
AN930
J1939 C Library for CAN-Enabled PICmicro® Microcontrollers
INTRODUCTION

J1939 is a series of SAE recommended practices that
have been developed to provide a standard
architecture by which multiple electronic systems on a
vehicle can communicate. It was developed by the
Truck and Bus Control and Communications Network
Subcommittee of the Truck and Bus Electrical and
Electronics Committee, but its use is not limited to truck
and bus applications. J1939 has been implemented in
a broad range of vehicles and transportation systems.

J1939 provides a communication protocol over a CAN
network. The CAN network is comprised of two or more
interconnected Electronic Control Units (ECUs). As per
the SAE J1939-11 specification. the ECUs are
connected using linear shielded twisted pair wiring,
with a data rate of 250 Kbits/second.

Microchip’s CAN-enabled PICmicro devices provide a
powerful, flexible and low-cost means of implementing
the J1939 protocol on a wide variety of electronic
vehicle components. The J1939 C library handles the
majority of network management aspects of J1939,
allowing the user to concentrate on the primary
application. The library provides support for all J1939
address configurations and is easily configurable
through Microchip’s Application Maestro™ utility.

For details about the PIC18 family of microcontrollers,
refer to one of the CAN-enabled PICmicro
microcontroller data sheets, such as the “PIC18FXX8
Data Sheet” (DS41159), the “PIC18F6585/8585/6680/
8680 Data Sheet” (DS30491), the “PIC18F2585/2680/
4585/4680 Data Sheet” (DS39625) and the “PICmicro®

18C MCU Family Reference Manual” (DS39500). For
details about the J1939 specification, refer to the various
SAE J1939 specifications, or visit http://www.sae.org.

Author: Kim Otten
Kim Otten Software Consulting

Co-Author: Caio Gübel
Microchip Technology Inc.
 2004 Microchip Technology Inc. DS00930A-page 1

AN930
J1939 OVERVIEW

J1939 is a communication protocol that is implemented
on a CAN network. Each Controller Application (CA)
has an associated NAME and ADDRESS. The NAME
value consists of 8 bytes with the following format:

TABLE 1: CONTROLLER APPLICATION NAME/ADDRESS FORMAT

These bytes embed the following information.

Arbitrary Address Capable – If the CA is
Arbitrary Address Capable (see the “J1939
Address Configuration” section for details).

Industry Group – A 3-bit field that indicates an
industry group. These values are specified in SAE
J1939.

Vehicle System Instance – This 4-bit field identifies
one particular occurrence of a given vehicle system in
a given network. If only one instance of a certain
vehicle system exists in a network, then this field must
be set to ‘0’ to define it as the first instance.

Vehicle System – This 7-bit field defines a group of
functions in a network. These values are specified in
SAE J1939.

Reserved – This field is reserved for future use by
SAE.

Function – This 8-bit field defines the primary function
of the CA. These values are specified in SAE J1939.

Function Instance – This 5-bit field identifies the
particular occurrence of a given function in a vehicle
system and given network. If only one instance of a
certain Function exists in a network, then this field must
be set to ‘0’ to define it as the first instance

ECU Instance – This 3-bit field is used when multiple
ECUs are involved in performing a single function. If
only one ECU is used for a particular CA, then this field
must be set to ‘0’ to define it as the first instance.

Manufacturer Code – This 11-bit field indicates the
manufacturer in charge of the production of the
electronic control module. This field is assigned by the
committee and is independent of other fields. These
values are specified in SAE J1939.

Identity Number – This 21-bit field is assigned by the
manufacturer of the ECU. It must be unique and must
not change with removal of power. The manufacturer
may choose to encode information within this field, but
they must also ensure uniqueness.

J1939 Address Configuration

Most CAs on a J1939 network will have a preferred
address that will be used based on the CA’s primary
function. These addresses are defined in the SAE
J1939 specification. As a general rule, after power-up,
a J1939 module will try to claim its preferred address. If
a conflict arises between modules, there are several
resolution methods based on the address configuration
of the CA. If the CA cannot claim an address, it will not
be able to send messages.

Single Address Capable CA – Single Address
Capable CAs are not able to change their address
independently of external action. There are four
different types of Single Address Capable CAs:

• Non-Configurable Address CA – This type of
CA can have its address changed only by the
replacement of the firmware installed in the
system.

• Service Configurable Address CA – This type
of CA may have its source address changed in
the field, either by a technician using a proprietary
technique, or by another CA sending it a
Commanded Address message while the CA is in
a “service” mode of operation, which normally
requires some sort of external tool/device.

• Command Configurable Address CA – This
type of CA can have its source address changed
in the field through a Commanded Address
message sent by another CA without the use of a
service tool.

• Self-Configurable Address CA – This type of
CA may select its own address within a limited set
of source addresses based on internal algorithms.
Once the CA selects which address it should use,
it is not capable of changing its address in the
case of a conflict.

Arbitrary Address Capable CA – This type of CA can
select its source address from any appropriate source
address, including those in the 128-247 range, using
an internal algorithm to calculate the address. In case
of conflict, it can recalculate and reclaim a new address
unless all available addresses are already claimed.

Arbitrary
Address
Capable

Industry
Group

Vehicle
System
Instance

Vehicle
System

Reserved Function
Function
Instance

ECU
Instance

Manufacturer
Code

Identity
Number

1 Bit 3 Bits 4 Bits 7 Bits 1 Bit 8 Bits 5 Bits 3 Bits 11 Bits 21 Bits
DS00930A-page 2  2004 Microchip Technology Inc.

AN930
J1939 Messages

J1939 messages are sent using the CAN Extended
Frame. A J1939 message consists of the following
components:

Priority – This 3-bit field is used to define the priority
during arbitration. ‘000’ is the highest priority and is
usually associated with high-speed control messages.
Low priority is used for noncritical configuration and
information messages.

Data Page – This 1-bit field defines on which data page
(0 or 1) the message is defined in the J1939 specifica-
tion. Page 0 contains the messages that are presently
defined, while Page 1 is for future expansion.

Protocol Data Unit (PDU) Format (PF) – This 8-bit
field determines the format of the message and is one
of the fields that determines the Parameter Group
Number of the message (see the “Parameter Group
Number” section). If the value is between 0 and 239,
the message is a PDU 1 Format message. These
messages are sent to specific addresses (CAs). If the
value is between 240 and 255, the message is a PDU 2
Format message. These messages are not sent to a
specific address (CA), but are instead broadcast to the
entire network.

PDU Specific (PS) – This 8-bit field is either the
Destination Address (PDU 1 Format) or the Group
Extension (PDU 2 Format).

Source Address – This 8-bit field is the address of the
CA that sent the message.

Data Length – The number of data bytes in the
message.

Data – Up to 8 bytes of data.

The first five items are placed into the CAN 29-bit
extended identifier in the format shown in Table 2.

Messages with more than 8 bytes of data must be sent
using the special Broadcast Announce Message
(BAM) Transport Protocol.

Most messages are intended to be broadcast
messages, or PDU 2 Format, where the message is not
sent to a particular address. The J1939 specification
defines PDU Format and PDU Specific values for many
messages by specifying the message Parameter
Group Numbers (see the “Parameter Group
Number” section).

A J1939 node can send messages to other nodes, or it
can request messages from other nodes, either glo-
bally or with a specific destination address. If a node
receives a request sent to it specifically, it must process
the message and send some sort of acknowledgement.
If a node receives a global request, it must respond if it
can. If a node receives a broadcast message, it must
determine whether or not it is relevant.

TABLE 2: J1939 MESSAGE FORMAT
S
O
F

Identifier
11 Bits

S
R
R

I
D
E

Identifier Extension
18 Bits

R
T
R

S
O
F

Priority
R

D
P

PDU Format (PF)
6 Bits (MSB)

S
R
R

I
D
E

PF
(cont.)

PDU Specific (PS)
(Destination Address, Group

Extension or Proprietary)
Source Address R

T
R

3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23 25 26 27 28 29 30 31 32 33

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 2004 Microchip Technology Inc. DS00930A-page 3

AN930
Parameter Group Number

The J1939 specification defines allowable messages
by their Parameter Group Number (PGN). The Param-
eter Group Number is a 3-byte value that uniquely
defines the message purpose. A PGN has the following
format:

If the PDU Format value for a message is less than
240, then the last 8 bits of the PGN are set to ‘0’.

The J1939 specification gives the decimal equivalent of
the PGNs. To obtain the PF and PS values to use for a
specific message, convert the decimal value from the
J1939 specification to hexadecimal and use the last
two bytes. These values can then be used to either
send messages on the network or to request messages
from other CAs (see Example 5A and Example 5B in
Appendix A: “Source Code”).

LIBRARY OVERVIEW

The J1939 C Library is targeted for use with CAN-
enabled PIC18 microcontroller applications written with
MPLAB® C18. It offers J1939 communications protocol
support for CAs with one of the following address
configurations:

• Single Address Capable
- Non-configurable
- Service configurable

- Command configurable
- Self-configurable

• Arbitrary Address Capable

The library routines handle initialization and network
functions automatically. CA messages are placed in a
queue for transmission. Messages that are received for
the CA are placed in a separate queue for processing.
The queue sizes are configurable by the user based on
available RAM. Many other aspects of the library
operation are also configurable to allow for various
hardware and software designs.

The library has some limitations:

• Broadcast Announce Message (BAM) format is
explicitly supported only to the extent that the
Commanded Address message can be received
and processed. Any data transfer packets that are
received that are not part of the Commanded
Address message are placed into the receive
queue for assembly by the CA. The application
can send BAM messages, but it must place the
individual messages in the transmit queue.

• Working Sets are not explicitly supported.

HOW TO USE THE LIBRARY

The main function of the library is to queue all received
messages for processing by the CA, transmit all
messages that the CA would like to send and handle all
network management transparently to the CA.
Received and transmitted messages are stored in their
own separate queues, so the interface to the J1939/
CAN network is encapsulated in the library. Network
management messages, such as address arbitration,
are handled entirely by the library, with no additional
processing required by the CA. Network management
messages also do not require any additional receive or
transmit queue space, so the queue size can be
customized independently of the library functionality.

PROJECT FILES

The j1939.c source file must be compiled and linked
with the main CA file(s).

The j1939.h header file must be included in any CA
source files that utilize the library routines or any J1939
definitions.

These files, along with j1939.def, should be located
in the project directory. They should not be obtained
from a generic directory, since j1939.def will change
for each CA (the NAME, ADDRESS, etc. will be
different).

Basic Setup

The library can be configured either to use the CAN
module’s interrupt capability or to poll the CAN module.

USING INTERRUPTS

Using interrupts is the preferred method of operation,
since it decreases the likelihood that received
messages will be missed.

There are three functions that need to be called for
basic J1939 support (refer to the “Library Functions”
section for details):

• J1939_Initialization

• J1939_Poll

• J1939_ISR

After performing any self-test or other initialization, call
J1939_Initialization to set up the J1939 support
and begin the process of establishing the CA’s
presence on the network. J1939_Initialization
can either initialize the NAME and ADDRESS values
internally, or allow the CA to do it in the case of Self-
Configurable Address CAs or CAs that dynamically
determine the NAME and ADDRESS values. When this
function terminates, the CA will be able to receive glo-
bal and broadcast messages, but it will not yet have a
J1939 address unless the address is in the proprietary
address range (less than 128 or between 248 and 253).

0 Reserved
Data

Page Bit
PDU

Format
Group

Extension

6 bits 1 bit 1 bit 8 bits 8 bits
DS00930A-page 4  2004 Microchip Technology Inc.

AN930
After J1939_Initialization is called, global
interrupts should be enabled by setting the GIEH/GIE
and/or the GIEL/PEIE bits appropriately.

After initialization, call J1939_Poll at least every few
milliseconds until the WaitingForAddressClaim-
Contention flag is clear. When this flag is clear, the
CA can check the CannotClaimAddress flag. If this
flag is clear, then the system is on the network with an
established address. If this flag is set, then the CA does
not have an accepted address on the network, but the
CA can still receive messages sent to the global
address and broadcast messages.

If the CA cannot use an address other than its initial
address, then it is not necessary to call J1939_Poll
after WaitingForAddressClaimContention is clear.
However, if the CA can change its address (either through
the Commanded Address message or by being
Arbitrary Address Capable), then call J1939_Poll at
least every few milliseconds whenever the
WaitingForAddressClaimContention is set. Note
that if the system is configured for interrupts,
J1939_Poll will not check for received messages or
transmit queued messages. If the CA does change its
address, global interrupts will be disabled and re-enabled
to reconfigure the CAN module. Therefore, J1939_Poll
should not be called from any place where the configured
interrupt enable has been temporarily disabled.

The CA’s interrupt handler must call J1939_ISR if any
of the flags in PIR3 are set. This function places any
received messages into the receive queue for process-
ing and transmits any messages that can be transmit-
ted from the transmit queue. It also automatically
handles any network management messages and
clears the interrupt flags. No specific error handling is
provided other than to clear the interrupt flags. This
function can be customized to provide any desired
error handling.

USING POLLING

If necessary, the CAN module can be polled to transmit
and receive messages. If using polling, use extreme
care to ensure the following:

• The CAN module must be polled often enough to
avoid missing a received message. The rate of
polling depends on the selected CAN bus speed.

• When placing a message in the transmit queue,
ensure that the routine, J1939_Poll, is called
between successive attempts to queue the
message; otherwise, an infinite loop will be
generated.

There are two functions that need to be called for basic
J1939 function support (refer to the “Library
Functions” section for details):

• J1939_Initialization

• J1939_Poll

After performing any self-test or other initialization, call
J1939_Initialization to set up the J1939 support
and begin the process of establishing the CA’s
presence on the network. J1939_Initialization
can either initialize the NAME and ADDRESS values
internally, or allow the CA to do it in the case of Self-
Configurable Address CAs or CAs that dynamically
determine the NAME and ADDRESS values. When this
function terminates, the CA will be able to receive glo-
bal and broadcast messages, but it will not yet have a
J1939 address unless the address is in the proprietary
address range (less than 128 or between 248 and 253).

After initialization, call J1939_Poll at least every few
milliseconds until the WaitingForAddressClaim-
Contention flag is clear. When this flag is clear, the
CA can check the CannotClaimAddress flag. If this
flag is clear, then the system is on the network with an
established address. If this flag is set, then the CA does
not have an accepted address on the network, but the
CA can still receive messages sent to the global
address and broadcast messages.

Continue to call J1939_Poll to transmit any messages
that can be transmitted from the transmit queue and
place any received messages into the receive queue for
processing. Any network management messages are
handled automatically.
 2004 Microchip Technology Inc. DS00930A-page 5

AN930
MESSAGES

Message Definition and Structure

Create one or more message buffers using the
following definition:

J1939_MESSAGE MyMessage;

Since each message buffer requires 13 bytes of RAM,
try to keep the number of message buffers to a mini-
mum. In most situations, only one or two CA message
buffers will be needed.

The message structure is defined in j1939.h, but here
are the main fields that the CA will use. Refer to the
“J1939 Messages” section and the J1939
specification for more details on each portion of the
message.

• MyMessage.DataPage, one bit
• MyMessage.Priority, three bits

• MyMessage.PDUFormat, one byte
• MyMessage.PDUSpecific, one byte

This field can also be referenced as
DestinationAddress or GroupExtension to
help clarify the CA code.

• MyMessage.SourceAddress, one byte (this is
automatically filled in by the library before
transmission).

• MyMessage.DataLength, 4 bits, but must be
between 0 and 8.

• MyMessage.Data[8], array of 8 bytes. Most
messages are sent LSB first.

RECEIVED MESSAGES

Network management messages are handled auto-
matically by the library. Any other messages are
queued for processing by the CA. These messages
include:

• Broadcast messages
• Messages sent to the CA’s address
• Messages sent to the global address

Check the variable, RXQueueCount, to see if there are
any messages ready in the queue. Call the routine,
J1939_DequeueMessage, to pull one message out of
the receive queue and place it in a buffer for processing.
Check the flag, J1939_Flags.ReceivedMessages-
Dropped, to see if any messages have been dropped.
Refer to the description of J1939_DequeueMessage
for more details.

TRANSMIT MESSAGES

Network management messages are handled
automatically by the library. Place any other messages
the CA wishes to send into the transmit queue by
calling J1939_EnqueueMessage to copy the
message into the transmit queue. Refer to the
description of J1939_EnqueueMessage for more
details. The routine, J1939_TransmitMessages,
performs the actual transmission of the message when
it is called from either J1939_Poll or J1939_ISR.

If BAM messages are being sent, call
J1939_EnqueueMessage with each individual
message of the BAM message.

LOSS OF J1939 ADDRESS

If another J1939 node on the bus claims the same
address, the two nodes’ NAMEs are compared. The
node with the lower NAME value is allowed to keep the
address and the other node must relinquish it. If the lat-
ter happens, the CA is no longer allowed to transmit
messages, other than the Cannot Claim Address
message and it can only receive messages sent to the
global address or broadcast messages. This is handled
automatically by the library.

If the CA is Arbitrary Address Capable, then it will call
the user-defined routine, CA_RecalculateAddress,
to get another address to try to claim. If it returns a
value of TRUE, the library will attempt to claim the new
address. If it returns a value of FALSE, the library will
not attempt to claim another address.

USING THE COMMANDED ADDRESS
MESSAGE

If the library has been configured to allow reception of
the Commanded Address message, then the
Commanded Address message will be automatically
processed when it is received. The system will initiate
a claim to the new address and if successful, use that
address for subsequent transmissions. If the claim is
unsuccessful, then the CA will no longer be able to
transmit messages and can only receive messages
sent to the global address or broadcast messages.

If the CA wishes to send the Commanded Address
message, it must enqueue the BAM and two DT
packets as per the J1939-21 specification. Refer to the
following Commanded Address transmission example.

SELF-CONFIGURABLE CA

If the CA is Self-Configurable, it can select its address
from more than one possible value. The CA should
initialize J1939_Address and the CA_Name array
based on whatever calculations necessary prior to
calling J1939_Initialization. The CA should
then call J1939_Initialization with the
parameter value of FALSE, indicating that the NAME
and ADDRESS values have already been initialized.
DS00930A-page 6  2004 Microchip Technology Inc.

AN930
ARBITRARY ADDRESS CAPABLE CA

If the CA is Arbitrary Address Capable, it can select
from more than one address to try to claim. If the library
cannot claim an address, it will call the user defined
routine, CA_RecalculateAddress. This routine can
then calculate a new address to try. If all potential
addresses have been tried and have failed, this routine
should return FALSE to indicate that there are no more
addresses to try. Otherwise, the routine should return
TRUE so the library can attempt to claim the new
address.

Note that the definition of whether or not the CA is
Arbitrary Address Capable is indicated by a bit in one
of the NAME bytes. The library code will use the
definition as per the Application Maestro definition to
conditionally compile the extra code needed for
Arbitrary Address Capable CAs, but during address
arbitration, the values in the NAME array will be used.
If the NAME array is initialized by the CA, ensure that
the Arbitrary Address Capable bit is set up correctly.

LIBRARY CONFIGURATION

The library is configured through the use of the
Application Maestro utility. This utility will copy all
required source files into the specified directory and will
generate a single definition file, j1939.def, contain-
ing definitions that will configure the library operation.
The configuration of that file is described here.

In addition, one or two C functions may be required in
the CA code, depending on the CA’s address capability.

J1939 Configuration

Starting Address – Define the initial CA address
value. Note that this address value must be a valid
value as per the J1939 specification.

Arbitrary Address Capable – Indicate whether or not
the CA is Arbitrary Address Capable. If it is, it must con-
tain a function to calculate a new address to try to claim
if the current address claim fails. It must also return
whether or not to try to claim the new address. The
function must have the prototype:

BOOL CA_RecalculateAddress(unsigned char
*NewAddress);

Industry Group Number – A 3-bit value indicating the
type of industry for which the CA is defined, as per SAE
J1939.

Vehicle System Instance – A 4-bit value indicating the
particular occurrence of the particular vehicle system
within the network.

Vehicle System – A 7-bit value indicating the type of
vehicle system, as per SAE J1939.

J1939 Function – An 8-bit value indicating the function
of the CA, as per SAE J1939.

Function Instance – A 5-bit value indicating the
particular occurrence of the particular function within
the network.

ECU Instance – A 3-bit value indicating the particular
ECU associated with a given function.

Manufacturer Code – An 11-bit value indicating the
company that was responsible for the production of the
ECU, as per SAE J1939.

Identity Number – A 21-bit value chosen by the
manufacturer to uniquely identify the CA. This field
should be unique and non-varying with removal of
power. If this value is needed for manual assignment of
the NAME array, it can be accessed by the label,
J1939_IDENTITY_NUMBER.

Commanded Address Message Accepted – If the
CA can accept the Commanded Address message. It
is important that this parameter is set to “Yes” only
when the Commanded Address message can be
accepted to allow the library compilation to optimize out
any unnecessary functions. Also, the CA must provide
a function that returns TRUE if the Commanded
Address message can be accepted and a FALSE if it
must be ignored. In the case of a Service Configurable
CA, the function may perform another function, such as
checking the level on a pin to see if a service tool has
been installed. In the case of a Command Configurable
CA, the function may simply return TRUE. The function
must have the prototype:

BOOL CA_AcceptCommandedAddress(void);

Message Queue Configuration

Receive Queue Size – The number of messages that
can be stored in the queue of received messages. This
value must be greater than or equal to ‘1’.

Overwrite Receive Queue – If the receive queue is full
and another message is received, this message can
either be dropped or can overwrite the previous
message. If “Yes” is selected, the new message
overwrites the previous message. If “No” is selected,
the message is dropped and a flag is set to indicate that
received messages have been dropped.

Transmit Queue Size – The number of messages that
can be stored in the queue of messages to transmit.
This value must be greater than or equal to ‘1’.

Overwrite Transmit Queue – If the transmit queue is
full and another message is queued for transmit, this
message can either be dropped or can overwrite the
previous message. If “Yes” is selected, the new mes-
sage overwrites the previous message. If “No” is
selected, the message is dropped and a return code
indicates that the message was not queued.
 2004 Microchip Technology Inc. DS00930A-page 7

AN930
Interrupts Versus Polling

Interrupts or Polling – If interrupts are used to service
the CAN module or if the CAN module is polled.

Enable Prioritized Interrupts – If interrupts are used,
this determines if the interrupts are prioritized. This
value is ignored if polling is used. Note that it is impor-
tant to select this option accurately, as it will set up the
RCON register, as well as identify how to enable and
disable interrupts in certain sections of the library.

Receive Interrupt Priority – The priority of receive
and error interrupts if prioritized interrupts are used. If
interrupts or prioritization is not used, this value is
ignored.

Transmit Interrupt Priority – The priority of transmit
interrupts if prioritized interrupts are used. If interrupts
or prioritization is not used, this value is ignored.

ECAN™ (Enhanced CAN) Module
Configuration

CAN Module Mode – If an ECAN module-enabled
device is used, FIFO mode is recommended. If a CAN-
enabled device is chosen, then the Legacy mode must
be selected.

Extra Receive Buffers – If FIFO mode is used, how
many of the six extra buffers are to be configured as
receive buffers. The remaining buffers will be config-
ured as transmit buffers. If Legacy mode is used, this
value is ignored.

CAN Bit Timing

The CAN bit timing is set by the following values. Refer
to the device data sheet or the “PICmicro® 18C MCU
Family Reference Manual” for details on defining these
values. Ensure that all nodes in the system have iden-
tical bit timing by adjusting these values appropriately
to account for the different system clocks and hardware
designs.

• Synchronized Jump Width x TQ

• Baud Rate Prescaler
• Phase Segment 2 Time Select

• Sample of CAN Bus Line
• Phase Segment 1 x TQ

• Propagation Time Select x TQ

• Wake-up Disable
• CAN Bus Line Filter for Wake-up
• Phase Segment 2 x TQ

CAN BIT TIMING AND PROCESSOR SPEED

A CAN network can run with a minimum Nominal Bit
Time of 1 microsecond. J1939 messages utilize the
CAN extended frame. A minimum of 67 bit times are
required to transmit one J1939 message with a data
length of zero. If the system is operating at full speed,
a new message can appear on the bus every
67 microseconds.

The PIC18 family can run with a system clock as slow
as 32 kHz. This gives an instruction time of 125
microseconds per instruction. It is obviously not
practical to design a system such that two J1939
messages can be received in the time it takes the
PIC18 device to execute a single instruction.

Take care that the PIC18 processor speed and CAN
network speed are selected such that the processor will
have adequate time to process messages. For exam-
ple, in a worst case scenario, a PIC18 device running
at 16 MHz connected to a 1 MHz CAN network would
have 268 instruction cycles to process a message.
Many messages will contain data bytes and therefore,
take longer to receive and the network should not have
100% loading, so in practice, the PIC18 will have more
time to process the message. But care should be taken
when designing the system that there is adequate
buffering in case of message bursts.
DS00930A-page 8  2004 Microchip Technology Inc.

AN930
LIBRARY FUNCTIONS

Interface Variables

CA ADDRESS

The CA ADDRESS can be accessed through the
variable, J1939_Address. Unless the CA is Self-
Configurable, this value should not be required by the
CA. In all cases, the CA must not modify this variable
after J1939_Initialization is called. Messages
that are transmitted by using J1939_EnqueueMessage
automatically have this value inserted into the Source
Address portion of the message.

CA NAME

The CA NAME can be accessed and modified, if
necessary, through the array, CA_Name. This array is
an array of unsigned chars, stored Least Significant
Byte first.

J1939 STATUS

The network status can be obtained by looking at two
variables, J1939_Flags and RXQueueCount. The
following flags in J1939_Flags are of use to the CA:

• J1939_Flags.CannotClaimAddress – set to
‘1’ if either an address has not yet been claimed
or the address cannot be claimed.

• J1939_Flags.WaitingForAddressClaim-
Contention – set to ‘1’ if the system is trying to
claim an address and is waiting for a claim con-
tention. If this flag is set, J1939_Poll must be
called every few milliseconds, even if interrupts
are being used, to check for contention time-out.

• J1939_Flags.ReceivedMessagesDropped –
set if overwrite receive queue was set to “Yes”
and received messages have been dropped
because the queue was full. The CA must clear
this flag.

The CA can alter only J1939_Flags.Received-
MessagesDropped. The CA must not alter the other
flags.

RXQueueCount is the number of messages in the
receive queue waiting for processing by the CA.

External Interface Routines

The following routines, listed in Table 3, are provided
for the developer.

TABLE 3: EXTERNAL INTERFACE ROUTINES

Name Description

J1939_DequeueMessage Copy message from receive queue to user buffer

J1939_EnqueueMessage Copy message from user buffer to transmit queue

J1939_Initialization Initializes all necessary variables, configures the CAN module and starts the address
claim process

J1939_ISR Interrupt-based reception and transmission routine

J1939_Poll Polling based reception and transmission routine; also required if the CA is Service
Configurable, Command Configurable or Arbitrary Address Capable
 2004 Microchip Technology Inc. DS00930A-page 9

AN930
FUNCTION DESCRIPTIONS

Function unsigned char J1939_DequeueMessage(J1939_MESSAGE *MsgPtr)

Preconditions System initialized by J1939_Initialization

Overview This function pulls a received message out of the queue and places it into the buffer
pointed to by *MsgPtr.

Input J1939_MESSAGE *MsgPtr – A pointer to the message buffer.

Output RC_SUCCESS – Message dequeued successfully.
RC_QUEUEEMPTY – No messages to return.
RC_CANNOTRECEIVE – System cannot currently receive messages. This is returned
only after the receive queue is empty.

Side Effects None

Function unsigned char J1939_EnqueueMessage(J1939_MESSAGE *MsgPtr)

Preconditions System initialized by J1939_Initialization

Overview This function takes the message in the CA’s RAM pointed to by *MsgPtr and
places it in the queue for transmission. The message will automatically have the
CA’s Source Address placed in the proper field, but the CA must fill in the other
values.

Input Message pointed to by *MsgPtr

Output RC_SUCCESS – Message enqueued successfully.
RC_QUEUEFULL – Transmit queue full; message not queued.
RC_CANNOTTRANSMIT – System cannot currently transmit messages.

Side Effects None

Function void J1939_Initialization(BOOL InitNAMEandAddress)

Preconditions None

Overview This function must be called after any CA self-test and basic initialization. It
initializes the library’s global variables, the CAN module and interrupts, if necessary.
It then initiates the process of establishing the CA’s address on the network.

Input BOOL InitNAMEandAddress – Flag: If InitNAMEandAddress is TRUE, it will
initialize the CA’s J1939 NAME and ADDRESS to the values selected through the
Application Maestro utility. If it is FALSE, it will not initialize these values, allowing
the user to dynamically define the NAME and initial ADDRESS.

Output None

Side Effects None

Function void J1939_ISR(void)

Preconditions System initialized by J1939_Initialization

Overview The CA must call this function if it receives an interrupt and one or more of the flags
in PIR3 is set. This function calls J1939_ReceiveMessage to process any
received messages, J1939_TransmitMessage to transmit any messages in the
transmit queue and checks for any errors. It then clears the appropriate flags.

Input None

Output None

Side Effects None
DS00930A-page 10  2004 Microchip Technology Inc.

AN930
CONCLUSION

This library provides the J1939 network management
functionality necessary to implement J1939 protocol on
an ECU. The library is easily configurable through the
Application Maestro utility and supports all J1939
addressing configurations. Its simple interface and
ease of configuration allow the developer to add J1939
compatibility to his application, while maintaining focus
on the primary ECU functionality.

Function void J1939_Poll(unsigned long ElapsedTime)

Preconditions System Initialized by J1939_Initialization

Overview After J1939_Initialization, this function must be called at least every few
milliseconds, with the elapsed time in microseconds, until
J1939_Flags.WaitingForAddressClaimContention is clear in order to
establish that there is no contention for the CA’s address on the network. If interrupts
are not used, this function must also be called at least every few milliseconds during
the CA’s functioning to check for received messages. If interrupts are used and
either the Commanded Address message can be accepted or the CA is Arbitrary
Address Capable, then this function must still be called at least every few
milliseconds during the CA’s main processing to check for address contention in
response to claiming a new address. If interrupts are used, then J1939_Poll will
not check for received messages or messages to transmit, but will allow the
J1939_ISR to handle that processing.

Input unsigned long ElapsedTime – This value can be a value calculated at run time
or a constant value. A precise value of ElapsedTime is not necessary, but the
value should not be any greater than the actual elapsed time to ensure that the
minimum 250 ms contention wait time is met.

Output None

Side Effects If interrupts are being used, this routine may enable global interrupts. Therefore, this
routine should be called only when global interrupts are enabled. If interrupts are not
being used, this routine will not enable global interrupts.
 2004 Microchip Technology Inc. DS00930A-page 11

AN930
APPENDIX A: SOURCE CODE

The source code, with all required support files, is avail-
able for download as a Zip archive from the Microchip
web site, at:

www.microchip.com

Examples

The following examples show how the J1939 library
routines are used in a CA. Note that the applications
and values are for demonstration only and are not
intended to mimic an actual automotive application.

Read these examples in order, as each one builds on
the last. Important items to note from one example to
the next are shown in bold text.

These examples can be run on a PICDEM™ CAN LIN
3 Demonstration Board. Set the configuration bits to
the following settings (the remaining configuration bits
may be left at their default values):

• Oscillator: HS
• Brown-out Detect: Disabled

• Watchdog Timer: Disabled
• Low-Voltage Program: Disabled

EXAMPLE 1:

/***/
/***/

/*
Example 1

This example shows a very simple J1939 implementation. It uses polling
to check for a message to light an LED and to send a message if a
button is pressed.

Both Node 0 and Node 1 should be programmed with the same code, except
that OTHER_NODE should be defined as the other node’s J1939 Address.

Application Maestro should be run with the following options changed
from their default values (in addition to NAME, Address, and bit rate
values):

Interrupts or Polling – Polling
*/

#include <p18cxxx.h>
#include "j1939.h"

J1939_MESSAGE Msg;

// Define some arbitrary values. They must agree with the other node's
// values.

#define OTHER_NODE 129
#define TURN_ON_LED 92
#define TURN_OFF_LED 94

void main(void)
{

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS00930A-page 12  2004 Microchip Technology Inc.

AN930
unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;

TRISBbits.TRISB4 = 1; // Switch pin
TRISD = 0; // LED pins
LATD = 0; // Turn off LED

J1939_Initialization(TRUE);

// Wait for address contention to time out
while (J1939_Flags.WaitingForAddressClaimContention)

J1939_Poll(5);

// Now we know our address should be good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = PORTBbits.RB4;
if (LastSwitch != CurrentSwitch)
{

Msg.DataPage = 0;
Msg.Priority = J1939_CONTROL_PRIORITY;
Msg.DestinationAddress = OTHER_NODE;
Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.PDUFormat = TURN_ON_LED;
else

Msg.PDUFormat = TURN_OFF_LED;
 while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS)

J1939_Poll(5);
LastSwitch = CurrentSwitch;

}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.PDUFormat == TURN_ON_LED)

LATDbits.LATD0 = 1;
else if (Msg.PDUFormat == TURN_OFF_LED)

LATDbits.LATD0 = 0;
}

// Since we don’t accept the Commanded Address message,
// the value passed here doesn’t matter.
J1939_Poll(20);

}
}

 2004 Microchip Technology Inc. DS00930A-page 13

AN930
EXAMPLE 2:

/***/
/***/

/*
Example 2

This example shows the same concept as Example 1, except that instead
of polling, it uses interrupts to check for a message to light an LED
and to send a message if a button is pressed.

Both Node 0 and Node 1 should be programmed with the same code, except
that OTHER_NODE should be defined as the other node’s J1939 Address.

Application Maestro should be run with the following options changed
from their default values (in addition to NAME, Address, and bit rate
values):

None
*/

#include <p18cxxx.h>
#include "j1939.h"

J1939_MESSAGE Msg;

// Define some arbitrary values. They must agree with the other node's
// values.

#define OTHER_NODE 129
#define TURN_ON_LED 92
#define TURN_OFF_LED 94

void InterruptHandlerLow (void);

//--
// Low priority interrupt vector

#pragma code InterruptVectorLow = 0x0018
void InterruptVectorLow(void)
{
 _asm
 goto InterruptHandlerLow
 _endasm
}

//--
// Low priority interrupt routine

#pragma code
#pragma interruptlow InterruptHandlerLow

void InterruptHandlerLow(void)
{

if (PIR3 != 0x00)
J1939_ISR();

}

//--

void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;
DS00930A-page 14  2004 Microchip Technology Inc.

AN930
TRISBbits.TRISB4 = 1; // Switch pin
TRISD = 0; // LED pins
LATD = 0; // Turn off LED

J1939_Initialization(TRUE);
 INTCONbits.PEIE = 1; // Enable peripheral interrupts
 INTCONbits.GIE = 1; // Enable global interrupts

// Wait for address contention to time out
while (J1939_Flags.WaitingForAddressClaimContention)

J1939_Poll(5);

// Now we know our address should be good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = PORTBbits.RB4;
if (LastSwitch != CurrentSwitch)
{

Msg.DataPage = 0;
Msg.Priority = J1939_CONTROL_PRIORITY;
Msg.DestinationAddress = OTHER_NODE;
Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.PDUFormat = TURN_ON_LED;
else

Msg.PDUFormat = TURN_OFF_LED;

// We don’t need to call J1939_Poll in the middle of this
// loop, since the queue will be emptied during interrupt
// processing.
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

LastSwitch = CurrentSwitch;
}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.PDUFormat == TURN_ON_LED)

LATDbits.LATD0 = 1;
else if (Msg.PDUFormat == TURN_OFF_LED)

LATDbits.LATD0 = 0;
}

// We don’t need to call J1939_Poll, since the queues will
// be managed during the interrupt processing.

}
}

 2004 Microchip Technology Inc. DS00930A-page 15

AN930
EXAMPLE 3A:

/***/
/***/

/*
Example 3a

This example shows the same concept as Example 2, using interrupts to
check for a message to light an LED and to send a message if a button
is pressed. But for the first 5 button presses, the message is sent to
the wrong address. On the 5th push, the Commanded Address message is
sent to command the other node to use the address that this node is
sending the message to. Note that this node doesn’t even need to know what
the other node’s first address is, as long as it knows the node’s NAME.

This example will use high priority interrupts.

Application Maestro should be run with the following options changed
from their default values (in addition to NAME, Address, and bit rate
values):

Receive Interrupt Priority – High
Transmit Interrupt Priority – High
*/

#include <p18cxxx.h>
#include "j1939.h"

J1939_MESSAGE Msg;

// Define some arbitrary values. They must agree with the other node's
// values.

#define SECOND_ADDRESS 132
#define TURN_ON_LED 92
#define TURN_OFF_LED 94
#define NODE_NAME0 51
#define NODE_NAME1 0
#define NODE_NAME2 0
#define NODE_NAME3 0
#define NODE_NAME4 0
#define NODE_NAME5 0
#define NODE_NAME6 0
#define NODE_NAME7 0

void InterruptHandlerHigh (void);

//--
// High priority interrupt vector

#pragma code InterruptVectorHigh = 0x0008
void InterruptVectorHigh(void)
{
 _asm
 goto InterruptHandlerHigh
 _endasm
}

//--
// High priority interrupt routine

#pragma code
#pragma interrupt InterruptHandlerHigh

void InterruptHandlerHigh(void)
DS00930A-page 16  2004 Microchip Technology Inc.

AN930
{
if (PIR3 != 0x00)

J1939_ISR();
}

//--

void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;
unsigned char PushCount = 0;

TRISBbits.TRISB4 = 1; // Switch pin
TRISD = 0; // LED pins
LATD = 0; // Turn off LED

J1939_Initialization(TRUE);
INTCONbits.GIEH = 1;

// Wait for address contention to time out
while (J1939_Flags.WaitingForAddressClaimContention)

J1939_Poll(5);

// Now we know our address should be good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = PORTBbits.RB4;
if (LastSwitch != CurrentSwitch)
{

Msg.DataPage = 0;
Msg.Priority = J1939_CONTROL_PRIORITY;
Msg.DestinationAddress = SECOND_ADDRESS;
Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.PDUFormat = TURN_ON_LED;
else
{

Msg.PDUFormat = TURN_OFF_LED;
if (PushCount < 6)

PushCount ++;
}

 while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);
LastSwitch = CurrentSwitch;

if (PushCount == 5)
{

Msg.DataPage = 0;
Msg.Priority = J1939_TP_CM_PRIORITY;
Msg.DestinationAddress = J1939_GLOBAL_ADDRESS;
Msg.DataLength = 8;
Msg.PDUFormat = J1939_PF_TP_CM;
Msg.Data[0] = J1939_BAM_CONTROL_BYTE;
Msg.Data[1] = 9; // 9 data bytes
Msg.Data[2] = 0;
Msg.Data[3] = 2; // 2 packets
Msg.Data[4] = 0xFF; // Reserved
Msg.Data[5] = 0xD8; // PGN
Msg.Data[6] = 0xFE; // PGN
Msg.Data[7] = 0x00; // PGN
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

Msg.DataPage = 0;
 2004 Microchip Technology Inc. DS00930A-page 17

AN930
Msg.Priority = J1939_TP_DT_PRIORITY;
Msg.DestinationAddress = J1939_GLOBAL_ADDRESS;
Msg.DataLength = 8;
Msg.PDUFormat = J1939_PF_DT;
Msg.Data[0] = 1; // First packet
Msg.Data[1] = NODE_NAME0;
Msg.Data[2] = NODE_NAME1;
Msg.Data[3] = NODE_NAME2;
Msg.Data[4] = NODE_NAME3;
Msg.Data[5] = NODE_NAME4;
Msg.Data[6] = NODE_NAME5;
Msg.Data[7] = NODE_NAME6;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

Msg.Data[0] = 2; // Second packet
Msg.Data[1] = NODE_NAME7;
Msg.Data[2] = SECOND_ADDRESS;
Msg.Data[3] = 0xFF;
Msg.Data[4] = 0xFF;
Msg.Data[5] = 0xFF;
Msg.Data[6] = 0xFF;
Msg.Data[7] = 0xFF;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

}
}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.PDUFormat == TURN_ON_LED)

LATDbits.LATD0 = 1;
else if (Msg.PDUFormat == TURN_OFF_LED)

LATDbits.LATD0 = 0;
}

}
}

DS00930A-page 18  2004 Microchip Technology Inc.

AN930
EXAMPLE 3B:

/***/
/***/

/*
Example 3b

This example shows what the receiving node for Example 3a should
look like, using the same concept as Example 2 of using interrupts to check for a message to light
an LED and to send a message if a button
is pressed. Note that three basic changes are required:

- it must accept the Commanded Address message (Application Maestro)
- it must have a CA_AcceptCommandedAddress function
- it must call J1939_Poll during the main loop, even though interrupts
 are being used.

The rest of the code is identical. The change of address will be handled in the background.

Application Maestro should be run with the following options changed
from their default values (in addition to NAME, Address, and bit rate
values):

Commanded Address Message Accepted – Yes
*/

#include <p18cxxx.h>
#include "j1939.h"

J1939_MESSAGE Msg;

// Define some arbitrary values. They must agree with the other node's
// values.

#define OTHER_NODE 129
#define TURN_ON_LED 92
#define TURN_OFF_LED 94
#define MAIN_LOOP_TIME_IN_MICROSECONDS 100

BOOL CA_AcceptCommandedAddress(void)
{

return 1;
}

void InterruptHandlerLow (void);

//--
// Low priority interrupt vector

#pragma code InterruptVectorLow = 0x0018
void InterruptVectorLow(void)
{
 _asm
 goto InterruptHandlerLow
 _endasm
}

//--
// Low priority interrupt routine

#pragma code
#pragma interruptlow InterruptHandlerLow

void InterruptHandlerLow(void)
{

if (PIR3 != 0x00)
J1939_ISR();
 2004 Microchip Technology Inc. DS00930A-page 19

AN930
}

//--

void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;

TRISBbits.TRISB4 = 1; // Switch pin
TRISD = 0; // LED pins
LATD = 0; // Turn off LED

J1939_Initialization(TRUE);
INTCONbits.PEIE = 1; // Enable peripheral interrupts
INTCONbits.GIE = 1; // Enable global interrupts

// Wait for address contention to time out
while (J1939_Flags.WaitingForAddressClaimContention)

J1939_Poll(5);

// Now we know our address should be good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = PORTBbits.RB4;
if (LastSwitch != CurrentSwitch)
{

Msg.DataPage = 0;
Msg.Priority = J1939_CONTROL_PRIORITY;
Msg.DestinationAddress = OTHER_NODE;
Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.PDUFormat = TURN_ON_LED;
else

Msg.PDUFormat = TURN_OFF_LED;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);
LastSwitch = CurrentSwitch;

}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.PDUFormat == TURN_ON_LED)

LATDbits.LATD0 = 1;
else if (Msg.PDUFormat == TURN_OFF_LED)

LATDbits.LATD0 = 0;
}

// We need to call J1939_Poll since we can accept the
// Commanded Address message. Now the time value passed in
// is important.
J1939_Poll(MAIN_LOOP_TIME_IN_MICROSECONDS);

}
}

DS00930A-page 20  2004 Microchip Technology Inc.

AN930
EXAMPLE 4:

/***/
/***/

/*
Example 4

This example shows the same concept as Example 2, except that broadcast messages
are used rather than messages sent to a specific address.

Both Node 0 and Node 1 should be programmed with the same code, except
that OTHER_NODE should be defined as the other node’s J1939 Address.

Application Maestro should be run with the following options changed from their
default values (in addition to NAME, Address, and bit rate values):

None
*/

#include <p18cxxx.h>
#include "j1939.h"

J1939_MESSAGE Msg;

// Define some arbitrary values. They must agree with the other node's
// values.

#define OTHER_NODE 129
#define TURN_ON_LED 4
#define TURN_OFF_LED 5

void InterruptHandlerLow (void);

//--
// Low priority interrupt vector

#pragma code InterruptVectorLow = 0x0018
void InterruptVectorLow(void)
{
 _asm
 goto InterruptHandlerLow
 _endasm
}

//--
// Low priority interrupt routine

#pragma code
#pragma interruptlow InterruptHandlerLow

void InterruptHandlerLow(void)
{

if (PIR3 != 0x00)
J1939_ISR();

}

//--
 2004 Microchip Technology Inc. DS00930A-page 21

AN930
void main(void)
{

unsigned char LastSwitch = 1;
unsigned char CurrentSwitch;

TRISBbits.TRISB4 = 1; // Switch pin
TRISD = 0; // LED pins
LATD = 0; // Turn off LED

J1939_Initialization(TRUE);
INTCONbits.PEIE = 1; // Enable peripheral interrupts
INTCONbits.GIE = 1; // Enable global interrupts

// Wait for address contention to time out
while (J1939_Flags.WaitingForAddressClaimContention)

J1939_Poll(5);

// Now we know our address should be good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = PORTBbits.RB4;
if (LastSwitch != CurrentSwitch)
{

Msg.DataPage = 0;
Msg.Priority = J1939_CONTROL_PRIORITY;
Msg.DestinationAddress = OTHER_NODE;
Msg.PDUFormat = 254;
Msg.DataLength = 0;
if (CurrentSwitch == 0)

Msg.GroupExtension= TURN_ON_LED;
else

Msg.GroupExtension= TURN_OFF_LED;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);
LastSwitch = CurrentSwitch;

}

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
if (Msg.GroupExtension == TURN_ON_LED)

LATDbits.LATD0 = 1;
else if (Msg.GroupExtension == TURN_OFF_LED)

LATDbits.LATD0 = 0;
}

}
}

DS00930A-page 22  2004 Microchip Technology Inc.

AN930
EXAMPLE 5A:

/***/
/***/

/*
Example 5a

This example shows what a request and acknowledge sequence might look like. This node reads
the value of a potentiometer on an analog input pin. When it receives a request for Engine Speed,
it will check a switch value. If the switch is pressed, the value of the potentiometer will be
returned as the engine speed. If the switch is not pressed, a NACK response will be sent.

Application Maestro should be run with the following options changed from their default values
(in addition to NAME, Address, and bit rate values):

None
*/

#include <p18cxxx.h>
#include "j1939.h"

J1939_MESSAGE Msg;

void InterruptHandlerLow (void);

//--
// Low priority interrupt vector

#pragma code InterruptVectorLow = 0x0018
void InterruptVectorLow(void)
{
 _asm
 goto InterruptHandlerLow
 _endasm
}

//--
// Low priority interrupt routine

#pragma code
#pragma interruptlow InterruptHandlerLow

void InterruptHandlerLow(void)
{

if (PIR3 != 0x00)
J1939_ISR();

}

//--
#define J1939_PGN0_REQ_ENGINE_SPEED 0x04
#define J1939_PGN1_REQ_ENGINE_SPEED 0xF0
#define J1939_PGN2_REQ_ENGINE_SPEED 0x00

void main()
{

unsigned char EngineSpeed;
unsigned char Temp;

RCONbits.IPEN = 1;
TRISAbits.TRISA5 = 1;
TRISBbits.TRISB4 = 1;
TRISD = 0;

LATD = 0;
ADCON0 = 0b00101001;
 2004 Microchip Technology Inc. DS00930A-page 23

AN930
ADCON1 = 0x00;

J1939_Initialization(TRUE);
INTCONbits.PEIE = 1;
INTCONbits.GIE = 1;

// Wait for address contention to time out
while (J1939_Flags.WaitingForAddressClaimContention)

J1939_Poll(5);

// Now we know our address is good, so start checking for
// messages and switches.

while (1)
{

for (Temp=0; Temp<100; Temp++);
ADCON0bits.GO = 1;
while (ADCON0bits.DONE);
EngineSpeed = ADRESH;

LATD = EngineSpeed;

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
 if (Msg.PDUFormat == J1939_PF_REQUEST)

{
if ((Msg.Data[0] == J1939_PGN0_REQ_ENGINE_SPEED) &&

 (Msg.Data[1] == J1939_PGN1_REQ_ENGINE_SPEED) &&
 (Msg.Data[2] == J1939_PGN2_REQ_ENGINE_SPEED))

{
if (PORTBbits.RB4)
{

Msg.Priority = J1939_ACK_PRIORITY;
Msg.DataPage = 0;
Msg.PDUFormat = J1939_PF_ACKNOWLEDGMENT;
Msg.DestinationAddress = Msg.SourceAddress;
Msg.DataLength = 8;
Msg.Data[0] = J1939_NACK_CONTROL_BYTE;
Msg.Data[1] = 0xFF;
Msg.Data[2] = 0xFF;
Msg.Data[3] = 0xFF;
Msg.Data[4] = 0xFF;
Msg.Data[5] = J1939_PGN0_REQ_ENGINE_SPEED;
Msg.Data[6] = J1939_PGN1_REQ_ENGINE_SPEED;
Msg.Data[7] = J1939_PGN2_REQ_ENGINE_SPEED;

}
else
{

Msg.Priority = J1939_INFO_PRIORITY;
Msg.DataPage = J1939_PGN2_REQ_ENGINE_SPEED & 0x01;
Msg.PDUFormat = J1939_PGN1_REQ_ENGINE_SPEED;
Msg.GroupExtension = J1939_PGN0_REQ_ENGINE_SPEED;
Msg.DataLength = 1;
Msg.Data[0] = EngineSpeed;

}
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

}
}

}
}

}

DS00930A-page 24  2004 Microchip Technology Inc.

AN930
EXAMPLE 5B:

/***/
/***/

/*

Example 5b

This example shows what the corresponding node to Example 5A should
look like. When the switch is pressed, it will ask Node 0 for the
engine speed. If it receives the engine speed, it will display
that value on the port D LEDs, matching Node 0’s LEDs. If it
receives a NACK, it will light the RC2 LED instead.

Application Maestro should be run with the following options changed from
their default values (in addition to NAME, Address, and bit rate values):

Receive Interrupt Priority – High
Transmit Interrupt Priority – High
*/

#include <p18cxxx.h>
#include "j1939.h"

#define NODE1ADDRESS 128
#define NODE2ADDRESS 129

#define J1939_PGN0_REQ_ENGINE_SPEED 0x04
#define J1939_PGN1_REQ_ENGINE_SPEED 0xf0
#define J1939_PGN2_REQ_ENGINE_SPEED 0x00

//**

void InterruptHandlerHigh (void);

//--
// High priority interrupt vector

#pragma code InterruptVectorHigh = 0x08
void InterruptVectorHigh(void)
{
 _asm
 goto InterruptHandlerHigh
 _endasm
}

//--
// High priority interrupt routine

#pragma code
#pragma interrupt InterruptHandlerHigh

void InterruptHandlerHigh(void)
{

if (PIR3 != 0x00)
J1939_ISR();

}

//**

J1939_MESSAGE Msg;

//**
void main()
{

 2004 Microchip Technology Inc. DS00930A-page 25

AN930
unsigned char LastSwitchRB4 = 1;
unsigned char CurrentSwitch;
unsigned char i;

RCONbits.IPEN = 1;
TRISBbits.TRISB4 = 1;
TRISBbits.TRISB5 = 1;
TRISCbits.TRISC2 = 0;
TRISD = 0;

LATD = 0;
LATCbits.LATC2 = 0;

J1939_Initialization(TRUE);

INTCONbits.GIEH = 1;

// Wait for address contention to time out
while (J1939_Flags.WaitingForAddressClaimContention)

J1939_Poll(5);

// Now we know our address is good, so start checking for
// messages and switches.

while (1)
{

CurrentSwitch = PORTBbits.RB4;
if (CurrentSwitch && !LastSwitchRB4)
{

// Ask for the engine speed
Msg.DataPage = 0;
Msg.PDUFormat = J1939_PF_REQUEST;
Msg.Priority = J1939_CONTROL_PRIORITY;
Msg.DestinationAddress = NODE1ADDRESS;
Msg.DataLength = 3;
Msg.Data[0] = J1939_PGN0_REQ_ENGINE_SPEED;
Msg.Data[1] = J1939_PGN1_REQ_ENGINE_SPEED;
Msg.Data[2] = J1939_PGN2_REQ_ENGINE_SPEED;
while (J1939_EnqueueMessage(&Msg) != RC_SUCCESS);

}
LastSwitchRB4 = CurrentSwitch;

while (RXQueueCount > 0)
{

J1939_DequeueMessage(&Msg);
 if (Msg.PDUFormat == J1939_PF_ACKNOWLEDGMENT)

{
LATD = 0;
LATCbits.LATC2 = 1;

}
else if ((Msg.PDUFormat == J1939_PGN1_REQ_ENGINE_SPEED) &&

 (Msg.GroupExtension == J1939_PGN0_REQ_ENGINE_SPEED))
{

LATD = Msg.Data[0];
LATCbits.LATC2 = 0;

}
}

}
}

DS00930A-page 26  2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.
 2004 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL,
SmartSensor and The Embedded Control Solutions Company
are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Migratable Memory, MPASM,
MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net,
PICLAB, PICtail, PowerCal, PowerInfo, PowerMate,
PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial,
SmartTel and Total Endurance are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00930A-page 27

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00930A-page 28  2004 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-22290061 Fax: 91-80-22290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
Waegenburghtplein 4
NL-5152 JR, Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

05/28/04

Worldwide Sales and Service

	Introduction
	J1939 Overview
	TABLE 1: Controller Application Name/Address Format
	J1939 Address Configuration
	J1939 Messages
	TABLE 2: J1939 Message Format

	Parameter Group Number

	Library Overview
	How to Use the Library
	Project Files
	Basic Setup
	Using Interrupts
	Using Polling

	Messages
	Message Definition and Structure
	Received Messages
	Transmit Messages
	Loss of J1939 Address
	Using the Commanded Address Message
	Self-Configurable CA
	Arbitrary Address Capable CA

	Library Configuration
	J1939 Configuration
	Message Queue Configuration
	Interrupts Versus Polling
	ECAN™ (Enhanced CAN) Module Configuration
	CAN Bit Timing
	CAN Bit Timing and Processor Speed

	Library Functions
	Interface Variables
	CA Address
	CA NAME
	J1939 Status

	External Interface Routines
	TABLE 3: External Interface Routines
	Function Descriptions

	Conclusion
	Appendix A: Source Code
	Examples
	EXAMPLE 1:
	EXAMPLE 2:
	EXAMPLE 3A:
	EXAMPLE 3B:
	EXAMPLE 4:
	EXAMPLE 5A:
	EXAMPLE 5B:

	Worldwide Sales and Service

