Description

CAN_BITRATE0_BRGCON1 The default bit rate setting for the application. The BRGCON values correspond to
the configurations for that BRGCON registers, and determine all the required
parameters for the CAN bit rate. Users should refer to the appropriate data sheet
for detailed information on the configuration of these registers.

CAN_BITRATE0_BRGCON2

CAN_BITRATE0_BRGCON3

CAN_BITRATEn_BRGCON1 Bit rate setting n, where n has a valid range of 1 through 8. These are optional
settings that may be used in place of the default bit rate. As with the default bit
rate, the BRGCON values correspond to the settings for that BRGCON register.

CAN_BITRATEn_BRGCON2

CAN_BITRATEn_BRGCON3

CAN_BITRATEn Enables the use of bit rate setting n.

CAN_MAX_RCV_ENDP Sets the maximum allowed receive endpoints within the driver. The recommended
value is 8 to support all the receive endpoints within CANopen. It is possible to set
this as high as 16.

CO_NUM_OF_PDO This sets the number of PDOs supported. The valid range is 1 through 4.

CO_SPEED_UP_CODE Enables some in-line assembly of the user’s application code. Execution
performance can be improved by setting this option.

CO_SDO1_MAX_RX_BUF Sets the maximum buffer space used by the default SDO. A good value for this is
the largest writable object.

CO_SDO1_MAX_SEG_TIME Sets the maximum time for the SDO watchdog to wait for a completed segment
before resetting the SDO state machine.

Object Name Description

rom unsigned long rCO_DevType The device type

rom unsigned char rCO_DevName[] The name of the device

rom unsigned char rCO_DevHardwareVer[] The hardware version

rom unsigned char rCO_DevSoftwareVer[] The software version

rom unsigned char rCO_DevIdentityIndx The device identity index

rom unsigned long rCO_DevVendorID The vendor ID

rom unsigned long rCO_DevProductCode The product code

rom unsigned long rCO_DevRevNo The revision number

rom unsigned long rCO_DevSerialNo The device serial number

unsigned char uCO_DevErrReg The device error register

unsigned long uCO_DevManufacturerStatReg The manufacturer specific status register

 2004 Microchip Technology Inc. DS00945A-page 7

AN945

WRITING THE APPLICATION

There is significant work that goes into developing an
application and communications according to the
CANopen specifications. The firmware provided
eliminates some of the effort by providing some of the
lower-level communications handling. Aside from the
work necessary to develop the application itself, the
following items must be developed for the application.

• Define the application objects in the dictionary
• Develop handling for complex objects
• Develop handling functions for the necessary

CANopen communications events
• Develop PDOs

This section introduces the “toolbox” provided by the
associated firmware. All the event functions and
services are described for any application that may
need them.

Main Services

The CANopen protocol is started by calling the
mCO_InitAll() function. This issues a CAN driver
Reset and causes the boot-up message to be sent.
However, prior to starting the CANopen protocol, the
default communications specific parameters must be
set to their appropriate state. For example, the node_id
and baud rate are critical for proper messaging. Other
settings include the Node Guard settings, Heartbeat
settings, the device error object, as well as the
manufacturer specific status.

Once started, all processing occurs through the
functions mCO_ProcessAllEvents() and
mCO_ProcessAllTimeEvents(). The first handles
all general communications related processing like
sending and receiving CAN messages for each
endpoint. The later function handles communication
endpoints that have specific time requirements such as
the NMTE (Heartbeat/Node Guard) and any PDO
endpoint. The mCO_ProcessAllEvents() function
should be called as often as possible to capture all
messaging events from the driver. The
mCO_ProcessAllTimeEvents() function should be
called at 1 ms intervals.

mCO_ProcessAllEvents

This is the main routine from which all events are processed. From this, transmit and receive events are processed
within the Communications Manager. This function must be called as often as possible to process any communications
events. How often this needs to be called is highly dependent on the driver and the necessity to respond to driver events
before overflow.

Syntax

void mCO_ProcessAllEvents(void)

Parameters

None

Return Values

None

Example

(See following page)

AN945

DS00945A-page 8 2004 Microchip Technology Inc.

Example

void main(void)
{

// Perform any application specific initialization
TimerInit(); // Init my timer

mSYNC_SetCOBID(0x12); // Set the SYNC COB ID (MCHP format)
mCO_SetNodeID(0x01); // Set the node_id
mCO_SetBaud(0x00); // Set the baudrate
mNMTE_SetHeartBeat(0x00); // Set the initial heartbeat
mNMTE_SetGuardTime(0x00); // Set the initial guard time
mNMTE_SetLifeFactor(0x00); // Set the initial life time
mCO_InitAll(); // Initialize CANopen to run

while(1)
{

// Process CANopen events
mCO_ProcessAllEvents();
// Process application specific functions
// 1ms timer events
if (TimerIsOverflowEvent())
{

// Process timer related events
mCO_ProcessAllTimeEvents();

// Perform other time functions
}

}
}

 2004 Microchip Technology Inc. DS00945A-page 9

AN945

mCO_ProcessAllTimeEvents

This is the main routine from which all low-resolution time-related events are processed. This function must be called
every 1 ms. High-resolution events (typically in the µs region) must be handled in the application. Internally this function
ensures that all objects in the stack that require time control get a tick event.

Syntax

void mCO_ProcessAllTimeEvents(void)

Parameters

None

Return Values

None

Example

Refer to the example provided in mCO_ProcessAllEvents.

mCO_InitAll

This function must be called after setting up all initial object parameters. It will issue a Reset to the CAN driver and start
opening the required communications. Once called, the node will be live on the network and the boot-up message will
be sent.

Syntax

void mCO_InitAll(void)

Parameters

None

Return Values

None

Example

Refer to the example provided in mCO_ProcessAllEvents.

mCO_SetNodeID

Call this function to set the node_id. node_id must be an unsigned char with the Most Significant bit reserved. In
addition, the CANopen specifications reserve the NodeID 00h; valid values for the NodeID range from 01h to 7Fh. This
function must be called prior to mCO_InitAll() to effectively set the ID.

Syntax

void mCO_SetNodeID(unsigned char node_id)

Parameters

unsigned char node_id: The node_id for this node, valid range from 01h to 7Fh.

Return Values

None

Example

Refer to the example provided in mCO_ProcessAllEvents.

AN945

DS00945A-page 10 2004 Microchip Technology Inc.

mCO_GetNodeID

Call this function to get the current ID used by the stack. The ID is returned as an unsigned char.

Syntax

unsigned char node_id mCO_GetNodeID(void)

Parameters

None

Return Values

unsigned char node_id: The node_id for this node, valid range from 01h to 7Fh.

Example

None

mCO_SetBaud

Call this function to set the baud rate of the node. The value must be between 0 and 8 inclusive. Any other value will
default to the 0 setting. The exact baud rate is determined by the CAN driver definitions (page 46). This function must
be called prior to mCO_InitAll() to change the baud rate.

Syntax

void mCO_SetBaud(unsigned char bitrate)

Parameters

unsigned char bitrate

Return Values

None

Example

Refer to the example provided in mCO_ProcessAllEvents.

mCO_GetBaud

Call this function to get the current baud rate used by this node. The baud rate is returned as an unsigned char. The
exact baud rate is determined by the CAN driver definitions (see “ECAN™ Driver”, page 46).

Syntax

unsigned char mCO_SetBaud(void)

Parameters

None

Return Values

unsigned char: The current bit rate setting used by the node.

Example

Refer to the example provided in mCO_ProcessAllEvents.

 2004 Microchip Technology Inc. DS00945A-page 11

AN945

PDO Events and Services

This section describes the functions used for PDO
support. All of these are essentially low-level
communications support such as opening, closing,
and communicating with specific PDO endpoints.
Before discussing these functions, however, a
review of how to develop these data objects is in
order.

PDO DEVELOPMENT

A critical part of the application design task is developing
PDOs. Some decisions have to be made regarding what
features to support: choosing between dynamic and
static PDO mapping, selecting a Transmission Synchro-
nization mode, and whether or not to support inhibit time.
The CANopen Stack source code provided includes a
base set of tools to support PDO communication for
which such features can be built on.

The critical points for developing PDO support includes
developing code to handle these items:

• PDO Communications events
• PDO Mapping
• PDO Synchronization

• PDO Event and Inhibit time

PDO Communications Events

Every enabled PDO will have some communications
events to support setting the typical aspects of the
PDO. Events are actually call back functions specified
in the dictionary to handle specific PDO communica-
tions parameters. For example, a master sends a
request via an SDO to a slave device to change the
type of the PDO (refer to the specifications for informa-
tion on communication types). The request is passed
upwards through the stack to the dictionary and
eventually to the function that handles access to the
type.

Example 1 and Example 2 demonstrate the link
between the dictionary and the actual function
CO_COMM_TPDO1_TypeAccessEvent(). Example 1
shows the entry in the dictionary. Example 2 shows the
actual callback. In this case the example demonstrates
support only for types 0 to 240, 254, and 255. (The
PDO transmission types are shown in Table 5.) Note
that none of the events are discussed in detail since
they are created by the application designer and thus,
handled by the designer’s firmware.

EXAMPLE 1: PDO DICTIONARY ENTRY
{0x1800,0x00,CONST,1,{(rom unsigned char *)&uDemoTPDO1Len}},\\
{0x1800,0x01,RW | FUNC,4,{(rom unsigned char *)&CO_COMM_TPDO1_COBIDAccessEvent}},\\
{0x1800,0x02,RW | FUNC,1,{(rom unsigned char *)&CO_COMM_TPDO1_TypeAccessEvent}}

AN945

DS00945A-page 12 2004 Microchip Technology Inc.

EXAMPLE 2: EVENT HANDLER

TABLE 5: PDO TRANSMISSION TYPES

PDO Mapping

PDO mapping can be either static or dynamic. No code
is provided specifically for support for either. However,
no code is really necessary to represent static
mapping. Thus, static code is significantly easier and
requires less processing to support. Dynamic PDO
mapping is more challenging because it requires refer-
encing the dictionary one or multiple times per PDO.
Only static mapping is demonstrated for this version of
the CANopen Stack.

Example 3 shows the entry within the dictionary. The
actual mapping is just ROM data as shown in
Example 4. Any requests through the default SDO to
the mapping data in the dictionary will read static data

directly from ROM. It is assumed that the static data
stored in ROM is of the mapping format specified in the
CANopen specifications and described in Figure 3.

FIGURE 3: MAPPING FORMAT FOR
ROM DATA

Transmission
Type

PDO Transmission Sync Character

Cyclic Acyclic Synchronous Asynchronous
Remote
Request

0 X X

1 through 240 X X

241 through 251 Reserved

252 X X

253 X X

254 X

255 X

void CO_COMM_TPDO1_TypeAccessEvent(void)
{

unsigned char tempType;
switch (mCO_DictGetCmd())
{

//case DICT_OBJ_INFO:// Get information about the object
// The application should use this to load the
// structure with length, access, and mapping.

// break;
case DICT_OBJ_READ: // Read the object

// Write the Type to the buffer
*(uDict.obj->pReqBuf) = uDemoSyncSet;
break;

case DICT_OBJ_WRITE: // Write the object
tempType = *(uDict.obj->pReqBuf);
if ((tempType >= 0) && (tempType <= 240))
{

// Set the new type and resync
uDemoSyncCount = uDemoSyncSet = tempType;

}
else
if ((tempType == 254) || (tempType == 255))
{

uDemoSyncSet = tempType;
}
else {mCO_DictSetRet(E_PARAM_RANGE);} //error
break;

}
}

Index Subindex Size (bits)

16 bits 8 bits 8 bits

 2004 Microchip Technology Inc. DS00945A-page 13

AN945

EXAMPLE 3: PDO MAPPING DICTIONARY ENTRY

EXAMPLE 4: DICTIONARY STRUCTURE

#define DICTIONARY_PDO1_RX_MAP \\
{0x1600,0x00,CONST,1,{(rom unsigned char *)&rMaxIndex2}},\\
{0x1600,0x01,CONST,4,{(rom unsigned char *)&uRPDO1Map}},\\
{0x1600,0x02,CONST,4,{(rom unsigned char *)&uPDO1Dummy}},\\
{0x1600,0x03,CONST,4,{(rom unsigned char *)&uPDO1Dummy}},\\
{0x1600,0x04,CONST,4,{(rom unsigned char *)&uPDO1Dummy}},\\
{0x1600,0x05,CONST,4,{(rom unsigned char *)&uPDO1Dummy}},\\
{0x1600,0x06,CONST,4,{(rom unsigned char *)&uPDO1Dummy}},\\
{0x1600,0x07,CONST,4,{(rom unsigned char *)&uPDO1Dummy}},\\
{0x1600,0x08,CONST,4,{(rom unsigned char *)&uPDO1Dummy}}

rom unsigned long uTPDO1Map = 0x60000108;
rom unsigned long uRPDO1Map = 0x62000108;
rom unsigned long uPDO1Dummy = 0x00000008;

AN945

DS00945A-page 14 2004 Microchip Technology Inc.

Synchronization

PDOs can be synchronized by linking their function to
the SYNC object. Synchronization depends on the
transmission type. The types defined by the specification
are listed in Table 5.

Synchronization is simply a matter of using the
CO_COMMSyncEvent() function to handle the PDO
endpoint. This is discussed in more detail in the section
on sync events (page 27).

Timers

The event timer is supported while the inhibit timer is
left up to the application designer to provide. This is
primarily due to the fine time resolution required
(100 µs). If the application requires the event timer, it is
possible to handle the CO_PDO1LSTimerEvent() to
get 1 ms tick events.

mRPDOOpen

Open the RPDO endpoint where n represents the PDO number. There are only 4 PDOs available. Typically this function
would be called within a RPDO communications object write event. Essentially a PDO communications object write
event is generated when a node on the network is requesting to start PDO communications.

Syntax

void mRPDOOpen(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example

(See following page)

 2004 Microchip Technology Inc. DS00945A-page 15

AN945

Example

// Process access events to the COB ID
void CO_COMM_RPDO1_COBIDAccessEvent(void)
{

switch (mCO_DictGetCmd())
{

case DICT_OBJ_READ: // Read the object
// Translate MCHP COB to CANopen COB
mTOOLS_MCHP2CO(mRPDOGetCOB(1));

// Return the COBID
*(unsigned long *)(uDict.obj->pReqBuf) = mTOOLS_GetCOBID();
break;

case DICT_OBJ_WRITE: // Write the object
// Translate the COB to MCHP format
mTOOLS_CO2MCHP(*(unsigned long *)(uDict.obj->pReqBuf));

// If the request is to stop the PDO
if ((*(UNSIGNED32 *)(&mTOOLS_GetCOBID())).PDO_DIS)
{

// And if the COB received matches the stored COB and type then close
if (!((mTOOLS_GetCOBID() ^ mRPDOGetCOB(1)) & 0xFFFFEFFF))
{

// but only close if the PDO endpoint was open
if (mRPDOIsOpen(1)) {mRPDOClose(1);}

// Indicate to the local object that this PDO is disabled
(*(UNSIGNED32 *)(&mRPDOGetCOB(1))).PDO_DIS = 1;

}
else {mCO_DictSetRet(E_PARAM_RANGE);} //error

}

// Else if the RPDO is not open then start the RPDO
else
{

// And if the COB received matches the stored COB and type then open
if (!((mTOOLS_GetCOBID() ^ mRPDOGetCOB(1)) & 0xFFFFEFFF))
{

// but only open if the PDO endpoint was closed
if (!mRPDOIsOpen(1)) {mRPDOOpen(1);}

// Indicate to the local object that this PDO is enabled
(*(UNSIGNED32 *)(&mRPDOGetCOB(1))).PDO_DIS = 0;

}
else {mCO_DictSetRet(E_PARAM_RANGE);} //error

}
break;

}
}

AN945

DS00945A-page 16 2004 Microchip Technology Inc.

mRPDOIsOpen

Query to determine if the RPDO is open. Typically this should be called within a PDO communications object event.

Syntax

BOOL mRPDOIsOpen(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

TRUE: The RPDO is open and accepting messages.

FALSE: The RPDO is closed and will not accept messages.

Example

Refer to the example provided in mRPDOOpen.

mRPDOClose

Close the RPDO endpoint. Typically this should be called within a PDO communications object event.

Syntax

void mRPDOClose(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example

Refer to the example provided in mRPDOOpen.

mRPDOIsGetRdy

This function queries the Communications Manager for any new received PDOs where n represents the PDO number.

Syntax

BOOL mRPDOnIsGetRdy(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

TRUE: Data has been received and is ready to be processed.

FALSE: No data is available yet.

Example

(See following page)

 2004 Microchip Technology Inc. DS00945A-page 17

AN945

Example

void DemoProcessEvents(void)
{

unsigned char change;
unsigned char rise;
unsigned char fall;

// Read the input port
(*(UNSIGNED8 *)uLocalXmtBuffer).bits.b0 = PORTBbits.RB5;
(*(UNSIGNED8 *)uLocalXmtBuffer).bits.b1 = PORTBbits.RB4;

// Determine the change if any
change = uIOinDigiInOld ^ uLocalXmtBuffer[0];

// Determine if there were any rise events
rise = (uIOinIntRise & change) & uLocalXmtBuffer[0];

// Determine if there were any fall events
fall = (uIOinIntFall & change) & ~uLocalXmtBuffer[0];
// Determine if there were any change events
change = (uIOinIntChange & change);
// Cycle the current value to the old
uIOinDigiInOld = uLocalXmtBuffer[0];
// If any of these are true then indicate an interrupt condition
if (uIOinIntEnable & (change | rise | fall)) uDemoState.bits.b1 = 1;

if (uDemoState.bits.b1)
{

switch (uDemoSyncSet)
{

case 0: // Acyclic synchronous transmit
// Set a synchronous transmit flag
uDemoState.bits.b2 = 1;
break;

case 254: // Asynchronous transmit
case 255:

// Reset the asynchronous transmit flag
uDemoState.bits.b0 = 1;
break;

}
}
// If ready to send
if (mTPDOIsPutRdy(1) && uDemoState.bits.b0)
{

// Tell the stack that data is loaded for transmit
mTPDOWritten(1);

// Reset any synchronous or asynchronous flags
uDemoState.bits.b0 = 0;
uDemoState.bits.b1 = 0;

}
// If any data has been received
if (mRPDOIsGetRdy(1))
{

// Write out the first byte of the buffer
LATD = uLocalRcvBuffer[0];

// PDO read, free the driver to accept more data
mRPDORead(1);

}
}

AN945

DS00945A-page 18 2004 Microchip Technology Inc.

mRPDORead

This function is called to indicate to the Communications Manager that the last message it received has been read and
processed as necessary. This allows the Communications Manager to accept another PDO message from the driver.
The application could simply copy the data or even process the data in-line.

Syntax

void mRPDORead(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example

Refer to the example provided in mRPDOIsGetRdy().

mRPDOSetCOB

This function sets the RPDO COB ID, where n represents the PDO number (valid range from 1 to 4). This could be set
prior to opening the PDO. The COB ID must be in the Microchip standard format.

Syntax

void mRPDOSetCOB(const unsigned char PDOnum, unsigned long rpdoCOB)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
unsigned long rpdoCOB: The COB ID received by this PDO.

Return Values

None

Example

(See following page)

 2004 Microchip Technology Inc. DS00945A-page 19

AN945

Example

void DemoInit(void)
{

// Port D is all output
LATD = 0;
TRISD = 0;

uDemoSyncSet = 255;

uIOinFilter = 0;
uIOinPolarity = 0;
uIOinIntChange = 1;
uIOinIntRise = 0;
uIOinIntFall = 0;
uIOinIntEnable = 1;

uIOinDigiInOld = uLocalXmtBuffer[0] = 0;
uLocalRcvBuffer[1] = uLocalXmtBuffer[1] = 0;
uLocalRcvBuffer[2] = uLocalXmtBuffer[2] = 0;
uLocalRcvBuffer[3] = uLocalXmtBuffer[3] = 0;
uLocalRcvBuffer[4] = uLocalXmtBuffer[4] = 0;
uLocalRcvBuffer[5] = uLocalXmtBuffer[5] = 0;
uLocalRcvBuffer[6] = uLocalXmtBuffer[6] = 0;
uLocalRcvBuffer[7] = uLocalXmtBuffer[7] = 0;

// Convert to MCHP
mTOOLS_CO2MCHP(mCOMM_GetNodeID().byte + 0xC0000180L);

// Store the COB
mTPDOSetCOB(1, mTOOLS_GetCOBID());

// Convert to MCHP
mTOOLS_CO2MCHP(mCOMM_GetNodeID().byte + 0xC0000200L);

// Store the COB
mRPDOSetCOB(1, mTOOLS_GetCOBID());

// Set the pointer to the buffers
mTPDOSetTxPtr(1, (unsigned char *)(&uLocalXmtBuffer[0]));

// Set the pointer to the buffers
mRPDOSetRxPtr(1, (unsigned char *)(&uLocalRcvBuffer[0]));

// Set the length
mTPDOSetLen(1, 8);

}

AN945

DS00945A-page 20 2004 Microchip Technology Inc.

mRPDOGetCOB

This function gets the RPDO COB ID currently used.

Syntax

unsigned long mRPDOGetCOB(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

unsigned long: The COB ID received by this PDO.

Example

Refer to the example provided in mRPDOOpen.

mRPDOGetLen

This function gets the length of the last received PDO.

Syntax

unsigned char mRPDOGetLen(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

unsigned char: The length of the message, valid values from 0 to 8 bytes.

Example

None

mRPDOGetRxPtr

This function gets the stored pointer to the local receive buffer. The pointer must be set prior to opening communications
to the endpoint. When communications is open all messages will be stored in the location referenced by this pointer.

Syntax

unsigned char * mRPDOGetRxPtr(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
unsigned char *pRXBUF

Return Values

unsigned char *: Pointer to the buffer space

Example

None

 2004 Microchip Technology Inc. DS00945A-page 21

AN945

mRPDOSetRxPtr

This function sets the pointer to the local receive buffer. The pointer must be set prior to opening communications to the
endpoint. When communications are open all messages will be stored in the location referenced by this pointer.

Syntax

void mRPDOSetRxPtr(const unsigned char PDOnum, unsigned char *pRXBUF)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.
unsigned char *pRXBUF

Return Values

None

Example

Refer to the example provided in mRPDOSetCOB().

mTPDOOpen

Open the TPDO endpoint. There are only four PDOs available. Typically this should be called within a TPDO commu-
nications object write event. Essentially a PDO communications object write event is generated when a node on the
network is requesting to start PDO communications.

Syntax

void mTPDOnOpen(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example

(See following page)

AN945

DS00945A-page 22 2004 Microchip Technology Inc.

Example

// Process access events to the COB ID
void CO_COMM_TPDO1_COBIDAccessEvent(void)
{

switch (mCO_DictGetCmd())
{

case DICT_OBJ_READ: // Read the object
// Translate MCHP COB to CANopen COB
mTOOLS_MCHP2CO(mTPDOGetCOB(1));

// Return the COBID
*(unsigned long *)(uDict.obj->pReqBuf) = mTOOLS_GetCOBID();
break;

case DICT_OBJ_WRITE: // Write the object
// Translate the COB to MCHP format
mTOOLS_CO2MCHP(*(unsigned long *)(uDict.obj->pReqBuf));

// If the request is to stop the PDO
if ((*(UNSIGNED32 *)(&mTOOLS_GetCOBID())).PDO_DIS)
{

// And if the COB received matches the stored COB and type then close
if (!((mTOOLS_GetCOBID() ^ mTPDOGetCOB(1)) & 0xFFFFEFFF))
{

// but only close if the PDO endpoint was open
if (mTPDOIsOpen(1)) {mTPDOClose(1);}

// Indicate to the local object that this PDO is disabled
(*(UNSIGNED32 *)(&mTPDOGetCOB(1))).PDO_DIS = 1;

}
else {mCO_DictSetRet(E_PARAM_RANGE);} //error

}

// Else if the TPDO is not open then start the TPDO
else
{

// And if the COB received matches the stored COB and type then open
if (!((mTOOLS_GetCOBID() ^ mTPDOGetCOB(1)) & 0xFFFFEFFF))
{

// but only open if the PDO endpoint was closed
if (!mTPDOIsOpen(1)) {mTPDOOpen(1);}

// Indicate to the local object that this PDO is enabled
(*(UNSIGNED32 *)(&mTPDOGetCOB(1))).PDO_DIS = 0;

}
else {mCO_DictSetRet(E_PARAM_RANGE);} //error

}
break;

}
}

 2004 Microchip Technology Inc. DS00945A-page 23

AN945

mTPDOIsOpen

Query to determine if the TPDO is open. Typically this should be called within a PDO communications object event.

Syntax

BOOL mTPDOIsOpen(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

TRUE: The Communications Manager is ready to accept new data.

FALSE: The Communications Manager is busy transmitting the previous message.

Example

Refer to the example provided in mTPDOOpen().

mTPDOClose

Close the TPDO endpoint where n represents the PDO number (valid range from 1 to 4). Typically this should be called
within a PDO communications object event.

Syntax

void mTPDOClose(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example

Refer to the example provided in mTPDOOpen().

mTPDOIsPutRdy

This function queries the Communications Manager for an available slot for transmitting a PDO. This function will return
true if the manager is ready to accept a message to send on the bus.

Syntax

BOOL mTPDOIsPutRdy(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

TRUE: The Communications Manager is ready to accept new data.

FALSE: The Communications Manager is busy transmitting the previous message.

Example

Refer to the example provided in mRPDOIsGetRdy().

AN945

DS00945A-page 24 2004 Microchip Technology Inc.

mTPDOWritten

Indicates to the Communications Manager that a message has been loaded for the manager to send. This allows the
Communications Manager to queue the message for transmission. The CO_PDOTXFinEvent() event function is called
when the message is placed on the bus.

Syntax

void mTPDOWritten(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example

Refer to the example provided in mRPDOIsGetRdy().

mTPDOSetCOB

This function sets the TPDO COB ID. This should be set prior to sending a TPDO. The COB ID must be in the Microchip
standard format.

Syntax

void mTPDOSetCOB(const unsigned char PDOnum, unsigned long tpdoCOB)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

unsigned long tpdoCOB: The COB ID to be sent.

Return Values

None

Example

Refer to the example provided in mRPDOSetCOB().

mTPDOGetCOB

This function gets the TPDO COB ID currently used.

Syntax

unsigned long mTPDOnGetCOB(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

unsigned long: The COB ID currently used by this PDO.

Example

Refer to the example provided in mRPDOSetCOB().

 2004 Microchip Technology Inc. DS00945A-page 25

AN945

mTPDOSetLen

This function sets the TPDO data length. The length must be between 0 and 8.

Syntax

unsigned long mTPDOnSetLen(const unsigned char PDOnum, unsigned char length)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

unsigned char length: The length of the PDO, must be from 0 to 8 bytes.

Return Values

None

Example

Refer to the example provided in mRPDOSetCOB().

mTPDOGetTxPtr

This function gets the pointer currently pointing to the local transmit buffer. When transmitting, all messages will be
transmitted from the location referenced by this pointer.

Syntax

unsigned char * mTPDOGetTxPtr(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

unsigned char *: Returns the currently used pointer to the buffer

Example

None

mTPDOnSetTxPtr

This function sets the pointer to the local transmit buffer. When transmitting, all messages will be transmitted from the
location referenced by this pointer.

Syntax

void mTPDOnSetTxPtr(const unsigned char PDOnum)

Parameters

const unsigned char PDOnum: Valid range of 1 to 4. Must be an actual number, not a macro.

Return Values

None

Example

Refer to the example provided in mRPDOIsGetRdy().

AN945

DS00945A-page 26 2004 Microchip Technology Inc.

CO_PDOnLSTimerEvent

This is the timer event callback function. This function is called every 1 ms if the PDO is enabled. Typically the
application could use this for the PDO event timer function specified in CANopen.

Syntax

void CO_PDOnLSTimerEvent(void)

Parameters

None

Return Values

None

Example

None

CO_PDOnTXFinEvent

This is the transmit finished event callback function. This event is generated when a message that was queued to
transmit has been placed on the CAN.

Syntax

void CO_PDOnTxFinEvent(void)

Parameters

None

Return Values

None

Example

None

 2004 Microchip Technology Inc. DS00945A-page 27

AN945

SYNC Events and Services

There is only one event that is received from the SYNC
object; it is the CO_COMMSyncEvent(). This event is
generated only when a SYNC message is received,
and it is used for synchronized PDO processing. This
event should be handled in the application’s PDO
message processing.

There are only two services useful for SYNC object
support. The most important part is to set the COB ID
for the SYNC object before initializing the CANopen
communications since the endpoint is automatically
opened upon initialization.

CO_COMMSyncEvent

This is the only event that is generated from the SYNC object. This event is generated only when a SYNC message is
received, and it is used for synchronized PDO processing. This event should be handled in the application’s PDO
message processing.

Syntax

void CO_COMMSyncEvent(void)

Parameters

None

Return Values

None

Example

This is a simple example of a handling function for a variable synchronous PDO Type that is cyclic in nature. This is
defined by a PDO Type (TPDO communications parameter at subindex 2) that is between 1 and 240 inclusive.

void CO_COMMSyncEvent(void)
{

// Process only if in a synchronous mode
if ((uDemoSyncSet == 0) && (uDemoState.bits.b2))
{

// Reset the synchronous transmit and transfer to async
uDemoState.bits.b2 = 0;
uDemoState.bits.b0 = 1;

}
else
if ((uDemoSyncSet >= 1) && (uDemoSyncSet <= 240))
{

// Adjust the sync counter
uDemoSyncCount--;

// If time to generate sync
if (uDemoSyncCount == 0)
{

// Reset the sync counter
uDemoSyncCount = uDemoSyncSet;

// Start the PDO transmission
uDemoState.bits.b0 = 1;

}
}

}

AN945

DS00945A-page 28 2004 Microchip Technology Inc.

mSYNC_SetCOBID

This function is used to set the COB ID for the SYNC object. This should be called at least once before initializing to
properly set the COB ID within the firmware.

Syntax

void mSYNC_SetCOBID(unsigned long SYNC_COB)

Parameters

The COB ID in the Microchip format.

unsigned long SYNC_COB

Return Values

None

Example

Refer to the example provided in mCO_ProcessAllEvents.

mSYNC_GetCOBID

This function is used to get the COB ID currently used for the SYNC object.

Syntax

unsigned long mSYNC_GetCOBID(void)

Parameters

None

Return Values

unsigned long SYNC_COB: The COB ID in the Microchip format.

Example

None

 2004 Microchip Technology Inc. DS00945A-page 29

AN945

Network Management Events and
Services

Network management is provided through the NMT
object, which essentially encompasses the node state
machine (see Figure 2).

There are a handful of services provided to enter the
node into a particular state. However, the state will
change through normal network management requests
from the NMT master. When a state is changed due to
a request from the master, then an event is generated.
All the events and services are listed below.

mNMT_Start

Call this function to start communications that have been stopped. Typically this is automatically called by the NMT
managing routines as a result of a NMT request from the master to set the appropriate state.

Syntax

void mNMT_Start(void)

Parameters

None

Return Values

None

Example

None

mNMT_Stop

Call this function to stop a node that was in the operational or preoperational state. Typically this is automatically called
by the NMT managing routines as a result of a NMT request from the master to set the appropriate state.

Syntax

void mNMT_Stop(void)

Parameters

None

Return Values

None

Example

None

AN945

DS00945A-page 30 2004 Microchip Technology Inc.

mNMT_GotoPreopState

Call this function to place the node into the preoperational state. Typically this is automatically called by the NMT
managing routines as a result of an NMT request from the master to set the appropriate state.

Syntax

void mNMT_GotoPreopState(void)

Parameters

None

Return Values

None

Example

None

mNMT_GotoOperState

Call this function to place the node into the operational state. Typically this is automatically called by the NMT managing
routines as a result of an NMT request from the master to set the appropriate state.

Syntax

void mNMT_GotoOperState(void)

Parameters

None

Return Values

None

Example

None

mNMT_StateIsStopped

Query to determine if the node is currently in a stopped state.

Syntax

BOOL mNMT_StateIsStopped(void)

Parameters

None

Return Values

TRUE: If node is in STOPPED state.

FALSE: If node is in PREOPERATIONAL or OPERATIONAL state.

Example

None

 2004 Microchip Technology Inc. DS00945A-page 31

AN945

mNMT_StateIsOperational

Query to determine if the node is currently in the operational state.

Syntax

BOOL mNMT_StateIsOperational(void)

Parameters

None

Return Values

TRUE: If node is in OPERATIONAL state.

FALSE: If node is STOPPED or PREOPERATIONAL state.

Example

None

mNMT_StateIsPreOperational

Query to determine if the node is currently in the operational state.

Syntax

BOOL mNMT_StateIsPreOperational(void)

Parameters

None

Return Values

TRUE: If node is in PREOPERATIONAL state.

FALSE: If node is in STOPPED or OPERATIONAL state.

Example

None

CO_NMTStateChangeEvent

This callback function is called when the state of the system has been changed through Network Management Request.

Syntax

void CO_NMTStateChangeEvent(void)

Parameters

None

Return Values

None

Example

None

AN945

DS00945A-page 32 2004 Microchip Technology Inc.

CO_NMTResetEvent

This callback function is called when a communications Reset has been requested. The communications is
automatically reset after this event is handled.

Syntax

void CO_NMTStateChangeEvent(void)

Parameters

None

Return Values

None

Example

None

CO_NMTAppResetRequest

This callback function is called when an application Reset has been requested. How this event is handled depends on
the application design. After handling this event the CO_COMMResetEvent() event will be generated. The
communications are automatically reset after the CO_COMMResetEvent() event is handled.

Syntax

void CO_NMTAppResetRequest(void)

Parameters

None

Return Values

None

Example

None

 2004 Microchip Technology Inc. DS00945A-page 33

AN945

Node Guard/Heartbeat Events and
Services

A combined Node Guard/Heartbeat object is provided
as required by the specification. There are a small
number of services provided to initialize and get
information about the object.

There is only one possible event generated by the
Node Guard/Heartbeat object, which relates specifi-
cally to the node guard half of the object. The
CO_NMTENodeGuardErrEvent() function is called
when the lifetime of the object has been exceeded. The
lifetime is defined in the specification as the product of
the lifetime factor and the guard time.

mNMTE_SetHeartBeat

Call this function to set the Heartbeat. The Heartbeat is an unsigned long in the format specified by the CANopen
specifications. This should be set prior to initializing communications.

Syntax

void mNMTE_SetHeartBeat(unsigned long HeartBeat)

Parameters

unsigned long HeartBeat

Return Values

None

Example

None

mNMTE_GetHeartBeat

Use this function to return the current Heartbeat setting. An unsigned long is returned.

Syntax

unsigned long mNMTE_GetHeartBeat(void)

Parameters

None

Return Values

unsigned long HeartBeat

Example

None

AN945

DS00945A-page 34 2004 Microchip Technology Inc.

mNMTE_SetGuardTime

Call this function to set the guard time. The guard time is an unsigned long in the format specified by the CANopen
specifications. This should be set prior to initializing communications.

Syntax

void mNMTE_SetGuardTime(unsigned long GuardTime)

Parameters

None

Return Values

None

Example

None

mNMTE_GetGuardTime

Use this function to return the current guard time setting. An unsigned long is returned.

Syntax

unsigned long mNMTE_GetGuardTime(void)

Parameters

None

Return Values

unsigned long GuardTime

Example

None

mNMTE_SetLifeFactor

Use this function to return the current guard time setting. An unsigned long is returned.

Syntax

void mNMTE_SetLifeFactor(unsigned char LifeFactor)

Parameters

None

Return Values

None

Example

None

 2004 Microchip Technology Inc. DS00945A-page 35

AN945

mNMTE_GetLifeFactor

Use this function to return the current guard time setting. An unsigned char long is returned.

Syntax

unsigned char mNMTE_GetLifeFactor(void)

Parameters

None

Return Values

unsigned char LifeFactor

Example

None

CO_NMTENodeGuardErrEvent

This callback function is called when there is a node guard event. A node guard event occurs when a node guard
message is not received within the defined lifetime (the product of life time factor and guard time). How this event is
handled is dependent on the application.

Syntax

void CO_NMTENodeGuardErrEvent(void)

Parameters

None

Return Values

None

Example

None

AN945

DS00945A-page 36 2004 Microchip Technology Inc.

Objects and the Object Dictionary

In this design each dictionary entry is a structure within
program memory. Within each structure is the neces-
sary information to identify the object and its location.
The identity is flexible enough that more than simple
data types, arrays, and structures can be defined as
objects. A function can be defined as an object as well,
and this is where the true flexibility lies for complex
objects.

THE OBJECT STRUCTURE

An object defined in the Object Dictionary is stored in
program memory; its structure is shown in Example 5.
This structure contains enough information to describe
any object.

• index: the index of the object
• subindex: the subindex of the object

• ctl: the control byte. This defines the type of
object.

• len: the length of the object in bytes.
• *pROM: a pointer to the object or object handling

function. The pointer should always be cast to
rom unsigned char *.

EXAMPLE 5: DICTIONARY STRUCTURE

OBJECT GROUPS

The Object Dictionary is broken into groups for faster
dictionary searching. Thus every entry within the
Object Dictionary must be stored within the appropriate
group. Table 6 identifies all the groups. Any entries in
the dictionary should be placed in numerical order
within the appropriate group.

OBJECT CONTROL BITS

How an object is handled within the dictionary depends
on its control bits. An object could be read/write, read
only, or even functionally defined to accommodate very
unique objects. Table 7 defines the bits of the object
control byte.

To easily manipulate individual bits within the control
byte, a series of symbolic bit modifiers have been
provided. Table 8 provides the logical AND modifiers to
control the object. These can be combined manually to
form a specific control. For example, the following
statement defines an object that is readable, writable,
defined as a function, and mappable:

RD & WR & N_ROM & N_EE & FDEF & MAP &
N_FSUB

In a similar fashion, Table 9 provides the typical logical
OR modifier definitions to control the object. These can
also be combined with the bit names shown in Table 8.
For example, the following statement defines an object
that is readable, writable, defined as a function, and
mappable (same as previous):

RW | FUNC | MAP_BIT

Several examples of the usage of bit modifiers are
shown in Example 6, in entries 4, 8, 9 and 10.

EXAMPLE 6: DICTIONARY OBJECT ENTRY EXAMPLE

typedef struct _DICTIONARY_OBJECT_TEMPLATE
{

unsigned int index;
unsigned char subindex;
unsigned char ctl;
unsigned int len;
rom unsigned char * pROM;

}DICT_OBJECT_TEMPLATE;

#define DICTIONARY_DEVICE_INFO \\
{0x1000,0x00,CONST,4,{(rom unsigned char *)&rCO_DevType}}, \\
{0x1001,0x00,RO,1,{(rom unsigned char *)&uCO_DevErrReg}}, \\
{0x1002,0x00,RO,4,{(rom unsigned char *)&uCO_DevManufacturerStatReg}}, \\
{0x1005,0x00,FUNC | RW,4,{(rom unsigned char *)&_CO_COMM_SYNC_COBIDAccessEvent}}, \\
{0x1008,0x00,CONST,24,{(rom unsigned char *)&rCO_DevName}}, \\
{0x1009,0x00,CONST,4,{(rom unsigned char *)&rCO_DevHardwareVer}}, \\
{0x100A,0x00,CONST,4,{(rom unsigned char *)&rCO_DevSoftwareVer}}, \\
{0x100C,0x00,FUNC | RW,2,{(rom unsigned char *)&_CO_COMM_NMTE_GuardTimeAccessEvent}}, \\
{0x100D,0x00,FUNC | RW,1,{(rom unsigned char *)&_CO_COMM_NMTE_LifeFactorAccessEvent}} \\
{0x1017,0x00,FUNC | RW,2,{(rom unsigned char *)&_CO_COMM_NMTE_HeartBeatAccessEvent}}, \\
{0x1018,0x00,CONST,1,{(rom unsigned char *)&rCO_DevIdentityIndx}}, \\
{0x1018,0x01,CONST,4,{(rom unsigned char *)&rCO_DevVendorID}}, \\
{0x1018,0x02,CONST,4,{(rom unsigned char *)&rCO_DevProductCode}}, \\
{0x1018,0x03,CONST,4,{(rom unsigned char *)&rCO_DevRevNo}}, \\
{0x1018,0x04,CONST,4,{(rom unsigned char *)&rCO_DevSerialNo}}

 2004 Microchip Technology Inc. DS00945A-page 37

AN945

TABLE 6: OBJECT GROUPS

Object Group Name Index Description

DICTIONARY_DATA_TYPES 0000h Data types defined in the object dictionary. Although
data types are defined within the object dictionary, the
specification indicates that support is not required.

DICTIONARY_DEVICE_INFO 1000h This group is within the CANopen communications
section and contains the device specific information
including COBIDs, certain endpoints, and status.

DICTIONARY_SDO 1200h One group for SDO parameters is provided.

DICTIONARY_PDO1_RX_COMM 1400h Individual groups are provided for four RPDO
communications parameters.DICTIONARY_PDO2_RX_COMM 1401h

DICTIONARY_PDO3_RX_COMM 1402h

DICTIONARY_PDO4_RX_COMM 1403h

DICTIONARY_PDO1_RX_MAP 1600h Individual groups are provided for four RPDO mapping
parameters.DICTIONARY_PDO2_RX_MAP 1601h

DICTIONARY_PDO3_RX_MAP 1602h

DICTIONARY_PDO4_RX_MAP 1603h

DICTIONARY_PDO1_TX_COMM 1800h Individual groups are provided for four TPDO
communications parameters.DICTIONARY_PDO2_TX_COMM 1801h

DICTIONARY_PDO3_TX_COMM 1802h

DICTIONARY_PDO4_TX_COMM 1803h

DICTIONARY_PDO1_TX_MAP 1A00h Individual groups are provided for four TPDO mapping
parameters.DICTIONARY_PDO2_TX_MAP 1A01h

DICTIONARY_PDO3_TX_MAP 1A02h

DICTIONARY_PDO4_TX_MAP 1A03h

DICTIONARY_MANUFACTURER_SPECIFIC_1 2000h These groups are provided for manufacturer specific
objects.DICTIONARY_MANUFACTURER_SPECIFIC_2 3000h

DICTIONARY_MANUFACTURER_SPECIFIC_3 4000h

DICTIONARY_MANUFACTURER_SPECIFIC_4 5000h

DICTIONARY_STANDARD_1 6000h These groups are provided for CANopen standard
objects.DICTIONARY_STANDARD_2 7000h

DICTIONARY_STANDARD_3 8000h

DICTIONARY_STANDARD_4 9000h

AN945

DS00945A-page 38 2004 Microchip Technology Inc.

TABLE 7: CONTROL BIT DEFINITIONS

TABLE 8: LOGIC AND BIT DEFINITIONS TABLE 9: LOGIC OR BIT DEFINITIONS

Bits Name Description

Bit 0 RD_BIT This bit defines the read access of the object. If this bit is set then the object is readable
from a node on the network.

Bit 1 WR_BIT This bit defines the write access of the object. If this bit is set then the object is writable by
a node on the network.

Bit 2 ROM_BIT This bit defines an object that is located within ROM. Setting this bit does not imply the
object cannot be written. This only defines the location where this bit is stored.

Bit 3 EE_BIT This bit defines an object that is located in EEPROM. Note, no automatic handling is
provided at this time for EEPROM. If the EE_BIT is set then the FDEF_BIT should also be
set so the dictionary access tools know that the application designer is handling access to
EEDATA memory through a custom function.

Bit 4 FDEF_BIT This bit defines an object that is functionally defined. Typically objects are defined by a
function if they have special rules that cannot be defined by a single static type. For
example, an object that triggers an event when read should be functionally defined. Or if an
object can change read-write access level based on application dependent events or states
should also be functionally defined. Also note, if this bit is set then all other bits can be
defined within the object handling function, except the FSUB_BIT.

Bit 5 MAP_BIT This bit defines the mappability of the object. Thus if this bit is set then the object can be
mapped into a PDO.

Bit 6 FSUB_BIT This bit defines whether the entire subindex array is functionally defined. Thus for a
particular index there will be only one entry in the dictionary. And all requests to access any
subindex are handled by the object’s access handling function. This is useful for objects
where all of the subindices have the same functionality but require different parameter
values; therefore, only one entry is required in the dictionary file.

Bit 7 reserved reserved at this time

Bits Description

RD Allow read

N_RD Read not allowed

WR Write allowed

N_WR Write not allowed

ROM ROM based object

N_ROM Not a ROM based object

EE EEDATA based object

N_EE Not an EEDATA based object

FDEF Functionally defined object

N_FDEF Not a functionally defined object

MAP Mappable object

N_MAP Not a mappable object

FSUB Functionally defined subindex

N_FSUB Not a functionally defined subindex

Bits Description

CONST ROM based read-only object

RW Readable and writable object

RO Read-only object

WO Write-only object

RW_EE Readable and writable EEDATA object

RO_EE Read-only object in EEDATA

WO_EE Write-only object in EEDATA

FUNC Functionally defined object

 2004 Microchip Technology Inc. DS00945A-page 39

AN945

SIMPLE OBJECTS

The dictionary provides support for simple objects.
Simple objects are essentially objects that operate
within the realm of a normal data type. This includes
any data type supported by the compiler as well as
arrays.

A simple object is defined in the object dictionary by
referencing the object within the dictionary. This is
illustrated by the first dictionary entry in Example 7. A
read request to this object will return the data stored in
uCO_DevManufacturerStatReg; a write request
will return an error, since this is a read-only object.

FUNCTIONALLY DEFINED OBJECT

Objects are defined by a function when the object has
some properties that do not follow a standard data type
or array defined in the C language. For example, a
variable unsigned char MyObj that has no unusual
conditions does not need to be defined by a function;
however, if in MyObj bit 7 enables the write to MyObj,
then this would require special handling and must be
defined by a function, similar to COB IDs.

An object is defined by a function when the FDEF_BIT
is set in its control byte. This is demonstrated with the
second dictionary entry in Example 7, which defines
the COB ID for the SYNC object. In this case, the
function _CO_COMM_SYNC_COBIDAccessEvent() is
called when there is a request to access the object at
index 1005h, subindex 0x00.

WRITING AN OBJECT HANDLING FUNCTION

An object is referenced through an SDO, PDO, or
through some application access. If the object is
defined by a function then the function defined in the
dictionary will be called when the object is referenced.
There are three possible events that the object
handling function can handle when referenced:

• Read control: Read the control bits defined by the
function. This applies to all bits except the
FSUB_BIT and FDEF_BIT bits; these bits must be
defined for the object within the dictionary.

• Read: Read the object if it is readable.
• Write: Write the object if it is writable.

Example 8 demonstrates what a typical handling
function looks like. Example 9 is an example of a
handler for the TPDO1 COB ID object.

An object handling function is provided with functions
and a structure to process requests to or from. The
functions are mCO_DictGetCmd() and
mCO_DictSetRet(). The first is used to retrieve the
command, and the second is used to return any errors to
the requestor. Table 11 lists the errors that can be
returned. In the case of a successful request, then no
response is necessary; the dictionary assumes success.

The requestor will set a pointer in the dictionary
(uDict.obj) to its local DICT_OBJ structure. This
structure contains information about the object as well
as the requestor. The structure is defined in Table 8.
Example 8 demonstrates usage of the structure with an
object handling function.

EXAMPLE 7: EXAMPLES OF OBJECT DEFINITIONS
Simple Object Definition:
{0x1002,0x00,RO,4,{(rom unsigned char *)&uCO_DevManufacturerStatReg}}

Functionally Defined Object:
{0x1005,0x00,FUNC | RW,4,{(rom unsigned char *)&_CO_COMM_SYNC_COBIDAccessEvent}

AN945

DS00945A-page 40 2004 Microchip Technology Inc.

TABLE 10: DICT_OBJ UDICT STRUCTURE

TABLE 11: ERROR DEFINITIONS

Element Type Description

pReqBuf unsigned char * Pointer to the requestor’s buffer. This is the pointer to the requestor’s data when
writing an object. When reading, this is the pointer to the requestor’s buffer
space.

reqLen unsigned int Number of bytes requested. This should never exceed the length of the object.

reqOffst unsigned int Starting point for the request. This is provided to support partial requests due to
low buffer space. This is most useful for read requests; for write requests this
would be unlikely since partially writing an object is not always desirable. Also,
this parameter does not need to be supported if the number of bytes in the object
is less than 8.

index unsigned int CANopen Index.

subindex unsigned char CANopen subindex.

ctl enum DICT_CTL Memory access type.

len unsigned int Size of the object in bytes.

p union DICT_PTRS Pointers to objects.

Name Description

E_SUCCESS Success, no error

E_TOGGLE Toggle bit not alternated

E_SDO_TIME SDO protocol timed out

E_CS_CMD Client/server command specifier not valid or unknown

E_MEMORY_OUT Out of memory

E_UNSUPP_ACCESS Unsupported access to object

E_CANNOT_READ Attempt to read a write only object

E_CANNOT_WRITE Attempt to write a read-only object

E_OBJ_NOT_FOUND Object does not exist in the object dictionary

E_OBJ_CANNOT_MAP Object cannot be mapped to the PDO

E_OBJ_MAP_LEN The number and length of the objects to be mapped would exceed PDO length

E_GEN_PARAM_COMP General parameter incompatibility

E_GEN_INTERNAL_COMP General internal incompatibility in the device

E_HARDWARE Access failure due to a hardware error

E_LEN_SERVICE Data type does not match, length of service parameter does not match

E_LEN_SERVICE_HIGH Data type does not match, length of service parameter too high

E_LEN_SERVICE_LOW Data type does not match, length of service parameter too low

E_SUBINDEX_NOT_FOUND Subindex does not exist

E_PARAM_RANGE Value range of parameter exceeded (only for write access)

E_PARAM_HIGH Value of parameter too high

E_PARAM_LOW Value of parameter too low

E_MAX_LT_MIN Maximum value is less than minimum value

E_GENERAL General error

E_TRANSFER Data cannot be transferred or stored to the application

E_LOCAL_CONTROL Data cannot be transferred or stored to the application because of local control

E_DEV_STATE Data cannot be transferred or stored to the application because of the present
device state

 2004 Microchip Technology Inc. DS00945A-page 41

AN945

EXAMPLE 8: FUNCTIONAL OBJECT HANDLING
void MyObjectHandlingFunction(void)
{

switch (mCO_DictGetCmd())
{

case DICT_OBJ_INFO:// Get information about the object
// Code in this request type should modify the type of access. For
// example, if the object can change from RO to RW based on a particular
// state of the application then this would be handled here. In most
// situations this can be omited since the object info is static;
// static information is supported directly by the dictionary.

break;
case DICT_OBJ_READ: // Read the object

// This is the object read request. Code in this request type should
// handle any data movement and/or events based on the Read.

break;
case DICT_OBJ_WRITE: // Write the object

// This is the object write request. Code in this request type should
// handle any data movement and/or events based on the Write.

break;
}

}

AN945

DS00945A-page 42 2004 Microchip Technology Inc.

EXAMPLE 9: FUNCTIONAL OBJECT HANDLING EXAMPLE
void CO_COMM_TPDO1_COBIDAccessEvent(void)
{

switch (mCO_DictGetCmd())
{

case DICT_OBJ_READ: // Read the object
// Translate MCHP COB to CANopen COB
mTOOLS_MCHP2CO(mTPDOGetCOB(1));

// Return the COBID
*(unsigned long *)(uDict.obj->pReqBuf) = mTOOLS_GetCOBID();
break;

case DICT_OBJ_WRITE: // Write the object
// Translate the COB to MCHP format
mTOOLS_CO2MCHP(*(unsigned long *)(uDict.obj->pReqBuf));

// If the request is to stop the PDO
if ((*(UNSIGNED32 *)(&mTOOLS_GetCOBID())).PDO_DIS)
{

// And if the COB received matches the stored COB and type then close
if (!((mTOOLS_GetCOBID() ^ mTPDOGetCOB(1)) & 0xFFFFEFFF))
{

// but only close if the PDO endpoint was open
if (mTPDOIsOpen(1)) {mTPDOClose(1);}

// Indicate to the local object that this PDO is disabled
(*(UNSIGNED32 *)(&mTPDOGetCOB(1))).PDO_DIS = 1;

}
else {mCO_DictSetRet(E_PARAM_RANGE);} //error

}

// Else if the TPDO is not open then start the TPDO
else
{

// And if the COB received matches the stored COB and type then open
if (!((mTOOLS_GetCOBID() ^ mTPDOGetCOB(1)) & 0xFFFFEFFF))
{

// but only open if the PDO endpoint was closed
if (!mTPDOIsOpen(1)) {mTPDOOpen(1);}

// Indicate to the local object that this PDO is enabled
(*(UNSIGNED32 *)(&mTPDOGetCOB(1))).PDO_DIS = 0;

}
else {mCO_DictSetRet(E_PARAM_RANGE);} //error

}
break;

}
}

 2004 Microchip Technology Inc. DS00945A-page 43

AN945

DICTIONARY SERVICES

There are several services for dictionary management
available for use by the SDO endpoint. If necessary,
they may also be used for dynamic PDO mapping.

mCO_DictObjectRead

This function reads the object defined by myObj. To use this, the object information must be stored locally as a
DICT_OBJ structure then passed to the mCO_DictObjectRead() function. Internally only the reference is used.

Within the DICT_OBJ structure is the information necessary for receiving data from the object. Some of this information
must be provided by the calling function and other information must be provided by the dictionary. The
mCO_DictObjectDecode() function must be called prior to calling mCO_DictObjectRead() to get the access and
reference information stored in the dictionary. Other information must be provided by the user. The following table
describes the structure and the source of information for each element.

TABLE 12: DICT_OBJ STRUCTURE

Syntax

void mCO_DictObjectRead(DICT_OBJ myObj)

Parameters

DICT_OBJ myObj

Return Values

None. Use mCO_DictGetRet() to retrieve the error code.

Example

void MyFunc(void)
{

DICT_OBJ myLocalObj;
unsigned char localArray[20];
// Specify the object
myLocalObj.index = 0x1008L;
myLocalObj.subindex = 0x00;
// Get the information stored in the dictionary
mCO_DictObjectDecode(myLocalObj);
// Specify the local space and what data to read
myLocalObj.pReqBuf = localArray;
myLocalObj.reqLen = 0x8;
myLocalObj.reqOffst = 0x0;
// Read the object
mCO_DictObjectRead(myLocalObj);

}

Element Type Provided by Description

pReqBuf unsigned char * User Pointer to the requestors buffer

reqLen unsigned int User Number of bytes requested

reqOffst unsigned int User Starting point for the request

index unsigned int User CANopen Index

subindex unsigned char User CANopen subindex

ctl enum DICT_CTL mCO_DictObjectDecode() Memory access type

len unsigned int mCO_DictObjectDecode() Size of the object in bytes

p union DICT_PTRS mCO_DictObjectDecode() Pointers to objects

AN945

DS00945A-page 44 2004 Microchip Technology Inc.

mCO_DictObjectWrite

This function writes the object defined by myObj. To use this, the object information must be stored locally as a
DICT_OBJ structure then passed to the mCO_DictObjectWrite() function. Internally only the reference is used.

Syntax

void mCO_DictObjectWrite(DICT_OBJ myObj)

Parameters

DICT_OBJ myObj:The object structure shown in Table 12.

Return Values

None. Use mCO_DictGetRet() to retrieve the error code.

Example

The basic usage is similar to the example given for mCO_DictObjectRead() (page 43).

mCO_DictObjectDecode

This function is used to fill in any static information for a particular object that resides within the dictionary. An object
defined by myObj must be declared locally and passed to the function. The function will take the index and sub index
information and search for it within the dictionary. If the object is found then a pointer, length, and some control informa-
tion will be loaded within the myObj structure; refer to Table 12. Status information is returned and can be retrieved with
the mCO_DictGetRet() function.

Syntax

void mCO_DictObjectDecode(DICT_OBJ myObj)

Parameters

DICT_OBJ myObj:The object structure shown in Table 12.

Return Values

None. Use mCO_DictGetRet() to retrieve the error code.

Example

The basic usage is similar to the example given for mCO_DictObjectRead() (page 43).

 2004 Microchip Technology Inc. DS00945A-page 45

AN945

mCO_DictGetCmd

This function is used to retrieve the command for an object. There are only three commands: DICT_OBJ_INFO,
DICT_OBJ_READ, and DICT_OBJ_WRITE.

Syntax

enum _DICT_OBJECT_REQUEST mCO_DictGetCmd(void)

Parameters

None

Return Values

DICT_OBJ_INFO: Read object control information.

DICT_OBJ_READ: Read the object.

DICT_OBJ_WRITE: Write the object.

Example

Refer to the code in Example 9 (page 42).

mCO_DictGetRet

This function is used to get the return status of a dictionary operation.

Syntax

unsigned char mCO_DictGetRet(void)

Parameters

None

Return Values

All the possible errors are listed in Table 11 (page 40).

Example

None

mCO_DictSetRet

This function is used to set the return status of a dictionary operation. This is only used within an object handling
function.

Syntax

void mCO_DictSetRet(unsigned char retVal)

Parameters

unsigned char retVal: The return status of the object request. All the possible errors are listed in Table 11
(page 40).

Return Values

None

Example

Refer to the code in Example 9 (page 42).

AN945

DS00945A-page 46 2004 Microchip Technology Inc.

ECAN™ DRIVER

The functions in this section describe the functional
interface of the ECAN driver. Note that the driver
provided with the CANopen Stack has been specifically

designed for PIC18F devices with ECAN technology. It
is also possible to use an external CAN controller, and
therefore a different driver with different function calls. In
this event, the user will need to provide an appropriate
driver.

mCANEventManager

This is an event handling function. All queued events are processed from within this function. This function is called
within the CANopen Stack when CO_ProcessAllEvents is called.

Syntax

void mCANEventManager(void)

Parameters

None

Return Values

None

Example

None

mCANReset

This function resets CAN communications and sets the appropriate bit rate. This function is called from within the
CANopen Stack when a Reset request is received either from the application or the NMT master.

Syntax

void mCANReset(unsigned char CANBitRate)

Parameters

None

Return Values

None

Example

None.

mCANOpenComm

This function opens CAN communications. This function should be treated as a request. Depending on the bus activity,
communications may not be opened immediately.

Syntax

void mCANOpenComm(void)

Parameters

None

Return Values

None

Example

None

 2004 Microchip Technology Inc. DS00945A-page 47

AN945

mCANCloseComm

This function closes CAN communications.

Syntax

void mCANCloseComm(void)

Parameters

None

Return Values

None

Example

None

mCANIsCommOpen

This function can be used to query the driver to determine if communications are opened or closed.

Syntax

BOOL mCANIsCommOpen(void)

Parameters

None

Return Values

TRUE: Communications are opened.

FALSE: Communications are closed.

Example

None.

mCANErrIsOverFlow

This function is used to query the driver for a receive buffer overflow condition. If an overflow condition is found then the
condition can be removed by calling the mCANErrClearOverFlow function. When an overflow condition has
happened one or more messages have been lost. How this is handled depends on the application; the specification
does not require a particular method for handling this condition.

Syntax

void mCANErrIsOverFlow(void)

Parameters

None

Return Values

TRUE: A receive buffer has overflowed.

FALSE: A receive buffer has not overflowed.

Example

None

AN945

DS00945A-page 48 2004 Microchip Technology Inc.

mCANErrClearOverFlow

Remove the receive buffer overflow condition.

Syntax

void mCANErrClearOverFlow(void)

Parameters

None

Return Values

None

Example

None

mCANSetBitRate

This function sets the current bit rate. The bit rate is not changed immediately; it is actually queued in the driver until the
driver and CAN hardware are ready to accept a change. Typically this is only called once at start-up.

Syntax

void mCANSetBitRate(unsigned char CANBitRate)

Parameters

unsigned char CANBitRate: This can be any value; however, only values 0 through 8 are considered valid. All other
values will automatically default to the bit rate identified by option 0. All 9 options are defined in the file CO_DEFS.DEF.

Return Values

None

Example

None

mCANGetBitRate

This function returns the current bit rate used by the driver.

Syntax

unsigned char mCANGetBitRate(void)

Parameters

None

Return Values

unsigned char: The current bit rate. Only values 0 through 8 are valid; however, the function may return other values if
mCANSetBitRate() was passed a value other than the valid values.

Example

None

 2004 Microchip Technology Inc. DS00945A-page 49

AN945

mCANOpenMessage

This function scans the available mailbox space for an open slot. The CAN identifier must be passed in along with a
unique non-zero handle to that identifier. If a slot is found then all messages containing the provided CAN identifier will
be received and the handle will be used to identify the message. The handle will also be returned to the caller if found;
otherwise, the return will be zero. The calling function must maintain the handle if the endpoint is to be released at a
later time without a Reset.

The CAN identifier is added but not activated until the bus and the driver are ready. In future CAN modules this queuing
functionality may be removed, depending on available hardware support.

Syntax

void mCANOpenMessage(unsigned char MsgTyp, unsigned long COBID, unsigned char hRet)

Parameters

unsigned char MsgTyp: The unique handle to the identifier. It must be non-zero.

unsigned long COBID: The CAN identifier of the message to be allowed.

Return Values

unsigned char hRet:The return status. This will be either 0 or the handle.

Example

None

mCANCloseMessage

This function scans the mailbox space for the handle. If found, the CAN identifier is removed from the receive list.

The CAN identifier is only queued to be removed from the list. Thus messages may still be received until the driver can
fully remove the CAN identifier from the hardware. In future CAN modules this queuing functionality may be removed
depending on hardware support.

Syntax

void mCANCloseMessage(unsigned char hMsg)

Parameters

unsigned char hMsg: The handle to the message.

Return Values

None

Example

None

AN945

DS00945A-page 50 2004 Microchip Technology Inc.

mCANIsGetRTR

This function queries the driver for the RTR condition of the current message. The function mCANIsGetReady should
be called prior to this request to set the current message.

Syntax

void mCANIsGetRTR(void)

Parameters

None

Return Values

None

Example

None

mCANIsGetReady

This function scans for a receive event. If found, it places a handle associated to the receive buffer into an internal
register which can be accessed by mCANFetchRetStat. Otherwise, it returns zero. If a valid message is waiting, it
should be processed prior to calling the function again.

Buffer access on successive receive related calls is assumed, i.e., the handle is not required for associated read
functions. For example, calls to mCANGetDataLen() and mCANGetDataByten() functions assume the most current
received message data is being requested.

Syntax

void mCANIsGetReady(void)

Parameters

None

Return Values

None

Example

None

mCANReadMessage

Calling this function indicates to the driver that the current message has been processed, and the driver is now free to
use the buffer for a new message. The function mCANIsGetReady should have been called prior to this request to set
the current message.

Syntax

void mCANReadMessage(void)

Parameters

None

Return Values

None

Example

None

 2004 Microchip Technology Inc. DS00945A-page 51

AN945

mCANGetPtrRxCOB

This function retrieves the pointer to the current identifier. It also points to the whole message stored in Microchip format.

Syntax

unsigned char * mCANGetPtrRxCOB(void)

Parameters

None

Return Values

unsigned char *: Returns a pointer to the received CAN identifier.

Example

None

mCANGetPtrRxData

This function retrieves the pointer to the current data.

Syntax

unsigned char * mCANGetPtrRxData(void)

Parameters

None

Return Values

unsigned char *: Returns a pointer to the received data.

Example

None

mCANGetDataLen

This function retrieves the length of the current message or RTR request.

Syntax

unsigned char mCANGetDataLen(void)

Parameters

None

Return Values

unsigned char: Length of message or RTR request.

Example

None

AN945

DS00945A-page 52 2004 Microchip Technology Inc.

mCANGetDataByten

This represents a total of eight functions, where the trailing n can represents values from 0 to 7. Each will return the
corresponding data byte of the message received.

Syntax

unsigned char mCANGetDataByten(void)

Parameters

None

Return Values

unsigned char: The data byte.

Example

None

mCANIsPutReady

This function scans for an available output buffer. If successful, the handle passed is the same as the handle returned;
otherwise a zero is returned. The function mCANFetchRetStat must be called to get the return value.

Syntax

void mCANIsPutReady(putHndl)

Parameters

unsigned char putHndl: The handle of the message.

Return Values

None

Example

None

mCANIsPutFin

This function queries the driver for any message that has been placed on the bus and returns the handle to the message
that was sent. The function mCANFetchRetStat must be used to get the handle to the message.

This function should only be called one time for a transmit indication. Calling this function a second time after receiving
an indication may not return the same handle.

Syntax

void mCANIsPutFin(void)

Parameters

None

Return Values

None

Example

None

 2004 Microchip Technology Inc. DS00945A-page 53

AN945

mCANSendMessage

This function is used to indicate to the driver that the data, length, and CAN identifier have been loaded and are ready
to be sent.

Syntax

void mCANSendMessage(void)

Parameters

None

Return Values

None

Example

None

mCANGetPtrTxCOB

This function gets the pointer to the transmit CAN identifier buffer.

Syntax

unsigned char * mCANGetPtrTxCOB(void)

Parameters

None

Return Values

unsigned char *: The pointer to the CAN identifier transmit buffer.

Example

None

mCANGetPtrTxData

This function gets the pointer to the transmit data buffer.

Syntax

unsigned char * mCANGetPtrTxData(void)

Parameters

None

Return Values

unsigned char *: A pointer to the data transmit buffer.

Example

None

AN945

DS00945A-page 54 2004 Microchip Technology Inc.

mCANPutDataLen

This function sets the data length or the RTR request length.

Syntax

void mCANPutDataLen(unsigned char CANlen)

Parameters

unsigned char CANlen: The length or the RTR request length of the message.

Return Values

None

Example

None

mCANPutDataByten

This represents a total of eight functions, where the trailing n represents values from 0 to 7. Each can be used to set
the corresponding byte to be sent.

Syntax

void mCANPutDataByten(unsigned char CANDat)

Parameters

unsigned char CANDat: Data byte.

Return Values

None

Example

None

mCANFetchRetStat

This function is used to get the status of a function that returns status. The functions that return status are noted.

Syntax

unsigned char mCANFetchRetStat(void)

Parameters

None

Return Values

unsigned char: The status of the last operation.

Example

None

 2004 Microchip Technology Inc. DS00945A-page 55

AN945

FINISHING THE APPLICATION

Of course there are still some CAN specific details that
need to be handled. Here are some points to
remember:

• Objects: Define and develop all objects and
handling functions and link them to the dictionary.
Objects that are defined by a function require of
course extra coding because of the handling
function; however, these types of objects are
highly flexible.

• Dictionary: Place all objects within their proper
place within the dictionary. Properly define the
control, length, and the reference information for
the objects.

• PDOs: These still must be defined and
developed. Remember that PDOs can be static or
dynamic; static methods will always be code and
process-efficient but are obviously not flexible like
dynamic PDOs. There are also a number of PDO
transmission types that depend on the specific
application. For these reasons, only a base set of
tools are provided so the designer can develop
the most efficient code for the application.

• Timing: Provide a time base by using one of the
timers or some external time source.

• Initialization: Develop proper initialization code.
Many objects need to be initialized from some
static source such as ROM, EEPROM, or even
switches connected to input pins.

• Main Processing: Develop efficient cooperative
design practices in order to properly capture and
handle all events.

• Events: There are numerous events. Ensure
proper handling is in place where necessary. For
example, Reset requests from the network are
provided as events to the application. It is left up
to the application designer to decide how to
handle a Reset request.

• Compile Time Setup: Set up the appropriate
compile time options to achieve optimal resource
usage and efficiency.

RESOURCE USAGE

Device resources used by the stack are highly depen-
dent on the compile time options, as well as compiler
optimizations. The application designer should expect
the stack to consume about 7000 to 10,000 bytes of
program memory and 300 bytes of data memory with
optimization.

Using all of the optimizations available in the MPLAB®

C18 Compiler (v2.30.01), the demonstration
application provided with this application note requires
7434 bytes of program memory and 314 bytes of data
memory.

CONCLUSION

Developing a CANopen device can be an arduous task.
By using the CANopen Stack and its tools, a good portion
of the work is already accomplished by removing much of
the CANopen and CAN specific communications
management. This allows the applications designer to
focus a much greater percentage of his or her effort on
the application, and less on the specifics of CANopen.

REFERENCES

DS-301 (v 4.02), “CANopen Communication Profile for
Industrial Systems Based on CAL”. Erlangen: CAN in
Automation e.V., 2002.

M. Farsi and M. Barbosa, CAN Implementation:
Applications to Industrial Networks. Baldock,
Hertfordshire: Research Studies Press, 2000.

AN945

DS00945A-page 56 2004 Microchip Technology Inc.

APPENDIX A: SOFTWARE
DISCUSSED IN THIS
APPLICATION NOTE

Because of the number of individual modules and their
size, a complete source code listing of the CANopen
Stack is not provided here. Interested users are invited
to download the.zip archive file, including all source
and header files, from the Microchip corporate web site
at:

www.microchip.com

 2004 Microchip Technology Inc. DS00945A-page 57

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,
SmartSensor and The Embedded Control Solutions Company
are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,
SmartTel and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00945A-page 58 2004 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
16200 Addison Road, Suite 255
Addison Plaza
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
25950 Acero St., Suite 200
Mission Viejo, CA 92691
Tel: 949-462-9523
Fax: 949-462-9608

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Unit 32 41 Rawson Street
Epping 2121, NSW
Sydney, Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-22290061 Fax: 91-80-22290062
Japan
Yusen Shin Yokohama Building 10F
3-17-2, Shin Yokohama, Kohoku-ku,
Yokohama, Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934

Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4816
Fax: 886-7-536-4817
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139
Taiwan
Taiwan Branch
13F-3, No. 295, Sec. 2, Kung Fu Road
Hsinchu City 300, Taiwan
Tel: 886-3-572-9526
Fax: 886-3-572-6459

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Salvatore Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
Waegenburghtplein 4
NL-5152 JR, Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

07/12/04

WORLDWIDE SALES AND SERVICE

	Introduction
	Overview of the Stack
	TABLE 1: CANopen Source Files

	CANopen Firmware Model
	The Driver
	Communications Management
	FIGURE 1: Basic Firmware Model of the CANopen Stack

	Endpoints
	Server SDO Communication
	PDO Communication
	Network Management Consumer
	FIGURE 2: State Machine for a CANopen Device

	Node Guard/Heartbeat
	Synchronization Consumer

	The Dictionary
	TABLE 2: Location Ranges Within The Object Dictionary

	Standard Device Objects
	Application Objects
	Other Firmware

	Compile Time Setup
	Setting Device Information
	TABLE 3: Compile Time Options
	TABLE 4: Standard Device Objects

	Writing the Application
	Main Services
	PDO Events and Services
	PDO Development
	EXAMPLE 1: PDO Dictionary Entry
	EXAMPLE 2: Event Handler
	TABLE 5: PDO Transmission Types
	FIGURE 3: Mapping Format for ROM Data
	EXAMPLE 3: PDO Mapping Dictionary Entry
	EXAMPLE 4: Dictionary Structure

	SYNC Events and Services
	Network Management Events and Services
	Node Guard/Heartbeat Events and Services
	Objects and the Object Dictionary
	The Object Structure
	EXAMPLE 5: Dictionary Structure

	Object Groups
	Object Control Bits
	EXAMPLE 6: Dictionary Object Entry Example
	TABLE 6: Object Groups
	TABLE 7: Control Bit Definitions
	TABLE 8: Logic and Bit Definitions
	TABLE 9: Logic or Bit Definitions

	Simple Objects
	Functionally Defined Object
	Writing an Object Handling Function
	EXAMPLE 7: Examples of Object Definitions
	TABLE 10: DICT_OBJ Udict Structure
	TABLE 11: Error Definitions
	EXAMPLE 8: Functional Object Handling
	EXAMPLE 9: Functional Object Handling Example

	Dictionary Services
	TABLE 12: DICT_OBJ Structure

	ECAN™ Driver
	Finishing the Application
	Resource Usage
	Conclusion
	References
	Appendix A: Software Discussed in This Application Note
	Worldwide Sales and Service

