

AN942

Piecewise Linear Interpolation on PIC12/14/16 Series Microcontrollers

Author: John Day and Steven Bible Microchip Technology Inc.

INTRODUCTION

The embedded systems world is filled with sensing and measurement techniques that present non-linear output results. If the sensing technique is well characterized, a mathematical transfer function can be used to correct and linearize the sensor output. In many cases, these functions contain complex polynomial and exponential functions, placing a great burden on the program memory, RAM and execution speed of most low-cost microcontrollers.

This application note will explore a simple Piecewise Linear Interpolation technique that is often employed to linearize a sensor's output. This technique has many advantages in faster execution speed using a simple look-up table and significantly reduced program memory and RAM requirements. However, this technique can introduce a considerable error component with certain transfer functions. Therefore, the design engineer needs to understand the benefits and limitations of this technique, which will be explained in this application note.

SENSING SYSTEM INPUT

Sensors sense real-world quantities such as temperature, pressure, humidity, etc. The sensors present the phenomenon they are sensing as a voltage, current or capacitance. It is the embedded system's job to convert the sensor output into a digital value. For example, a voltage measurement is converted to a number by the microcontroller's Analog-to-Digital (A/D) Converter module, or time can be measured by the Capture/ Compare/PWM (CCP) module. Once the measurement is obtained and filtered (as needed), a transfer function is applied before it is presented.

Thermistors are a classic example of a sensor with a non-linear resistance with respect to the temperature measured. The industry accepted transfer function for a thermistor follows the Steinhart-Hart equation, as shown in Equation 1. Graphically, temperature vs. resistance is plotted in Figure 1.

EQUATION 1: STEINHART-HART

$$\frac{1}{T_K} = A + B(\ln R) + (\ln R)3$$

Solving for temperature in degrees Celsius:

$$T_{Degrees\ C} = \frac{1}{A + B(\ln R) + C(\ln R)^3} - 273.15$$

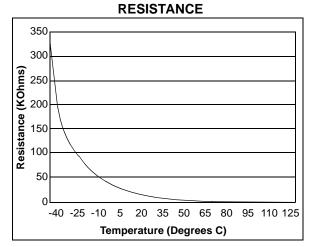

Legend:

FIGURE 1:

A, B, C = Constants determined through a calibration process

TEMPERATURE VS.

- R = The thermistor's resistance in ohms
- T_{K} = The temperature in Kelvins

The Steinhart-Hart equation involves 1 cube, 1 divide, 2 multiples, 2 additions, 1 subtraction and 2 logarithm math functions. This could take several thousand instruction cycles to perform each temperature measurement since most low-cost, 8-bit microcontrollers do not have divide, cube and logarithm instructions. A large amount of program memory words would also be consumed by this formula.

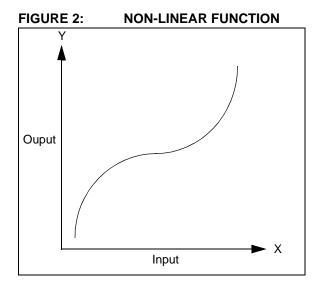
The transfer function for certain sensors may vary due to manufacturing tolerances in the sensor, packaging or other environmental factors. A Piecewise Linear Interpolation technique eliminates the need for complex math and enables the programming of a unique customized transfer function for each sensor to compensate for manufacturing tolerances.

WHY USE PIECEWISE LINEAR INTERPOLATION?

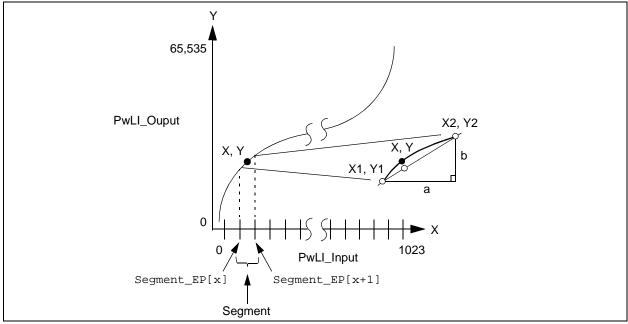
Piecewise Linear Interpolation (PwLI) is the technique of finding the value of a function at an unknown intermediate point given two data points. This value is calculated using a straight line between the closest two known data points.

The advantages of PwLI:

- 1. Fast execution speed (<137 instruction cycle).
- Minimum program memory requirements (<248 words of program memory space including PwLI segment look-up table).
- 3. Optimized look-up table size (130 bytes of data for a 64 segment table).
- 4. No need to characterize transfer function or coefficients.
- 5. Transfer function can easily be tailored during manufacturing to compensate for component tolerances.


The Disadvantages of PwLI:

- 1. Considerable output error can be introduced if an insufficient number of segments are used.
- 2. Transfer function with inflection points which do not land on a segment boundary may reduce the inflection point effect.


HOW DOES PIECEWISE LINEAR INTERPOLATION WORK?

Start with a function where an output is defined by an input, as shown in Figure 2. The input can come from any source, for example, a reading from an Analog-to-Digital Controller (ADC), Timer, Capture register, or the output of a computation.

In Figure 3, two points on the function are chosen: (X1, Y1) and (X2, Y2). A line bisects the two points.

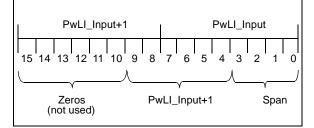


FIGURE 3: FUNCTION IS DIVIDED INTO SEGMENTS

To make the best utilization of the PICmicro[®] devices 10-bit A/D, the input (X-axis) is divided into 64 segments and spans 10 bits (the output of a 10-bit ADC). The segments are further divided into 16 subsegments.

FIGURE 4: THE 10-BIT ADC OUTPUT IS DIVIDED INTO SEGMENT AND SPAN VALUES

In Figure 4, the 10-bit input value contained in $PwLI_Input+1:PwLI_Input$ is divided into a 6-bit segment called $PwLI_Index$ and a 4-bit value called span. In Figure 5, the $PwLI_Index$ value is used to reference a specific segment within a look-up table and retrieve the segment endpoint ($PwLI_Segment_EP$ [x]) Y1 and Y2 (16-bit) values. An intermediate slope value is calculated by subtracting Y1 and Y2. Next, the intermediate slope is multiplied by the 4-bit span value and then divided by 16. The result is Y within the segment. Finally, Y is added to Y1 to complete the interpolation.

FIGURE 5: CALCULATING INTERMEDIATE POINT WITHIN THE SEGMENT

PwLI_Offset

15

Segment_EP[PwLI_Index+1]

Span

X1. Y1

0

Segment_EP[PwLI_Index]

USING THE PIECEWISE LINEAR INTERPOLATION ROUTINE

The accompanying file 00942.zip contains three files: pwl_10_16.asm, pwl_10_16.inc and pwl lookup calculation.xls. The user must first calculate each segment endpoint and populate the Segment_EP0 through Segment_EP64 values in pwl_10_16.inc with the desired output results. The pwl_lookup_calculation.xls spreadsheet can aid in automatically generating the endpoint values and source code. Place your formula or desired output the PwLI_Output column. values into The Segment_EP0 though Segment_EP64 endpoint data are automatically calculated as shown in Table 1. Finally, cut and paste the right most column into the pwl_10_16.inc file.

Endpoint	PwLI Input	PwLI Output	Look-up Table data to be placed into pwl_10_16.inc file date:		
0	0	0	Segment_EP0	equ	0x0000
1	16	1024	Segment_EP1	equ	0x0400
2	32	2048	Segment_EP2	equ	0x0800
3	48	3072	Segment_EP3	equ	0x0C00
62	992	63488	Segment_EP62	equ	0xF800
63	1008	64512	Segment_EP63	equ	0xFC00
64	1024	65536	Segment_EP64	equ	0xFFFF

TABLE 1:	EXAMPLE OUTPUT FROM pwl_lookup_calculation.xls
----------	--

The PwLI algorithm is utilized by first loading the PwLI_Input variable with the 10-bit sensor output value and calling the PwLI_subroutine. The PwLI_Output variable will contain the 16-bit result when PwLI returns. The PwLI algorithm performs the following high-level calculations:

- Span = PwLI_Input AND 0x0F
- PwLI_Index = PwLI_Input/16
- PwLI_Slope = Segment_EP[PwLI_Index+1] Segment_EP[PwLI_Index]
- PwLI_Offset = (PwLI_Slope * Span)/16
- PwLI_Output = Segment_EP[PwLI_Index] + PwLI_Offset

TABLE 2: PwLI VARIABLES

Variable	Size	Function	
PwLI_Input	10-bit	PwLI input variable	
PwLI_Output	16-bit	PwLI output variable	
PwLI_Index	16-bit	Segment number, calculated as PwLI_Input divided by 16	
PwLI_Slope	24-bit	Slope of segment, calculated by subtracting the segment endpoints	
PwLI_Offset	24-bit	Result of PwLI_Slope times Span, later divided by 16	

PwLI ALGORITHM PERFORMANCE AND MEMORY USAGE

A total of 248 words of program memory are used as follows:

- 130 words for storing (65) 16-bit segment endpoints
- 1 word for the endpoint look-up table "addwf PCL" instruction
- 2 words for PCLATH initialization
- 1 word to call PwLI code
- 114 words for PwLI algorithm

The execution time varies with the PwLI_Input value from 101 (minimum) to 137 (maximum) instruction cycles, including the PwLI function call and return overhead.

EXPANDING THE PwLI INPUT RESOLUTION

While this example uses a 10-bit input to generate a 16-bit output, the input resolution could be altered to accommodate 12, 14-bit or higher resolution input signal sources. The changes would be as follows:

	10-bit Input	12-bit Input	14-bit Input
Span =	PwLI_Input AND 0x0F	PwLI_Input AND 0x3F	PwLI_Input AND 0xFF
PwLI_Index =	PwLI_Input/16	PwLI_Input/64	PwLI_Input/256
PwLI_Offset =	(PwLI_Slope * Span)/16	(PwLI_Slope * Span)/64	(PwLI_Slope * Span)/256

The PwLI_Output and PwLI_Slope calculations would remain the same for all input resolution options:

- PwLI_Ouput = Segment_EP[PwLI_Index] + PwLI_Offset
- PwLI_Slope = Segment_EP[PwLI_Index+1] Segment_EP[PwLI_Index]

SUMMARY

Piecewise Linear Interpolation is a great solution for sensor linearization due to its fast execution speed, reduced program memory requirements and ease of implementation. This technique can be expanded or simplified to include more or less segments, or provide more or less input resolution.

AN942

NOTES:

Note the following details of the code protection feature on Microchip devices:

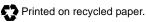
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002 Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELoo® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: www.microchip.com

Atlanta

3780 Mansell Road, Suite 130 Alpharetta, GA 30022 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

16200 Addison Road, Suite 255 Addison Plaza Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Tri-Atria Office Building 32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260

Kokomo 2767 S. Albright Road Kokomo, IN 46902 Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles 25950 Acero St., Suite 200 Mission Viejo, CA 92691 Tel: 949-462-9523 Fax: 949-462-9608

San Jose

1300 Terra Bella Avenue Mountain View, CA 94043 Tel: 650-215-1444 Fax: 650-961-0286

Toronto 6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia Microchip Technology Australia Pty Ltd Unit 32 41 Rawson Street Epping 2121, NSW Sydney, Australia Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Unit 706B Wan Tai Bei Hai Bldg. No. 6 Chaoyangmen Bei Str. Beijing, 100027, China Tel: 86-10-85282100 Fax: 86-10-85282104 China - Chengdu

Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou

Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR

Unit 901-6, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai

Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza No. 5022 Binhe Road, Futian District Shenzhen 518033. China Tel: 86-755-82901380 Fax: 86-755-8295-1393

China - Shunde

Room 401, Hongjian Building, No. 2 Fengxiangnan Road, Ronggui Town, Shunde District, Foshan City, Guangdong 528303, China Tel: 86-757-28395507 Fax: 86-757-28395571 China - Qingdao

Rm. B505A, Fullhope Plaza,

No. 12 Hong Kong Central Rd. Qingdao 266071, China Tel: 86-532-5027355 Fax: 86-532-5027205 India **Divyasree Chambers**

1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-22290061 Fax: 91-80-22290062 Japan

Yusen Shin Yokohama Building 10F 3-17-2, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea

168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul. Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Singapore

200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan Kaohsiung Branch 30F - 1 No. 8 Min Chuan 2nd Road Kaohsiung 806, Taiwan Tel: 886-7-536-4816 Fax: 886-7-536-4817 Taiwan Taiwan Branch 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139 Taiwan Taiwan Branch 13F-3, No. 295, Sec. 2, Kung Fu Road Hsinchu City 300, Taiwan Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria Durisolstrasse 2 A-4600 Wels Austria Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45-4420-9895 Fax: 45-4420-9910 France Parc d'Activite du Moulin de Massy

43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany

Steinheilstrasse 10 D-85737 Ismaning, Germany Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy

Via Salvatore Quasimodo, 12 20025 Legnano (MI) Milan, Italy Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands

Waegenburghtplein 4 NL-5152 JR, Drunen, Netherlands Tel: 31-416-690399 Fax: 31-416-690340 United Kingdom 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44-118-921-5869 Fax: 44-118-921-5820

07/12/04