
AN926
Programming the Pocket PC OS
for Embedded IR Applications
INTRODUCTION
This application note details the tools, supporting
technologies and procedures for the development of
infrared applications on Windows Mobile™ based
devices.

A Pocket PC (PPC) application that interfaces with an
embedded system via IrCOMM is included in the
Appendices of this application note. This source code
demonstrates the use of the Windows® Application
Programming Interface (API) required for IrDA®

standard IR communication on Windows Mobile based
platforms.

Appendix A: “Example Irda Standard System
Description” describes the system and documents the
tool used to create this Pocket PC application program,
while Appendix B: “PPC Source Code - IrDA
DEMO.CPP” through Appendix C: “PPC Source
Code - IrDA DemoDlg.cpp” is the PPC Application
Program source code.

Figure 1 shows an IrDA standard system, where a
Pocket PC PDA device is communicating with an
embedded system. In this system, the Pocket PC
(PPC) PDA operates as the Primary Device (Client)
and the embedded system operates as the Secondary
Device (Server). The terms Client and Server are used
in reference to Windows (PC and PPC) programming,
while Primary Device and Secondary Device are terms
used by the IrDA Standard.

FIGURE 1: POCKET PC PDA - EMBEDDED SYSTEM BLOCK DIAGRAM

Author: Joseph Snyder, Microchip Technology Inc.
Frank Ableson, Unwired Tools, LLC

Pocket PC Handheld Device
with IrDA® Standard Port

Embedded System with IrDA® Port

MCP215X Optical
Transceiver

Circuitry

Host Controller
and Embedded

Circuitry
or

MCP2140

(Secondary Device/Server)

(Primary Device/Client)
© 2007 Microchip Technology Inc. DS00926A-page 1

AN926

Terminology
Below is a list of useful terms and their definitions:

• Pocket PC: A Windows Mobile based handheld
device.

• Windows CE™: Microsoft® operating system for
handheld devices.

• Microsoft ActiveSync®: Application enabling the
creation of a partnership between a desktop
computer and a mobile device. This application
allows desktop debugging of Windows Mobile
based applications.

• Host System: The computer with which a PPC
OS device performs an ActiveSync. The host
system is also where development takes place.
Host systems are typically based on Windows,
Macintosh® or Linux® operating systems.

• Microsoft Foundation Class (MFC): Class
library and framework for application development
on Windows based platforms.

• Microsoft eMbedded Visual C++®:
Development environment for the development of
Windows Mobile based applications using C++.
Available for free download from Microsoft’s web
site at www.microsoft.com.

• Microsoft eMbedded Visual Basic®:
Development environment for the development of
Windows Mobile based applications using Visual
Basic. Available for free download from
Microsoft’s web site at www.microsoft.com.

• Microsoft Visual Studio® .NET: Development
environment for the development of Windows
desktop and Mobile based applications using
C++, Visual Basic, Visual C#® and the .NET
framework. Available for purchase from
Microsoft’s web site at www.microsoft.com.

• Microsoft Software Development Kit (SDK):
Documentation, samples, header files, libraries
and tools needed to develop applications that run
on the Windows operating system. All Microsoft
tools require the correct platform SDK to target
Windows Mobile based devices.

• Microsoft eMbedded Visual Tools 3.0:
Development environment for the development of
Windows Mobile based applications, includes
Microsoft eMbedded Visual C++ 3.0, eMbedded
Visual Basic 3.0 and the required SDK for Pocket
PC 2002.

• Primary Device: The IrDA standard device that
queries for other devices.

• Secondary Device: The IrDA standard device
that waits to detect IR communication before
performing any IR communication.

• Host Controller: The controller in the embedded
system that communicates to the MCP215X or
MCP2140.

• MCP215X: An IrCOMM protocol handler IC that
supports IR communication from 9600 baud to
115,200 baud.

• MCP2140: A low-cost IrCOMM protocol handler
IC that supports IR communication at 9600 baud.

• Protocol Stack: A set of network protocol layers
that work together. Figure 2 shows the IrDA
standard protocol stack.

• IrCOMM (9-wire “cooked” service class): IrDA
standard specification for the protocol to replace
the serial cable (using flow control).

FIGURE 2: IrDA® STANDARD DATA -
PROTOCOL STACKS

INFRARED COMMUNICATIONS
The application built and discussed in this application
note uses a high-level, infrared protocol called
IrCOMM. This protocol is designed to be a wire-

IrTran-P IrObex IrLan IrComm (1) IrMC

LM-IAS Tiny Transport Protocol (Tiny TP)

IR Link Management - Mux (IrLMP)

IR Link Access Protocol (IrLAP)

Asynchronous
Serial IR (2, 3)
(9600 -115200 b/s)

Serial IR
(1.152 Mb/s)

Synchronous
4 PPM
(4 Mb/s)

Synchronous

Note 1: The MCP215X and MCP2140
implement the 9-wire “cooked” service
class serial replicator.

2: An optical transceiver is required.

3: The MCP2140 support 9600 baud IR
communication only.

Supported by
the MCP215X
and MCP2140.

Optional IrDA® standard
data protocols not
supported by the MCP215X
and MCP2140.
DS00926A-page 2 © 2007 Microchip Technology Inc.

AN926

replacement technology. Infrared technology is an
excellent choice for data collection for many reasons,
including:

• Availability: Virtually every late-model PDA and
laptop contains an IrDA standard port.

• Cost: IrDA standard communications may be
added to a custom design very economically, as
demonstrated in this application note.

• Convenience and Compatibility: Working without
wires means no cables, gender-changers or any
other gadgets to allow two devices to communi-
cate. This is vital to the frequent traveler or
technician in the field.

For more information regarding the IrComm protocol,
visit the IrDA organization’s web site at: www.irda.org.

WINDOWS POCKET PC
DEVELOPMENT
The Windows Mobile based Pocket PC is a handheld
device utilizing the Windows Pocket PC 2000/2002/
2003 platforms. The Pocket PC software platforms are
built on the Windows CE 3.0/4.0 operating systems (see
Table 1). Pocket PC allows development of applications
using the familiar Windows development tools and
APIs. These APIs include support for the development
of applications that can communicate with other devices
utilizing wireless transmission, such as Wi-Fi®,
Bluetooth™ and infrared.

Pocket PC Tools
Microsoft offers a wide range of development choices,
including the eMbedded Visual C++, eMbedded Visual
Basic and Visual C# programming languages. There
are currently three development environments avail-
able for Pocket PC development: eMbedded Visual
C++, eMbedded Visual Basic and Visual Studio .NET.
The platform and chosen API (Win32®, MFC, ATL,
.NET Compact Framework) determines the application
tools and languages available for development (see
Table 2).

Both platforms, Pocket PC 2002 and Pocket PC 2003,
can be targeted with one code base using eMbedded
Visual C++ 3.0 if the application being developed uses
the documented Microsoft APIs. This application note
focuses on development of Pocket PC 2002 and 2003
applications using Microsoft’s eMbedded Visual C++
and the Microsoft Foundation Library (MFC).

POCKET PC 2002
The eMbedded Visual Tools 3.0 package, available for
free from Microsoft (www.microsoft.com), includes
eMbedded Visual C++ 3.0, eMbedded Visual Basic 3.0
and the required software development kit (SDK). This
version supports the Pocket PC 2002 platform.

POCKET PC 2003
Development of Pocket PC 2003 applications requires
eMbedded Visual C++ 4.0 or .NET tools. eMbedded
Visual C++ 4.0 is also available as a free download
from Microsoft’s web site at www.microsoft.com.

TABLE 1: PLATFORM OPERATING
SYSTEMS

Note 1: The project files have been converted to
embedded Visual C version 4.0.

2: The sample application created in this
Application Note is a Microsoft
Foundation Class (MFC) C++ application
which relies heavily on the characteristics
of object oriented programming.
Therefore, to get the most out of this
application note’s examples requires an
understanding of C++ programming.
However, it is possible to employ “C#” to
perform IrDA programming under the
Windows environment. An example of C#
IrDA programming under Pocket PC
2003 is available on the web site within
this application note’s zipped source code
files.

Pocket PC Platform Window CE Version

2000 2.0, 2.1, 2.11, 3.0
2002 3.0 and later
2003 4.0 and later
© 2007 Microchip Technology Inc. DS00926A-page 3

AN926

TABLE 2: PLATFORM DEVELOPMENT TOOLS

TOOL INSTALLATION
To insure inter operability between the development
tools and the ability to target multiple platforms, the
development tools and SDKs should be installed on the
development system in the recommended order.

1. Uninstall all existing tools and SDKs.
2. Install Microsoft ActiveSync 3.7.
3. Install the eMbedded Visual Tools - 2002

Edition, Pocket PC 2002 SDK and Smartphone
2002 SDK.

4. Install eMbedded Visual C++ 4.0 and Service
Pack 2.

5. Optionally install Visual Studio .NET 2003.
6. Install the Pocket PC 2003 SDK.
7. Optionally install the Smartphone 2003 SDK.

WINDOWS PROGRAMMING
The Windows programming model is based on an
event-driven architecture. Events can be generated
through user interaction or some other event. Each
time the user interacts with the interface, an event is
generated and a message is placed in the operating
system's message queue to be dispatched to the
application. A message handler in the application
handles the event by calling the appropriate function.

Selecting the Connect button in the application
generates an IDC_CONNECT message (see Figure 3).
That message is placed in the Windows message
queue. The message is then retrieved, placed in the
application's message loop and dispatched in the
message map to the message handler, function
OnBnClickedConnect() (see Example 1).

FIGURE 3: APPLICATION EVENT DISPATCH

Development Tools

eMbedded Visual Tools 3.0

eMbedded Visual
C++ 3.0

eMbedded Visual
Basic 3.0

eMbedded Visual
C++ 4.0

Visual Studio .NET
(C#, Visual Basic)

Pocket PC 2002 X X — —
Pocket PC 2003 — — X X
API • MFC

• ATL
• Win32®

• eMbedded Visual
Basic

• MFC
• ATL
• Win32®

• .NET Compact
Framework

IDC_CONNECT
Incoming Message

Application

Message
Loop

Message Handler

Message
Queue
DS00926A-page 4 © 2007 Microchip Technology Inc.

AN926

EXAMPLE 1: MESSAGE HANDLER

Microsoft Foundation Class Library
The Microsoft Foundation Class (MFC) library consists
of a framework for developing applications for Windows
based operating systems. The classes provide an
object-oriented wrapper around the Windows API,
simplifying the development of Windows programs.
MFC includes classes for user interface objects, such
as windows, dialog boxes and buttons. The common
application tasks, such as dispatching messages, are
provided by the classes and macros as shown in the
message-map macro in Example 1.

PROJECT WIZARD
The creation of MFC based Pocket PC applications can
be simplified using the Microsoft AppWizard. The
Microsoft development tools provide application
wizards that eliminate the need to create a project from
scratch. eMbedded Visual C++ includes the MFC
AppWizard. The MFC AppWizard guides you through
the creation of a MFC project for a Pocket PC applica-
tion. The AppWizard generates source, header and
resource files that contain the required classes and
macros for a skeleton application and guides you
through the configuration of the project. For a dialog-
based application, the AppWizard creates the
message maps and two classes. The first class is
derived from CWinApp, which handles the initialization,
termination and running of the program. The second
class is derived from CDialog, which handles the
creation of a dialog box.

CREATING A PROJECT
1. The first step in creating a MFC based Pocket

PC application is to create a project using the
project wizard. From the File menu of
eMbedded Visual C++, select New. In the dialog
box, select the Project tab. Microsoft provides
several different project options (see Figure 4).
The Pocket PC MFC AppWizard (exe) option
creates a skeleton application with the required
classes for either a dialog or window-based
Pocket PC application.

The available target CPUs are shown in the
lower right-hand corner of the dialog box. If the
CPU you are targeting is not shown, verify that
the correct SDKs are installed for your device.
Select the CPU x86 option to debug
applications on the development computer
using the Pocket PC emulator.

After entering the project name, select OK.

FIGURE 4: NEW PROJECT

Line # Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

BEGIN_MESSAGE_MAP(CIrDADemoDlg, CDialog)
 ON_BN_CLICKED(IDC_READ_DATA, OnBnClickedReadData)
 ON_BN_CLICKED(IDC_CLEAR_DATA, OnBnClickedClearData)
 ON_BN_CLICKED(IDC_CONNECT, OnBnClickedConnect)
 ON_BN_CLICKED(IDC_SEND_BYTE, OnBnClickedSendByte)
 ON_BN_CLICKED(IDC_SEND_FILE, OnBnClickedSendFile)
 ON_BN_CLICKED(IDC_RECEIVE_FILE, OnBnClickedReceiveFile)
 ON_BN_CLICKED(IDC_DISPLAY_DATA, OnBnClickedShowRawData)
 ON_MESSAGE(WM_CONNECTION_CLOSE, OnConnectionClose)
END_MESSAGE_MAP()

void CIrDADemoDlg::OnBnClickedConnect()
{
 //Connect to device
}
© 2007 Microchip Technology Inc. DS00926A-page 5

AN926

2. Select Dialog based in the AppWizard's Step 1

of 4 dialog (see Figure 5).

FIGURE 5: MFC APPWIZARD STEP 1

3. Select Windows Sockets in the AppWizard's
Step 2 of 4 dialog box (see Figure 6). Windows
Sockets must be selected to support IrDA
standard communications. Please see “Infrared
Communications on Windows Platforms” for
more information.

FIGURE 6: MFC APPWIZARD STEP 2

4. Use the default setting in the AppWizard's Step
3 of 4 dialog box (see Figure 7).

FIGURE 7: MFC APPWIZARD STEP 3

5. The AppWizard's Step 4 of 4 dialog box shows
the class names for the classes created by
AppWizard, as well as the source files that will
be created for each class object (see Figure 8
and Figure 9).

FIGURE 8: MFC APPWIZARD STEP 4 -
APPLICATION CLASS

FIGURE 9: MFC APPWIZARD STEP 4 -
DIALOG CLASS
DS00926A-page 6 © 2007 Microchip Technology Inc.

AN926

6. After selecting Finish, a summary will be

displayed (see Figure 10) and the AppWizard
will create the source files for the skeleton
application.

FIGURE 10: MFC APPWIZARD
SUMMARY

The above steps create the skeleton application in
Figure 11 after selecting Build PocketPCApp.exe
from the Build menu.

After creating the skeleton program with AppWizard,
only the dialog box controls and event handlers need to
be added to the application.

FIGURE 11: MFC APPWIZARD SKELETON APPLICATION
© 2007 Microchip Technology Inc. DS00926A-page 7

AN926

Configuration
There are several options when building an application
with eMbedded Visual C++. eMbedded Visual C++
provides an emulator that allows the emulation of a
Pocket PC application on the development desktop (as
well as the debugging of the application on the Pocket
PC device) when it is connected to the PC using
Microsoft's ActiveSync. The debugging target and type
of executable file built is determined by the settings in
the combo boxes in the toolbar of eMbedded Visual
C++ (see Figure 12). The debugger allows setting
breakpoints, stepping through the source code,
inspecting variables and inspecting the stack.

The target operating system is selected from the
toolbar's Active Configuration Combo Box (see
Figure 13).

The target device is selected from the Target Device
Combo Box (see Figure 14).

Alternatively, the target can be changed using the Set
Active Configuration dialog box (see Figure 16), which
is accessed by selecting Set Active Configuration
from the Build menu (see Figure 15).

FIGURE 12: eMbedded VISUAL C++ TOOLBAR

FIGURE 13: ACTIVE CONFIGURATION
COMBO BOX

FIGURE 14: TARGET DEVICE COMBO
BOX

FIGURE 15: ACTIVE CONFIGURATION
MENU ITEM

FIGURE 16: ACTIVE CONFIGURATION
DIALOG BOX
DS00926A-page 8 © 2007 Microchip Technology Inc.

AN926

Debugging an Application with the
Emulator
To debug an application on the emulator, select Pocket
PC 200x Emulation from the Target Device Combo
Box (see Figure 17) and Win32 (WCE x86) Debug
from the Active Configuration combo box (see
Figure 18). x86 must be chosen when using the
emulator because the emulator is running on the PC
which in most cases is a x86 machine.

FIGURE 17: TARGET DEVICE COMBO
BOX

FIGURE 18: ACTIVE CONFIGURATION
COMBO BOX

FIGURE 19: ACTIVE CONFIGURATION
DIALOG

Select Execute PockPCApp.exe from the Build menu
(see Figure 20) to build and start debugging the
application. Visual C++ automatically starts, connects
to the emulator and launches the application (see
Figure 21 and Figure 22).

FIGURE 20: EXECUTE APPLICATION

FIGURE 21: CONNECTING TO EMULATOR
© 2007 Microchip Technology Inc. DS00926A-page 9

AN926

FIGURE 22: POCKET PC EMULATOR

Debugging an Application on the Device
To debug an application on the Pocket PC, connect the
device to the computer, then select Pocket PC 200x
(Default Device) from the Target Device Combo Box
(see Figure 23), as well as Win32 (WCE ARM) Debug
from the Active Configuration Combo Box (see
Figure 24). When the application is built, Visual C++
automatically connects to the device, downloads the
application and runs the application on the device.

FIGURE 23: TARGET DEVICE COMBO
BOX

FIGURE 24: ACTIVE CONFIGURATION
COMBO BOX

FIGURE 25: ACTIVE CONFIGURATION
DIALOG BOX

INFRARED COMMUNICATIONS ON
WINDOWS PLATFORMS
Microchip's infrared wireless communication devices
support the IrCOMM standard protocol layer. IrCOMM
allows the emulation of serial or parallel connections.
IrCOMM was intended to support IrDA modems and
legacy applications built on the Serial API. Therefore,
Windows originally supported IrCOMM using virtual
serial ports. The virtual serial port implementation of
IrCOMM had inherent limitations, including the inability
of multiple applications sharing virtual ports and full
error-correction in the IrDA standard stack. Starting
with Windows 2000, virtual serial ports, as well as the
general implementation of IrCOMM to map the ports,
were discontinued. The IrCOMM protocol is now
exposed through the Windows WinSock API rather
than through the Serial API. This application note
focuses on implementing IrCOMM using the WinSock
API.

WinSock Applications
WinSock is Microsoft's implementation of the widely-
used Sockets API. It allows the use of sockets with
Windows based applications. A socket enables
communication between two endpoints on a network.
These endpoints are usually referred to as a client and
a server. The client initiates the connection with the
server, while the server waits for a connection request
from a client. After a connection has been established,
either the client or the server can initiate the exchange
of data. This application note focuses on using the
Pocket PC as the client, which then initiates the
connection to the DSTEMP device, which acts as the
server.

CONNECTING TO A SERVER
A client application using WinSock should execute the
following steps to connect to a server (see Figure 26).
DS00926A-page 10 © 2007 Microchip Technology Inc.

AN926

FIGURE 26: CONNECTION SEQUENCE

Normal Disconnect Mode (NDM)
Send XID Commands
(timeslots n, n+1, ...)

No Response

XID Response in timeslot y,

Finish sending XIDs
(max timeslots - y frames)

Broadcast ID
No Response to these XIDs

claiming this timeslot

No Response to Broadcast ID

Client (Primary Device) Server (Secondary Device)

Discovery

Normal Response Mode (NRM)

Send SNRM Command
(w/ parameters and
connection address)

Open channel for IAS Queries

Send IAS Queries

Open channel for data

Send Data or Status

Shutdown link

UA response with parameters
using connect address

Confirm channel open for IAS

Provide IAS responses

Confirm channel open for data

Send Data or Status

Confirm shutdown
(back to NDM state)

Send Data or Status

Send Data or Status

— MCP2150 CD pin driven low,

(ex. MCP215X or MCP2140)

— MCP215x claims timeslot 2
— MCP2140 claims timeslot 0

— MCP2155 and MCP2140 DSR
 pin is driven low

Client
Application
Program

Enumerate
Attached
Devices

Open a
Socket

Connect to
Server

Send/Receive
Data

Close
Connection
© 2007 Microchip Technology Inc. DS00926A-page 11

AN926

Steps:
1. Initialize the WSADATA structure by calling

WSAStartup (see Example 2).
2. Open a stream socket (see Example 3).
3. Search for the device by enumerating all the

devices connected to the system (see
Example 4).

4. Query the device's IAS database to verify the
type of features supported by the device (see
Example 5).

5. Enable the 9-Wire mode before connecting (see
Example 6).

6. Connect to the device (see Example 7).
7. Send/Receive data (see Example 8).
8. Disconnect and close socket (see Example 9).

In the code snippets demonstrated in Example 2
through Example 9, the WinSock API is used directly.
The functions getsockopt and setsockopt are
used extensively to perform IrDA specific functions not
normally associated with traditional TCP/IP sockets
programming. These functions are handy for accessing
network-specific features.

EXAMPLE 2: INITIALIZE THE WSDATA STRUCTURE

EXAMPLE 3: OPEN A STREAM SOCKET

EXAMPLE 4: SEARCH FOR THE SECONDARY DEVICE

Line # Code
1
2
3
4
5
6
7

WORD WSAVerReq = MAKEWORD(1, 1);
WSADATA WSAData;

if (WSAStartup(WSAVerReq, &WSAData) != 0)
{
 // wrong winsock dlls?
}

Line # Code
1
2
3
4

if ((sock = socket(AF_IRDA, SOCK_STREAM, 0)) == INVALID_SOCKET)
{
 // WSAGetLastError
}

Line # Code
1
2
3
4
5

if (getsockopt(sock, SOL_IRLMP, IRLMP_ENUMDEVICES,
 (CHAR *) pDevList, &DevListLen) == SOCKET_ERROR)
{
 // WSAGetLastError
}
DS00926A-page 12 © 2007 Microchip Technology Inc.

AN926

EXAMPLE 5: QUERY THE IAS DATABASE

EXAMPLE 6: ENABLING 9-WIRE MODE

EXAMPLE 7: CONNECTING TO THE DEVICE

EXAMPLE 8: SENDING AND RECEIVING DATA

Line # Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

if (getsockopt(sock , SOL_IRLMP, IRLMP_IAS_QUERY,
 (char *) pIASQuery, &IASQueryLen) == SOCKET_ERROR)
{
 // WSAGetLastError
}

if (pIASQuery->irdaAttribType != IAS_ATTRIB_OCTETSEQ)
{
 // Peer's IAS database entry for IrCOMM is bad.
}

if (pIASQuery->irdaAttribute.irdaAttribOctetSeq.Len < 3)
{
 // Peer's IAS database entry for IrCOMM is bad.
}

Line # Code
1
2
3
4
5

if (setsockopt(sock, SOL_IRLMP, IRLMP_9WIRE_MODE,
 (const char *) &Enable9WireMode, sizeof(int)) == SOCKET_ERROR)
{
 // WSAGetLastError
}

Line # Code
1
2
3
4
5

if (connect(sock, (const struct sockaddr *) &DstAddrIR,
 sizeof(SOCKADDR_IRDA)) == SOCKET_ERROR)
{
 // WSAGetLastError
}

Line # Code
1
2
3
4
5
6
7
8
9

if ((BytesRead = recv(sock, buffer, sizeof(buffer), 0)) == SOCKET_ERROR)
{
 // WSAGetLastError
}

if ((BytesSent = send(sock, buffer, sizeof(buffer), 0)) == SOCKET_ERROR)
{
 // WSAGetLastError
}
© 2007 Microchip Technology Inc. DS00926A-page 13

AN926

EXAMPLE 9: DISCONNECTING AND CLOSING THE SOCKET

Line # Code
1
2
3
4
5
6
7
8
9
10
11
12
13
14

if (shutdown(sock, 0) == SOCKET_ERROR)
{
 // WSAGetLastError
}

if (closesocket(sock) == SOCKET_ERROR)
{
 // WSAGetLastError
}

if (WSACleanup() == SOCKET_ERROR)
{
 // WSAGetLastError
}
DS00926A-page 14 © 2007 Microchip Technology Inc.

AN926

Sockets with MFC
Just as MFC simplifies Graphical User interface (GUI)
development over the base Windows SDK, MFC also
encapsulates socket communications with two classes
(CASyncSocket and CSocket) that encapsulate the
Windows Socket API. These classes simplify the devel-
opment of applications that communicate over a net-
work using sockets. CASyncSocket provides more
flexibility than CSocket, with the benefits of network
event notification. The event notification eliminates the
need to continually poll the socket for incoming data.
When data is received from a client, server or peer, the
system automatically calls the CASyncSocket
member function Receive(). The developer adds the
necessary code that processes the data in the
Receive() callback function.

An application that utilizes the CASyncSocket class
must follow the same steps with the CASyncSocket
class object as an application utilizing the WinSock
API. However, the CASyncSocket member function
CASyncSocket::setsockopt() does not support
the parameters required for IrDA standard communica-
tions. Therefore, the first five steps are executed using
a handle to a socket. After the devices are enumerated
and 9-Wire mode has been set with setsockopt()
(see Example 13), a CASyncSocket socket object is
created and the socket handle is attached to the socket
object using CASyncSocket::Attach().

Steps:
1. Initialize the WSADATA structure (see

Example 10).
2. Create a handle to a socket (see Example 11).
3. Search for the device by enumerating all the

devices (see Example 12).
4. Set 9-Wire mode (see Example 13).
5. Create an CASyncSocket object (see

Example 14).
6. Attach the handle to the CASyncSocket object

(see Example 15).
7. Connect to the device (see Example 16).
8. Send/Receive data (see Example 17).
9. Close the socket (see Example 18).

EXAMPLE 10: INITIALIZING THE WSDATA STRUCTURE

EXAMPLE 11: CREATING A HANDLE TO A SOCKET

Line # Code
1
2
3
4
5
6
7
8

WORD WSAVerReq = MAKEWORD(1,1);
WSADATA WSAData;

if (WSAStartup(WSAVerReq, &WSAData) != 0)
{
 // wrong winsock dlls?
 AfxMessageBox(IDS_WINSOCK_DLLS, MB_OK | MB_ICONEXCLAMATION);
}

Line # Code
1
2
3
4
5
6

m_hSocket = socket(AF_IRDA, SOCK_STREAM, 0);

if (INVALID_SOCKET == m_hSocket)
{
 // WSAGetLastError
}
© 2007 Microchip Technology Inc. DS00926A-page 15

AN926

EXAMPLE 12: SEARCHING FOR THE SECONDARY DEVICE

EXAMPLE 13: SETTING 9-WIRE MODE

EXAMPLE 14: CREATING AN CASYNCSOCKET OBJECT

EXAMPLE 15: ATTACHING THE HANDLE TO THE CASYNCSOCKET OBJECT

EXAMPLE 16: CONNECTING TO THE DEVICE

Line # Code
1
2
3
4
5

if (getsockopt(m_hSocket, SOL_IRLMP, IRLMP_ENUMDEVICES,
 (char *) pDevList, &nDevListLen) == SOCKET_ERROR)
{
 // WSAGetLastError
}

Line # Code
1
2
3
4
5

if (setsockopt(m_hSocket, SOL_IRLMP, IRLMP_9WIRE_MODE,
 (const char *) &Enable9WireMode, sizeof(int)) == SOCKET_ERROR)
{
 // WSAGetLastError
}

Line # Code
1
2
3
4
5
6

CASyncSocket m_socket;

if (m_socket.Create())
{
 // WSAGetLastError
}

Line # Code
1
2
3
4

if (m_socket.Attach(m_hSocket) != 0)
{
 // WSAGetLastError
}

Line # Code
1
2
3
4
5

if (m_socket.Connect((const struct sockaddr *) &m_DestSockAddr,
 sizeof(SOCKADDR_IRDA)) == SOCKET_ERROR)
{
 // WSAGetLastError
}
DS00926A-page 16 © 2007 Microchip Technology Inc.

AN926

EXAMPLE 17: SENDING AND RECEIVING DATA

EXAMPLE 18: CLOSING THE SOCKET

Line # Code
1
2
3
4
5
6
7
8
9

if ((m_socket.Send((LPCTSTR)m_sendBuff, m_nSendDataLen)) == SOCKET_ERROR)
{
 // WSAGetLastError
}

void CMCPSocket::OnReceive(int nErrorCode)
{
 // Process received data.
}

Line # Code
1
2
3
4
5
6

if (m_socket.m_fConnected)
{
 m_socket.m_fConnected = FALSE;
 m_socket.ShutDown();
 m_socket.Close();
}
© 2007 Microchip Technology Inc. DS00926A-page 17

AN926

Using Threads
The user interface will not respond to messages during
network interaction (such as sending or receiving large
amounts of data or connecting to a network endpoint).
Processing data or completing other tasks in a
separate thread frees the user interface thread to
process user interface event messages while the data
processing on the network is taking place. The
CWinThread class object allows the creation of
additional threads to handle these background tasks in
order to eliminate interference with messages
generated by the user. The dialog box object creates
and spawns a second thread that contains the socket
object. The two threads communicate with messages
using the functions PostMessage() and
SendMessage(). In the IrDA standard application,
when the user selects a button to send data, the user
interface thread posts a message to the background
thread to send to the server. The user interface thread
is then free to process any other user events while the
background thread attempts to connect to the server.
When the server sends data to the client, the back-
ground thread receives the data, then sends a mes-
sage to the user interface thread, informing it that data
was received.

PPC Application Testing
Table 3 shows the different versions of the platform
products (Pocket PC OS PDAs) that were used in the
development and validation of the Pocket PC
application program.

TABLE 3: POCKET PC PDAs USED
PDA Model O.S. Version Comment

Compaq®

iPAQ™ 3650
PPC (WinCE)
3.0.9348
(Build 9616)

ARM
SA1110
Processor

Compaq
iPAQ h3835

PPC 2002
3.0.11171
(Build (11178)

ARM
SA1110
Processor

HP™ iPAQ
h1945 (Note 1)

PPC 2003
V4.20.1081
(Build 13100)

Samsung®
S3C2410
Processor

Toshiba® e755 PPC 2003
V4.20.1081
(Build 13100)

Intel®
PXA255
Processor

Note 1: It has been determined that this device
operates outside the IrDA Physical Layer
Specifications (V1.3) after switching from
9600 to 115200 baud. As a result of this,
the h1945 fails to connect to the
MCP215X device. If the application
software can be configured to force the
h1945 IR port to operate at 9600 baud, the
h1945 should connect to the MCP215X
device. Also, please check with Hewlett
Packard® for a possible operating system
to address this issue.
DS00926A-page 18 © 2007 Microchip Technology Inc.

AN926

PPC Application Code Descriptions
The PocketPC application program, called
MCP215XDemo, is shown in Appendix B: “PPC
Source Code - IrDA DEMO.CPP” through Appendix
G: “PPC Source Code - Include Files”.

Table 4 briefly describes the role of each source file
and has a link to the appendix that contains that source
file.

The non-MFC socket operations rely on values defined
in the Microsoft-supplied header file #include
<af_irda.h>. See MCPSocket.cpp for its inclusion.

For more information about the operation of the system
(embedded system and PPC application program),
please refer to Appendix A: “Example Irda Standard
System Description”.

TABLE 4: MCP215XDEMO SOURCE FILES
File Name Description Appendix

IrDA Demo.cpp Application entry and exit. Creates the dialog box object and handles
initialization and running of the application.

Appendix B

IrDA DemoDlg.cpp Dialog box object. Handles all events generated by the user. Creates the
socket and thread objects. Controls connecting and writing to the device by
posting messages to the thread object.

Appendix C

ClientThread.cpp Secondary thread created by the dialog box object. Controls
communications with the server freeing the dialog box object to process
user events. Posts messages to dialog box object on receipt of data from
the server.

Appendix D

MCPSocket.cpp Socket object connection to the DSTEMP server. Appendix E
TransparentBitmap.cpp Bitmap object that displays the connection state of the client with the server. Appendix F
IrDA Demo.h,
IrDA DemoDlg.h,
ClientThread.h,
MCPSocket.h,
TransparentBitmap.h,
stdafx.h

Include Files. Appendix G
© 2007 Microchip Technology Inc. DS00926A-page 19

AN926

Resources
For additional information on the Pocket PC operating
system development, visit:

http://msdn.microsoft.com/

Recommended Reading
Table 5 gives a list of additional documentation for
Windows operating system development, while Table 6
shows some of the documentation available from
Microsoft®.

SUMMARY
This application note has shown some of the
fundamental programming concepts and design
considerations for the development of Pocket PC OS
application programs. Attention was given to the
WinSock API calls for IrCOMM communications.

Using the source code from the example Pocket PC
application program should allow you to get your
custom application to connect to an embedded IrDA
standard system using either the MCP215X or
MCP2140 device.

Biography
Frank Ableson is a consultant specializing in the
development of IrDA application programs for Palm
OS, PocketPC OS, Symbian® OS and Windows OS
systems.

For inquiries into consulting services, please contact
Frank via e-mail at fableson@UnwiredTools.com.

TABLE 5: ADDITIONAL WINDOWS DEVELOPMENT READING

TABLE 6: WINDOWS DOCUMENTATION
(AVAILABLE AT HTTP://MSDN.MICROSOFT.COM/)

Title Author ISBN

Programming Windows® 95 with MFC Jeff Prosise 1556159021
Network Programming in Windows NT® Alok K. Sinha 0201590565
The MFC Answer Book Eugene Kain 0201185377
The C Programming Language Brian W. Kernighan, Dennis M. Ritchie 0131103628

Title Date Description

Choosing a Windows eMbedded API:
Win32 vs. the .NET Compact Framework

September 2002 Discusses the various Pocket PC platforms,
development tools and APIs

Development Tools for Mobile and
eMbedded Applications

2002 Discussion of current and future mobile application
development tools.

Creating an Infrared WinSock Application May 2002 Describes the creation of an infrared application using
windows sockets.

Windows® Sockets in MFC — Describes the two MFC classes that support sockets.
DS00926A-page 20 © 2007 Microchip Technology Inc.

AN926
APPENDIX A: EXAMPLE IrDA
STANDARD SYSTEM
DESCRIPTION

A description of the example IrDA standard system is
provided to facilitate a better understanding of the
Pocket PC (PPC) application program functions. This
PPC OS application program communicates with an
embedded system to transfer data and control
operation/status. The embedded system acts as an
IrDA standard Secondary Device. Figure A-1 shows
this example IrDA standard system with a Primary
Device (PPC PDA) and a Secondary Device
(embedded system). Figure A-2 shows a detailed
block diagram of the embedded system (Secondary
Device). For additional information on the implementa-
tion of an embedded system, please refer to AN858,
“Interfacing the MCP215X to a Host Controller”,
DS00858.

The embedded system uses a 40-pin PIC MCU and a
MCP215X device and is available as a demo board.

This demo board is available and is called the
DSTEMP Data Logger Demo Board (MCP215XDM).

FIGURE A-1: PPC PDA - EMBEDDED SYSTEM BLOCK DIAGRAM

Embedded System with IrDA® Standard Port

MCP215X Optical
Transceiver

Circuitry

Host Controller
and Embedded

Circuitry
or

MCP2140

Pocket PC Handheld Device
with IrDA® Standard Port (Primary Device/Client)
© 2007 Microchip Technology Inc. DS00926A-page 21

AN926

FIGURE A-2: EMBEDDED SYSTEM (IR DEMO BOARD 1) BLOCK DIAGRAM

ICD

Power
Power LED

MCP215X

9V Battery

Power Supply

Encoder/Decoder

3

PIC®

MCU

SEE

SW3

SW2

RESET

MCP215X Header

LCD Module
(2 Line x 16 Character)

RD7 RD0

CTS RTS CD DSR

TX RX RI DTR

VR1

VR2

Discrete
Transceiver
Header 1

Header 2

JP4

JP7

J1

J5

U5

U3
U2U1

JP3

JP2

JP1
JP5J4 JP6

(LCD Contrast)

(40-pin)
DS00926A-page 22 © 2007 Microchip Technology Inc.

AN926

Embedded System Firmware Operation
The embedded system has two programs that can be
selected to run. The first is a vending machine, while
the second is a 240-byte data transfer.

VENDING MACHINE
This demo emulates a “Vending Machine” by counting
the number of each item (soda and candy) dispensed.

Each time the SW2 button is depressed, the counter for
the number of sodas is incremented. Each time the
SW3 button is depressed, the counter for the number
of candies is incremented. Each counter is an 8-bit
value and can display a value from 0 to 255 (decimal).

The program monitors for data being received from the
IR port (received on the Host UART) and will then
respond with the appropriate data. Table A-1 shows the
two commands of the Vending Machine program.

TABLE A-1: VENDING MACHINE
COMMANDS

240 BYTE DATA TRANSFER
Depressing SW2 and SW3 will cause the program in
the PICmicro® microcontroller to execute the Tranfer
240 Bytes routine. In this demo, the PIC16F877
receives a single byte from the IrDA standard Primary
Device. This received byte is moved to PORTD
(displayed on the LEDs) and then a 240-byte table is
transmitted back to the Primary Device.

PPC Application Program User Interface
In this case, the main User Interface (UI) form
(Figure A-3) either displays all the information required,
has a button to do the requested action or has a button
to display the information (trace buffer).

The Connect button causes the application to attempt
a connection with the Secondary Device. Once this
command is completed, the Device ID of the
Secondary Device is displayed and the IR Link shows
the state of the link. If the link states Normal Response
Mode, the link is ready for data transfer. The DSTEMP
CD signal (or DSTEMP DSR signal) will turn on.

FIGURE A-3: IrDA® STANDARD DEMO
MAIN FORM

Command
Value

(ASCII)

Hex
Value Demo Program

5 0x35 Transfer the current soda and
candy counter values to the
Primary Device.

6 0x36 Clears the current soda and
candy counters.

Note: All other values are ignored.

Note: The byte sent by the Primary Device is
expected, since most PDAs will not
establish a link until data is sent. This
application program forces the link open
when the Connect button is depressed by
transmitting a null data packet (a packet
with 0 data bytes).

Note: Once the IR Link indicates Normal
Response Mode, the other buttons of the
application can be tapped for their desired
operation.
© 2007 Microchip Technology Inc. DS00926A-page 23

AN926

VENDING MACHINE
To interface to the embedded system running the
Vending Machine program, the main UI form displays
all the user information (Figure A-3).

The Read Data button can then be tapped, prompting
the read data command to be sent to the embedded
system. The embedded system will respond with
strings that include the following information:

• number of sodas sold, and
• number of candies sold.

Tapping the Clear Data button will send the clear data
command and clear the counters on the embedded
system's application.

240 BYTE DATA TRANSFER
To interface to the embedded system running the
Vending Machine program, the main UI form displays
some of the information the user needs (Figure A-3).

Once the PPC has connected to the embedded system
(Secondary Device), tap on the Get File button to
transfer 240 bytes from the embedded system to the
PPC. To view the trace buffer, tap on the Trace button.
To clear the trace buffer, tap on the Clear button in the
trace buffer dialog box.

Description of Graphical User Interface
(GUI)
The GUI consists of a number of user interface
elements, including command buttons, text labels and
a text entry field.

• The Connect button attempts to establish a
connection to the IR demo board. The PPC
device is acting as the Primary Device and the
demo board acts as the Secondary Device.

• The Read Data button causes a query to be sent
to the demo board requesting a tally of the
number of sodas and candies dispensed. Data
received from the demo board is parsed and
displayed in text labels.

• The Clear Data button sends a command to the
demo board instructing it to reset the application
level counters.

• The Send Byte button transfers the byte entered
into the TX Data (ASCII) text box. Any byte may
be entered and transferred to the embedded
system. If the byte corresponds to one of the
commands to read data, clear data or transfer a
buffer, the board will respond depending on its
mode (Vending Machine or 240-Byte Transfer).

• The Get File button initiates the 240-byte data
transfer from the embedded system by sending
the embedded system the command byte for the
transfer.

• The Send File button allows the user to select a
file on the PPC and transfer it to the embedded
system.

• The Trace button causes the information in the
trace buffer to be displayed. Within this window is
the capability to clear the trace buffer.
DS00926A-page 24 © 2007 Microchip Technology Inc.

AN926

Code Module Description
Table A-2 briefly describes the role of each source
code module.

TABLE A-2: PPC APPLICATION PROGRAM FUNCTIONS
File Name Description Appendix

IrDA Demo.cpp Application entry and exit. Creates the dialog box object and handles
initialization and execution of the application.

Appendix B

IrDA DemoDlg.cpp Dialog box object. Handles all events generated by the user. Creates the
socket and thread objects. Controls connecting and writing to the device by
posting messages to the thread object.

Appendix C

ClientThread.cpp Secondary thread created by the dialog box object. Controls
communications with the server, freeing the dialog box object to process
user events. Posts messages to dialog box object to receipt of data from
the server.

Appendix D

MCPSocket.cpp Socket object connection to the MCP21XX server. Appendix E
TransparentBitmap.cpp Bitmap object that displays the connection state of the client with the server. Appendix F
IrDA Demo.h,
IrDA DemoDlg.h,
ClientThread.h,
MCPSocket.h,
TransparentBitmap.h,
stdafx.h

Include Files. Appendix G
© 2007 Microchip Technology Inc. DS00926A-page 25

AN926

NOTES:
DS00926A-page 26 © 2007 Microchip Technology Inc.

AN926

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX B: PPC SOURCE CODE - IRDA DEMO.CPP

FIGURE B-1: IrDA DEMO.SPP - PAGE 1

// IrDA Demo.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "IrDA Demo.h"
#include "IrDA DemoDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

// CIrDADemoApp

BEGIN_MESSAGE_MAP(CIrDADemoApp, CWinApp)
ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END_MESSAGE_MAP()

// CIrDADemoApp construction

CIrDADemoApp::CIrDADemoApp()
{
 // TODO: add construction code here,
 // Place all significant initialization in InitInstance
}

// The one and only CIrDADemoApp object

CIrDADemoApp theApp;

// CIrDADemoApp initialization
© 2007 Microchip Technology Inc. DS00926A-page 27

AN926

FIGURE B-2: IrDA DEMO.CPP - PAGE 2

BOOL CIrDADemoApp::InitInstance()
{
 // InitCommonControls() is required on Windows XP(r) if an application
 // manifest specifies use of ComCtl32.dll version 6 or later to enable
 // visual styles. Otherwise, any window creation will fail.
 InitCommonControls();

 CWinApp::InitInstance();

 if (!AfxSocketInit())
 {
 AfxMessageBox(IDP_SOCKETS_INIT_FAILED);
 return FALSE;
 }

 AfxEnableControlContainer();

 CIrDADemoDlg dlg;

 // Connect to the simulator or to the board on the ir port.
 // m_bSimulate is set with the command line flag /s. For debugging,
 // the flag is set under Project->Properties->Debugging
 CString strSimFlag((LPCTSTR)IDS_SIMULATE_FLAG);

 if (m_lpCmdLine == strSimFlag)
 dlg.m_bSimulate = TRUE;
 else
 dlg.m_bSimulate = FALSE;

 m_pMainWnd = &dlg;
 INT_PTR nResponse = dlg.DoModal();
 if (nResponse == IDOK)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with OK
 }
 else if (nResponse == IDCANCEL)
 {
 // TODO: Place code here to handle when the dialog is
 // dismissed with Cancel
 }

 // Since the dialog has been closed, return FALSE so that we exit the
 // application, rather than start the application's message pump.
 return FALSE;
}
DS00926A-page 28 © 2007 Microchip Technology Inc.

AN926

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX C: PPC SOURCE CODE - IRDA DEMODLG.CPP

FIGURE C-1: IrDA DEMODLG.CPP - PAGE 1
// IrDA DemoDlg.cpp : implementation file
//
#include "stdafx.h"
#include "IrDA Demo.h"
#include "IrDA DemoDlg.h"
#include "MCPSocket.h"// class CMCPSocket
#include "ClientThread.h"
#include "TransparentBitmap.h"
#include <af_irda.h>
#include ".\irda demodlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#endif

#define STATE_NDM 0 // Program states
#define STATE_DISCOVERY 1 // Program states
#define STATE_CONNECTING 2 // Program states
#define STATE_NRM 3 // Program states
#define COMMAND_SEND_DATA_NUM_CHARS 24
#define COMMAND_ASCII_HEX 0x34 // Prompts server to toggle between ASCII/HEX
#define COMMAND_SEND_DATA 0x35 // Prompts server to send client counter data
#define COMMAND_CLEAR_DATA 0x36 // Clears counters on server
#define COMMAND_READ_DATA 0x37 // Reads A/D value from server
#define COMMAND_TX_BYTES 0x56 // Transfers file to the embedded system.
#define COMMAND_RX_BYTES 0x57 // Receives file from the embedded system.
#define TIMER_3SEC 3000

CEvent termEvent(TRUE); // event to communicate termination of all threads,
 // initally TRUE in case no threads are started
long nThreadCount = 0; // count of all active threads

// CAboutDlg dialog used for App About

class CAboutDlg : public CDialog
{
public:
 CAboutDlg();

© 2007 Microchip Technology Inc. DS00926A-page 29

AN926

FIGURE C-2: IrDA DEMODLG.CPP - PAGE 2
// Dialog Data
 enum { IDD = IDD_ABOUTBOX };

 protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

// Implementation
protected:
 DECLARE_MESSAGE_MAP()
};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)
{
}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)
END_MESSAGE_MAP()

// CIrDADemoDlg dialog

CIrDADemoDlg::CIrDADemoDlg(CWnd* pParent /*=NULL*/)

: CDialog(CIrDADemoDlg::IDD, pParent), m_pClientThread(NULL),
 m_bSimulate(FALSE), m_bProgramState(STATE_NDM)
{
 m_pConnectedBitmap = m_pConnectNotBitmap = NULL;
 m_pConnectedBitmap = new CTransparentBitmap(IDB_CONNECTED, RGB(0, 128, 128));
 m_pConnectNotBitmap = new CTransparentBitmap(IDB_CONNECTEDNOT, RGB(0, 128, 128));
 m_pCurrentStateBitmap = m_pConnectNotBitmap;
 m_hIcon = AfxGetApp()->LoadIcon(IDR_CONNECTION);
}

void CIrDADemoDlg::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
}
BEGIN_MESSAGE_MAP(CIrDADemoDlg, CDialog)
 ON_WM_SYSCOMMAND()
 ON_WM_PAINT()
 ON_WM_QUERYDRAGICON()
 //}}AFX_MSG_MAP
 ON_WM_CLOSE()
 ON_BN_CLICKED(IDC_READ_DATA, OnBnClickedReadData)
 ON_BN_CLICKED(IDC_CLEAR_DATA, OnBnClickedClearData)
 ON_BN_CLICKED(IDC_CONNECT, OnBnClickedConnect)
 ON_BN_CLICKED(IDC_ASCII_HEX, OnBnClickedAsciiHex)
 ON_BN_CLICKED(IDC_SEND_BYTE, OnBnClickedSendByte)
 ON_BN_CLICKED(IDC_SEND_FILE, OnBnClickedSendFile)
 ON_BN_CLICKED(IDC_RECEIVE_FILE, OnBnClickedReceiveFile)
 ON_BN_CLICKED(IDC_DISPLAY_DATA, OnBnClickedShowRawData)
 ON_MESSAGE(WM_CONNECTION_CLOSE, OnConnectionClose)
 ON_MESSAGE(WM_NEWMESSAGE, OnNewMessage)
 ON_MESSAGE(WM_CONNECTION_DONE, OnConnectionDone)
 ON_MESSAGE(WM_DEVICE_ATTACHED, OnDeviceAttached)
 ON_MESSAGE(WM_DEVICE_NOTATTACHED, OnDeviceNotAttached)
 ON_MESSAGE(WM_SEND_COMPLETE, OnSendDataComplete)
 ON_WM_TIMER()
END_MESSAGE_MAP()
DS00926A-page 30 © 2007 Microchip Technology Inc.

AN926

FIGURE C-3: IrDA DEMODLG.CPP - PAGE 3
void CIrDADemoDlg::CleanupThread()
{
 TRACE(_T("CIrDADemoDlg::CleanupThread()\n"));

 if (m_pClientThread)
 {
 // ask the client thread to terminate
 if (::PostThreadMessage(m_pClientThread->m_nThreadID, WM_TERM_THREAD, 0, 0) == 0)
 TRACE(_T("Thread 0x%02x possibly already terminated\n"),
 m_pClientThread->m_nThreadID);

 // wait up to 1s for secondary threads to terminate
 // termEvent will be signaled when thread count reaches 0
 if (termEvent.Lock(1000))
 TRACE(_T("Threads terminated gracefully\n"));
 else
 TRACE(_T("WARNING: All secondary thread(s) not gracefully terminated.\n"));
 }
}
// CIrDADemoDlg message handlers

BOOL CIrDADemoDlg::OnInitDialog()
{

CDialog::OnInitDialog();

 // m_bSimulate is set with the command line flag /s. For debugging,
 // the flag is set under Project->Properties->Debugging
 // Move dialog to the right so it doesn't cover up the simulation server dialog.
 if (m_bSimulate)
 {
 CPoint Point;
 CRect DialogRect;
 CRect ParentRect;
 CWnd *DesktopWindow = NULL;
 int nWidth;
 int nHeight;

 GetWindowRect(DialogRect);
 DesktopWindow = GetDesktopWindow();

 if (DesktopWindow)
 {
 DesktopWindow->GetWindowRect(ParentRect);
 Point.x = ParentRect.Width() / 2;
 Point.y = ParentRect.Height() / 2;
 DesktopWindow->ClientToScreen(&Point);
 nWidth = DialogRect.Width();
 nHeight = DialogRect.Height();
 Point.x += nWidth / 2;
 Point.y -= nHeight / 2;
 MoveWindow(Point.x, Point.y, nWidth, nHeight, FALSE);
 }
 }

 // Add "About..." menu item to system menu.

 // IDM_ABOUTBOX must be in the system command range.
 ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);
 ASSERT(IDM_ABOUTBOX < 0xF000);
© 2007 Microchip Technology Inc. DS00926A-page 31

AN926

FIGURE C-4: IrDA DEMODLG.CPP - PAGE 4
#ifndef _WIN32_WCE
 CMenu* pSysMenu = GetSystemMenu(FALSE);
 if (pSysMenu != NULL)
 {
 CString strAboutMenu;
 strAboutMenu.LoadString(IDS_ABOUTBOX);
 if (!strAboutMenu.IsEmpty())
 {
 pSysMenu->AppendMenu(MF_SEPARATOR);
 pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);
 }
 }
#endif
 // Limit the text for the transmit edit control to one character.
 ((CEdit*)GetDlgItem(IDC_BYTE))->SetLimitText(1);

 // Set the counters to zero or else there will just be a blank space where the numbers go.
 SetDlgItemInt(IDC_SODAS_SOLD, 0);
 SetDlgItemInt(IDC_CANDIES_SOLD, 0);
 SetDlgItemInt(IDC_CHANGEBOX, 0);

 // Set the icon for this dialog. The framework does this automatically
 // when the application's main window is not a dialog
 SetIcon(m_hIcon, TRUE); // Set big icon
 SetIcon(m_hIcon, FALSE); // Set small icon
 WCE_DEL CreateDeviceAnimation();
 WCE_INS CenterWindow(GetDesktopWindow()); // center to the hpc screen
 InitializeSocketThread(); // Create and initialize the thread. Creates the socket.

 SetProgramState(STATE_NDM);// Starts the search for devices => must come after thread is
initialized.

return TRUE; // return TRUE unless you set the focus to a control
}

void CIrDADemoDlg::OnSysCommand(UINT nID, LPARAM lParam)
{
 if ((nID & 0xFFF0) == IDM_ABOUTBOX)
 {
 CAboutDlg dlgAbout;
 dlgAbout.DoModal();
 }
 else
 {
 CDialog::OnSysCommand(nID, lParam);
 }
}

DS00926A-page 32 © 2007 Microchip Technology Inc.

AN926

FIGURE C-5: IrDA DEMODLG.CPP - PAGE 5
#ifndef _WIN32_WCE
void CIrDADemoDlg::OnPaint()
{
 if (IsIconic())
 {
 CPaintDC dc(this); // device context for painting

 SendMessage(WM_ICONERASEBKGND, reinterpret_cast<WPARAM>(dc.GetSafeHdc()), 0);

 // Center icon in client rectangle
 int cxIcon = GetSystemMetrics(SM_CXICON);
 int cyIcon = GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon + 1) / 2;
 int y = (rect.Height() - cyIcon + 1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 DrawConnectionImage();
 CDialog::OnPaint();
 }
}
#endif
// The system calls this function to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CIrDADemoDlg::OnQueryDragIcon()
{
 return static_cast<HCURSOR>(m_hIcon);
}

// This function is separate from OnBnClickedConnect() so that it
// can be repeatedly called if user wants to try to connect again.
BOOL CIrDADemoDlg::ConnectWithServer()
{
 TRACE(_T("CIrDADemoDlg::ConnectWithServer()\n"));

 if (m_pClientThread)
 {
 // ask the client thread to terminate
 if (::PostThreadMessage(m_pClientThread->m_nThreadID, WM_DEVICE_CONNECT, 0, 0) == 0)
 {
 AfxMessageBox(IDS_THREAD_TERMINATED, MB_OK | MB_ICONEXCLAMATION);
 TRACE(_T("Thread 0x%02x possibly already terminated\n"),
 m_pClientThread->m_nThreadID);
 }
 }
 return TRUE;
}

void CIrDADemoDlg::DisconnectWithServer()
{
 // Post message to thread to close connection with socket.
 if (m_pClientThread)
 {
 if (::PostThreadMessage(m_pClientThread->m_nThreadID,
 WM_DEVICE_DISCONNECT, 0, 0) == 0)
 TRACE(_T("Thread 0x%02x possibly already terminated\n"),
 m_pClientThread->m_nThreadID);
 }
}

© 2007 Microchip Technology Inc. DS00926A-page 33

AN926

FIGURE C-6: IrDA DEMODLG.CPP - PAGE 6
// Callback from the client socket thread to signify a connection has been established.
LRESULT CIrDADemoDlg::OnConnectionDone(WPARAM, LPARAM)
{
 SetProgramState(STATE_NRM);
 return 0;
}

// Callback from the client socket thread to signify a connection has been disestablished.
LRESULT CIrDADemoDlg::OnConnectionClose(WPARAM, LPARAM)
{
 if (STATE_CONNECTING == m_bProgramState)// We were trying to connect and failed.
 {
 if (AfxMessageBox(IDS_RETRYCONNECT, MB_YESNO) == IDYES)
 {
 ConnectWithServer();
 return 0;
 }
 }

 SetProgramState(STATE_NDM);
 return 0;
}
LRESULT CIrDADemoDlg::OnSendDataComplete(WPARAM wParam, LPARAM lParam)
{
 switch (m_nLastCommand)
 {
 case COMMAND_SEND_DATA:
 case COMMAND_TX_BYTES:
 // Do nothing
 break;
 default:
 // This will reenable the buttons if the connection did not close after command
 // was sent.
 SetProgramState(m_bProgramState);
 }
 return 0;
}

// The Connect button serves as both a connection and disconnection button. The
// button text is changed in the OnConnectionClose and OnConnectionDone.
void CIrDADemoDlg::OnBnClickedConnect()
{
 // If disconnected, then connect, else disconnect.
 if (STATE_DISCOVERY == m_bProgramState)
 {
 SetProgramState(STATE_CONNECTING);
 ConnectWithServer();
 }
 else //(STATE_NRM == m_bProgramState)
 {
 // Program state will change when the disconnected message from the socket is received.
 //SetProgramState(STATE_DISCOVERY);
 DisconnectWithServer();
 }
}

DS00926A-page 34 © 2007 Microchip Technology Inc.

AN926

FIGURE C-7: IrDA DEMODLG.CPP - PAGE 7
// Prompts embedded system to send the vending machine data to this server.
void CIrDADemoDlg::OnBnClickedReadData()
{
 ClearTraceBuffer();

 // Disable buttons until command completes so the user does not send command
 // more than once at a time. AsyncSendBuff() posts a message when complete.
 EnableButtons(FALSE);

 // Start a timer to trigger a time-out if the system
 // does not respond (handled in OnTimer()).
 m_pTimer = SetTimer(WM_TIMER_SEND_DATA, TIMER_3SEC, 0);

 m_nLastCommand = COMMAND_SEND_DATA;
 SendData(m_nLastCommand);
}

void CIrDADemoDlg::OnBnClickedClearData()
{
 ClearTraceBuffer();
 m_nLastCommand = COMMAND_CLEAR_DATA;
 SendData(m_nLastCommand);
}
void CIrDADemoDlg::OnBnClickedAsciiHex()
{
 m_nLastCommand = COMMAND_ASCII_HEX;
 SendData(m_nLastCommand);
}
void CIrDADemoDlg::OnBnClickedSendByte()
{
 CString str;
 GetDlgItemText(IDC_BYTE, str);

 ClearTraceBuffer();

 if (str.GetLength() < 1)
 {
 AfxMessageBox(IDS_ENTER_DATA);
 return;
 }
© 2007 Microchip Technology Inc. DS00926A-page 35

AN926

FIGURE C-8: IrDA DEMODLG.CPP - PAGE 8
 // Save the byte because user may be trying
 // to send a read, clear, transfer... command.
 switch(*str.GetBuffer(0))
 { // HEX DEC ASCII
 case '4': // -----------------------
 m_nLastCommand = COMMAND_ASCII_HEX; // 0x34 52 4
 break;
 case '5':
 m_nLastCommand = COMMAND_SEND_DATA; // 0x35 53 5
 break;
 case '6':
 m_nLastCommand = COMMAND_CLEAR_DATA; // 0x36 54 6
 break;
 case '7':
 m_nLastCommand = COMMAND_READ_DATA; // 0x37 57 7
 break;
 case 'V':
 m_nLastCommand = COMMAND_TX_BYTES; // 0x56 86 V
 break;
 case 'W':
 m_nLastCommand = COMMAND_RX_BYTES; // 0x57 87 W
 break;
 default:
 m_nLastCommand = -1;
 break;
 }

 SendData(str);
}

void CIrDADemoDlg::SendData(int nData)
{
 CString str;
 str.Format(_T("%c"), nData);
 SendData(str);
}
void CIrDADemoDlg::SendData(CString strData)
{
 if (m_pClientThread && (m_pClientThread->m_socket).m_fConnected)
 {
 (m_pClientThread->m_socket).AsyncSendBuff((void*)(LPCTSTR)strData,
 strData.GetLength());
 }
 else
 {
 // we are not connected to peer, reset state
 SetProgramState(STATE_NDM);
 m_pClientThread = NULL;
 }
DS00926A-page 36 © 2007 Microchip Technology Inc.

AN926

FIGURE C-9: IrDA DEMODLG.CPP - PAGE 9
 TRACE(_T("CIrDADemoDlg::SendData()\n"));
}

// Sends a file to the embedded system.
// Sequence:
// 1. Prompt user to select the file.
// 2. Send the number of bytes.
// 3. Wait for OK.
// 4. Send the file.
void CIrDADemoDlg::OnBnClickedSendFile()
{
 ClearTraceBuffer();

 // Get file to send.
 CFileDialog dlg(TRUE);

 if (dlg.DoModal())
 {
 CFile sourceTxFile;
 CFileException ex;
 m_strTxFileName = dlg.GetFileName();

 if (! sourceTxFile.Open(m_strTxFileName, CFile::modeRead, &ex))
 {
 TCHAR szError[1024];
 ex.GetErrorMessage(szError, 1024);
 MessageBox(szError, _T("Error"), MB_OK | MB_ICONEXCLAMATION);
 }
 else
 {
 // Disable buttons until command completes so the user
 // does not send command more than once at a time.
 EnableButtons(FALSE);
 DWORD nFileLength = (DWORD)sourceTxFile.GetLength();
 sourceTxFile.Close();
 m_nLastCommand = COMMAND_TX_BYTES;

 // Start a timer to trigger a time-out if the system
 // does not respond (handled in OnTimer()).
 m_pTimer = SetTimer(WM_TIMER_TX_BYTES, TIMER_3SEC, 0);

 SendData((DWORD)nFileLength);
 }
 }
}
// Get a file from the embedded system.
// Sequence:
// 1. Send command COMMAND_RX_BYTES
// 2. Receive data from system.
void CIrDADemoDlg::OnBnClickedReceiveFile()
{
 ClearTraceBuffer();
 m_nLastCommand = COMMAND_RX_BYTES;

 // Disable buttons until command completes so the user
 // does not send command more than once at a time.
 EnableButtons(FALSE);

 // Start a timer to trigger a time-out if the system
 // does not respond (handled in OnTimer()).
 m_pTimer = SetTimer(WM_TIMER_TX_BYTES, TIMER_3SEC, 0);

 SendData(m_nLastCommand);
}

© 2007 Microchip Technology Inc. DS00926A-page 37

AN926

FIGURE C-10: IrDA DEMODLG.CPP - PAGE 10
// This button is only on the Pocket PC(tm). The laptop
// application displays the data in the dialog.
void CIrDADemoDlg::OnBnClickedShowRawData()
{
 MessageBox((LPCTSTR)m_strTraceBuffer, _T("Raw Data"), MB_OK);
}

// This is a message from the socket. The socket posts this message when it has received
// something from client to the client. m_nLastCommand is the last command sent to the
// client. I use the same mesage (WM_NEWMESSAGE) because the socket does not know what
// the last command was. It only knows that it received some data from the client.
LRESULT CIrDADemoDlg::OnNewMessage(WPARAM wParam, LPARAM lParam)
{
 int nCharPos;
 int nRead = (int)lParam;

 // Kill the timer so we don't get a time-out error.
 KillTimer(m_pTimer);

 // We always show the raw data received in the raw data textbox.
 m_strRawRecvData = CString((TCHAR *)wParam);

 // Remove any extra line feeds. They will be displayed as characters if they are not removed.
 while ((nCharPos = m_strRawRecvData.Find(_T("\n\n"))) != -1)
 m_strRawRecvData.Delete(nCharPos, 1);

 m_strTraceBuffer = m_strTraceBuffer + m_strRawRecvData;
 WCE_DEL SetDlgItemText(IDC_RECEIVEDDATA_RAW, (LPCTSTR)m_strTraceBuffer);

 switch (m_nLastCommand)
 {
 case COMMAND_ASCII_HEX:
 // Do nothing
 break;
DS00926A-page 38 © 2007 Microchip Technology Inc.

AN926

FIGURE C-11: IrDA DEMODLG.CPP - PAGE 11
 case COMMAND_SEND_DATA:
 // The firmware must send both \r\n.
 // The string received will be as shown below:
 // SODA = 000\r\nCANDY = 000
 // 12345678901234567890123456789
 // The word soda, two spaces, "=", three characters,
 // one space, the word candie, one space, "=" one space,
 // three characters representing three digit number.

 if (m_strRawRecvData.GetLength() < COMMAND_SEND_DATA_NUM_CHARS)
 {
 AfxMessageBox(IDS_DATARECVERROR, MB_OK);
 }
 else
 {
 int nNumDigits = 3;

 // Find the value for soda by searching for '='
 nCharPos = m_strRawRecvData.Find(_T('=')) + 2;

 // Remove the leading zeros.
 while ((m_strRawRecvData.GetAt(nCharPos) == '0') && (nNumDigits > 1))
 {
 nCharPos++;
 nNumDigits--;
 }

 SetDlgItemText(IDC_SODAS_SOLD, m_strRawRecvData.Mid(nCharPos, nNumDigits));

 // Find the value for candies by searching for the next '='
 nCharPos = m_strRawRecvData.Find(_T('='), nCharPos) + 2;
 nNumDigits = 3;

 // Remove the leading zeros.
 while ((m_strRawRecvData.GetAt(nCharPos) == '0') && (nNumDigits > 1))
 {
 nCharPos++;
 nNumDigits--;
 }

 SetDlgItemText(IDC_CANDIES_SOLD, m_strRawRecvData.Mid(nCharPos, nNumDigits));

 // This will reenable the buttons if the connection did not close.
 SetProgramState(m_bProgramState);

 //SetDlgItemText(IDC_CHANGEBOX, m_strRawRecvData.Mid(4, 2);
 }
 break;
 case COMMAND_CLEAR_DATA:
 // Do nothing
 break;
 case COMMAND_READ_DATA:
 // Do nothing
 break;
© 2007 Microchip Technology Inc. DS00926A-page 39

AN926

FIGURE C-12: IrDA DEMODLG.CPP - PAGE 12
 case COMMAND_TX_BYTES:
 // Sequence:
 // 1. Send the number of bytes (done in OnBnClickedSendFile()).
 // 2. Wait for OK.
 // 3. Send the file.

 // If received OK send file.
 if (m_strRawRecvData == "255")
 {
 CFile sourceTxFile;
 CFileException ex;

 if (! sourceTxFile.Open(m_strTxFileName, CFile::modeRead, &ex))
 {
 TCHAR szError[1024];
 ex.GetErrorMessage(szError, 1024);
 MessageBox(szError, _T("Error"), MB_OK | MB_ICONEXCLAMATION);
 //AfxMessageBox(IDS_ERROR_FILE_OPEN, MB_OK | MB_ICONEXCLAMATION);
 }
 else
 {
 CString strData;
 DWORD nFileLength = (DWORD)sourceTxFile.GetLength();
 BYTE *lpBuf = new BYTE[nFileLength];
 sourceTxFile.Read(lpBuf, nFileLength);
 strData.Format(_T("%s"), lpBuf);

 // Clear the last command so we don't end up in a loop.
 // It also needs to be reset or else the buttons will not
 // be reenabled when it is done sending data.
 m_nLastCommand = -1;

 SendData(strData);
 delete[] lpBuf;
 sourceTxFile.Close();
 }
 }

 break;
 case COMMAND_RX_BYTES:
 // Receive the 240 byte buffer from the client.
 // Do nothing. It is already displayed in the raw data window.
 // m_nLastCommand = -1;
 break;

 default:
 AfxMessageBox(IDS_UNRECOGNIZED_RESPONSE, MB_OK | MB_ICONEXCLAMATION);
 break;
 }

 return 0L;
}

DS00926A-page 40 © 2007 Microchip Technology Inc.

AN926

FIGURE C-13: IrDA DEMODLG.CPP - PAGE 13
void CIrDADemoDlg::OnOK()
{
 CleanupThread();

 if (m_pConnectedBitmap != NULL)
 delete m_pConnectedBitmap;

 if (m_pConnectNotBitmap != NULL)
 delete m_pConnectNotBitmap;

 //SendMessage(WM_CLOSE, 0 ,0);
 CDialog::OnOK();
}

// Callback from the thread indicating that a device has been moved within range of the IR port.
LRESULT CIrDADemoDlg::OnDeviceAttached(WPARAM wParam, LPARAM lParam)
{
 SetProgramState(STATE_DISCOVERY);
 SetDlgItemText(IDC_MCP_DEVICEID, (LPCTSTR)lParam);
 return 0L;
}

// Callback from the thread indicating that no devices are within the range of the IR port.
LRESULT CIrDADemoDlg::OnDeviceNotAttached(WPARAM, LPARAM)
{
 SetProgramState(STATE_NDM);
 SetDlgItemText(IDC_MCP_DEVICEID, _T(""));
 return 0L;
}

© 2007 Microchip Technology Inc. DS00926A-page 41

AN926

FIGURE C-14: IrDA DEMODLG.CPP - PAGE 14
// Sets state to one of the four program states:
// NDM (Normal Disconnect Mode) - no devices attached.
// Discovery - Device is attached but no connection has been initiated.
// Connecting - User initiated a connection with device.
// NRM (Normal Response Mode) - Successful connection to a device.
void CIrDADemoDlg::SetProgramState(int nState)
{
 if (STATE_NDM == nState)
 {
// if (m_bSimulate)
// {
// SetProgramState(STATE_DISCOVERY); // Straight to discovery if simulating.
// return;
// }

 m_bProgramState = nState;

 // Search for devices connected to IR port when we are in Disconnect mode.
 // Ignored if simulating.
 SearchForDevices();

 // Only play part of the animation because we don't want the folder in the
 // last half displayed.
 WCE_DEL m_DeviceAnimation.Play(0, 13, -1);
 WCE_DEL m_DeviceAnimation.ShowWindow(SW_SHOW);
 SetDlgItemText(IDC_LINK_STATUS, CString((LPCTSTR)IDS_NDM));
 SetDlgItemText(IDC_MCP_DEVICEID, CString((LPCTSTR)IDS_NODEVICE));
 GetDlgItem(IDC_CONNECT)->SetWindowText(_T("Connect"));
 EnableButtons(FALSE);
 }
 else if (STATE_DISCOVERY == nState)
 {
 WCE_DELm_DeviceAnimation.Stop();
 WCE_DEL m_DeviceAnimation.ShowWindow(SW_HIDE);
 m_bProgramState = nState;
 m_pCurrentStateBitmap = m_pConnectNotBitmap;
 RedrawConnectionBitmap();
 SetDlgItemText(IDC_LINK_STATUS, CString((LPCTSTR)IDS_DISCOVERY));
 GetDlgItem(IDC_CONNECT)->SetWindowText(_T("Connect"));
 GetDlgItem(IDC_CONNECT)->EnableWindow(TRUE);
 EnableButtons(FALSE);
 }
 else if (STATE_CONNECTING == nState)
 {
 m_bProgramState = nState;
 SetDlgItemText(IDC_LINK_STATUS, CString((LPCTSTR)IDS_CONNECTING));
 }
 else if (STATE_NRM == nState)
 {
 m_bProgramState = nState;
 m_pCurrentStateBitmap = m_pConnectedBitmap;
 RedrawConnectionBitmap();
 SetDlgItemText(IDC_LINK_STATUS, CString((LPCTSTR)IDS_NRM));
 GetDlgItem(IDC_CONNECT)->SetWindowText(_T("Disconnect"));
 GetDlgItem(IDC_CONNECT)->EnableWindow();
 EnableButtons(TRUE);
 }
 else
 {
 m_bProgramState = -1;
 }
}

DS00926A-page 42 © 2007 Microchip Technology Inc.

AN926

FIGURE C-15: IrDA DEMODLG.CPP - PAGE 15
void CIrDADemoDlg::InitializeSocketThread()
{
#ifndef _WIN32_WCE
 // Connect to the simulator or to the board on the ir port.
 // m_bSimulate is set with the command line flag /s. For debugging
 // the flag is set under Project->Properties->Debugging
 if (m_bSimulate)
 {
 DWORD MaxNameLength = MAX_COMPUTERNAME_LENGTH + 1;
 char lpszHostName[MAX_COMPUTERNAME_LENGTH + 1];

 if (GetComputerName((LPTSTR)lpszHostName, (LPDWORD) &MaxNameLength) != 0)
 {
 m_strServerName = lpszHostName;
 }
 else
 {
 AfxMessageBox(IDS_COMPUTER_NAME_ERROR, MB_OK | MB_ICONEXCLAMATION);
 return;
 }
 }
#endif

 // Create a thread to handle the connection. The thread created is suspended so
 // that we can set variables in CClientThread before it starts executing.
 CClientThread* pThread = (CClientThread*)AfxBeginThread(RUNTIME_CLASS(CClientThread),
THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);

 if (! pThread)
 {
 TRACE(_T("Could not create thread\n"));
 AfxMessageBox(IDS_THREAD_CREATION, MB_OK | MB_ICONEXCLAMATION);
 return;
 }

 pThread->m_strServerName = m_strServerName; // server machine name
 pThread->m_bSimulate = m_bSimulate; // server machine name
 pThread->m_socket.m_pThread = pThread; // the thread that m_socket lives
 m_pClientThread = pThread; // keep a pointer to the connect socket thread

 // Now start the thread.
 pThread->ResumeThread();
}

void CIrDADemoDlg::SearchForDevices()
{
 if (m_pClientThread) // Look for devices connected to IR port. Ignored if simulating.
 {
 // Ask the client thread to start looking for devices.
 // The TRUE parameters tell the client to search. Thread does nothing if simulating.
 if (::PostThreadMessage(m_pClientThread->m_nThreadID, WM_DEVICE_SEARCH, TRUE, 0) == 0)
 {
 AfxMessageBox(IDS_THREAD_TERMINATED, MB_OK | MB_ICONEXCLAMATION);
 TRACE(_T("Thread 0x%02x possibly already terminated\n"),
 m_pClientThread->m_nThreadID);
 }
 }
}

© 2007 Microchip Technology Inc. DS00926A-page 43

AN926

FIGURE C-16: IrDA DEMODLG.CPP - PAGE 16
void CIrDADemoDlg::RedrawConnectionBitmap()
{
#ifndef _WIN32_WCE
 CRect rect;
 GetDlgItem(IDC_DRAW_AREA)->GetWindowRect(&rect);
 ScreenToClient(&rect);
 InvalidateRect(rect);
 Invalidate();
 UpdateWindow();
#endif
}

void CIrDADemoDlg::DrawConnectionImage()
{
#ifndef _WIN32_WCE
 CPaintDC dc(this); // Device context for painting
 CRect rect;
 GetDlgItem(IDC_DRAW_AREA)->GetWindowRect(&rect);
 ScreenToClient(&rect);

 m_pCurrentStateBitmap->DrawTransparentBitmap(&dc, // The destination DC.
 rect.left, // X coordinate.
 rect.top); // Y coordinate.
#endif
}

void CIrDADemoDlg::CreateDeviceAnimation()
{
#ifndef _WIN32_WCE
 CRect rect;
 GetDlgItem(IDC_DRAW_AREA)->GetWindowRect(&rect);
 ScreenToClient(&rect);

 rect.top = rect.top - 10;
 rect.left = rect.left - 10;
 rect.right = rect.right + 10;
 rect.bottom = rect.bottom + 10;

 if (m_DeviceAnimation.Create(WS_CHILD | WS_VISIBLE | ACS_CENTER | ACS_TRANSPARENT, rect,
 this, IDR_DEVICE_SEARCH) == FALSE)
 AfxMessageBox(IDS_DEVICE_ANIMATION, MB_OK | MB_ICONEXCLAMATION);

 // Open displays the clip's first frame.
 if (m_DeviceAnimation.Open(IDR_DEVICE_SEARCH) == FALSE)
 AfxMessageBox(IDS_DEVICE_ANIMATION, MB_OK | MB_ICONEXCLAMATION);
#endif
}

DS00926A-page 44 © 2007 Microchip Technology Inc.

AN926

FIGURE C-17: IrDA DEMODLG.CPP - PAGE 17
void CIrDADemoDlg::EnableButtons(BOOL nEnable)
{
 if (nEnable == TRUE)
 {
 GetDlgItem(IDC_READ_DATA)->EnableWindow();
 GetDlgItem(IDC_CLEAR_DATA)->EnableWindow();
 //GetDlgItem(IDC_ASCII_HEX)->EnableWindow();
 GetDlgItem(IDC_BYTE)->EnableWindow();
 GetDlgItem(IDC_SEND_BYTE)->EnableWindow();
 GetDlgItem(IDC_RECEIVE_FILE)->EnableWindow();
 GetDlgItem(IDC_SEND_FILE)->EnableWindow();
 WCE_INS GetDlgItem(IDC_DISPLAY_DATA)->EnableWindow();
 }
 else
 {
 GetDlgItem(IDC_READ_DATA)->EnableWindow(FALSE);
 GetDlgItem(IDC_CLEAR_DATA)->EnableWindow(FALSE);
 //GetDlgItem(IDC_ASCII_HEX)->EnableWindow(FALSE);
 GetDlgItem(IDC_BYTE)->EnableWindow(FALSE);
 GetDlgItem(IDC_SEND_BYTE)->EnableWindow(FALSE);
 GetDlgItem(IDC_RECEIVE_FILE)->EnableWindow(FALSE);
 GetDlgItem(IDC_SEND_FILE)->EnableWindow(FALSE);
 WCE_INS GetDlgItem(IDC_DISPLAY_DATA)->EnableWindow(FALSE);
 }
}

void CIrDADemoDlg::OnTimer(UINT nIDEvent)
{
 switch (nIDEvent)
 {
 case WM_TIMER_SEND_DATA:
 case WM_TIMER_TX_BYTES:
 case WM_TIMER_RX_BYTES:
 // Stop the timer so that no more than one of these error messages
 // is displayed. Restart if the user wants to continue waiting.
 KillTimer(m_pTimer);

 if (AfxMessageBox(IDS_NORESPONSE, MB_YESNO) == IDYES)
 {
 m_nLastCommand = -1;// Reset the command.
 SetProgramState(m_bProgramState);// Reenable the buttons.
 }
 else
 {
 m_pTimer = SetTimer(nIDEvent, TIMER_3SEC, 0);
 }
 break;
 }

 CDialog::OnTimer(nIDEvent);
}

void CIrDADemoDlg::ClearTraceBuffer()
{
 m_strTraceBuffer.Empty();
}

© 2007 Microchip Technology Inc. DS00926A-page 45

AN926

NOTES:
DS00926A-page 46 © 2007 Microchip Technology Inc.

AN926

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX D: PPC SOURCE CODE - CLIENTTHREAD.CPP

FIGURE D-1: CLIENTTHREAD.CPP - PAGE 1
// ClientThread.cpp : implementation file
//

#include "stdafx.h"
#include "IrDA Demo.h"
#include "ClientThread.h"
#include ".\clientthread.h"

extern CEvent termEvent; // event to communicate termination of all threads
extern long nThreadCount; // count of all active threads

#define DEVICE_LIST_LEN 10

// CClientThread

IMPLEMENT_DYNCREATE(CClientThread, CWinThread)

CClientThread::CClientThread():m_bDeviceAttached(FALSE)
{
 // count of all threads running
 if (InterlockedIncrement(&nThreadCount) == 1)
 termEvent.ResetEvent();// only one reset needed

 m_hSocket = NULL;
 m_pDevListBuff = NULL;
 m_nDevListLen = sizeof(DEVICELIST) - sizeof(IRDA_DEVICE_INFO) +
 (sizeof(IRDA_DEVICE_INFO) * DEVICE_LIST_LEN);
 m_pDevListBuff = new unsigned char[m_nDevListLen];
 m_DestSockAddr.irdaAddressFamily = AF_IRDA;
 m_DestSockAddr.irdaDeviceID[0] = 0;
 m_DestSockAddr.irdaDeviceID[1] = 0;
 m_DestSockAddr.irdaDeviceID[2] = 0;
 m_DestSockAddr.irdaDeviceID[3] = 0;
 memcpy(m_DestSockAddr.irdaServiceName, "IrDA:IrCOMM", 25);
}

© 2007 Microchip Technology Inc. DS00926A-page 47

AN926

FIGURE D-2: CLIENTTHREAD.CPP - PAGE 2
CClientThread::~CClientThread()
{
 // this notifies parent thread when all threads have been deleted
 // note that it's still not terminated at this point, but it's close enough
 if (InterlockedDecrement(&nThreadCount) == 0)
 termEvent.SetEvent(); // possibly called twice, but no harm done

 if (m_pDevListBuff)
 delete [] m_pDevListBuff;
}

BOOL CClientThread::InitInstance()
{
 TRACE(_T("CClientThread::InitInstance()\n"));

 if (m_bSimulate == FALSE)
 {
 // The sequence to connect to a device is: create a socket, scan the immediate vicinity
 // for IrDA standard devices with the IRLMP_ENUMDEVICES socket option, choose a device
 // from the returned list, form an address and call connect.

 // Need to use AF_IRDA, which is an int, as the address family, but the class takes
 // a string as the address. So use the non-MFC functions to create the socket, then
 // attach it to my MFC derived class.
 // SOCKET socket(BOOL Create(UINT nSocketPort = 0,
 // int af, int nSocketType = SOCK_STREAM,
 // int type, long lEvent,
 // int protocol; LPCTSTR lpszSocketAddress = NULL);

 WORD WSAVerReq = MAKEWORD(1,1);
 WSADATA WSAData;

 if (WSAStartup(WSAVerReq, &WSAData) != 0)
 {
 // wrong winsock dlls?
 AfxMessageBox(IDS_WINSOCK_DLLS, MB_OK | MB_ICONEXCLAMATION);
 }
 }

 return TRUE;
}

int CClientThread::ExitInstance()
{
 // Send message to the main thread indicating that this socket connection has closed
 AfxGetMainWnd()->SendMessage(WM_CONNECTION_CLOSE);
 return CWinThread::ExitInstance();
}

BEGIN_MESSAGE_MAP(CClientThread, CWinThread)
 ON_THREAD_MESSAGE(WM_TERM_THREAD, OnTermThread)
 ON_THREAD_MESSAGE(WM_DEVICE_SEARCH, OnDeviceSearch)
 ON_THREAD_MESSAGE(WM_DEVICE_CONNECT, OnDeviceConnect)
 ON_THREAD_MESSAGE(WM_DEVICE_DISCONNECT, OnDeviceDisconnect)
END_MESSAGE_MAP()
DS00926A-page 48 © 2007 Microchip Technology Inc.

AN926

FIGURE D-3: CLIENTTHREAD.CPP - PAGE 3
// CClientThread message handlers

// User-defined message will be posted by parent thread when parent thread's
// main window is going to close.
void CClientThread::OnTermThread(UINT, LONG)
{
 TRACE(_T("CClientThread::OnTermThread()\n"));

 // active close
 if (m_socket.m_fConnected)
 {
 m_socket.m_fConnected = FALSE;
 m_socket.ShutDown();
 m_socket.Close();
 }

 ::PostQuitMessage(0);
}

// Continuously searches for devices connected to the IR port.
// Called by CIrDADemoDlg when in Normal Disconnect Mode (NDM).
void CClientThread::OnDeviceSearch(UINT bContinueSearching, LONG)
{
 TRACE(_T("CClientThread::OnDeviceSearch()\n"));

 // Connect to the simulator or to the board on the IR port.
 // m_bSimulate is set with the command line flag /s. For debugging,
 // the flag is set under Project->Properties->Debugging
 if (m_bSimulate)
 {
 // Post message that device is connected and supply name of device.
 AfxGetMainWnd()->PostMessage(WM_DEVICE_ATTACHED, 0, (LPARAM)"Simulating");
 }
© 2007 Microchip Technology Inc. DS00926A-page 49

AN926

FIGURE D-4: CLIENTTHREAD.CPP - PAGE 4
 else
 {
 // This function is called twice. Once to start and
 // once to stop. We don't want to start twice.
 if ((m_bContinueSearching == TRUE) && (bContinueSearching == TRUE))
 return;

 m_bContinueSearching = bContinueSearching;

 while (m_bContinueSearching)
 {
 MSG msg;

 // Process other messages
 while (::PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
 {
 if (!PumpMessage())
 {
 m_bContinueSearching = FALSE;
 ::PostQuitMessage(0);
 break;
 }
 }

 // If SearchForDevices() fails due to an error with the socket,
 // it will post a message and change m_bContinueSearching to FALSE.
 SearchForDevices(5 /* Number of searches */);

 // Check for a connected device.
 PDEVICELISTpDevList = (PDEVICELIST)m_pDevListBuff;

 if (pDevList->numDevice > 0)
 {
 // Just assume that there is only one device
 // connected and that it is the MCP IrDA standard demo board.
 //for (int i = 0; i < (int)pDevList->numDevice; i++)
 //{
 // // For each IR port, check for the IrDA standard demo board.
 // // typedef struct _IRDA_DEVICE_INFO
 // // {
 // // u_char irdaDeviceID[4];
 // // char irdaDeviceName[22];
 // // u_char irdaDeviceHints1;
 // // u_char irdaDeviceHints2;
 // // u_char irdaCharSet;
 // // } _IRDA_DEVICE_INFO;
 // // pDevList->Device[i]. see _IRDA_DEVICE_INFO for fields
 // // display the device names and let the user select one
 //}
DS00926A-page 50 © 2007 Microchip Technology Inc.

AN926

FIGURE D-5: CLIENTTHREAD.CPP - PAGE 5
 // Don't repeatedly send the device attached message.
 if (m_bDeviceAttached == FALSE)
 {
 m_bDeviceAttached = TRUE;

 memcpy(&m_DestSockAddr.irdaDeviceID[0],
 &pDevList->Device[0].irdaDeviceID[0], 4);
 TRACE(_T("Found Device\nID - %s\nName - %s\n"),
 pDevList->Device[0].irdaDeviceID,
 pDevList->Device[0].irdaDeviceName);

 TCHAR strW[22];

 for (int index = 0; index < 22; index++)
 strW[index] = pDevList->Device[0].irdaDeviceName[index];

 // Post message that device is connected and supply name of device.
 AfxGetMainWnd()->PostMessage(WM_DEVICE_ATTACHED, 0, (LPARAM)strW);
 }
 }
 else
 {
 // Don't repeatedly send the device detached message.
 if (m_bDeviceAttached == TRUE)
 {
 TRACE(_T("Device Detached\n"));
 m_bDeviceAttached = FALSE;

 // Post message that there is no device.
 AfxGetMainWnd()->PostMessage(WM_DEVICE_NOTATTACHED);
 }
 }
 }
 }
}

void CClientThread::OnDeviceConnect(UINT, LONG)
{
 TRACE(_T("CClientThread::OnDeviceConnect()\n"));

 // Stop the searching in function OnDeviceSearch()
 m_bContinueSearching = FALSE;

 // Connect to the simulator or to the board on the IR port.
 // m_bSimulate is set with the command line flag /s. For debugging,
 // the flag is set under Project->Properties->Debugging
 if (m_bSimulate)
 {
 if (m_socket.m_hSocket == INVALID_SOCKET)
 m_socket.Create();

 // Try to connect to the peer
 if (m_socket.Connect(m_strServerName, SOCKET_PORT) == 0)
 {
 if (GetLastError() != WSAEWOULDBLOCK)
 {
 DisplaySocketError();
 ::PostQuitMessage(0); // Terminates thread.
 }
 }
 }
© 2007 Microchip Technology Inc. DS00926A-page 51

AN926

FIGURE D-6: CLIENTTHREAD.CPP - PAGE 6
 else //if (m_bSimulate == FALSE)
 {
 // SOCKADDR_IRDA m_DestSockAddr = { AF_IRDA, 0, 0, 0, 0, "IrDAService" };
 // typedef struct _SOCKADDR_IRDA
 // {
 // u_short irdaAddressFamily;
 // u_char irdaDeviceID[4];
 // char irdaServiceName[25];
 // } SOCKADDR_IRDA, *PSOCKADDR_IRDA, FAR *LPSOCKADDR_IRDA;

 // The MFC functions don't seem to support the options needed for the IrDA standard.
 // Therefore, use the SOCKET handle first to set options and attach here before
 // connecting.

 // Enable 9 Wire mode before connect().
 int Enable9WireMode = 1;

 if (setsockopt(m_hSocket, SOL_IRLMP, IRLMP_9WIRE_MODE, (const char *) &Enable9WireMode,
 sizeof(int)) == SOCKET_ERROR)
 {
 DisplaySocketError();
 }
 else
 {
 if (m_socket.Create())
 {
 if (m_socket.Attach(m_hSocket) != 0)
 {
 if (m_socket.Connect((const struct sockaddr *) &m_DestSockAddr,
 sizeof(SOCKADDR_IRDA)) == SOCKET_ERROR)
 {
 DisplaySocketError();
 }

 WCE_INS m_socket.OnConnect(0);
 }
 else
 {
 DisplaySocketError();
 }
 }
 }
 }
}

DS00926A-page 52 © 2007 Microchip Technology Inc.

AN926

FIGURE D-7: CLIENTTHREAD.CPP - PAGE 7
void CClientThread::OnDeviceDisconnect(UINT, LONG)
{
 TRACE(_T("CClientThread::OnDeviceDisconnect()\n"));

 m_bDeviceAttached = FALSE;

 // active close
 if (m_socket.m_fConnected)
 {
 m_socket.m_fConnected = FALSE;
 m_socket.ShutDown();
 m_socket.Close();// Deallocates socket handles and frees associated resources.
 m_hSocket = NULL;
 }

 AfxGetMainWnd()->PostMessage(WM_CONNECTION_CLOSE);
}

BOOL CClientThread::SearchForDevices(int nNumberOfSearches)
{
 if (nNumberOfSearches == 0)
 return FALSE;

 PDEVICELIST pDevList = (PDEVICELIST)m_pDevListBuff;

 // Initialize the number of devices to zero.
 pDevList->numDevice = 0;
 int nDevListLen = m_nDevListLen; // Want to preserve the size of the allocated list
 // so we can reuse it.

 // The MFC function GetSockOpt() only supports two levels (SOL_SOCKET and IPPROTO_TCP).
 // Need to use the SOL_IRLMP level with the option IRLMP_ENUMDEVICES which doesn't seem
 // to be supported either. Therefore, use the handle to get the options. When the user
 // tries to connect, use the MFC function Attach() to attach the handle to our class.
 // IRLMP_ENUMDEVICES returns a list of all available IrDA standard devices in pDevList.

 if ((INVALID_SOCKET == m_hSocket) || (NULL == m_hSocket))
 {
 m_hSocket = socket(AF_IRDA, SOCK_STREAM, 0);

 if (INVALID_SOCKET == m_hSocket)
 {
 CString str;
 int nError = WSAGetLastError();

 if (nError == WSAEAFNOSUPPORT)
 str.Format(IDS_NOIRDA_SUPPORT);
 else
 {
 str.Format(IDS_SOCKET_FAILURE, nError);
 str = str + CString((LPCSTR)IDS_EXITAPP);
 }

 if (AfxMessageBox(str, MB_ICONEXCLAMATION | MB_YESNO) == IDYES)
 // There is nothing that can be done without a socket, so shut down
 // the application or the user will get this error repeatedly.
 AfxGetMainWnd()->SendMessage(WM_CLOSE);

 return FALSE;
 }
 }
© 2007 Microchip Technology Inc. DS00926A-page 53

AN926

FIGURE D-8: CLIENTTHREAD.CPP - PAGE 8
 if (getsockopt(m_hSocket, SOL_IRLMP, IRLMP_ENUMDEVICES, (char *) pDevList, &nDevListLen)
== SOCKET_ERROR)
 {
 DisplaySocketError();

 // Stop the searching in function OnDeviceSearch()
 m_bContinueSearching = FALSE;
 return FALSE;
 }
 else
 {
 // Failed to find an IR port. Keep searching for the specified number of times.
 if (pDevList->numDevice == 0)
 return SearchForDevices(--nNumberOfSearches);
 }

 return TRUE;
}

void CClientThread::DisplaySocketError()
{
 int nError = WSAGetLastError();
 CString str;
 str.Format(IDS_SOCKET_FAILURE, nError);
 AfxMessageBox(str, MB_OK | MB_ICONEXCLAMATION);
}

DS00926A-page 54 © 2007 Microchip Technology Inc.

AN926

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX E: PPC SOURCE CODE - MCPSOCKET.CPP

FIGURE E-1: MCPSOCKET.CPP - PAGE 1
// MCPSocket.cpp : implementation file
//

#include "stdafx.h"
#include "IrDA Demo.h"
#include "MCPSocket.h"
#include "ClientThread.h"
#include <af_irda.h>

// CMCPSocket

CMCPSocket::CMCPSocket()
{
 m_nBytesSent = m_nSendDataLen = 0;
 m_nRecvDataLen = sizeof(int);// initialize for 4 byte data length
 m_nBytesRecv = 0;
 m_fConnected = FALSE;
 m_bReadDataLength = TRUE;
}

CMCPSocket::~CMCPSocket()
{
}
// CMCPSocket member functions

// Peer has closed the TCP connection.
void CMCPSocket::OnClose(int nErrorCode)
{
 ((CClientThread*)m_pThread)->m_hSocket = NULL;
 ((CClientThread*)m_pThread)->m_bDeviceAttached = FALSE;
 m_fConnected = FALSE;
 ShutDown();
 Close();
 TRACE(_T("CMCPSocket::OnClose: CAsyncSocket::Close() called\n"));
 AfxGetMainWnd()->SendMessage(WM_CONNECTION_CLOSE, 0, 0);
 WCE_INS CCeSocket::OnClose(nErrorCode);
 WCE_DEL CAsyncSocket::OnClose(nErrorCode);
}

© 2007 Microchip Technology Inc. DS00926A-page 55

AN926

FIGURE E-2: MCPSOCKET.CPP - PAGE 2
void CMCPSocket::OnConnect(int nErrorCode)
{
 OutputDebugString(_T("CMCPSocket::OnConnect\n"));

 if (nErrorCode == 0)
 {
 m_fConnected = TRUE;
 AfxGetMainWnd()->SendMessage(WM_CONNECTION_DONE, 0, 0);
 }
 else
 {
 // Error in doing a Connect to peer, I will just quit this thread.
 // Or you might want to notify the parent thread of nErrorCode.
 m_fConnected = FALSE;
 AfxGetMainWnd()->SendMessage(WM_CONNECTION_CLOSE, 0, 0);
 }

 WCE_INS CCeSocket::OnConnect(nErrorCode);
 WCE_DEL CAsyncSocket::OnConnect(nErrorCode);
}

void CMCPSocket::OnReceive(int nErrorCode)
{
 int nRead = 0;
 char strBuffA[MAX_BUFF];

 //nRead = Receive(m_ReceiveBuff,DATA_SIZE);
 nRead = Receive(strBuffA, DATA_SIZE);

 // Convert the ASCII string to the Unicode string.
 for (int index = 0; index <= sizeof(strBuffA); index++)
 m_ReceiveBuff[index] = strBuffA[index];

 // if something was read
 if (nRead > 0)
 {
 m_ReceiveBuff[nRead] = '\0';
 AfxGetMainWnd()->SendMessage(WM_NEWMESSAGE, (WPARAM)m_ReceiveBuff, (LPARAM)nRead);
 }

 TRACE(_T("CClientSocket::OnReceive(int nErrorCode = %d) nRead = %d\n"), nErrorCode,
nRead);
 WCE_INS CCeSocket::OnReceive(nErrorCode);
 WCE_DEL CAsyncSocket::OnReceive(nErrorCode);
}
void CMCPSocket::OnSend(int nErrorCode)
{
 OutputDebugString(_T("CMCPSocket::OnSend\n"));

 // Make sure we are connected to peer before sending data.
 // OnSend will also be called right after connection is established,
 // DoAsyncSendBuff() will not send any data because the initial
 // state of this CConnectSoc object has 0 bytes to send.
 if (m_fConnected)
 DoAsyncSendBuff();

 WCE_INS CCeSocket::OnSend(nErrorCode);
 WCE_DEL CAsyncSocket::OnSend(nErrorCode);
}

DS00926A-page 56 © 2007 Microchip Technology Inc.

AN926

FIGURE E-3: MCPSOCKET.CPP - PAGE 3
// Called by the dialog when the user tries to send data.
void CMCPSocket::AsyncSendBuff(void* lpBuf, int nBufLen)
{
 // We don't queue up data here.
 // If you are going to queue up data packet, it would be better to limit the size
 // of the queue and remember to clear up the queue whenever the current packet has been sent.
 if (m_nSendDataLen != 0 || nBufLen > MAX_BUFF)
 {
 TCHAR szError[256];
 wsprintf(szError, _T("CConnectSoc::AsyncSendBuff() can't accept more data\n"));
 AfxMessageBox(szError);
 return;
 }
 else
 {
 if (nBufLen > MAX_BUFF)
 {
 TCHAR szError[256];
 wsprintf(szError, _T("CConnectSoc::AsyncSendBuff() oversize buffer.\n"));
 AfxMessageBox(szError);
 return;
 }

 memcpy(m_sendBuff, lpBuf, nBufLen);
 m_nSendDataLen = nBufLen;
 m_nBytesSent = 0;
 DoAsyncSendBuff();
 }

 AfxGetMainWnd()->SendMessage(WM_SEND_COMPLETE);
 TRACE(_T("CMCPSocket::AsyncSendBuff()\n"));
}

© 2007 Microchip Technology Inc. DS00926A-page 57

AN926

FIGURE E-4: MCPSOCKET.CPP - PAGE 4
// Send the data left in the buffer. Called by AsyncSendBuff() and OnSend().
// If TCP stack cannot accept more data and gives error of WSAEWOULDBLOCK,
// we break out of the while loop. Whenever TCP stack can accept more data,
// our CConnectSoc::OnSend() will be called.
void CMCPSocket::DoAsyncSendBuff()
{
 while (m_nBytesSent < m_nSendDataLen)
 {
 int nBytes;

 if ((nBytes = Send((LPCTSTR)m_sendBuff + m_nBytesSent, m_nSendDataLen - m_nBytesSent))
 == SOCKET_ERROR)
 {
 if (GetLastError() == WSAEWOULDBLOCK)
 break;
 else
 {
 TCHAR szError[256];
 wsprintf(szError, _T("Server Socket failed to send: %d"), GetLastError());
 Close();
 AfxMessageBox(szError);
 m_nBytesSent = 0;
 m_nSendDataLen = sizeof(int);
 return;
 }
 }
 else
 {
 m_nBytesSent += nBytes;
 }
 }

 if (m_nBytesSent == m_nSendDataLen)
 {
 m_nBytesSent = m_nSendDataLen = 0;
 }
}

DS00926A-page 58 © 2007 Microchip Technology Inc.

AN926

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX F: PPC SOURCE CODE - TRANSPARENTBITMAP.CPP

FIGURE F-1: TRANSPARENTBITMAP.CPP - PAGE 1
#include "StdAfx.h"
#include "transparentbitmap.h"

CTransparentBitmap::CTransparentBitmap(void)
{
}

CTransparentBitmap::CTransparentBitmap(UINT nIDResource, COLORREF cTransparentColor) :
m_cTransparentColor(cTransparentColor)
{
 LoadBitmap(nIDResource);
}

CTransparentBitmap::~CTransparentBitmap(void)
{
}

© 2007 Microchip Technology Inc. DS00926A-page 59

AN926

FIGURE F-2: TRANSPARENTBITMAP.CPP - PAGE 2
void CTransparentBitmap::DrawTransparentBitmap(CDC* pDC, int xStart, int yStart)
 {
 CBitmap bmAndBack, bmAndObject, bmAndMem, bmSave;
 CDC dcMem, dcBack, dcObject, dcTemp, dcSave;

 dcTemp.CreateCompatibleDC(pDC);
 dcTemp.SelectObject(this); // Select the bitmap

 BITMAP bm;
 GetObject(sizeof(BITMAP), (LPSTR)&bm);

 CPoint ptSize;
 ptSize.x = bm.bmWidth; // Get width of bitmap
 ptSize.y = bm.bmHeight; // Get height of bitmap
 dcTemp.DPtoLP(&ptSize, 1); // Convert from device
 // to logical points

 // Create some DCs to hold temporary data.
 dcBack.CreateCompatibleDC(pDC);
 dcObject.CreateCompatibleDC(pDC);
 dcMem.CreateCompatibleDC(pDC);
 dcSave.CreateCompatibleDC(pDC);

 // Create a bitmap for each DC. DCs are required for a number of GDI functions.

 // Monochrome DC
 bmAndBack.CreateBitmap(ptSize.x, ptSize.y, 1, 1, NULL);

 // Monochrome DC
 bmAndObject.CreateBitmap(ptSize.x, ptSize.y, 1, 1, NULL);

 bmAndMem.CreateCompatibleBitmap(pDC, ptSize.x, ptSize.y);
 bmSave.CreateCompatibleBitmap(pDC, ptSize.x, ptSize.y);

 // Each DC must select a bitmap object to store pixel data.
 CBitmap* pbmBackOld = dcBack.SelectObject(&bmAndBack);
 CBitmap* pbmObjectOld = dcObject.SelectObject(&bmAndObject);
 CBitmap* pbmMemOld = dcMem.SelectObject(&bmAndMem);
 CBitmap* pbmSaveOld = dcSave.SelectObject(&bmSave);

 // The only mapping mode Windows CE supports is MM_TEXT
 // Set proper mapping mode.
 // dcTemp.SetMapMode(pDC->GetMapMode());

 // Save the bitmap sent here, because it will be overwritten.
 dcSave.BitBlt(0, 0, ptSize.x, ptSize.y, &dcTemp, 0, 0, SRCCOPY);

 // Set the background color of the source DC to the color
 // contained in the parts of the bitmap that should be transparent
 COLORREF cColor = dcTemp.SetBkColor(m_cTransparentColor);

 // Create the object mask for the bitmap by performing a BitBlt
 // from the source bitmap to a monochrome bitmap.
 dcObject.BitBlt(0, 0, ptSize.x, ptSize.y, &dcTemp, 0, 0, SRCCOPY);
DS00926A-page 60 © 2007 Microchip Technology Inc.

AN926

FIGURE F-3: TRANSPARENTBITMAP.CPP - PAGE 3
 // Set the background color of the source DC back to the original
 // color.
 dcTemp.SetBkColor(cColor);

 // Create the inverse of the object mask.
 dcBack.BitBlt(0, 0, ptSize.x, ptSize.y, &dcObject, 0, 0, NOTSRCCOPY);

 // Copy the background of the main DC to the destination.
 dcMem.BitBlt(0, 0, ptSize.x, ptSize.y, pDC, xStart, yStart, SRCCOPY);

 // Mask out the places where the bitmap will be placed.
 dcMem.BitBlt(0, 0, ptSize.x, ptSize.y, &dcObject, 0, 0, SRCAND);

 // Mask out the transparent colored pixels on the bitmap.
 dcTemp.BitBlt(0, 0, ptSize.x, ptSize.y, &dcBack, 0, 0, SRCAND);

 // XOR the bitmap with the background on the destination DC.
 dcMem.BitBlt(0, 0, ptSize.x, ptSize.y, &dcTemp, 0, 0, SRCPAINT);

 // Copy the destination to the screen.
 pDC->BitBlt(xStart, yStart, ptSize.x, ptSize.y, &dcMem, 0, 0, SRCCOPY);

 // Place the original bitmap back into the bitmap sent here.
 dcTemp.BitBlt(0, 0, ptSize.x, ptSize.y, &dcSave, 0, 0, SRCCOPY);

 // Reset the memory bitmaps.
 dcBack.SelectObject(pbmBackOld);
 dcObject.SelectObject(pbmObjectOld);
 dcMem.SelectObject(pbmMemOld);
 dcSave.SelectObject(pbmSaveOld);

 // Memory DCs and Bitmap objects will be deleted automatically
 }

void CTransparentBitmap::DrawBitmap(CDC *pDC, CRect rect, BOOL bCenter)
{
 ASSERT_VALID(pDC);
 //ASSERT_VALID(pBitmap);

 CDC dcMem;
 dcMem.CreateCompatibleDC(pDC);

 CBitmap* pOldBitmap = dcMem.SelectObject(this);

 if (bCenter)
 {
 BITMAP bitmap;
 GetObject(sizeof(BITMAP), &bitmap);
 CSize sizeBitmap(bitmap.bmWidth, bitmap.bmHeight);
 CSize diff = rect.Size() - sizeBitmap;
 rect.DeflateRect(diff.cx / 2, diff.cy / 2);
 }

 pDC->BitBlt(rect.left, rect.top, rect.Width(), rect.Height(), &dcMem, 0, 0, SRCCOPY);
 dcMem.SelectObject(pOldBitmap);}
© 2007 Microchip Technology Inc. DS00926A-page 61

AN926

NOTES:
DS00926A-page 62 © 2007 Microchip Technology Inc.

AN926

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX G: PPC SOURCE CODE - INCLUDE FILES

FIGURE G-1: IrDA DEMO.H
// IrDA Demo.h : main header file for the PROJECT_NAME application
//
#pragma once

#ifndef __AFXWIN_H__
 #error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h"// main symbols

// CIrDADemoApp:
// See IrDA Demo.cpp for the implementation of this class
//
class CIrDADemoApp : public CWinApp
{
public:
 CIrDADemoApp();

// Overrides
 public:
 virtual BOOL InitInstance();

// Implementation

 DECLARE_MESSAGE_MAP()
};
extern CIrDADemoApp theApp;
© 2007 Microchip Technology Inc. DS00926A-page 63

AN926

FIGURE G-2: IrDA DEMODLG.H - PAGE 1
///
; Software License Agreement
;
; The software supplied herewith by Microchip Technology Incorporated
; (the "Company") is intended and supplied to you, the Companyís
; customer, for use solely and exclusively with products manufactured
; by the Company.
;
; The software is owned by the Company and/or its supplier, and is
; protected under applicable copyright laws. All rights are reserved.
; Any use in violation of the foregoing restrictions may subject the
; user to criminal sanctions under applicable laws, as well as to
; civil liability for the breach of the terms and conditions of this
; license.
;
; THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,
; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
; TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
; IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
; CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
///

// IrDA DemoDlg.h : header file
//

#pragma once

class CMCPSocket;
class CClientThread;
class CTransparentBitmap;

//#include "PushButton.h"

// CIrDADemoDlg dialog
class CIrDADemoDlg : public CDialog
{
// Construction
public:
 LRESULT OnConnectionClose(WPARAM, LPARAM);
 LRESULT OnNewMessage(WPARAM lParam, LPARAM);
 LRESULT OnConnectionDone(WPARAM wParam, LPARAM); // pending connection has been established
 LRESULT OnConnectionClosed(WPARAM wParam, LPARAM);// pending connection has been established
 LRESULT OnDeviceAttached(WPARAM wParam, LPARAM);
 LRESULT OnDeviceNotAttached(WPARAM wParam, LPARAM);
 LRESULT OnSendDataComplete(WPARAM wParam, LPARAM);
 CIrDADemoDlg(CWnd* pParent = NULL);// standard constructor

 CClientThread* m_pClientThread;
 CString m_strServerName;
 BOOL m_bSimulate;
 CString m_strTxFileName;
DS00926A-page 64 © 2007 Microchip Technology Inc.

AN926

FIGURE G-3: IrDA DEMODLG.H - PAGE 2
// Dialog Data
 enum { IDD = IDD_IRDADEMO_DIALOG };

// Implementation
protected:
 HICON m_hIcon;
 int m_nLastCommand;
 CString m_lastString;
 CTransparentBitmap* m_pConnectedBitmap;
 CTransparentBitmap* m_pConnectNotBitmap;
 CTransparentBitmap* m_pCurrentStateBitmap;
 BOOL m_bConnecting;
 int m_bProgramState;
 WCE_DEL CAnimateCtrl m_DeviceAnimation;
 UINT_PTR m_pTimer;
 CString m_strRawRecvData;
 CString m_strTraceBuffer;

 void ClearTraceBuffer();
 void RedrawConnectionBitmap();
 void DrawConnectionImage();
 BOOL ConnectWithServer();
 void DisconnectWithServer();
 void CleanupThread();
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
 void SendData(int nData);
 void SendData(CString strData);
 void InitializeSocketThread();
 void SearchForDevices();
 void CreateDeviceAnimation();
 void EnableButtons(BOOL nEnable);

 // Generated message map functions
 virtual BOOL OnInitDialog();
 afx_msg void OnSysCommand(UINT nID, LPARAM lParam);
 WCE_DEL afx_msg void OnPaint();
 afx_msg HCURSOR OnQueryDragIcon();
 afx_msg void OnBnUpdateConnection(CCmdUI* pCmdUI);
 DECLARE_MESSAGE_MAP()

public:
 afx_msg void OnBnClickedReadData();
 afx_msg void OnBnClickedClearData();
 afx_msg void OnBnClickedConnect();
 afx_msg void OnBnClickedAsciiHex();
 afx_msg void OnBnClickedSendByte();
 afx_msg void OnBnClickedSendFile();
 afx_msg void OnBnClickedReceiveFile();
 afx_msg void OnBnClickedShowRawData();

protected:
 virtual void OnOK();
public:
 void SetProgramState(int nState);
 afx_msg void OnTimer(UINT nIDEvent);
};
© 2007 Microchip Technology Inc. DS00926A-page 65

AN926

FIGURE G-4: CLIENTTHREAD.H
///
; Software License Agreement
;
; The software supplied herewith by Microchip Technology Incorporated
; (the "Company") is intended and supplied to you, the Companyís
; customer, for use solely and exclusively with products manufactured
; by the Company.
;
; The software is owned by the Company and/or its supplier, and is
; protected under applicable copyright laws. All rights are reserved.
; Any use in violation of the foregoing restrictions may subject the
; user to criminal sanctions under applicable laws, as well as to
; civil liability for the breach of the terms and conditions of this
; license.
;
; THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,
; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
; TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
; IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
; CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
///

#pragma once

#include "MCPSocket.h"

// CClientThread

class CClientThread : public CWinThread
{
 DECLARE_DYNCREATE(CClientThread)

protected:
 CClientThread(); // protected constructor used by dynamic creation
 virtual ~CClientThread();

public:
 CMCPSocket m_socket;
 CString m_strServerName;
 BOOL m_bSimulate;
 SOCKET m_hSocket;
 BOOL m_bDeviceAttached;
 virtual BOOL InitInstance();
 virtual int ExitInstance();

protected:
 int m_nDevListLen;
 int m_bContinueSearching;
 unsigned char* m_pDevListBuff;
 SOCKADDR_IRDA m_DestSockAddr;
 BOOL SearchForDevices(int nNumberOfSearches);
 void DisplaySocketError();
 afx_msg void OnTermThread(UINT, LONG);
 afx_msg void OnDeviceSearch(UINT, LONG);
 afx_msg void OnDeviceConnect(UINT, LONG);
 afx_msg void OnDeviceDisconnect(UINT, LONG);
 DECLARE_MESSAGE_MAP()
public:
// virtual BOOL OnIdle(LONG lCount);
};
DS00926A-page 66 © 2007 Microchip Technology Inc.

AN926

FIGURE G-5: MCPSOCKET.H
///
; Software License Agreement
;
; The software supplied herewith by Microchip Technology Incorporated
; (the "Company") is intended and supplied to you, the Companyís
; customer, for use solely and exclusively with products manufactured
; by the Company.
;
; The software is owned by the Company and/or its supplier, and is
; protected under applicable copyright laws. All rights are reserved.
; Any use in violation of the foregoing restrictions may subject the
; user to criminal sanctions under applicable laws, as well as to
; civil liability for the breach of the terms and conditions of this
; license.
;
; THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,
; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
; TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
; IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
; CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
///

#pragma once

class CIrDADemoDlg;

// CMCPSocket command target

WCE_INS class CMCPSocket : public CCeSocket
WCE_DEL class CMCPSocket : public CAsyncSocket
{
public:
 CMCPSocket();
 virtual ~CMCPSocket();

 CWinThread* m_pThread; // the thread we are running in
 CCriticalSection* m_pCriticalSection;
 CString* m_pLastString;

 TCHAR m_sendBuff[MAX_BUFF];
 int m_nSendDataLen; // length of data to send
 int m_nBytesSent; // bytes sent so far

 TCHAR m_ReceiveBuff[MAX_BUFF];
 int m_nRecvDataLen; // bytes to receive
 int m_nBytesRecv; // bytes received so far
 BOOL m_fConnected; // TCP connection
 BOOL m_bReadDataLength; // reading packet header
 void AsyncSendBuff(void* lpBuf, int nBufLen);

 CIrDADemoDlg* m_pIrDADemoDlg;
 virtual void OnConnect(int nErrorCode);
 virtual void OnSend(int nErrorCode);
 virtual void OnReceive(int nErrorCode);
 virtual void OnClose(int nErrorCode);

protected:
 void DoAsyncSendBuff();
};
© 2007 Microchip Technology Inc. DS00926A-page 67

AN926

FIGURE G-6: TRANSPARENTBITMAP.H
#pragma once
#include "afxwin.h"

class CTransparentBitmap :
 public CBitmap
{
public:
 CTransparentBitmap(void);
 CTransparentBitmap(UINT nIDResource, COLORREF cTransparentColor);
 ~CTransparentBitmap(void);
 void DrawBitmap(CDC *pDC, CRect rect, BOOL bCenter);
 void DrawTransparentBitmap(CDC* pDC, int xStart, int yStart);

 COLORREF m_cTransparentColor;
};
DS00926A-page 68 © 2007 Microchip Technology Inc.

AN926

FIGURE G-7: STDAFX.H - PAGE 1
///
; Software License Agreement
;
; The software supplied herewith by Microchip Technology Incorporated
; (the "Company") is intended and supplied to you, the Companyís
; customer, for use solely and exclusively with products manufactured
; by the Company.
;
; The software is owned by the Company and/or its supplier, and is
; protected under applicable copyright laws. All rights are reserved.
; Any use in violation of the foregoing restrictions may subject the
; user to criminal sanctions under applicable laws, as well as to
; civil liability for the breach of the terms and conditions of this
; license.
;
; THIS SOFTWARE IS PROVIDED IN AN "AS IS" CONDITION. NO WARRANTIES,
; WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED
; TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
; PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT,
; IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR
; CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
///

#pragma once

#ifndef VC_EXTRALEAN
#define VC_EXTRALEAN // Exclude rarely-used stuff from Windows headers
#endif

#ifndef _WIN32_WCE
// Modify the following defines if you have to target a platform prior to the
// ones specified below.
// Refer to MSDN for the latest info on corresponding values for different platforms.
#ifndef WINVER // Allow use of features specific to Windows(r) 95
 // and Windows NT 4 or later.
#define WINVER 0x0400 // Change this to the appropriate value to target Windows 98
 // and Windows 2000 or later.
#endif

#ifndef _WIN32_WINNT // Allow use of features specific to Windows NT(r) 4 or later.
#define _WIN32_WINNT 0x0400 // Change this to the appropriate value to target Windows 98
 // and Windows 2000 or later.
#endif

#ifndef _WIN32_WINDOWS // Allow use of features specific to Windows 98 or later.
#define _WIN32_WINDOWS 0x0410 // Change this to the appropriate value to target Windows Me
 // or later.
#endif

#ifndef _WIN32_IE // Allow use of features specific to IE 4.0 or later.
#define _WIN32_IE 0x0400 // Change this to the appropriate value to target IE 5.0 or later.
#endif
#endif
© 2007 Microchip Technology Inc. DS00926A-page 69

AN926

FIGURE G-8: STDAFX.H - PAGE 2
#define _ATL_CSTRING_EXPLICIT_CONSTRUCTORS// some CString constructors will be explicit

// turns off MFC's hiding of some common and often safely ignored warning messages
#define _AFX_ALL_WARNINGS

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <afxdisp.h> // MFC Automation classes

#include <afxdtctl.h> // MFC support for Internet Explorer 4 Common Controls
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h> // MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT

#include <afxsock.h> // MFC socket extensions
#include <af_irda.h>
#include <afxmt.h>
//#include <lm.h>

// user defined messages
#define WM_NEWMESSAGE WM_USER+200
#define WM_TERM_THREAD WM_USER+201
#define WM_CONNECTION_CLOSE WM_USER+202
#define WM_CONNECTION_DONE WM_USER+203
#define WM_DEVICE_CONNECT WM_USER+204
#define WM_DEVICE_DISCONNECT WM_USER+205
#define WM_DEVICE_SEARCH WM_USER+206
#define WM_DEVICE_ATTACHED WM_USER+207
#define WM_DEVICE_NOTATTACHED WM_USER+208
#define WM_SEND_COMPLETE WM_USER+209
#define WM_TIMER_SEND_DATA WM_USER+210
#define WM_TIMER_TX_BYTES WM_USER+211
#define WM_TIMER_RX_BYTES WM_USER+212

#define DATA_SIZE 290
#define MAX_BUFF 4096
#define SOCKET_PORT 9000

#ifndef _WIN32_WCE
#define WCE_INS /##/
#define WCE_DEL
#endif
DS00926A-page 70 © 2007 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2007 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The
Embedded Control Solutions Company are registered
trademarks of Microchip Technology Incorporated in the
U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00926B-page 71

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00926A-page 72 © 2007 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Habour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

12/08/06

	Introduction
	Terminology

	Infrared Communications
	Windows Pocket PC Development
	Pocket PC Tools

	Windows Programming
	Microsoft Foundation Class Library
	Configuration
	Debugging an Application with the Emulator
	Debugging an Application on the Device

	Infrared Communications on Windows Platforms
	WinSock Applications
	Steps:
	Sockets with MFC
	Steps:
	Using Threads
	PPC Application Testing
	PPC Application Code Descriptions
	Resources
	Recommended Reading

	Summary
	Biography
	Embedded System Firmware Operation
	PPC Application Program User Interface
	Description of Graphical User Interface (GUI)
	Code Module Description

