
AN908
Using the dsPIC30F for Vector Control of an ACIM
INTRODUCTION
This application note describes a vector control
application that is written for the dsPIC30F family of
devices. Except for a brief discussion on control theory,
the information presented assumes you have a basic
understanding of AC Induction Motor (ACIM)
characteristics. References are included in some
instances to provide background information.

SOFTWARE FEATURES
The Vector Control software has the following features:

• The software implements vector control of an AC
induction motor using the indirect flux control
method.

• With a 50 μsec control loop period, the software
requires approximately 9 MIPS of CPU overhead
(less than 1/3 of the total available CPU).

• The application requires 258 bytes of data
memory storage and 256 bytes of constant
storage. With the user interface, approximately
8 Kbytes of program memory are required.

• The memory requirements of the application allow
it to be run on the dsPIC30F2010, which is the
smallest and least expensive dsPIC30F device at
the time of this writing.

• An optional diagnostics mode can be enabled to
allow real-time observation of internal program
variables on an oscilloscope. This feature
facilitates control loop adjustment.

VECTOR CONTROL THEORY

Background
The AC induction motor is the workhorse of industrial
and residential motor applications due to its simple
construction and durability. These motors have no
brushes to wear out or magnets to add to the cost. The
rotor assembly is a simple steel cage.

ACIM’s are designed to operate at a constant input
voltage and frequency, but you can effectively control
an ACIM in an open loop variable speed application if
the frequency of the motor input voltage is varied. If
the motor is not mechanically overloaded, the motor
will operate at a speed that is roughly proportional to
the input frequency. As you decrease the frequency of
the drive voltage, you also need to decrease the
amplitude by a proportional amount. Otherwise, the
motor will consume excessive current at low input
frequencies. This control method is called “Volts-Hertz
control”.

In practice, a custom Volts-Hertz profile is developed
that ensures the motor operates correctly at any speed
setting. This profile can take the form of a look-up table
or can be calculated during run time. Often, a slope
variable is used in the application that defines a linear
relationship between drive frequency and voltage at
any operating point. The Volts-Hertz control method
can be used in conjunction with speed and current
sensors to operate the motor in a closed loop fashion.

The Volts-Hertz method works very well for slowly
changing loads such as fans or pumps. But, it is less
effective when fast dynamic response is required. In
particular, high current transients can occur during
rapid speed or torque changes. The high currents are a
result of the high slip factor that occurs during the
change. Fast dynamic response can be realized
without these high currents if both the torque and flux
of the motor are controlled in a closed loop manner.
This is accomplished using Vector Control techniques.
Vector control is also commonly referred to as Field
Oriented Control (FOC).

The benefits of vector control can be directly realized
as lower energy consumption. This provides higher
efficiency, lower operating costs and reduces the cost
of drive components.

Vector Control
Traditional control methods, such as the Volts-Hertz
control method described above, control the frequency
and amplitude of the motor drive voltage. In contrast,
vector control methods control the frequency,
amplitude and phase of the motor drive voltage. The
key to vector control is to generate a 3-phase voltage
as a phasor to control the 3-phase stator current as a
phasor that controls the rotor flux vector and finally the
rotor current phasor.

Author: Dave Ross, John Theys
Diversified Engineering Inc.

Co-Author: Steve Bowling
Microchip Technology Inc.
© 2007 Microchip Technology Inc. DS00908B-page 1

AN908

Ultimately, the components of the rotor current need to
be controlled. The rotor current cannot be measured
because the rotor is a steel cage and there are no direct
electrical connections. Since the rotor currents cannot
be measured directly, the application program
calculates these parameters indirectly using
parameters that can be directly measured.

The technique described in this application note is
called indirect vector control because there is no direct
access to the rotor currents. Indirect vector control of
the rotor currents is accomplished using the following
data:

• Instantaneous stator phase currents, ia, ib and ic
• Rotor mechanical velocity
• Rotor electrical time constant

The motor must be equipped with sensors to monitor
the 3-phase stator currents and a rotor velocity
feedback device.

A MATTER OF PERSPECTIVE...
The key to understanding how vector control works is
to form a mental picture of the coordinate reference
transformation process. If you picture how an AC
induction motor works, you might imagine the operation
from the perspective of the stator. From this
perspective, a sinusoidal input current is applied to the
stator. This time variant signal causes a rotating
magnetic flux to be generated. The speed of the rotor
is going to be a function of the rotating flux vector. From
a stationary perspective, the stator currents and the
rotating flux vector look like AC quantities.

Now, instead of the previous perspective, imagine that
you could climb inside the motor. Once you are inside
the motor, picture yourself running alongside the
spinning rotor at the same speed as the rotating flux
vector that is generated by the stator currents. Looking
at the motor from this perspective during steady state
conditions, the stator currents look like constant values,
and the rotating flux vector is stationary! Ultimately, you
want to control the stator currents to get the desired
rotor currents (which cannot be measured directly).
With the coordinate transformation, the stator currents
can be controlled like DC values using standard control
loops.

VECTOR CONTROL SUMMARY
To summarize the steps required for indirect vector
control:

1. The 3-phase stator currents are measured. This
measurement provides ia, ib and ic. The rotor
velocity is also measured.

2. The 3-phase currents are converted to a 2-axis
system. This conversion provides the variables
iα and iβ from the measured ia, ib and ic values.
iα and iβ are time varying quadrature current
values as viewed from the perspective of the
stator.

3. The 2-axis coordinate system is rotated to align
with the rotor flux using a transformation angle
information calculated at the last iteration of the
control loop. This conversion provides the Id and
Iq variables from iα and iβ. Id and Iq are the
quadrature currents transformed to the rotating
coordinate system. For steady state conditions,
Id and Iq will be constant.

4. Error signals are formed using Id, Iq and
reference values for each. The Id reference
controls rotor magnetizing flux. The Iq reference
controls the torque output of the motor. The error
signals are input to PI controllers. The output of
the controllers provide Vd and Vq, which is a
voltage vector that will be sent to the motor.

5. A new coordinate transformation angle is
calculated. The motor speed, rotor electrical
time constant, Id and Iq are the inputs to this
calculation. The new angle tells the algorithm
where to place the next voltage vector to
produce an amount of slip for the present
operating conditions.

6. The Vd and Vq output values from the PI
controllers are rotated back to the stationary
reference frame using the new angle. This
calculation provides quadrature voltage values
vα and vβ.

7. The vα and vβ values are transformed back to
3-phase values va, vb and vc. The 3-phase
voltage values are used to calculate new PWM
duty cycle values that generate the desired
voltage vector.

The entire process of transforming, PI iteration,
transforming back and generating PWM is illustrated in
Figure 1.
DS00908B-page 2 © 2007 Microchip Technology Inc.

AN908

FIGURE 1: VECTOR CONTROL BLOCK DIAGRAM

Coordinate Transforms
Through a series of coordinate transforms the time
invariant values of torque and flux can be indirectly
determined and controlled with classic PI control loops.
The process starts out by measuring the three phase
motor currents. In practice, you can take advantage of
the constraint that in a 3-phase system the
instantaneous sum of the three current values will be
zero. Thus, by measuring only two of the three currents
you can know the third. The cost of the hardware is
reduced because only two current sensors are
required.

CLARKE TRANSFORM
The first transform is to move from a 3-axis,
2-dimensional coordinate system referenced to the
stator of the motor to a 2-axis system also referenced
to the stator. This process is called the Clarke
Transform, as illustrated in Figure 2.

FIGURE 2: CLARKE TRANSFORM

PARK TRANSFORM
At this point you have the stator current Phasor
represented on a 2-axis orthogonal system with the
axis called α-β. The next step is to transform into
another 2-axis system that is rotating with the rotor flux.
This transformation uses the Park Transform, as
illustrated in Figure 3. This 2-axis rotating coordinate
system is called the d-q axis.

FIGURE 3: PARK TRANSFORM

From this perspective the components of the current
Phasor in the d-q coordinate system are time invariant.
Under steady state conditions they are DC values.

The stator current component along the d axis is
proportional to the flux, and the component along the q
axis is proportional to the rotor torque. Now that you
have these components represented as DC values you
can control them independently with classic PI control
loops.

α,β

α,β

α,β

d,q

d,q

a,b,c

PI PI

SVM
3-Phase
Bridge

Speed

qref

PI

Vq

Vd

vα

vβ
dref

Current
Model

ia

ib

Motor
A

B

Speed

Field
Weakening

Encoder

∑ ∑

∑

− −

−

Reference

dsPIC
QEI

dsPIC DSC Motor Control (MC) PWM

(Flux
Reference)

(Torque
Reference)

θ

ia + ib + ic = 0
iα = ia
iβ = ia + 2ib

√ 3

α
βClarke

a
b

(c)

β
b

a,α

c

iα

iβ is

Iq
IdPark

iα
iβ
θ

Id = iα cosθ + iβ sinθ
Iq = -iα sinθ + iβ cosθ

β
q

α
iα

iβ

is θIq Id

d

© 2007 Microchip Technology Inc. DS00908B-page 3

AN908

INVERSE PARK
After the PI iteration, you have two voltage component
vectors in the rotating d-q axis. You will need to go
through complementary inverse transforms to get back
to the 3-phase motor voltage. First you transform from
the 2-axis rotating d-q frame to the 2-axis stationary
frame α-β. This transformation uses the Inverse Park
Transform, as illustrated in Figure 4.

FIGURE 4: INVERSE PARK

INVERSE CLARKE
The next step is to transform from the stationary 2-axis
α-β frame to the stationary 3-axis, 3-phase reference
frame of the stator. Mathematically, this transformation
is accomplished with the Inverse Clarke Transform, as
illustrated in Figure 5.

FIGURE 5: INVERSE CLARKE

Flux Estimator
In an asynchronous squirrel cage induction motor the
mechanical speed of the rotor is slightly less than the
rotating flux field. The difference in angular speed is
called slip and is represented as a fraction of the
rotating flux speed. For example, if the rotor speed and
the flux speed are the same the slip is 0 and if the rotor
speed is 0 the slip is 1.

You probably have noticed that the Park and Inverse
Transforms require an input angle θ. The variable θ
represents the angular position of the rotor flux vector.
The correct angular position of the rotor flux vector
must be estimated based on known values and motor
parameters. This estimation uses a motor equivalent

circuit model. The slip required to operate the motor is
accounted for in the flux estimator equations and is
included in the calculated angle.

The flux estimator calculates a new flux position based
on stator currents, the rotor velocity and the rotor
electrical time constant. This implementation of the flux
estimation is based on the motor current model and in
particular these three equations:

EQUATION 1: MAGNETIZING CURRENT

EQUATION 2: FLUX SPEED

EQUATION 3: FLUX ANGLE

where:

Imr = Magnetizing current (as calculated from
measured values)

fs = Flux speed (as calculated from measured
values)

T = Sample (loop) time (parameter in program)

n = Rotor speed (measured with the shaft encoder)

Tr = Lr/Rr = Rotor time constant (must be obtained
from the motor manufacturer)

θ = Rotor flux position (output variable from this
module)

ωb = Electrical nominal flux speed (from motor name
plate)

Ppr = Number of pole pairs (from motor name plate)

During steady state conditions, the Id current
component is responsible for generating the rotor flux.
For transient changes, there is a low-pass filtered
relationship between the measured Id current
component and the rotor flux. The magnetizing current,
Imr, is the component of Id that is responsible for
producing the rotor flux. Under steady-state conditions,
Id is equal to Imr. Equation 1 relates Id and Imr. This
equation is dependent upon accurate knowledge of the
rotor electrical time constant. Essentially, Equation 1
corrects the flux producing component of Id during
transient changes.

vα
vβ

Inverse
Vd
Vq

θ

vα = Vd cosθ - Vq sinθ
vβ = Vd sinθ + Vq cosθ

β
q

α
vα

vβ

vs θVq Vd

dPark

vα
vβ

vr1
vr2
vr3

β
vb

va

vc

vα

vβ vs

Inverse
Clarke

va = vβ
vβ + √ 3 vα

2
vb =

vβ + √ 3 vα
2

vc =

Imr Imr
T
Tr
----- Id Imr–()+=

fs Ppr n⋅() 1
Trωb

Iq
Imr
-------⋅⎝ ⎠

⎛ ⎞+=

θ θ ωb fs T⋅ ⋅+=
DS00908B-page 4 © 2007 Microchip Technology Inc.

AN908

The computed Imr value is then used to compute the
slip frequency, as shown in Equation 2. The slip
frequency is a function of the rotor electrical time
constant, Iq, Imr and the current rotor velocity.

Equation 3 is the final equation of the flux estimator. It
calculates the new flux angle based on the slip
frequency calculated in Equation 2 and the previously
calculated flux angle.

If the slip frequency and stator currents have been
related by Equation 1 and Equation 2, then motor flux
and torque have been specified. Furthermore, these
two equations ensure that the stator currents are
properly oriented to the rotor flux. If proper orientation
of the stator currents and rotor flux is maintained, then
flux and torque can be controlled independently. The Id
current component controls rotor flux and the Iq current
component controls motor torque. This is the key
principle of indirect vector control.

PI Control
Three PI loops are used to control three interactive
variables independently. The rotor speed, rotor flux and
rotor torque are each controlled by a separate PI
module. The implementation is conventional and
includes a term (Kc*Excess) to limit integral windup, as
illustrated in Figure 6.

FIGURE 6: PI CONTROL

PID CONTROLLER BACKGROUND
A complete discussion of Proportional Integral
Derivative (PID) controllers are beyond the scope of
this application note, but this section will provide you
with the basics of PID operation.

A PID controller responds to an error signal in a closed
control loop and attempts to adjust the controlled
quantity to achieve the desired system response. The
controlled parameter can be any measurable system
quantity such as speed, torque or flux. The benefit of
the PID controller is that it can be adjusted empirically
by adjusting one or more gain values and observing the
change in system response.

A digital PID controller is executed at a periodic
sampling interval. It is assumed that the controller is
executed frequently enough so that the system can be
properly controlled. The error signal is formed by
subtracting the desired setting of the parameter to be
controlled from the actual measured value of that
parameter. The sign of the error indicates the direction
of change required by the control input.

The Proportional (P) term of the controller is formed by
multiplying the error signal by a P gain, causing the PID
controller to produce a control response that is a
function of the error magnitude. As the error signal
becomes larger, the P term of the controller becomes
larger to provide more correction.

The effect of the P term tends to reduce the overall
error as time elapses. However, the effect of the P term
reduces as the error approaches zero. In most
systems, the error of the controlled parameter gets very
close to zero but does not converge. The result is a
small remaining steady state error.

The Integral (I) term of the controller is used to
eliminate small steady state errors. The I term
calculates a continuous running total of the error signal.
Therefore, a small steady state error accumulates into
a large error value over time. This accumulated error
signal is multiplied by an I gain factor and becomes the
I output term of the PID controller.

The Differential (D) term of the PID controller is used to
enhance the speed of the controller and responds to
the rate of change of the error signal. The D term input
is calculated by subtracting the present error value
from a prior value. This delta error value is multiplied by
a D gain factor that becomes the D output term of the
PID controller. The D term of the controller produces
more control output the faster the system error is
changing.

Not all PID controllers will implement the D or, less
commonly, the I terms. For example, this application
does not use D terms due to the relatively slow
response time of motor speed changes. In this case,
the D term could cause excessive changes in PWM
duty cycle that could affect the operation of the
algorithms and produce over current trips.

Kperr + Ki∫err dt
InRef

FB

Out

-

Err = InRef - FB;
U = Sum + Kp*Err;
If (U > Outmax);

Out = Outmax;
else if (U < Outmin)

Out = Outmin;
else

Out = U;
Excess = U - Out;
Sum = Sum + (Ki*Err)-(Kc*Excess);

∑

© 2007 Microchip Technology Inc. DS00908B-page 5

AN908

Space Vector Modulation
The final step in the vector control process is to
generate pulse-width modulation signals for the
3-phase motor voltage signals. By using Space Vector
Modulation (SVM) techniques the process of
generating the pulse-width for each of the 3 phases
reduces to a few simple equations. In this
implementation the Inverse Clarke Transform has been
folded into the SVM routine, which further simplifies the
calculations.

Each of the three inverter outputs can be in one of two
states. The inverter output can be either connected to
the + bus rail or the - bus rail, which allows for 23=8
possible states that the output can be in (see Table 1).

The two states where all three outputs are connected
to either the + bus or the - bus are considered null
states because there is no line-to-line voltage across
any of the phases. These are plotted at the origin of the
SVM Star. The remaining six states are represented as
vectors with 60 degree rotation between each state, as
shown in Figure 7.

FIGURE 7: SPACE VECTOR
MODULATION

The process of Space Vector Modulation allows the
representation of any resultant vector by the sum of the
components of the two adjacent vectors. In Figure 8,
UOUT is the desired resultant. It lies in the sector
between U60 and U0. If during a given PWM period T
U0 is output for T1/T and U60 is output for T2/T, the
average for the period will be UOUT.

FIGURE 8: AVERAGE SPACE VECTOR
MODULATION

The values for T1 and T2 can be extracted with no extra
calculations by using a modified Inverse Clarke
transformation. By reversing vα and vβ, a reference
axis is generated that is shifted by 30 degrees from the
SVM Star. As a result, for each of the six segments one
axis is exactly opposite to that segment and the other
two axis symmetrically bound the segment. The values
of the vector components along those two bounding
axis are equal to T1 and T2. See the CalcRef.s and
SVGen.s files in “Appendix B. Source Code” for
details of the calculations.

You can see from Figure 9 that for the PWM period T,
the vector T1 is output for T1/T and the vector T2 is
output for T2/T. During the remaining time the null
vectors are output. The dsPIC® DSC device is
configured for center aligned PWM, which forces
symmetry about the center of the period. This
configuration produces two pulses line-to-line during
each period. The effective switching frequency is
doubled, reducing the ripple current while not
increasing the switching losses in the power devices.

TABLE 1: SPACE VECTOR MODULATION INVERTER STATES

U60(011)U120(010)

U180(110) U(111) U(000) U0(001)

U240(100) U300(101)

U60(011)

UOUT

T2/T * U60

T1/T * U0 U0(001)

T = T1 + T2 + T0 = PWM Period
 T1 * U0 + T2 * U60

T
=UOUT

C B A Vab Vbc Vca Vds Vqs Vector

0 0 0 0 0 0 0 0 U(000)
0 0 1 VDC 0 -VDC 2/3VDC 0 U0
0 1 1 0 VDC -VDC VDC/3 VDC/3 U60
0 1 0 -VDC VDC 0 -VDC/3 VDC/3 U120
1 1 0 -VDC 0 VDC -2VDC/3 0 U180
1 0 0 0 -VDC VDC -VDC/3 - VDC/3 U240
1 0 1 VDC -VDC 0 VDC/3 - VDC/3 U300
1 1 1 0 0 0 0 0 U(111)
DS00908B-page 6 © 2007 Microchip Technology Inc.

AN908

FIGURE 9: PWM FOR PERIOD T

CODE DESCRIPTION
The vector control source code was developed in
MPLAB® using the Microchip MPLAB C30 tool suite.
The main application is written in C and all the primary
vector control functions are written in assembly and
optimized for speed of execution.

Conventions
A description of the functions is contained in the header
of each source file. The equivalent C code for the
function is also included in the header for reference.
The C lines of code are used as comments in the
optimized assembly code so that code flow can easily
be followed.

At the beginning of each function the pertinent
variables are moved to specific working (W) registers
that are used by the DSP and math instructions. The
variables are moved back to their respective register
locations at the end of the code function. Most of these
variables are grouped into structures of related
parameters to provide efficient access from the C or
assembly code.

Each W register used in an assembly module has been
assigned a descriptive name that tells what value the
register holds during the calculation. The re-naming of
the W registers makes the code easier to follow and
avoids register usage conflicts.

Variable Definition and Scaling
Most variables are stored in 1.15 fractional format,
which is one of the inherent math modes in the dsPIC
DSC devices. A signed fixed-point integer is
represented as follows:

• MSB is the sign bit
• range -1 to +.9999
• 0x8000 = -1
• 0000 = 0
• 0x7FFF = .9999

All values are normalized using the Per Unit system
(PU).

 VPU = VACT/VB

Then scaled so that the base quantity = .125

This allows for values of 8 times the base value.

VB = 230V, VACT =120V, VPU = 120/230 =.5PU,

Scaling → VB = .125 = 0x0FFF (1.15)

120V = .5 * .125 = 0x07FF (1.15)

PWM1

PWM2

PWM3

T0/4 T1/2 T2/2 T0/4 T2/2 T1/2 T0/4T0/4

T

000 100 110 111 110 100 000111
© 2007 Microchip Technology Inc. DS00908B-page 7

AN908

Individual Source File Descriptions
This section describes the functions contained in each
source file.

UserParms.h
All user definable parameters are located in the
UserParms.h file. These parameters include motor
data and control loop tuning values. More information
on the parameters is provided in the Software Tuning
section of this document.

ACIM.c
The ACIM.c file is the primary source code file for the
application. This file contains the main software loop
and all ISR handlers. This file calls all hardware and
variable initialization routines.

To accomplish high performance closed-loop control
the entire vector control loop must be executed every
PWM cycle. This is done in the ISR for the ADC
converter. The PWM time base is used to trigger ADC
conversions. When the ADC conversion is complete,
an interrupt is generated.

When not in the ISR, a main software loop is run that
handles the user interface. A software count variable is
maintained in the ISR so that the user interface is run
at periodic intervals. As written, the user interface code
is scheduled to run every 50 milliseconds. This
parameter can be changed by modifying the
UserParms.h file.

A software diagnostics mode can be enabled by
uncommenting the #define DIAGNOSTICS
statement in the UserParms.h file. The diagnostics
mode enables output compare channels OC7 and OC8
as PWM outputs. These outputs can be filtered using
simple RC filters and used like a D/A converter to
observe the time history of software variables. The
diagnostics output simplifies tuning of the PI control
loops. More information on the diagnostics output is
provided in the Software Tuning section of this
document.

Encoder.c
This file contains the function
InitEncoderScaling() Which is used to calculate
the scaling values for mechanical angle and
mechanical speed measured with the optical encoder.

InitCurModel.c
This file contains the InitCurModScaling()
function, which is called from the setup routines in the
ACIM.c file. This function is used to calculate
fixed-point scaling factors that are used in the current

model equations from floating point values. The current
model scaling factors are a function of the rotor time
constant, vector calculation loop period, number of
motor poles and the maximum motor velocity in
revolutions per second.

CalcRef.s
This file contains the CalcRefVec() function, which
calculates the scaled 3-phase voltage output vector,
(Vr1, Vr2 and Vr3), from vα and vβ. The function
implements the Inverse Clarke function, which
translates the voltage vector components from a
2-coordinate system back to a 3-coordinate system
that can be used by the 3-phase PWM. The method is
a modified Inverse Clarke transform where vα and vβ
are swapped compared to the normal Inverse Clarke.
The modified method must be used to produce the
proper phase alignment of the voltage vector.

CalcVel.s
This file has three functions, InitCalcVel(),
CalcVelIrp() and CalcVel(), which are used to
determine the motor velocity. The InitCalcVel()
function initializes key variables associated with the
velocity calculations.

The CalcVelIrp() function is called at each vector
control interrupt period. The interrupt interval,
VelPeriod, must be less than the minimum time
required for 1/2 revolution at maximum speed.

This routine accumulates the change for a specified
number of interrupt periods, then copies the
accumulation value to the iDeltaCnt variable for use
by the CalcVel() routine to calculate velocity. The
accumulation is set back to zero and a new
accumulation starts.

The CalcVel() routine is only called when new
velocity information is available. For the default
software values, the CalcVel() routine is called every
30 interrupt periods. This interval gives new velocity
information every 1.5 msec for a 50 usec interrupt
period. The velocity control loop is run each time new
velocity information is obtained.

ClarkePark.s
This file contains the function ClarkePark() and
calculates Clarke and Park transforms. The function
uses the sine and cosine values of the flux position
angle to calculate the quadrature current values of Id
and Iq. This routine works the same for both integer
scaling and 1.15 scaling.

CurModel.s
This file contains the CurModel() and
InitCurModel() functions. The CurModel()
function executes the rotor current model equation to
determine a new rotor flux angle as a function of the
rotor velocity and the transformed stator current

Note: If you are viewing an electronic version of
this application note, you can click on the
following file names to navigate to the
code in “Appendix B. Source Code”.
DS00908B-page 8 © 2007 Microchip Technology Inc.

AN908

components. The InitCurModel() function is used
to clear variables associated with the CurModel()
routine.

FIGURE 10: VECTOR CONTROL INTERRUPT SERVICE ROUTINE
void __attribute__((__interrupt__)) _ADCInterrupt(void)

{

IFS0bits.ADIF = 0;

// Increment count variable that controls execution

// of display and button functions.

iDispLoopCnt++;

// acumulate encoder counts since last interrupt

CalcVelIrp();

if(uGF.bit.RunMotor)

{

// Set LED1 for diagnostics

pinLED1 = 1;

// Calculate velocity from accumulated encoder counts

CalcVel();

// Calculate qIa,qIb

MeasCompCurr();

// Calculate qId,qIq from qSin,qCos,qIa,qIb

ClarkePark();

// Calculate PI control loop values

DoControl();

// Calculate qSin,qCos from qAngle

SinCos();

// Calculate qValpha, qVbeta from qSin,qCos,qVd,qVq

InvPark();

// Calculate Vr1,Vr2,Vr3 from qValpha, qVbeta

CalcRefVec();

// Calculate and set PWM duty cycles from Vr1,Vr2,Vr3

CalcSVGen();

// Clear LED1 for diagnostics

pinLED1 = 0;

}

}

© 2007 Microchip Technology Inc. DS00908B-page 9

AN908

FdWeak.s
The FdWeak.s file contains the function for field
weakening. The application code, as provided, does
not implement field weakening. Field weakening allows
a motor to be run at higher than the rated speed. At
these higher speeds, the voltage delivered to the motor
is kept constant while the frequency is increased.

A field weakening constant is defined in the
UserParms.h file. This value is derived from the V/Hz
constant of the motor. The motor that was used to
develop this application has a working voltage of
230 VAC and is designed for an input frequency of
60 Hz. Based on these values, the V/Hz constant is
230/60 = 3.83. The value of 3750 defined for the field
weakening constant in UserParms.h was empirically
derived based on the V/Hz constant of the motor and
the absolute scaling of A/D feedback values for the
application.

When the motor operates within its rated speed and
voltage range, the reference for the Id control loop is
held constant. The field weakening constant in
UserParms.h is used as the reference value for the
control loop. In the normal operating range of the
motor, the rotor flux is kept constant.

If field weakening is implemented, the Id control loop
reference should be reduced linearly when the motor is
said to ‘run out of voltage’. The motor ‘runs out of
voltage’ when the V/Hz ratio for the motor can not be
maintained. For example, assume that you are driving
a 230 VAC motor with a 115 VAC power source. Since
the motor is designed to run at 230 VAC and 60 Hz, the
motor would ‘run out of voltage’ at 30 Hz when
operating from a 115 VAC supply. Above 30 Hz, the Id
control loop reference should be linearly reduced as a
function of frequency.

You can determine the drive frequency where your
ACIM application will run out of voltage by monitoring
the inverter DC bus voltage.

When operating in a region where field weakening
would be required, the Id and Iq control loops will
saturate, which effectively limits the motor flux. The use
of field weakening allows the vector control algorithm to
limit its output without saturating the control loops. This
is one of the key benefits of field weakening. The
operating range of the motor can be extended while
closed loop control is maintained.

You can experiment with field weakening in this
application by changing the defined reference value in
UserParms.h file. By lowering this value, you can
limit the available voltage that can be delivered to the
motor.

InvPark.s
This file contains the InvPark() function, which
processes the voltage vector values, Vd and Vq, which
are generated by the inner PI current control loops. The
InvPark() function ‘un-rotates’ the voltage vector
values to align them with the stationary reference
frame. The function produces the vα and vβ values. The
rotation is accomplished using sine and cosine values
of the new rotor flux angle that was previously
calculated in the rotor current model equations.

This routine works the same for both integer scaling
and 1.15 scaling.

MeasCur.s
This file has two functions, MeasCompCurr() and
InitMeasCompCurr(). The MeasCompCurr()
function reads S/H channels CH1 and CH2 of the ADC,
scales them as signed fractional values using qKa, qKb
and put the results qIa and qIb of ParkParm. A
running average of the A/D offset is maintained and is
subtracted from the ADC value before scaling.

The InitMeasCompCurr() function is used to
initialize the A/D offset values at startup.

Scaling and offset variables associated with these
functions are kept in the MeasCurrParm data
structure, which is declared in the MeasCur.s file.

OpenLoop.s
This file contains the OpenLoop() function that
calculates a new rotor flux angle when the application
is running open loop. The function calculates the
change in rotor flux angle for the desired operating
speed. The change in rotor flux angle is then added to
the old angle to set the new angle of the voltage vector.

PI.s
This file contains the CalcPI() function, which
executes a PI controller. The CalcPI() function
accepts a pointer to a structure that contains the PI
coefficients, input and reference signals, output limits
and the PI controller output value.

ReadADC0.s
This file contains the ReadADC0() and
ReadSignedADC0() functions. These functions read
the data obtained from sample/hold Channel 0 of the
ADC, scale the value and store the results.

The ReadSignedADC0() function is currently used to
read a reference speed value from the potentiometer
on the demo board. If speed is obtained from another
source, these functions are not required for the
application.

SVGen.s
This file has the CalcSVGen() function, which
calculates the final PWM values as a function of the
3-phase voltage vector.
DS00908B-page 10 © 2007 Microchip Technology Inc.

AN908

Trig.s
This file contains the SinCos() function, which
calculates sine and cosine for a specified angle using
linear interpolation on a table of 128 words.

To save data memory space, the 128-word sine wave
table is placed in program memory and accessed using
the Program Space Visibility (PSV) feature of the dsPIC
DSC architecture. PSV allows a portion of program
memory to be mapped into data memory space so that
constant data can be accessed as if it was in RAM.

This routine works the same for both integer scaling
and 1.15 scaling. For integer scaling the angle is scaled
such that 0 ≤ angle < 2Π corresponds to 0 ≤ angle <
0xFFFF. The resulting Sine and Cosine values are
returned, scaled to -32769 to +32767 (i.e., 0x8000 to
0x7FFF).

For 1.15 scaling, the angle is scaled such that -Π ≤
angle < Π corresponds to -1 to +0.9999 (i.e., 0x8000 ≤
angle < 0x7FFF). The resulting sine and cosine values
are returned scaled to -1 to +0.9999 (i.e., 0x8000 to
0x7FFF).

DEMO HARDWARE
The vector control application can be run on the
dsPICDEM™ MC1 Motor Control Development
System. You will need the following hardware:

• Microchip dsPICDEM MC1 Motor Control
Development Board

• 9 VDC power supply
• Microchip dsPICDEM MC1H 3-Phase High

Voltage Power Module
• Power supply cable for the power module
• 3-Phase AC induction motor with shaft encoder

Recommended Motor and Encoder
The following motor and encoder combination was
used to develop this application and select the software
tuning parameters:

• Leeson Cat# 102684 motor, 1/3 HP, 3450 RPM
• U.S. Digital encoder, model E3-500-500-IHT

The Leeson motor can be obtained from Microchip
or an electric motor distributor. The encoder can
be ordered from the U.S. Digital web site,
www.usdigital.com. This model of encoder is shipped
with a mounting alignment kit and a self-sticking
encoder body. The encoder can be mounted directly on
the front face of the motor, as shown in Figure 12. Any
other similar encoder with 500 lines of resolution may
be used instead of the U.S. Digital device, if desired.

FIGURE 11: HARDWARE SETUP USING
dsPICDEM MOTOR
CONTROL DEVELOPMENT
SYSTEM

FIGURE 12: LEESON MOTOR WITH
MOUNTED INCREMENTAL
ENCODER

If You Select Another Motor...
If another motor is selected, you will likely have to
experiment with the control loop tuning parameters to
get good response from the control algorithm. At a
minimum, you will need to determine the rotor electrical
time constant in seconds. This information can be
obtained from the motor manufacturer. The application
will run without the proper rotor time constant, but the
response of the system to transient changes will not be
ideal.

If the above referenced Leeson motor and a 500-line
encoder are used, no adjustment of software tuning
parameters should be necessary to get the demo
running properly.

Note: An encoder of at least 250 lines per
revolution should be used. The upper limit
would be 32,768 lines per revolution.
© 2007 Microchip Technology Inc. DS00908B-page 11

AN908

Phase Current Feedback
The vector control application requires knowledge of
the 3-phase motor currents. This application is
designed to use the isolated hall-effect current
transducers found on the dsPICDEM MC1H power
module. These transducers are active devices that
provide a 200 KHz bandwidth, 0-5 volt feedback signal.
The hall-effect devices have been used in this
application for convenience and safety reasons. The
signal from these devices can be connected directly to
the dsPIC DSC A/D converter. For your end
application, you can choose to measure currents using
shunt resistors installed in each leg of the 3-phase
inverter. The shunt resistors offer a less expensive
solution for current measurement.

Motor Wiring Configuration
Most 3-phase ACIM’s, including the Leeson motor, can
be wired for 208V or 460V operation. If you are using
the dsPICDEM MC1 system to drive your motor, you
should wire the motor for 208V operation.

The vector control application does not regulate the DC
bus voltage. However, a 208V motor will operate
correctly from a 120V source with limited speed and
torque output.

Jumper Placement
All jumpers on the 3-Phase High Voltage Power
Module can be left at the default settings. If you have
removed the cover of the power module to make
modifications, please refer to the power module user’s
guide for the default jumper configuration.

The following jumper configuration should be used for
the motor control development board.

• The isolated hall-effect current sensors are used
to measure the motor phase currents. Ensure LK1
and LK2 (next to the 5V regulator) are placed on
pins 1 and 2.

• Switch S2 (located next to the ICD connector)
should be set to the ‘Analog’ position when
running the demo code to connect the phase
current feedback to the dsPIC DSC analog input
pins. (S2 should be placed in the ‘ICD’ position for
device programming).

• All other jumpers should be left in their default
placements.

External Connections
• Plug the Motor Control Development Board

directly into the 37 pin connector on the Power
Module.

• Make sure a dsPIC30F6010 device is installed on
the development board.

• Connect the motor leads to the output of the
Power Module in the terminals labeled R,Y and B.
Connect phase 1 to ‘R’, phase 2 to ‘Y’ and phase
3 to ‘B’.

• Connect the encoder leads to the Quadrature
Encoder Interface (QEI) terminal block on the
MCDB. Match up the pin names screened on the
MCDB with the signal names on the encoder.
Finally connect the 9V power supply to J2 on the
MCDB.

Port Usage
Table 2 indicates how the dsPIC DSC device ports are
used in this application. This information is provided to
help you develop your hardware definition. The I/O pins
that are required for the vector control application are
shown in bold text. The application uses other pins,
such as LCD interface lines, that are not required for
the motor control function. These I/O connections may
or may not be used in your final design.
DS00908B-page 12 © 2007 Microchip Technology Inc.

AN908

TABLE 2: dsPIC DEVICE PORT USAGE SUMMARY

Pin Functions Type Application Usage

Port A
RA9 VREF- O LED1, D6 (Active-high)
RA10 VREF+ O LED2, D7 (Active-high)
RA14 INT3 O LED3, D8 (Active-high)
RA15 INT4 O LED4, D9 (Active-high)
Port B
RB0 PGD/EMUD/AN0/CN2 AI Phase1 Current/Device Programming Pin
RB1 PGC/EMUC/AN1/CN3 AI Phase2 Current/Device Programming Pin
RB2 AN2/SS1/LVDIN/CN4 AI not used in application
RB3 AN3/INDX/CN5 I QEI Index
RB4 AN4/QEA/CN6 I QEI A
RB5 AN5/QEB/CN7 I QEI B
RB6 AN6/OCFA AI not used in application
RB7 AN7 AI Pot (VR1)
RB8 AN8 AI not used in application
RB9 AN9 AI not used in application
RB10 AN10 AI not used in application
RB11 AN11 AI not used in application
RB12 AN12 AI not used in application
RB13 AN13 AI not used in application
RB14 AN14 AI not used in application
RB15 AN15/OCFB/CN12 O not used in application
Port C
RC1 T2CK O LCD R/W
RC3 T4CK O LCD RS
RC13 EMUD1/SOSC2/CN1 — Alternate ICD2 Communication Pin
RC14 EMUC1/SOSC1/T1CK/CN0 — Alternate ICD2 Communication Pin
RC15 OSC2/CLKO — —
Port D
RD0 EMUC2/OC1 I/O LCD D0
RD1 EMUD2/OC2 I/O LCD D1
RD2 OC3 I/O LCD D2
RD3 OC4 I/O LCD D3
RD4 OC5/CN13 O not used in application
RD5 OC6/CN14 O not used in application
RD6 OC7/CN15 O PWM for diagnostics output
RD7 OC8/CN16/UPDN O PWM for diagnostics output
RD8 IC1 I not used in application
RD9 IC2 I not used in application
RD10 IC3 I not used in application
RD11 IC4 O Demo board PWM output buffer enable (Active-low)
RD12 IC5 — not used in application
RD13 IC6/CN19 O LCD E
RD14 IC7/CN20 — not used in application
© 2007 Microchip Technology Inc. DS00908B-page 13

AN908
RD15 IC8/CN21 — not used in application
Port E
RE0 PWM1L O Phase1 L
RE1 PWM1H O Phase1 H
RE2 PWM2L O Phase2 L
RE3 PWM2H O Phase2 H
RE4 PWM3L O Phase3 L
RE5 PWM3H O Phase3 H
RE6 PWM4L O not used in application
RE7 PWM4H O not used in application
RE8 FLTA/INT1 I Power Module Fault Signal (Active-low)
RE9 FLTB/INT2 O Power Module Fault Reset (Active-high)
Port F
RF0 C1RX I not used in application
RF1 C1TX O not used in application
RF2 U1RX I not used in application
RF3 U1TX O not used in application
RF4 U2RX/CN17 I not used in application
RF5 U2TX/CN18 O not used in application
RF6 EMUC3/SCK1/INT0 I not used in application
RF7 SDI1 I not used in application
RF8 EMUD3/SDO1 O not used in application
Port G
RG0 C2RX O not used in application
RG1 C2TX O not used in application
RG2 SCL I/O not used in application
RG3 SDA I/O not used in application
RG6 SCK2/CN8 I Button 1 (S4) (Active-low)
RG7 SDI2/CN9 I Button 2 (S5) (Active-low)
RG8 SDO2/CN10 I Button 3 (S6) (Active-low)
RG9 SS2/CN11 I Button 4 (S7) (Active-low)

TABLE 2: dsPIC DEVICE PORT USAGE SUMMARY (CONTINUED)
Pin Functions Type Application Usage
DS00908B-page 14 © 2007 Microchip Technology Inc.

AN908
PROJECT SETUP AND DEVICE
PROGRAMMING
It is recommended that you use MPLAB IDE v6.50, or
later, to create a project and program the device. To
program the source code onto the dsPIC DSC device,
you have two options:

1. You can import the pre-compiled hex file
supplied with the application source code into
MPLAB IDE and program the device, or

2. You can create a new project in MPLAB IDE,
compile the source code and program the
device.

Importing the HEX File
If you do not have the MPLAB C30 compiler installed,
you will not be able to compile the application. In this
case, just use the supplied hex file. You will need to use
the same hardware setup described in the ‘‘Demo
Hardware” section of this document.

Setting Up a New Project
The MPLAB C30 v. 1.20 compiler was used to build the
application source code. To compile the source code,
add all of the assembly files (.s extension) and C files
to a new project. Include a device linker script in your
project files. Assuming the C30 compiler was installed
to the default location, use linker script file
p30f6010.gld (this file is located in the
c:\pic30_tools\support\gld directory).
Also, set the assembler and C compiler include path for
the build options.

These paths are c:\pic30_tools\support\inc
and c:\pic30_tools\support\h.

Device Frequency
The supplied source code is set up to use a 7.37 MHz
crystal and the 8X PLL option on the device oscillator,
providing a device operating speed of 14.76 MIPS. If
you have a different crystal value installed, you
may need to change some of the values in the
UserParms.h file. Refer to the ‘‘Software Tuning”
section of this document for more information on the
adjustment of values in UserParms.h file. Also, you
will need to modify the config.s file if a different
oscillator option is to be used.

SOFTWARE OPERATION
As provided, the demo program has basic features that
allow you to evaluate the performance of the system in
response to a 2:1 step change in requested speed.

Two modes of control are provided that allow full closed
loop operation or operation in a conventional open loop
constant Volts/Hertz mode.

The operational modes are controlled by four push
buttons.

The speed command reference is obtained from
potentiometer VR2, which is a bidirectional control
where zero speed is in the center of the potentiometer.

Buttons

BUTTON 1 (S4)
Pressing Button 1 toggles the active state of the
system. If it is off it will run, and if it is running it will stop.
This button can also be used to clear any hardware
faults by restarting the motor.

BUTTON 2 (S5)
Button 2 toggles the system between open-loop and
closed-loop mode. By default, the system starts in
open-loop mode.

BUTTON 3 (S6)
Button 3 toggles the commanded speed by a factor of
2. It powers up in the half speed mode.

BUTTON 4 (S7)
Button 4 does not have any function in the demo code,
but the button processing code is provided so you can
add your own functions.

LEDs

LED 1 (D6)
LED 1 is on when the system is running. This signal is
modulated by the interrupt routine. The length of the
interrupt service routine can be measured by looking at
the time this signal is high.

LED 2 (D7)
On when system is in closed-loop mode.

LED 3 (D8)
On when speed is at full value, off when speed is at half
value.

LED 4 (D9)
Not used in the application.
© 2007 Microchip Technology Inc. DS00908B-page 15

AN908

FDW/REV (D5)
The RD7 port pin that is connected to D5 is used as an
output compare channel (OC8) for the diagnostics
function. Therefore, D5 activity does not have any
meaning in the application.

If the diagnostics output is not used, D5 can be driven
directly from the QEI on the dsPIC DSC device. There
is a control bit in the QEICON register that enables
RD7 as a direction status output pin. With this feature
enabled, D5 will be lid for the forward direction of travel.

LCD
The LCD is the primary means of user feedback. When
the program is in the standby mode, the display
prompts the user to push S4 to start the motor. When
the program is running, the RPM is displayed. The LCD
is updated in the main loop, and other display
parameters can easily be added.

Troubleshooting
The motor will not run in open-loop mode:

• Check power module fault lights. Reset the dsPIC
DSC device if necessary to clear faults.

• Check to make sure power module has power.
Check bus voltage LED inside module.

The motor runs in open-loop mode, but will not run
closed-loop.

• Ensure S2 is in ‘Analog’ position.
• Make sure LK1 and LK2 are configured properly.
• Check encoder wiring connections.
• There may be a reversal of encoder signals with

respect to motor wiring and direction of rotation. If
this is suspected, reverse the A and B signals on
the encoder wiring connections. The encoder
wiring will also depend on whether the encoder is
mounted on the front or rear of the motor.

SOFTWARE TUNING

Diagnostics Mode
A diagnostics mode is available that allows you to use
spare output compare (OC) channels OC7 and OC8 to
observe internal program variables. These channels
are used as PWM outputs for diagnostics. These PWM
outputs can then be filtered using simple RC filter
networks and used like simple DAC outputs to show
the time history of internal variables on an oscilloscope.

The OC7 and OC8 channels are available on pins RD6
and RD7 of the dsPIC30F6010 device. These two pins
are accessible on header J7 of the dsPICDEM MC1
Motor Control Development Board.

ENABLING DIAGNOSTICS MODE
To enable the diagnostics output, simply uncomment
the #define DIAGNOSTICS statement in the
UserParms.h file and re-compile the application.

HARDWARE SETUP FOR DIAGNOSTICS
You will need to add two RC low-pass filter networks to
your development board to use the diagnostics. The
RC filters should be connected to device pins RD6 and
RD7. A 10 kohm resistor and a 1μF capacitor will work
well for most situations. If you do not have the exact
values, anything close to these values should work
fine.

FIGURE 13: DIAGNOSTICS CIRCUIT

10KOC7

1 μF

Testor
OC8 Point
DS00908B-page 16 © 2007 Microchip Technology Inc.

AN908

Adjusting the PID Gains
The P gain of a PID controller sets the overall system
response. When first tuning a controller, the I and D
gains should be set to zero. The P gain can then be
increased until the system responds well to set-point
changes without excessive overshoot or oscillations.
Using lower values of P gain will ‘loosely’ control the
system, while higher values will give ‘tighter’ control. At
this point, the system will probably not converge to the
set-point.

After a reasonable P gain is selected, the I gain can be
slowly increased to force the system error to zero. Only
a small amount of I gain is required in most systems.
Note that the effect of the I gain, if large enough, can
overcome the action of the P term, slow the overall
control response and cause the system to oscillate
around the set-point. If oscillation occurs, reducing the
I gain and increasing the P gain will usually solve the
problem.

This application includes a term to limit integral windup,
which will occur if the integrated error saturates the
output parameter. Any further increase in the integrated
error will not effect the output. If allowed to accumulate,
when the error does decrease the accumulated error
will have to reduce (or unwind) to below the value that
caused the output to saturate. The Kc coefficient limits
this unwanted accumulation. For most situations, it can
be set equal to Ki.

All three controllers have a maximum value for the
output parameter. These values can be found in the
UserParms.h file and are currently set to avoid
saturation in the SVGen() routine.

CONTROL LOOP DEPENDENCIES
There are three PI control loops in this application that
are interdependent. The outer loop controls the motor
velocity. The two inner loops control the transformed
motor currents, Id and Iq. As mentioned previously, the
Id loop is responsible for controlling flux and the Iq value
is responsible for controlling the motor torque.

TORQUE MODE
When adjusting the coefficients for the three control
loops, it can be beneficial to separate the outer control
loop from the inner loops. The motor can be operated
in a torque mode by uncommenting the #define
TORQUE_MODE statement in the UserParms.h file.
This will bypass the outer velocity control loop and feed
the potentiometer demand value directly to the Iq
control loop set-point.

RECOMMENDED CONTROL LOOP TUNING
PROCEDURE
If the control loops require adjustment, it is helpful to
bypass the velocity control loop as described above. In
most situations, the PI coefficients for the Id and Iq
control loops should be set to equal values. Once the
motor has good torque response in the torque mode,
the velocity control loop can be enabled and adjusted.

Example Scope Plots
The following scope plots demonstrate the use of the
diagnostic outputs and proper tuning of the application
parameters.

A plot of the transformed quadrature phase current (Iq)
vs. the motor mechanical velocity is shown in
Figure 14. Assuming the application is properly tuned,
the Iq value is proportional to the motor torque. This
value can be found in the ParkParm data structure.
The motor mechanical velocity is in the EncoderParm
data structure.

The plot shows an example of properly tuned control
loops. As you can see, there is little overshoot or
ringing in the bottom trace (motor velocity). Also, there
is a rapid response in the quadrature current (top
trace), followed by a decay with little overshoot or
ringing as the motor reaches the new speed.

FIGURE 14: IQ VS. VELOCITY, 500 TO
1000 RPM STEP
© 2007 Microchip Technology Inc. DS00908B-page 17

AN908

Figure 15 compares the actual AC phase current and
the motor velocity during a 1000 RPM to 2000 RPM
step change with properly tuned PI loop parameters
and the correct motor time constant. The phase current
is measured directly from one of the two phase current
sensors on the motor control development system. The
velocity data is obtained from the EncoderParm data
structure and sent to one of the PWM diagnostic
outputs for display on the scope. In this scope plot you
can observe that the velocity moves quickly to the new
setpoint with little or no overshoot and ringing.
Furthermore, the amplitude of the phase current does
not change dramatically during the speed change.

FIGURE 15: PHASE CURRENT VS.
VELOCITY, 1000 TO 2000
RPM STEP, TR = 0.078 SEC

Figure 16 shows the same phase current and velocity
data shown in Figure 15. In this case, a step change is
made from 1000 RPM to 2000 RPM in open-loop
mode. The speed change in open-loop mode requires
a higher current amplitude and more time to complete.
A comparison of Figure 15 and Figure 16 clearly shows
the benefits of vector control. The speed change takes
less current to execute in closed-loop mode.

FIGURE 16: PHASE CURRENT VS.
VELOCITY, 1000 TO 2000
RPM STEP, OPEN LOOP

Figure 17 demonstrates a step change with an
incorrect rotor time constant value. The step change
requires more current and time to execute.

FIGURE 17: PHASE CURRENT VS.
VELOCITY, 1000 TO 2000
RPM STEP, TR = 0.039 SEC

APPENDIX A. REFERENCES
1. Vector Control and Dynamics of AC Drives,

D. W. Novotny, T. A. Lipo, Oxford University
Press, 2003, ISBN: 0 19 856439 2.

2. Modern Power Electronics and AC Drives,
Bimal K. Bose, Pearson Education, 2001,
ISBN: 0 13 016743 6.
DS00908B-page 18 © 2007 Microchip Technology Inc.

AN908
APPENDIX B. SOURCE CODE
This appendix contains source listings for the files
listed below. These are the primary files associated
with the vector control algorithm. Other files related to
the user interface have not been included in this listing.

If you are viewing an electronic version of this
application, you can navigate to a particular file by
clicking the file name below.

Header Files
UserParms.h

C Files
ACIM.c

Encoder.c

InitCurModel.c

Assembly Files
CalcRef.s

CalcVel.s

ClarkePark.s

CurModel.s

FdWeak.s

InvPark.s

MeasCur.s

OpenLoop.s

PI.s

ReadADC0.s

SVGen.s

Trig.s

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR
STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE
FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
© 2007 Microchip Technology Inc. DS00908B-page 19

AN908

UserParms.h
//#define TORQUE_MODE
#define DIAGNOSTICS

//**************** Oscillator ************************************
#define dFoscExt 7372800 // External Crystal or Clock Frequency (Hz)
#define dPLL 8 // PLL ratio
#define dLoopTimeInSec 0.00005 // PWM Period - 100 uSec, 10Khz PWM
#define dDeadTimeSec 0.000002 // Deadtime in seconds
// Derived
#define dFosc (dFoscExt*dPLL) // Clock frequency (Hz)
#define dFcy (dFosc/4) // Instruction cycle frequency (Hz)
#define dTcy (1.0/dFcy) // Instruction cycle period (sec)
#define dDeadTime (int)(dDeadTimeSec*dFcy) // Dead time in dTcys
#define dLoopInTcy (dLoopTimeInSec/dTcy) // Basic loop period in units of Tcy
#define dDispLoopTime 0.100 // Display and button polling loop

//**************** Motor Parameters ******************************
#define diPoles 1 // Number of pole pairs
#define diCntsPerRev 2000 // Encoder Lines per revolution
#define diNomRPM 3600 // Name Plate Motor RPM
#define dfRotorTmConst 0.078 // Rotor time constant in sec, from mfgr

//**************** Measurement *************************************
#define diIrpPerCalc 30 // PWM loops per velocity calculation

//************** PI Coefficients ************************************
#define dDqKp 0x2000 // 4.0 (NKo = 4)
#define dDqKi 0x0100; // 0.125
#define dDqKc 0x0100; // 0.125
#define dDqOutMax 0x5A82; // 0.707 set to prevent saturation

#define dQqKp 0x2000; // 4.0 (NKo = 4)
#define dQqKi 0x0100; // 0.125
#define dQqKc 0x0100; // 0.125
#define dQqOutMax 0x5A82; // 0.707 set to prevent saturation

#define dQrefqKp 0x4000 // 8.0 (NKo = 4)
#define dQrefqKi 0x0800 // 1.0
#define dQrefqKc 0x0800 // 1.0
#define dQrefqOutMax 0x3FFF // 0.4999 set to prevent saturation

//************** ADC Scaling ***************************************
// Scaling constants: Determined by calibration or hardware design.
#define dqK 0x3FFF; // equivalent to 0.4999
#define dqKa 0x3FFF; // equivalent to 0.4999
#define dqKb 0x3FFF; // equivalent to 0.4999

//************** Field Weakening **************************************
// Flux reference value in constant torque range.
// Determined empirically to give rated volts/hertz
#define dqK1 3750; //
DS00908B-page 20 © 2007 Microchip Technology Inc.

AN908

ACIM.c
/**
* *
* Author: John Theys/Dave Ross *
* *
* Filename: ACIM.c *
* Date: 10/31/03 *
* File Version: 3.00 *
* *
* Tools used: MPLAB -> 6.43 *
* Compiler -> 1.20.00 *
* *
* Linker File: p30f6010.gld *
* *
* *

*10/31/03 2.00 Released Motor runs fine, still some loose ends
*
*12/19/03 2.01 Cleaned up structure, created UserParms.h for all user defines.
*
*02/12/043.00-Removed unnecessary files from project.
* -Changed iRPM to int to correct floating point calc problems.
* -CalcVel() and velocity control loop only execute after number of loop periods
* specified by iIrpPerCalc.
* -Added iDispLoopCount variable to schedule execution of display and button routines
* -trig.s file changed to use program space for storage of sine data.
* -Added DiagnosticsOutput() function that uses output compare channels to
* output control variable information.
* -Added TORQUE_MODE definition to bypass velocity control loop.
* -Turned off SATDW bit in curmodel.s file. The automatic saturation feature prevents
* slip angle calculation from wrapping properly.
**
* Code Description
*
* This file demonstrates Vector Control of a 3 phase ACIM using the dsPIC30F.
* SVM is used as the modulation strategy.
***/

/*************************** GLOBAL DEFINITIONS ***********************/

#define INITIALIZE
#include "Motor.h"
#include "Parms.h"
#include "Encoder.h"
#include "SVGen.h"
#include "ReadADC.h"
#include "MeasCurr.h"
#include "CurModel.h"
#include "FdWeak.h"
#include "Control.h"
#include "PI.h"
#include "Park.h"
#include "OpenLoop.h"
#include "LCD.h"
#include "bin2dec.h"
#include "UserParms.h"

/*********************** END OF GLOBAL DEFINITIONS ********************/

unsigned short uWork;
short iCntsPerRev;
short iDeltaPos;
© 2007 Microchip Technology Inc. DS00908B-page 21

AN908

union {

struct
{
unsigned DoLoop:1;
unsigned OpenLoop:1;
unsigned RunMotor:1;
unsigned Btn1Pressed:1;
unsigned Btn2Pressed:1;
unsigned Btn3Pressed:1;
unsigned Btn4Pressed:1;
unsigned ChangeMode:1;
unsigned ChangeSpeed:1;
unsigned :7;
}bit;

WORD Word;
} uGF; // general flags

tPIParm PIParmQ;
tPIParm PIParmQref;
tPIParm PIParmD;

tReadADCParm ReadADCParm;

int iRPM;
WORD iMaxLoopCnt;
WORD iLoopCnt;
WORD iDispLoopCnt;

/**/
void __attribute__((__interrupt__)) _ADCInterrupt(void);
void SetupBoard(void);
bool SetupParm(void);
void DoControl(void);
void Dis_RPM(BYTE bChrPosC, BYTE bChrPosR);
void DiagnosticsOutput(void);

/******************** START OF MAIN FUNCTION *************************/

int main (void)
{

SetupPorts();
InitLCD();

while(1)
{
uGF.Word = 0; // clear flags

// init Mode
uGF.bit.OpenLoop = 1; // start in openloop

// init LEDs
pinLED1 = 0;
pinLED2 = !uGF.bit.OpenLoop;
pinLED3 = 0;
pinLED4 = 0;

// init board
SetupBoard();

// init user specified parms and stop on error
if(SetupParm())

{
// Error
uGF.bit.RunMotor=0;
return;
DS00908B-page 22 © 2007 Microchip Technology Inc.

AN908

}

// zero out i sums
PIParmD.qdSum = 0;
PIParmQ.qdSum = 0;
PIParmQref.qdSum = 0;

iMaxLoopCnt = 0;

Wrt_S_LCD("Vector Control ", 0 , 0);
Wrt_S_LCD("S4-Run/Stop ", 0, 1);

// Enable ADC interrupt and begin main loop timing
IFS0bits.ADIF = 0;
IEC0bits.ADIE = 1;

if(!uGF.bit.RunMotor)
{
// Initialize current offset compensation
while(!pinButton1) //wait here until button 1 is pressed

{
ClrWdt();

// Start offset accumulation //and accumulate current offset while waiting
MeasCompCurr();

}
while(pinButton1); //when button 1 is released
uGF.bit.RunMotor = 1; //then start motor
}

// Run the motor
uGF.bit.ChangeMode = 1;
// Enable the driver IC on the motor control PCB
pinPWMOutputEnable_ = 0;

Wrt_S_LCD("RPM= ", 0, 0);
Wrt_S_LCD("S5-Cls. Lp S6-2x", 0, 1);

//Run Motor loop
while(1)

{
ClrWdt();

// If using OC7 and OC8 to display vector control variables,
// call the update code.
#ifdefDIAGNOSTICS
DiagnosticsOutput();
#endif

// The code that updates the LCD display and polls the buttons
// executes every 50 msec.

if(iDispLoopCnt >= dDispLoopCnt)
{
//Display RPM
Dis_RPM(5,0);

// Button 1 starts or stops the motor
if(pinButton1)

{
if(!uGF.bit.Btn1Pressed)

uGF.bit.Btn1Pressed = 1;
}

else
© 2007 Microchip Technology Inc. DS00908B-page 23

AN908

{
if(uGF.bit.Btn1Pressed)

{
// Button just released
uGF.bit.Btn1Pressed = 0;
// begin stop sequence
uGF.bit.RunMotor = 0;
pinPWMOutputEnable_ = 1;
break;
}

}

//while running button 2 will toggle open and closed loop
if(pinButton2)

{
if(!uGF.bit.Btn2Pressed)

uGF.bit.Btn2Pressed = 1;
}

else
{
if(uGF.bit.Btn2Pressed)

{
// Button just released
uGF.bit.Btn2Pressed = 0;
uGF.bit.ChangeMode = 1;
uGF.bit.OpenLoop = ! uGF.bit.OpenLoop;
pinLED2 = !uGF.bit.OpenLoop;
}

}

//while running button 3 will double/half the speed or torque demand
if(pinButton3)

{
if(!uGF.bit.Btn3Pressed)

uGF.bit.Btn3Pressed = 1;
LATGbits.LATG0 = 0;

}
else

{
if(uGF.bit.Btn3Pressed)

{
// Button just released
uGF.bit.Btn3Pressed = 0;
uGF.bit.ChangeSpeed = !uGF.bit.ChangeSpeed;
pinLED3 = uGF.bit.ChangeSpeed;
LATGbits.LATG0 = 1;
}

}

// Button 4 does not do anything
if(pinButton4)

{
if(!uGF.bit.Btn4Pressed)

uGF.bit.Btn4Pressed = 1;
}

else
{
if(uGF.bit.Btn4Pressed)

{
// Button just released
uGF.bit.Btn4Pressed = 0;
//*** ADD CODE HERE FOR BUTTON 4 FUNCTION
}

}

DS00908B-page 24 © 2007 Microchip Technology Inc.

AN908

} // end of display and button polling code

} // End of Run Motor loop

} // End of Main loop

// should never get here

while(1){}
}

//---
// Executes one PI itteration for each of the three loops Id,Iq,Speed
void DoControl(void)
{
short i;

// Assume ADC channel 0 has raw A/D value in signed fractional form from
// speed pot (AN7).
ReadSignedADC0(&ReadADCParm);

// Set reference speed
if(uGF.bit.ChangeSpeed)

CtrlParm.qVelRef = ReadADCParm.qADValue/8;
else

CtrlParm.qVelRef = ReadADCParm.qADValue/16;

if(uGF.bit.OpenLoop)
{

‘ // OPENLOOP: force rotating angle,Vd,Vq

if(uGF.bit.ChangeMode)
{
// just changed to openloop
uGF.bit.ChangeMode = 0;
// synchronize angles
OpenLoopParm.qAngFlux = CurModelParm.qAngFlux;

// VqRef & VdRef not used
CtrlParm.qVqRef = 0;
CtrlParm.qVdRef = 0;
}

OpenLoopParm.qVelMech = CtrlParm.qVelRef;

// calc rotational angle of rotor flux in 1.15 format

// just for reference & sign needed by CorrectPhase
CurModelParm.qVelMech = EncoderParm.qVelMech;
CurModel();

ParkParm.qVq = 0;

if(OpenLoopParm.qVelMech >= 0)
i = OpenLoopParm.qVelMech;

else
i = -OpenLoopParm.qVelMech;

uWork = i <<2;

if(uWork > 0x5a82)
uWork = 0x5a82;

if(uWork < 0x1000)
uWork = 0x1000;
© 2007 Microchip Technology Inc. DS00908B-page 25

AN908
ParkParm.qVd = uWork;

OpenLoop();
ParkParm.qAngle = OpenLoopParm.qAngFlux;

}
else

// Closed Loop Vector Control
{

if(uGF.bit.ChangeMode)
{
// just changed from openloop
uGF.bit.ChangeMode = 0;

// synchronize angles and prep qdImag
CurModelParm.qAngFlux = OpenLoopParm.qAngFlux;
CurModelParm.qdImag = ParkParm.qId;
}

// Current model calculates angle
CurModelParm.qVelMech = EncoderParm.qVelMech;

CurModel();

ParkParm.qAngle = CurModelParm.qAngFlux;

// Calculate qVdRef from field weakening
FdWeakening();

// Set reference speed

// If the application is running in torque mode, the velocity
// control loop is bypassed. The velocity reference value, read
// from the potentiometer, is used directly as the torque
// reference, VqRef.
#ifdefTORQUE_MODE
CtrlParm.qVqRef = CtrlParm.qVelRef;

#else
// Check to see if new velocity information is available by comparing
// the number of interrupts per velocity calculation against the
// number of velocity count samples taken. If new velocity info
// is available, calculate the new velocity value and execute
// the speed control loop.
if(EncoderParm.iVelCntDwn == EncoderParm.iIrpPerCalc)

{
// Calculate velocity from acumulated encoder counts

CalcVel();
// Execute the velocity control loop
PIParmQref.qInMeas = EncoderParm.qVelMech;
PIParmQref.qInRef = CtrlParm.qVelRef;
CalcPI(&PIParmQref);
CtrlParm.qVqRef = PIParmQref.qOut;
}
#endif

// PI control for Q
PIParmQ.qInMeas = ParkParm.qIq;
PIParmQ.qInRef = CtrlParm.qVqRef;
CalcPI(&PIParmQ);
ParkParm.qVq = PIParmQ.qOut;

// PI control for D
DS00908B-page 26 © 2007 Microchip Technology Inc.

AN908

PIParmD.qInMeas = ParkParm.qId;
PIParmD.qInRef = CtrlParm.qVdRef;
CalcPI(&PIParmD);
ParkParm.qVd = PIParmD.qOut;

}
}

//---
// The ADC ISR does speed calculation and executes the vector update loop.
// The ADC sample and conversion is triggered by the PWM period.
// The speed calculation assumes a fixed time interval between calculations.
//---

void __attribute__((__interrupt__)) _ADCInterrupt(void)
{

IFS0bits.ADIF = 0;

// Increment count variable that controls execution
// of display and button functions.
iDispLoopCnt++;

// acumulate encoder counts since last interrupt
CalcVelIrp();

if(uGF.bit.RunMotor)

{

// Set LED1 for diagnostics
pinLED1 = 1;

// use TMR1 to measure interrupt time for diagnostics
TMR1 = 0;
iLoopCnt = TMR1;

 MeasCompCurr();

// Calculate qId,qIq from qSin,qCos,qIa,qIb
ClarkePark();

// Calculate control values
DoControl();

// Calculate qSin,qCos from qAngle
SinCos();

// Calculate qValpha, qVbeta from qSin,qCos,qVd,qVq
InvPark();

// Calculate Vr1,Vr2,Vr3 from qValpha, qVbeta
CalcRefVec();

// Calculate and set PWM duty cycles from Vr1,Vr2,Vr3
CalcSVGen();

// Measure loop time
iLoopCnt = TMR1 - iLoopCnt;
if(iLoopCnt > iMaxLoopCnt)

iMaxLoopCnt = iLoopCnt;

// Clear LED1 for diagnostics
pinLED1 = 0;
}

}

© 2007 Microchip Technology Inc. DS00908B-page 27

AN908
//---
// SetupBoard
//
// Initialze board
//---

void SetupBoard(void)
{

BYTE b;

// Disable ADC interrupt
IEC0bits.ADIE = 0;

// Reset any active faults on the motor control power module.
pinFaultReset = 1;
for(b=0;b<10;b++)

Nop();
pinFaultReset = 0;

// Ensure PFC switch is off.
pinPFCFire = 0;
// Ensure brake switch is off.
pinBrakeFire = 0;

}

//---
// Dis_RPM
//
// Display RPM
//---

void Dis_RPM(BYTE bChrPosC, BYTE bChrPosR)
{

if (EncoderParm.iDeltaCnt < 0)
Wrt_S_LCD("-", bChrPosC, bChrPosR);

else
Wrt_S_LCD(" ", bChrPosC, bChrPosR);

iRPM =

EncoderParm.iDeltaCnt*60/(MotorParm.fLoopPeriod*MotorParm.iIrpPerCalc*EncoderParm.iCntsPerRev);
Wrt_Signed_Int_LCD(iRPM, bChrPosC+1, bChrPosR);

}
//---
bool SetupParm(void)
{

// Turn saturation on to insure that overflows will be handled smoothly.
CORCONbits.SATA = 0;

// Setup required parameters

// Pick scaling values to be 8 times nominal for speed and current

// Use 8 times nominal mechanical speed of motor (in RPM) for scaling
MotorParm.iScaleMechRPM = diNomRPM*8;

// Number of pole pairs
MotorParm.iPoles = diPoles ;

// Encoder counts per revolution as detected by the
// dsPIC quadrature configuration.
MotorParm.iCntsPerRev = diCntsPerRev;
DS00908B-page 28 © 2007 Microchip Technology Inc.

AN908

// Rotor time constant in sec
MotorParm.fRotorTmConst = dfRotorTmConst;

// Basic loop period (in sec). (PWM interrupt period)
MotorParm.fLoopPeriod = dLoopInTcy * dTcy; //Loop period in cycles * sec/cycle

// Encoder velocity interrupt period (in sec).
MotorParm.fVelIrpPeriod = MotorParm.fLoopPeriod;

// Number of vel interrupts per velocity calculation.
MotorParm.iIrpPerCalc = diIrpPerCalc; // In loops

// Scale mechanical speed of motor (in rev/sec)
MotorParm.fScaleMechRPS = MotorParm.iScaleMechRPM/60.0;

// Scaled flux speed of motor (in rev/sec)
// All dimensionless flux velocities scaled by this value.
MotorParm.fScaleFluxRPS = MotorParm.iPoles*MotorParm.fScaleMechRPS;

// Minimum period of one revolution of flux vector (in sec)
MotorParm.fScaleFluxPeriod = 1.0/MotorParm.fScaleFluxRPS;

// Fraction of revolution per LoopTime at maximum flux velocity
MotorParm.fScaleFracRevPerLoop = MotorParm.fLoopPeriod * MotorParm.fScaleFluxRPS;

// Scaled flux speed of motor (in radians/sec)
// All dimensionless velocities in radians/sec scaled by this value.
MotorParm.fScaleFluxSpeed = 6.283 * MotorParm.fScaleFluxRPS;

// Encoder count rate at iScaleMechRPM
MotorParm.lScaleCntRate = MotorParm.iCntsPerRev * (MotorParm.iScaleMechRPM/60.0);

// ============= Open Loop ======================

OpenLoopParm.qKdelta = 32768.0 * 2 * MotorParm.iPoles * MotorParm.fLoopPeriod *
MotorParm.fScaleMechRPS;

OpenLoopParm.qVelMech = dqOL_VelMech;
CtrlParm.qVelRef = OpenLoopParm.qVelMech;

InitOpenLoop();

// ============= Encoder ===============

if(InitEncoderScaling())
// Error
return True;

// ============= ADC - Measure Current & Pot ======================

// Scaling constants: Determined by calibration or hardware design.
ReadADCParm.qK = dqK;

MeasCurrParm.qKa = dqKa;
MeasCurrParm.qKb = dqKb;

// Inital offsets
InitMeasCompCurr(450, 730);

// ============= Current Model ===============

if(InitCurModelScaling())
// Error
return True;
© 2007 Microchip Technology Inc. DS00908B-page 29

AN908
// ============= Field Weakening ===============
// Field Weakening constant for constant torque range
FdWeakParm.qK1 = dqK1; // Flux reference value

// ============= PI D Term ===============
PIParmD.qKp = dDqKp;
PIParmD.qKi = dDqKi;
PIParmD.qKc = dDqKc;
PIParmD.qOutMax = dDqOutMax;
PIParmD.qOutMin = -PIParmD.qOutMax;

InitPI(&PIParmD);

// ============= PI Q Term ===============
PIParmQ.qKp = dQqKp;
PIParmQ.qKi = dQqKi;
PIParmQ.qKc = dQqKc;
PIParmQ.qOutMax = dQqOutMax;
PIParmQ.qOutMin = -PIParmQ.qOutMax;

InitPI(&PIParmQ);

// ============= PI Qref Term ===============
PIParmQref.qKp = dQrefqKp;
PIParmQref.qKi = dQrefqKi;
PIParmQref.qKc = dQrefqKc;
PIParmQref.qOutMax = dQrefqOutMax;
PIParmQref.qOutMin = -PIParmQref.qOutMax;

InitPI(&PIParmQref);

// ============= SVGen ===============
// Set PWM period to Loop Time
SVGenParm.iPWMPeriod = dLoopInTcy;

// ============= TIMER #1 ======================
PR1 = 0xFFFF;
T1CONbits.TON = 1;
T1CONbits.TCKPS = 1; // prescale of 8 => 1.08504 uS tick

// ============= Motor PWM ======================

PDC1 = 0;
PDC2 = 0;
PDC3 = 0;
PDC4 = 0;

// Center aligned PWM.
// Note: The PWM period is set to dLoopInTcy/2 but since it counts up and
// and then down => the interrupt flag is set to 1 at zero => actual
// interrupt period is dLoopInTcy

PTPER = dLoopInTcy/2; // Setup PWM period to Loop Time defined in parms.h

PWMCON1 = 0x0077; // Enable PWM 1,2,3 pairs for complementary mode
DTCON1 = dDeadTime; // Dead time
DTCON2 = 0;
FLTACON = 0; // PWM fault pins not used
FLTBCON = 0;
PTCON = 0x8002; // Enable PWM for center aligned operation

// SEVTCMP: Special Event Compare Count Register
// Phase of ADC capture set relative to PWM cycle: 0 offset and counting up
SEVTCMP = 2; // Cannot be 0 -> turns off trigger (Missing from doc)
DS00908B-page 30 © 2007 Microchip Technology Inc.

AN908

SEVTCMPbits.SEVTDIR = 0;

// ============= Encoder ===============

MAXCNT = MotorParm.iCntsPerRev;
POSCNT = 0;
QEICON = 0;
QEICONbits.QEIM = 7; // x4 reset by MAXCNT pulse
QEICONbits.POSRES = 0; // Don't allow Index pulse to reset counter
QEICONbits.SWPAB = 0; // direction
DFLTCON = 0; // Digital filter set to off

// ============= ADC - Measure Current & Pot ======================
// ADC setup for simultanous sampling on
// CH0=AN7, CH1=AN0, CH2=AN1, CH3=AN2.
// Sampling triggered by PWM and stored in signed fractional form.

ADCON1 = 0;
// Signed fractional (DOUT = sddd dddd dd00 0000)
ADCON1bits.FORM = 3;
// Motor Control PWM interval ends sampling and starts conversion
ADCON1bits.SSRC = 3;
// Simultaneous Sample Select bit (only applicable when CHPS = 01 or 1x)
// Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS = 1x)
// Samples CH0 and CH1 simultaneously (when CHPS = 01)
ADCON1bits.SIMSAM = 1;
// Sampling begins immediately after last conversion completes.
// SAMP bit is auto set.
ADCON1bits.ASAM = 1;

ADCON2 = 0;
// Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS = 1x)
ADCON2bits.CHPS = 2;

ADCON3 = 0;
// A/D Conversion Clock Select bits = 8 * Tcy
ADCON3bits.ADCS = 15;

/* ADCHS: ADC Input Channel Select Register */
ADCHS = 0;
// CH0 is AN7
ADCHSbits.CH0SA = 7;
// CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2
ADCHSbits.CH123SA = 0;

/* ADPCFG: ADC Port Configuration Register */
// Set all ports digital
ADPCFG = 0xFFFF;
ADPCFGbits.PCFG0 = 0; // AN0 analog
ADPCFGbits.PCFG1 = 0; // AN1 analog
ADPCFGbits.PCFG2 = 0; // AN2 analog
ADPCFGbits.PCFG7 = 0; // AN7 analog

/* ADCSSL: ADC Input Scan Select Register */
ADCSSL = 0;

// Turn on A/D module
ADCON1bits.ADON = 1;

#ifdefDIAGNOSTICS
// Initialize Output Compare 7 and 8 for use in diagnostics.
© 2007 Microchip Technology Inc. DS00908B-page 31

AN908

// Compares are used in PWM mode
// Timer2 is used as the timebase
PR2 = 0x1FFF;
OC7CON = 0x0006;
OC8CON = 0x0006;
T2CONbits.TON = 1;
#endif

return False;
}

#ifdefDIAGNOSTICS
void DiagnosticsOutput(void)
{
int Data;

if(IFS0bits.T2IF)
{
IFS0bits.T2IF = 0;
Data = (ParkParm.qIq >> 4) + 0xfff;
if(Data > 0x1ff0) Data = 0x1ff0;
if(Data < 0x000f) Data = 0x000f;
OC7RS = Data;
Data = (EncoderParm.qVelMech) + 0x0fff;
if(Data > 0x1ff0) Data = 0x1ff0;
if(Data < 0x000f) Data = 0x000f;
OC8RS = Data;
}

}
#endif
DS00908B-page 32 © 2007 Microchip Technology Inc.

AN908

Encoder.c
// Scaling for encoder routines

#include "general.h"
#include "Parms.h"
#include "Encoder.h"

/**
InitEncoderScaling

Initialize scaling constants for encoder rotuines.

Arguments:
CntsPerRev: Encoder counts per revolution from quadrature
ScalingSpeedInRPS: Rev per sec used for basic velocity scaling
IrpPerCalc: Number of CalcVelIrp interrupts per velocity calculation
VelIrpPeriod: Period between VelCalcIrp interrupts (in Sec)

For CalcAng:
Runtime equation:
qMechAng = qKang * (POSCNT*4) / 2^Nang
Scaling equations:

qKang = (2^15)*(2^Nang)/CntsPerRev.
For CalcVelIrp, CalcVel:

Runtime equation:
qMechVel = qKvel * (2^15 * Delta / 2^Nvel)

Scaling equations:
fVelCalcPeriod = fVelIrpPeriod * iIrpPerCalc
MaxCntRate = CntsPerRev * ScaleMechRPS
MaxDeltaCnt = fVelCalcPeriod * MaxCntRate
qKvel = (2^15)*(2^Nvel)/MaxDeltaCnt

**/

bool InitEncoderScaling(void)
{

float fVelCalcPeriod, fMaxCntRate;
long MaxDeltaCnt;
long K;

EncoderParm.iCntsPerRev = MotorParm.iCntsPerRev;

K = 32768;
K *= 1 << Nang;
EncoderParm.qKang = K/EncoderParm.iCntsPerRev;

EncoderParm.iIrpPerCalc = MotorParm.iIrpPerCalc;
fVelCalcPeriod = MotorParm.fVelIrpPeriod * MotorParm.iIrpPerCalc;
fMaxCntRate = EncoderParm.iCntsPerRev * MotorParm.fScaleMechRPS;
MaxDeltaCnt = fVelCalcPeriod * fMaxCntRate;

// qKvel = (2^15)*(2^Nvel)/MaxDeltaCnt
K = 32768;
K *= 1 << Nvel;
K /= MaxDeltaCnt;
if(K >= 32768)

// Error
return True;

EncoderParm.qKvel = K;

// Initialize private variables used by CalcVelIrp.
InitCalcVel();
return False;

}

© 2007 Microchip Technology Inc. DS00908B-page 33

AN908

InitCurModel.c
// Scaling for current model routine

#include "general.h"
#include "Parms.h"
#include "CurModel.h"

/**
InitCurModelScaling

Initialize scaling constants for current model routine.

Physical constants:
 fRotorTmConst Rotor time constant in sec

Physical form of equations:
 Magnetizing current (amps):
 Imag = Imag + (fLoopPeriod/fRotorTmConst)*(Id - Imag)

 Slip speed in RPS:
 VelSlipRPS = (1/fRotorTmConst) * Iq/Imag / (2*pi)

 Rotor flux speed in RPS:
 VelFluxRPS = iPoles * VelMechRPS + VelSlipRPS

 Rotor flux angle (radians):
 AngFlux = AngFlux + fLoopPeriod * 2 * pi * VelFluxRPS

Scaled Variables:
 qImag Magnetizing current scaled by maximum current
 qVelSlip Mechnical Slip velocity in RPS scaled by fScaleMechRPS
 qAngFlux Flux angle scaled by pi

Scaled Equations:
 qImag = qImag + qKcur * (qId - qImag)
 qVelSlip = Kslip * qIq/qImag
 qAngFlux = qAngFlux + Kdelta * (qVelMech + qVelSlip)

Scaling factors:
 qKcur = (2^15) * (fLoopPeriod/fRotorTmConst)
 qKdelta = (2^15) * 2 * iPoles * fLoopPeriod * fScaleMechRPS
 qKslip = (2^15)/(2 * pi * fRotorTmConst * iPoles * fScaleMechRPS)

**/

bool InitCurModelScaling(void)
{
 CurModelParm.qKcur = 32768.0 * MotorParm.fLoopPeriod / MotorParm.fRotorTmConst;

 CurModelParm.qKdelta = 32768.0 * 2 * MotorParm.iPoles * MotorParm.fLoopPeriod *
MotorParm.fScaleMechRPS;

 CurModelParm.qKslip = 32768.0/(6.2832 * MotorParm.iPoles *
MotorParm.fScaleMechRPS*MotorParm.fRotorTmConst);

 // Maximum allowed slip speed
 CurModelParm.qMaxSlipVel = 32768.0/8;

 // Initialize private variables used by CurrModel
 InitCurModel();
 return False;
}

DS00908B-page 34 © 2007 Microchip Technology Inc.

AN908

MeasCur.s
;***
; MeasCompCurr
;
; Description:
; Read Channels 1 & 2 of ADC, scale them as signed fractional values
; using qKa, qKb and put the results qIa and qIb of ParkParm.
; Running average value of ADC-Ave is maintained and subtracted from
; ADC value before scaling.
;
; Specifically the offset is accumulated as a 32-bit signed integer
; iOffset += (ADC-Offset)
; and is used to correct the raw ADC by
; CorrADC = ADCBUFn - iOffset/2^16
; which gives an offset time constant of ~ MeasurementPeriod*2^16
;
; Do not call this routine until conversion is completed.
;
; Scaling constant, qKa and qKb, must be set elsewhere such that
; qIa = 2 * qKa * CorrADC1
; qIb = 2 * qKb * CorrADC2
; The factor of 2 is designed to allow qKa & qKb to be given in 1.15.
;
; Functional prototypes:
; void MeasCompCurr(void);
; void InitMeasCompCurr(short iOffset_a, short iOffset_b);
;
; On Start: Must call InitMeasCompCurr.
; On Entry: MeasCurrParm structure must contain qKa & qKb.
; ADC channels 1 & 2must contain signed fractional value.
; On Exit: ParkParm will contain qIa & qIb.
;
;Parameters:
; Input arguments:
; None
; Return:
; Void
; SFR Settings required:
; CORCON.SATA = 0
; If there is any chance that Accumulator will overflow must set
; CORCON.SATDW = 1
;
; Support routines required:
; None
; Local Stack usage:
; None
; Registers modified:
; w0,w1,w4,w5
; Timing:
; 29 cycles
;***

global _MeasCompCurr
global MeasCompCurr

_MeasCompCurr:
MeasCompCurr:

;; CorrADC1 = ADCBUF1 - iOffsetHa/2^16
;; qIa = 2 * qKa * CorrADC1

mov.w _MeasCurrParm+ADC_iOffsetHa,w0
sub.w _ADCBUF1,WREG w0 = ADC - Offset
clr.w w1
btsc w0,#15
setm w1
© 2007 Microchip Technology Inc. DS00908B-page 35

AN908

mov.w w0,w5
mov.w _MeasCurrParm+ADC_qKa,w4
mpy w4*w5,A
sac A,#-1,w4
mov.w w4,_ParkParm+Park_qIa

;; iOffset += (ADC-Offset)
add _MeasCurrParm+ADC_iOffsetLa
mov.w w1,w0
addc _MeasCurrParm+ADC_iOffsetHa

;; CorrADC2 = ADCBUF2 - iOffsetHb/2^16
;; qIb = 2 * qKb * CorrADC2

mov.w _MeasCurrParm+ADC_iOffsetHb,w0
sub.w _ADCBUF2,WREG ; w0 = ADC - Offset
clr.w w1
btsc w0,#15
setm w1
mov.w w0,w5
mov.w _MeasCurrParm+ADC_qKb,w4
mpy w4*w5,A
sac A,#-1,w4
mov.w w4,_ParkParm+Park_qIb

;; iOffset += (ADC-Offset)
add _MeasCurrParm+ADC_iOffsetLb
mov.w w1,w0
addc _MeasCurrParm+ADC_iOffsetHb

return

ClarkePark.s
;***
; ClarkePark
;
; Description:
; Calculate Clarke & Park transforms.
; Assumes the Cos and Sin values are in qSin & qCos.
;
; Ialpha = Ia
; Ibeta = Ia*dOneBySq3 + 2*Ib*dOneBySq3;
; where Ia+Ib+Ic = 0
;
; Id = Ialpha*cos(Angle) + Ibeta*sin(Angle)
; Iq = -Ialpha*sin(Angle) + Ibeta*cos(Angle)
;
; This routine works the same for both integer scaling and 1.15 scaling.
;
; Functional prototype:
;
; void ClarkePark(void)
;
;On Entry: ParkParm structure must contain qSin, qCos, qIa and qIb.
;On Exit: ParkParm will contain qId, qIq
;
; Parameters:
; Input arguments:
; None
; Return:
; Void
; SFR Settings required:
; CORCON.SATA = 0
; If there is any chance that (Ia+2*Ib)/sqrt(3) will overflow must set
DS00908B-page 36 © 2007 Microchip Technology Inc.

AN908

; CORCON.SATDW = 1
;
; Support routines required:
; None
; Local Stack usage:
; None
; Registers modified:
; w3 -> w7
; Timing:
; 20 cycles
;***
;

include "general.inc"
; External references

include "park.inc"
; Register usage

.equ ParmW, w3 ; Ptr to ParkParm structure

.equ Sq3W, w4 ; OneBySq3

.equ SinW, w4 ; replaces Work0W

.equ CosW, w5

.equ IaW, w6 ; copy of qIa

.equ IalphaW, w6 ; replaces Ia

.equ IbW, w7 ; copy of qIb

.equ IbetaW, w7 ; Ibeta replaces Ib
; Constants

equ OneBySq3, 0x49E7 ; 1/sqrt(3) in 1.15 format
;=================== CODE =====================

section .text
global _ClarkePark
global ClarkePark

_ClarkePark:
ClarkePark:

;; Ibeta = Ia*OneBySq3 + 2*Ib*OneBySq3;

mov.w #OneBySq3,Sq3W ; 1/sqrt(3) in 1.15 format
mov.w _ParkParm+Park_qIa,IaW
mpy Sq3W*IaW,A
mov.w _ParkParm+Park_qIb,IbW
mac Sq3W*IbW,A
mac Sq3W*IbW,A
mov.w _ParkParm+Park_qIa,IalphaW
mov.w IalphaW,_ParkParm+Park_qIalpha
sac A,IbetaW
mov.w IbetaW,_ParkParm+Park_qIbeta

;; Ialpha and Ibeta have been calculated. Now do rotation.

;; Get qSin, qCos from ParkParm structure
mov.w _ParkParm+Park_qSin,SinW
mov.w _ParkParm+Park_qCos,CosW

;; Id = Ialpha*cos(Angle) + Ibeta*sin(Angle)

mpy SinW*IbetaW,A ; Ibeta*qSin -> A
mac CosW*IalphaW,A ; add Ialpha*qCos to A
mov.w #_ParkParm+Park_qId,ParmW
sac A,[ParmW++] ; store to qId, inc ptr to qIq

;; Iq = -Ialpha*sin(Angle) + Ibeta*cos(Angle)
mpy CosW*IbetaW,A ; Ibeta*qCos -> A
msc SinW*IalphaW,A ; sub Ialpha*qSin from A
sac A,[ParmW] ; store to qIq
return
.end
© 2007 Microchip Technology Inc. DS00908B-page 37

AN908

CurModel.s
;***
;Routines: CurModel
;***
;Common to all routines in file

.include "general.inc"

.include "curmodel.inc"

.include "park.inc"
;***
; CurModel
;
; Description:
;
; Physical constants:
; fRotorTmConst Rotor time constant in sec
;
;Physical form of equations:
; Magnetizing current (amps):
; Imag = Imag + (fLoopPeriod/fRotorTmConst)*(Id - Imag)
;
; Slip speed in RPS:
; VelSlipRPS = (1/fRotorTmConst) * Iq/Imag / (2*pi)
;
; Rotor flux speed in RPS:
; VelFluxRPS = iPoles * VelMechRPS + VelSlipRPS
;
; Rotor flux angle (radians):
; AngFlux = AngFlux + fLoopPeriod * 2 * pi * VelFluxRPS
;
; Scaled Variables:
; qdImag Magnetizing current scaled by maximum current (1.31)
; qVelSlip Mechnical Slip velocity in RPS scaled by fScaleMechRPS
; qAngFlux Flux angle scaled by pi
;
; Scaled Equations:
; qdImag = qdImag + qKcur * (qId - qdImag)
; qVelSlip = qKslip * qIq/qdImag
; qAngFlux = qAngFlux + qKdelta * (qVelMech + qVelSlip)
;
; Scaling factors:
; qKcur = (2^15) * (fLoopPeriod/fRotorTmConst)
; qKdelta = (2^15) * 2 * iPoles * fLoopPeriod * fScaleMechRPS
; qKslip = (2^15)/(2 * pi * fRotorTmConst * iPoles * fScaleMechRPS)
;
; Functional prototype:
;
; void CurModel(void)
;
; On Entry: CurModelParm structure must contain qKcur, qKslip, iKpoles,
; qKdelta, qVelMech, qMaxSlipVel
; On Exit: CurModelParm will contain qAngFlux, qdImag and qVelSlip
;
; Parameters:
; Input arguments:
; None
; Return:
; Void
; SFR Settings required:
; CORCON.SATA = 0
; CORCON.IF = 0
;
; Support routines required:
; None
; Local Stack usage:
; 0
DS00908B-page 38 © 2007 Microchip Technology Inc.

AN908

; Registers modified:
: w0-w7,AccA
; Timing:
; 72 instruction cycles
;***
;
;=================== CODE =====================

.section .text

; Register usage for CurModel
.equ SignW, w2 ; track sign changes
.equ ShiftW, w3 ; # shifts before divide
.equ IqW, w4 ; Q current (1.15)
.equ KslipW, w5 ; Kslip constant (1.15)
.equ ImagW, w7 ; magnetizing current (1.15)

.global _CurModel

.global CurModel

_CurModel:
CurModel:

;; qdImag = qdImag + qKcur * (qId - qdImag) ;; magnetizing current
mov.w _CurModelParm+CurMod_qdImag,w6
mov.w _CurModelParm+CurMod_qdImag+2,w7
lac w7,A
mov.w w6,ACCALL

mov.w _ParkParm+Park_qId,w4
sub.w w4,w7,w4 ; qId-qdImagH
mov.w _CurModelParm+CurMod_qKcur,w5

mac w4*w5,A ; add Kcur*(Id-Imag) to Imag
sac A,w7
mov.w ACCALL,w6
mov.w w6,_CurModelParm+CurMod_qdImag
mov.w w7,_CurModelParm+CurMod_qdImag+2

;; qVelSlip = qKslip * qIq/qdImag

;; First make qIqW and qdImagW positive and save sign in SignW
clr SignW ; set flag sign to positive

;; if(IqW < 0) => toggle SignW and set IqW = -IqW
mov.w _ParkParm+Park_qIq,IqW
cp0 IqW
bra Z,jCurModSkip
bra NN,jCurMod1
neg IqW,IqW
com SignW,SignW ; toggle sign

jCurMod1:
;; if(ImagW < 0) => toggle SignW and set ImagW = -ImagW

cp0 ImagW
bra NN,jCurMod2
neg ImagW,ImagW
com SignW,SignW ; toggle sign

jCurMod2:
;; Calculate Kslip*|IqW| in Acc A to maintain 1.31

mov.w _CurModelParm+CurMod_qKslip,KslipW
mpy IqW*KslipW,A

;; Make sure denominator is > numerator else skip term
sac A,w0 ; temporary
cp ImagW,w0 ; |qdImag| - |Kslip*qIq|
bra LEU,jCurModSkip ; skip term: |qdImag| <= |Kslip*qIq|
© 2007 Microchip Technology Inc. DS00908B-page 39

AN908

;; This will not be required for later releases of the 6010 <SILICON_ERR>

clr.w ShiftW

;; Calculate how many places ImagW can be shifted without putting
;; a one in the msb location (preserves sign)

ff1l ImagW,ShiftW
sub.w ShiftW,#2,ShiftW ; # shifts necessary to put 1 in bit 14

;; Shift: ImagW = ImagW << ShiftW
sl ImagW,ShiftW,ImagW

;; Shift AccA, Requires (-ShiftW) to shift left.
neg ShiftW,ShiftW

;; |Kslip*qIq| = |Kslip*qIq| << ShiftW
sftac A,ShiftW

;; Do divide of |qKslip*qIq|/|ImagW|. We know at this point that the
;; results will be positive and < 1.0. We also know that we have maximum
;; precision.

sac A,w6
repeat #17
divf w6,ImagW ; w0 = KslipW*IqW/ImagW, w1 = remainder

;; Limit maximum slip speed
mov.w _CurModelParm+CurMod_qMaxSlipVel,w1
cp w1,w0 ; qMaxSlipSpeed - | Kslip*qIq/qdImag |
bra NN,jCurMod4

;; result too large: replace it with qMaxSlipSpeed
mov.w w1,w0
bra jCurMod4

jCurModSkip:
;; term skipped entirely - set it = 0

clr.w w0

jCurMod4:
;; set correct sign

btsc SignW,#0
neg w0,w0

;; For testing
mov.w w0,_CurModelParm+CurMod_qVelSlip

;; Add mechanical velocity
mov.w _CurModelParm+CurMod_qVelMech,w4
add.w w0,w4,w4
mov.w w4,_CurModelParm+CurMod_qVelFlux

;; Load AngFlux to Acc A
mov.w _CurModelParm+CurMod_qAngFlux,w1
lac w1,A

mov.w _CurModelParm+CurMod_qKdelta,w5
mac w4*w5,A

sac A,w4
mov.w w4,_CurModelParm+CurMod_qAngFlux

return
DS00908B-page 40 © 2007 Microchip Technology Inc.

AN908

InvPark.s
;***
; InvPark
;
;Description:
; Calculate the inverse Park transform. Assumes the Cos and Sin values
; are in the ParkParm structure.
; Valpha = Vd*cos(Angle) - Vq*sin(Angle)
; Vbeta = Vd*sin(Angle) + Vq*cos(Angle)
; This routine works the same for both integer scaling and 1.15 scaling.
;
;Functional prototype:
; void InvPark(void)
;On Entry: The ParkParm structure must contain qCos, qSin, qVd and qVq.
;On Exit: ParkParm will contain qValpha, qVbeta.
;
;Parameters:
; Input arguments: None
; Return: Void
; SFR Settings required: CORCON.SATA = 0
; Support routines required: None
; Local Stack usage: None
; Registers modified: w3 -> w7, A
; Timing: About 14 instruction cycles
;***
;

include "general.inc"
; External references

include "park.inc"
; Register usage

.equ ParmW, w3 ; Ptr to ParkParm structure

.equ SinW, w4

.equ CosW, w5

.equ VdW, w6 ; copy of qVd

.equ VqW, w7 ; copy of qVq

;=================== CODE =====================

.section .text

.global _InvPark

.global InvPark

_InvPark:
InvPark:

;; Get qVd, qVq from ParkParm structure
mov.w _ParkParm+Park_qVd,VdW
mov.w _ParkParm+Park_qVq,VqW

;; Get qSin, qCos from ParkParm structure
mov.w _ParkParm+Park_qSin,SinW
mov.w _ParkParm+Park_qCos,CosW

;; Valpha = Vd*cos(Angle) - Vq*sin(Angle)
mpy CosW*VdW,A ; Vd*qCos -> A
msc SinW*VqW,A ; sub Vq*qSin from A

mov.w #_ParkParm+Park_qValpha,ParmW
sac A,[ParmW++] ; store to qValpha, inc ptr to qVbeta

;; Vbeta = Vd*sin(Angle) + Vq*cos(Angle)
mpy SinW*VdW,A ; Vd*qSin -> A
mac CosW*VqW,A ; add Vq*qCos to A
sac A,[ParmW] ; store to Vbeta

return
© 2007 Microchip Technology Inc. DS00908B-page 41

AN908

CalcRef.s
;***
; CalcRefVec
;
; Description:
; Calculate the scaled reference vector, (Vr1,Vr2,Vr3), from qValpha,qVbeta.
; The method is an modified inverse Clarke transform where Valpha & Vbeta
; are swaped compared to the normal Inverse Clarke.
;
; Vr1 = Vbeta
; Vr2 = (-Vbeta/2 + sqrt(3)/2 * Valpha)
; Vr3 = (-Vbeta/2 - sqrt(3/2) * Valpha)
;
; Functional prototype:
;
; void CalcRefVec(void)
;
; On Entry:The ParkParm structure must contain qCos, qSin, qValpha and qVbeta.
; On Exit: SVGenParm will contain qVr1, qVr2, qVr3
;
; Parameters:
; Input arguments:
; None
; Return:
; Void
; SFR Settings required:
; CORCON.SATA = 0
; Support routines required:
; None
; Local Stack usage:
; None
; Registers modified:
; w0, w4, w5, w6
; Timing:
; About 20 instruction cycles
;***
;

.include "general.inc"

; External references
.include "park.inc"
.include "SVGen.inc"

; Register usage
.equ WorkW, w0 ; working
.equ ValphaW, w4 ; qValpha (scaled)
.equ VbetaW, w5 ; qVbeta (scaled)
.equ ScaleW, w6 ; scaling

; Constants
.equ Sq3OV2,0x6ED9 ; sqrt(3)/2 in 1.15 format

;=================== CODE =====================

.section .text

.global _CalcRefVec

.global CalcRefVec

_CalcRefVec:
CalcRefVec:

;; Get qValpha, qVbeta from ParkParm structure
mov.w ParkParm+Park_qValpha,ValphaW
mov.w _ParkParm+Park_qVbeta,VbetaW

;; Put Vr1 = Vbeta
mov.w VbetaW,_SVGenParm+SVGen_qVr1

;; Load Sq(3)/2
mov.w #Sq3OV2,ScaleW
DS00908B-page 42 © 2007 Microchip Technology Inc.

AN908

;; AccA = -Vbeta/2

neg.w VbetaW,VbetaW
lac VbetaW,#1,A

;; Vr2 = -Vbeta/2 + sqrt(3)2 * Valpha)
mac ValphaW*ScaleW,A ; add Valpha*sqrt(3)/2 to A
sac A,WorkW
mov.w WorkW,_SVGenParm+SVGen_qVr2

;; AccA = -Vbeta/2
lac VbetaW,#1,A

;; Vr3 = (-Vbeta/2 - sqrt(3)2 * Valpha)
msc ValphaW*ScaleW,A ; sub Valpha*sqrt(3)2 to A
sac A,WorkW
mov.w WorkW,_SVGenParm+SVGen_qVr3
return
.end
© 2007 Microchip Technology Inc. DS00908B-page 43

AN908

CalcVel.s
;***
; Routines: InitCalcVel, CalcVel
;
;***
; Common to all routines in file

.include "general.inc"

.include "encoder.inc"

;***
; void InitCalcVel(void)
; Initialize private velocity variables.
; iIrpPerCalc must be set on entry.
;***

; Register usage for InitCalcVel

.equ Work0W, w4 ; Working register

.equ PosW, w5 ; current position: POSCNT

;***

.global _InitCalcVel

.global InitCalcVel
_InitCalcVel:
InitCalcVel:

;; Disable interrupts for the next 5 instructions
DISI #5

;; Load iPrevCnt & zero Delta
;; encoder value. Note: To get accurate velocity qVelMech must be
;; calculated twice.

mov.w POSCNT,PosW ; current encoder value
mov.w PosW,_EncoderParm+Encod_iPrevCnt
clr.w _EncoderParm+Encod_iAccumCnt

;; Load iVelCntDwn
mov.w _EncoderParm+Encod_iIrpPerCalc,WREG
mov.w WREG,_EncoderParm+Encod_iVelCntDwn

return

;***
; CalcVelIrp
;
; Called from timer interrupt at specified intervals.
;
; The interrupt interval, VelPeriod, MUST be less than the minimum time
; required for 1/2 revolution at maximum speed.
;
; This routine will accumulate encoder change for iIrpPerCalc interrupts,
; a period of time = iIrpPerCalc * VelPeriod, and then copy the accumulation
; to iDeltaCnt for use by the CalcVel routine to calculate velocity.
; The accumulation is set back to zero and a new accumulation starts.
;
;Functional prototype: void CalcVelIrp(void);
;
;On Entry: EncoderParm must contain iPrevCnt, iAccumCnt, iVelCntDwn
;
;On Exit: EncoderParm will contain iPrevCnt, iAccumCnt and iDeltaCnt
; (if countdown reached zero).
;

DS00908B-page 44 © 2007 Microchip Technology Inc.

AN908

;Parameters:
; Input arguments None
;
; Return:
; Void
;
; SFR Settings required None
;
; Support routines required: None
;
; Local Stack usage: 3
;
; Registers modified: None
;
; Timing: About 29 instruction cycles (if new iDeltaCnt produced)
;
;===
; Equivalent C code
; {
; register short Pos, Delta;
;
; Pos = POSCNT;
;
; Delta = Pos - EncoderParm.iPrevCnt;
; EncoderParm.iPrevCnt = Pos;
;
; if(iDelta >= 0)
; {
; // Delta > 0 either because
; // 1) vel is > 0 or
; // 2) Vel < 0 and encoder wrapped around
;
; if(Delta >= EncoderParm.iCntsPerRev/2)
; {
; // Delta >= EncoderParm.iCntsPerRev/2 => Neg speed, wrapped around
;
; Delta -= EncoderParm.iCntsPerRev;
; }
; }
; else
; {
; // Delta < 0 either because
; // 1) vel is < 0 or
; // 2) Vel > 0 and wrapped around
;;
; if(Delta < -EncoderParm.iCntsPerRev/2)
; {
; // Delta < -EncoderParm.iCntsPerRev/2 => Pos vel, wrapped around
;
; Delta += EncoderParm.iCntsPerRev;
; }
; }
;
; EncoderParm.iAccumCnt += Delta;
;
; EncoderParm.iVelCntDwn--;
; if(EncoderParm.iVelCntDwn)
; return;
;
; iVelCntDwn = iIrpPerCalc;
; qVelMech = qKvel * iAccumCnt * 2^Nvel;
; EncoderParm.iAccumCnt = 0;
;}
© 2007 Microchip Technology Inc. DS00908B-page 45

AN908

;=================== CODE =====================
; Register usage for CalcVelIrp

.equ PosW, w0 ; current position: POSCNT

.equ WorkW, w4 ; Working register

.equ DeltaW, w6 ; NewCnt - PrevCnt

.global _CalcVelIrp

.global CalcVelIrp

_CalcVelIrp:
CalcVelIrp:

;; Save registers
push w0
push w4
push w6

;; Pos = uTestPos;

 .ifdef SIMU
mov.w _uTestPos,PosW ; encoder value ??

 .else
mov.w POSCNT,PosW ; encoder value

 .endif

mov.w _EncoderParm+Encod_iPrevCnt,WorkW

;; Update previous cnt with new cnt
mov.w PosW,_EncoderParm+Encod_iPrevCnt

;; Calc Delta = New - Prev
sub.w PosW,WorkW,DeltaW
bra N,jEncoder5 ; Delta < 0

;; Delta > 0 either because
;; 1) vel is > 0 or
;; 2) Vel < 0 and wrapped around

lsr.w _EncoderParm+Encod_iCntsPerRev,WREG ; WREG = CntsPerRev/2

;; Is Delta < CntsPerRev/2
sub.w DeltaW,w0,WorkW ; Delta-CntsPerRev/2
bra N,jEncoder20 ; 0 < Delta < CntsPerRev/2, Vel > 0

;; Delta >= CntsPerRev/2 => Neg speed, wrapped around
;; Delta = Delta - CntsPerRev

mov.w _EncoderParm+Encod_iCntsPerRev,w0
sub.w DeltaW,w0,DeltaW

;; Delta < 0, Vel < 0
bra jEncoder20

 jEncoder5:
;; Delta < 0 either because
;; 1) vel is < 0 or
;; 2) Vel > 0 and wrapped around

lsr.w _EncoderParm+Encod_iCntsPerRev,WREG ; WREG = CntsPerRev/2

;; Is Delta + CntsPerRev/2 < 0
add.w DeltaW,w0,WorkW ; Delta+CntsPerRev/2
bra NN,jEncoder20 ; -CntsPerRev/2 <= Delta < 0, Vel > 0
DS00908B-page 46 © 2007 Microchip Technology Inc.

AN908

;; Delta < -CntsPerRev/2 => Pos vel, wrapped around
;; Delta = Delta + CntsPerRev

mov.w _EncoderParm+Encod_iCntsPerRev,w0
add.w DeltaW,w0,DeltaW

;; Delta < -CntsPerRev/2, Vel > 0

jEncoder20:

;; Delta now contains signed change in position

;; EncoderParm.Delta += Delta;
mov.w DeltaW,w0
add.w _EncoderParm+Encod_iAccumCnt

;; EncoderParm.iVelCntDwn--;
;; if(EncoderParm.iVelCntDwn) return;

dec.w _EncoderParm+Encod_iVelCntDwn
cp0.w _EncoderParm+Encod_iVelCntDwn
bra NZ,jEncoder40

;; Reload iVelCntDwn: iVelCntDwn = iIrpPerCalc;
mov.w _EncoderParm+Encod_iIrpPerCalc,WREG
mov.w WREG,_EncoderParm+Encod_iVelCntDwn

;; Copy iAccumCnt to iDeltaCnt then iAccumCnt = 0
mov.w _EncoderParm+Encod_iAccumCnt,DeltaW
mov.w DeltaW,_EncoderParm+Encod_iDeltaCnt
clr.w _EncoderParm+Encod_iAccumCnt

jEncoder40:

;; Restore registers
pop w6
pop w4
pop w0
return

;***
; CalcVel
;
; Calculate qVelMech from the last iDeltaCnt produced by the
; interrupt routine CalcVelIrp.
;
;Functional prototype: void CalcVel(void);
;
;On Entry: EncoderParm must contain iDeltaCnt, qKvel
;
;On Exit: EncoderParm will contain qVelMech
;
;Parameters:
; Input arguments: None
;
; Return:
; Void
;
; SFR Settings required: None
;
; Support routines required: None
;
; Local Stack usage: None
;
; Registers modified: None
© 2007 Microchip Technology Inc. DS00908B-page 47

AN908

;
; Timing: About 8 instruction cycles
;
;***

.global _CalcVel

.global CalcVel
_CalcVel:
CalcVel:

;; qVelMech = qKvel * (Delta / 2^Nvel / 2^15)

;; iDeltaCnt is an integer but as Q15 it = (iDeltaCnt/2^15)
mov.w _EncoderParm+Encod_iDeltaCnt,DeltaW
mov.w _EncoderParm+Encod_qKvel,WorkW

mpy WorkW*DeltaW,A ; dKvel * (Delta/2^15)
sac A,#(Nvel-15),WorkW ; left shift by 15-Nvel

;; qVelMech = qKvel * Q15(Delta / 2^Nvel)
mov.w WorkW,_EncoderParm+Encod_qVelMech
return

.end
DS00908B-page 48 © 2007 Microchip Technology Inc.

AN908

FdWeak.s
;***
; Routines: FdWeak
;
;***

; Common to all routines in file

.include "general.inc"

.include "Control.inc"

.include "FdWeak.inc"

;***
; FdWeak
;
;Description:
;
;Equations:
;
;Scaling factors:
;Functional prototype:
;
; void FdWeak(void)
;
;On Entry: FdWeakParm structure must contain:_FdWeakParm+FdWeak_qK1
;
;On Exit: FdWeakParm will contain : _CtrlParm+Ctrl_qVdRef
;
;Parameters:
; Input arguments: None
;
; Return:
; Void
;
; SFR Settings required:
; CORCON.SATA = 0
; CORCON.IF = 0
;
; Support routines required: None
; Local Stack usage: 0
; Registers modified: ??w4,w5,AccA
; Timing: ??8 instruction cycles
;
;***
;
;=================== CODE =====================

.section .text

; Register usage for FdWeak

.global _FdWeakening

.global FdWeakening

_FdWeakening:
FdWeakening:

mov.w _FdWeakParm+FdWeak_qK1,w0
mov.w w0,_CtrlParm+Ctrl_qVdRef
return

.end
© 2007 Microchip Technology Inc. DS00908B-page 49

AN908

OpenLoop.s
;***
; Routines: OpenLoop
;***
; Common to all routines in file

.include "general.inc"

.include "openloop.inc"
;***
; OpenLoop
;
;Description:
;Equations:
; qDeltaFlux = Kdelta * qVelMech
; qAngFlux = qAngFlux + Kdelta * qVelMech ;; rotor flux angle
;
; qKdelta = (2^15) * 2 * iPoles * fLoopPeriod * fScaleMechRPS
; where qVelMech is the mechanical velocity in RPS scaled by fScaleMechRPS
; and the iPoles is required to get Flux vel from Mech vel
; and the 2 is to scale +/- 2*pi into +/- pi
;Functional prototype:
;
; void OpenLoop(void)
;
;On Entry: OpenLoopParm structure must contain
;
;On Exit: OpenLoopParm will contain
;
;Parameters:
; Input arguments: None
;
; Return:
; Void
;
; SFR Settings required:
; CORCON.SATA = 0
; CORCON.IF = 0
;
; Support routines required: None
; Local Stack usage: 0
; Registers modified: ??w4,w5,AccA
; Timing: ??8 instruction cycles
;***
;
;=================== CODE =====================

.section .text

; Register usage for OpenLoop

.equ Work0W, w4 ; Working register

.equ Work1W, w5 ; Working register

.global _OpenLoop

.global OpenLoop
DS00908B-page 50 © 2007 Microchip Technology Inc.

AN908

_OpenLoop:
OpenLoop:

mov.w _OpenLoopParm+OpLoop_qVelMech,Work0W
mov.w _OpenLoopParm+OpLoop_qKdelta,Work1W
mpy Work0W*Work1W,A
sac A,Work0W
mov.w Work0W,_OpenLoopParm+OpLoop_qDeltaFlux

;; qAngFlux = qAngFlux + qDeltaFlux
mov.w OpenLoopParm+OpLoop_qAngFlux,Work1W
add.w Work0W,Work1W,Work0W
mov.w Work0W,_OpenLoopParm+OpLoop_qAngFlux
return

;***
; void InitOpenLoop(void)
; Initialize private OpenLoop variables.
;***

; Register usage for InitOpenLoop

;***

.global _InitOpenLoop

.global InitOpenLoop
_InitOpenLoop:
InitOpenLoop:

clr.w _OpenLoopParm+OpLoop_qAngFlux
clr.w _OpenLoopParm+OpLoop_qDeltaFlux
return

.end
© 2007 Microchip Technology Inc. DS00908B-page 51

AN908

PI.s
;***
; PI
;
;Description: Calculate PI correction.
;
;void CalcPI(tPIParm *pParm)
;{
; Err = InRef - InMeas
; U = Sum + Kp * Err
; if(U > Outmax)
; Out = Outmax
; else if(U < Outmin)
; Out = Outmin
; else
; Out = U
; Exc = U - Out
; Sum = Sum + Ki * Err - Kc * Exc
;}
;
;void InitPI(tPIParm *pParm)
;{
; Sum = 0
; Out = 0
;}
;
;----------------------------
; Representation of PI constants:
; The constant Kp is scaled so it can be represented in 1.15 format by
; adjusting the constant by a power of 2 which is removed when the
; calculation is completed.
;
; Kp is scaled Kp = qKp * 2^NKo
;
; Ki & Kc are scaled Ki = qKi, Kc = qKc
;
;
;Functional prototype:
;
; void InitPI(tPIParm *pParm)
; void CalcPI(tPIParm *pParm)
;
;On Entry: PIParm structure must contain qKp,qKi,qKc,qOutMax,qOutMin,
; InRef,InMeas
;On Exit: PIParm will contain qOut
;
;Parameters:
; Input arguments: tPIParm *pParm
;
; Return:
; Void
;
; SFR Settings required:
; CORCON.SATA= 0
; CORCON.IF = 0
;
; Support routines required: None
; Local Stack usage: 0
; Registers modified: w0-w6,AccA
;
; Timing:
; 31 instruction cycles max, 28 cycles min
;***
DS00908B-page 52 © 2007 Microchip Technology Inc.

AN908

;

.include "general.inc"

; External references
.include "PI.inc"

; Register usage

.equ BaseW0, w0 ; Base of parm structure

.equ OutW1, w1 ; Output

.equ SumLW2, w2 ; Integral sum

.equ SumHW3, w3 ; Integral sum

.equ ErrW4, w4 ; Error term: InRef-InMeas

.equ WorkW5, w5 ; Working register

.equ Unlimit W6,w6 ; U: unlimited output

.equ WorkW7, w7 ; Working register
;=================== CODE =====================

.section .text

.global _InitPI

.global InitPI
_InitPI:
InitPI:

mov.w w1,[BaseW0+PI_qOut]
return

.global _CalcPI

.global CalcPI

_CalcPI:
CalcPI:

;; Err = InRef - InMeas

mov.w [BaseW0+PI_qInRef],WorkW7
mov.w [BaseW0+PI_qInMeas],WorkW5
sub.w WorkW7,WorkW5,ErrW4

;; U = Sum + Kp * Err * 2^NKo

lac [++BaseW0],B ; AccB = Sum
mov.w [--BaseW0],WorkW5
mov.w WorkW5,ACCBLL

mov.w [BaseW0+PI_qKp],WorkW5
mpy ErrW4*WorkW5,A
sftac A,#-NKo ; AccA = Kp*Err*2^NKo
add A ; Sum = Sum + Kp*Err*2^NKo
sac A,UnlimitW6 ; store U before tests

;; if(U > Outmax)
;; Out = Outmax
;; else if(U < Outmin)
;; Out = Outmin
;; else
;; Out = U

mov.w [BaseW0+PI_qOutMax],OutW1
cp UnlimitW6,OutW1
bra GT,jPI5 ; U > Outmax; OutW1 = Outmax
© 2007 Microchip Technology Inc. DS00908B-page 53

AN908

mov.w [BaseW0+PI_qOutMin],OutW1
cp UnlimitW6,OutW1
bra LE,jPI5 ; U < Outmin; OutW1 = Outmin

mov.w UnlimitW6,OutW1 ; OutW1 = U
jPI5:

mov.w OutW1,[BaseW0+PI_qOut]

;; Ki * Err
mov.w [BaseW0+PI_qKi],WorkW5
mpy ErrW4*WorkW5,A

;; Exc = U - Out
sub.w UnlimitW6,OutW1,UnlimitW6

;; Ki * Err - Kc * Exc
mov.w [BaseW0+PI_qKc],WorkW5
msc WorkW5*UnlimitW6,A

;; Sum = Sum + Ki * Err - Kc * Exc
add A

sac A,[++BaseW0] ; store Sum
mov.w ACCALL,WorkW5
mov.w WorkW5,[--BaseW0]
return

.end
DS00908B-page 54 © 2007 Microchip Technology Inc.

AN908

ReadADC0.s
;***
; ReadADC0 and ReadSignedADC0
;
;Description:
; Read Channel 0 of ADC, scale it using qK and put results in qADValue.
; Do not call this routine until conversion is completed.
;
; ReadADC0 range is qK*(0.0 ->0.9999).
; ReadSignedADC0 range is qK*(-1.0 ->0.9999).
;
; Scaling constant, qK, must be set elsewhere such that
; iResult = 2 * qK * ADCBUF0
; The factor of 2 is designed to allow qK to be given in 1.15.
;
;
;Functional prototype:
;
; void ReadADC0(tReadADCParm* pParm) : Calculates unsigned value 0 -> 2*qK
; void ReadSignedADC0(tReadADCParm* pParm) : Calculates signed value -2*qK -> 2*qK
;
;On Entry: ReadADCParm structure must contain qK. ADC channel 0
; must contain signed fractional value.
; ;On Exit: ReadADCParm will contain qADValue
;
;Parameters:
; Input arguments: None
;
; Return:
; Void
;
; SFR Settings required:
; CORCON.SATA = 0
; If there is any chance that Accumulator will overflow must set
; CORCON.SATDW = 1
;
; Support routines required: None
; Local Stack usage: None
; Registers modified: w0,w4,w5
; Timing: 13 cycles
;
;***
;

.include "general.inc"

; External references
.include "ReadADC.inc"

; Register usage
.equ ParmBaseW,w0 ; Base of parm structure
.equ Work0W, w4
.equ Work1W, w5

;=================== CODE =====================

.section .text

.global _ReadADC0

.global ReadADC0
© 2007 Microchip Technology Inc. DS00908B-page 55

AN908

_ReadADC0:
ReadADC0:

;; iResult = 2 * qK * ADCBUF0

mov.w [ParmBaseW+ADC_qK],Work0W
mov.w _ADCBUF0,Work1W

;; change from signed fractional to fractional, i.e. convert
;; from -1->.9999 to 0 -> 0.9999

btg Work1W,#15
lsr.w Work1W,Work1W

mpy Work0W*Work1W,A
sac A,#-1,Work0W
mov.w Work0W,[ParmBaseW+ADC_qADValue]
return

.global _ReadSignedADC0

.global ReadSignedADC0

_ReadSignedADC0:
ReadSignedADC0:

;; iResult = 2 * qK * ADCBUF0

mov.w [ParmBaseW+ADC_qK],Work0W
mov.w _ADCBUF0,Work1W

mpy Work0W*Work1W,A
sac A,#-1,Work0W
mov.w Work0W,[ParmBaseW+ADC_qADValue]
return

.end
DS00908B-page 56 © 2007 Microchip Technology Inc.

AN908

SVGen.s
;***
; SVGen
;
; Description: Calculate and load SVGen PWM values.
;
; Functional prototype:
; void CalcSVGen(void)
;
; On Entry:SVGenParm structure must contain qVr1, qVr2, qVr3
; On Exit: PWM registers loaded
;
; Parameters:
; Input arguments:
; None
; Return:
; Void
; SFR Settings required:
; CORCON.SATA = 0
; CORCON.IF = 0
; Support routines required:
; None
; Local Stack usage:
; 0
; Registers modified:
; w0, w2, w3, w4, w5, w6, AccA
; Timing:
; 34 instruction cycles
;***
; C-Version of code
;
; void CalcRefVec(void)
; {
; if(Vr1 >= 0)
; {
; // (xx1)
; if(Vr2 >= 0)
; {
; // (x11)
; // Must be Sector 3 since Sector 7 not allowed
; // Sector 3: (0,1,1) 0-60 degrees
; T1 = Vr2
; T2 = Vr1
; CalcTimes();
; dPWM1 = Ta
; dPWM2 = Tb
; dPWM3 = Tc
; }
; else
; {
; // (x01)
; if(Vr3 >= 0)
; {
; // Sector 5: (1,0,1) 120-180 degrees
; T1 = Vr1
; T2 = Vr3
; CalcTimes();
; dPWM1 = Tc
; dPWM2 = Ta
; dPWM3 = Tb
; }
© 2007 Microchip Technology Inc. DS00908B-page 57

AN908

; else
; {
; // Sector 1: (0,0,1) 60-120 degrees
; T1 = -Vr2;
; T2 = -Vr3;
; CalcTimes();
; dPWM1 = Tb
; dPWM2 = Ta
; dPWM3 = Tc
; }
; }
; }
; else
; {
; // (xx0)
; if(Vr2 >= 0)
; {
; // (x10)
; if(Vr3 >= 0)
; {
; // Sector 6: (1,1,0) 240-300 degrees
; T1 = Vr3
; T2 = Vr2
; CalcTimes();
; dPWM1 = Tb
; dPWM2 = Tc
; dPWM3 = Ta
; }
; else
; {
; // Sector 2: (0,1,0) 300-0 degrees
; T1 = -Vr3
; T2 = -Vr1
; CalcTimes();
; dPWM1 = Ta
; dPWM2 = Tc
; dPWM3 = Tb
; }
; }
; else
; {
; // (x00)
; // Must be Sector 4 since Sector 0 not allowed
; // Sector 4: (1,0,0) 180-240 degrees
; T1 = -Vr1
; T2 = -Vr2
; CalcTimes();
; dPWM1 = Tc
; dPWM2 = Tb
; dPWM3 = Ta
;
; }
; }
; }
;
; void CalcTimes(void)
; {
; T1 = PWM*T1
; T2 = PWM*T2
; Tc = (PWM-T1-T2)/2
; Tb = Ta + T1
; Ta = Tb + T2
; }
;***
;

DS00908B-page 58 © 2007 Microchip Technology Inc.

AN908

.include "general.inc"

; External references
.include "Park.inc"
.include "SVGen.inc"
.include "CurModel.inc"

; Register usage
.equ WorkW, w1 ; Working register
.equ T1W, w2
.equ T2W, w3

.equ WorkDLoW, w4 ; double word (multiply results)
.equ Vr1W, w4
.equ TaW, w4
.equ WorkDHiW, w5 ; double word (multiply results)
.equ Vr2W, w5
.equ TbW, w5
.equ Vr3W, w6
.equ TcW, w6

.equ dPWM1, PDC1

.equ dPWM2, PDC2

.equ dPWM3, PDC3
;=================== CODE =====================

.section .text

.global _CalcSVGen

.global CalcSVGen

 _CalcSVGen:
 CalcSVGen:

;; Get qVr1,qVr2,qVr3
mov.w _SVGenParm+SVGen_qVr1,Vr1W
mov.w _SVGenParm+SVGen_qVr2,Vr2W
mov.w _SVGenParm+SVGen_qVr3,Vr3W

;; Test Vr1
cp0 Vr1W
bra LT,jCalcRef20 ; Vr1W < 0

;; Test Vr2
cp0 Vr2W
bra LT,jCalcRef10 ; Vr2W < 0

;; Must be Sector 3 since Sector 7 not allowed
;; Sector 3: (0,1,1) 0-60 degrees
;; T1 = Vr2
;; T2 = Vr1

mov.w Vr2W,T2W
mov.w Vr1W,T1W
rcall CalcTimes

;; dPWM1 = Ta
;; dPWM2 = Tb
;; dPWM3 = Tc

mov.w TaW,dPWM1
mov.w TbW,dPWM2
mov.w TcW,dPWM3
return
© 2007 Microchip Technology Inc. DS00908B-page 59

AN908

 jCalcRef10:

;; Test Vr3
cp0 Vr3W
bra LT,jCalcRef15 ; Vr3W < 0

;; Sector 5: (1,0,1) 120-180 degrees
;; T1 = Vr1
;; T2 = Vr3

mov.w Vr1W,T2W
mov.w Vr3W,T1W
rcall CalcTimes

;; dPWM1 = Tc
;; dPWM2 = Ta
;; dPWM3 = Tb

mov.w TcW,dPWM1
mov.w TaW,dPWM2
mov.w TbW,dPWM3
return

 jCalcRef15:
;; Sector 1: (0,0,1) 60-120 degrees
;; T1 = -Vr2
;; T2 = -Vr3

neg.w Vr2W,T2W
neg.w Vr3W,T1W
rcall CalcTimes

;; dPWM1 = Tb
;; dPWM2 = Ta
;; dPWM3 = Tc

mov.w TbW,dPWM1
mov.w TaW,dPWM2
mov.w TcW,dPWM3
return

 jCalcRef20:
;; Test Vr2

cp0 Vr2W
bra LT,jCalcRef30 ; Vr2W < 0

;; Test Vr3
cp0 Vr3W
bra LT,jCalcRef25 ; Vr3W < 0

;; Sector 6: (1,1,0) 240-300 degrees
;; T1 = Vr3
;; T2 = Vr2

mov.w Vr3W,T2W
mov.w Vr2W,T1W
rcall CalcTimes

;; dPWM1 = Tb
;; dPWM2 = Tc
;; dPWM3 = Ta

mov.w TbW,dPWM1
mov.w TcW,dPWM2
mov.w TaW,dPWM3
return

 jCalcRef25:
;; Sector 2: (0,1,0) 300-360 degrees
;; T1 = -Vr3
;; T2 = -Vr1

neg.w Vr3W,T2W
neg.w Vr1W,T1W
rcall CalcTimes

;; dPWM1 = Ta
;; dPWM2 = Tc
;; dPWM3 = Tb

mov.w TaW,dPWM1
DS00908B-page 60 © 2007 Microchip Technology Inc.

AN908

mov.w TcW,dPWM2
mov.w TbW,dPWM3
return

 jCalcRef30:
;; Must be Sector 4 since Sector 0 not allowed
;; Sector 4: (1,0,0) 180-240 degrees
;; T1 = -Vr1
;; T2 = -Vr2

neg.w Vr1W,T2W
neg.w Vr2W,T1W
rcall CalcTimes

;; dPWM1 = Tc
;; dPWM2 = Tb
;; dPWM3 = Ta

mov.w TcW,dPWM1
mov.w TbW,dPWM2
mov.w TaW,dPWM3
return

;***
; CalcTimes
;
; void CalcTimes(void)
; {
; T1 = PWM*T1
; T2 = PWM*T2
; Tc = (PWM-T1-T2)/2
; Tb = Ta + T1
; Ta = Tb + T2
; }
;
; Timing: 17instruction cycles
;***
 CalcTimes:

;; T1 = PWM*T1
;; Since T1 is in 1.15 and PWM in integer we do multiply by
;; 2*PWM*T1 as integers and use upper word of results
;; Load PWMPeriod

sl.w _SVGenParm+SVGen_iPWMPeriod,WREG ; Mul PWM * 2 to allow for
: full range of voltage

mul.us w0,T1W,WorkDLoW
mov.w WorkDHiW,T1W

;; T2 = PWM*T2
mul.us w0,T2W,WorkDLoW
mov.w WorkDHiW,T2W

;; Tc = (PWM-T1-T2)/2
;mov.w _SVGenParm+SVGen_iPWMPeriod,WorkW
mov.w _SVGenParm+SVGen_iPWMPeriod,WREG
sub.w w0,T1W,WorkW ;PWM-T1
sub.w WorkW,T2W,WorkW ; -T2
asr.w WorkW,WorkW ; /2
mov.w WorkW,TcW ; store Tc

;; Tb = Tc + T1
add.w WorkW,T1W,WorkW
mov.w WorkW,TbW

;; Ta = Tb + T2
add.w WorkW,T2W,WorkW
mov.w WorkW,TaW
return
© 2007 Microchip Technology Inc. DS00908B-page 61

AN908

Trig.s

;***
; Trig
;
; Description:
; Calculate Sine and Cosine for specified angle using linear interpolation
; on a table of 128 words.
;
; This routine works the same for both integer scaling and 1.15 scaling.
;
; For integer scaling the Angle is scaled such that 0 <= Angle < 2*pi
; corresponds to 0 <= Ang < 0xFFFF. The resulting Sin and Cos
; values are returned scaled to -32769 -> 32767 i.e. (0x8000 -> 0x7FFF).
;
; For 1.15 scaling the Angle is scaled such that -pi <= Angle < pi
; corresponds to -1 -> 0.9999 i.e. (0x8000 <= Ang < 0x7FFF). The
; resulting Sin and Cos values are returned scaled to -1 -> 0.9999
; i.e. (0x8000 -> 0x7FFF).
;
; Functional prototype:
; void SinCos(void)
;
; On Entry: ParkParm structure must contain qAngle
; On Exit: ParkParm will contain qSin, qCos. qAngle is unchanged.
;
; Parameters:
; Input arguments:
; None
; Return:
; Void
; SFR Settings required:
; CORCON.IF = 0
; Support routines required:
; None
; Local Stack usage:
; 0
; Registers modified:
; w0-w7
; Timing:
; About 28 instruction cycles
;***
;

.include "general.inc"

; External references
.include "park.inc"

; Constants
.equ TableSize,128

; Local register usage
.equ Work0W, w0 ; Working register
.equ Work1W, w1 ; Working register
.equ RemainderW, w2 ; Fraction for interpolation: 0->0xFFFF
.equ IndexW, w3 ; Index into table
.equ pTabPtrW, w4 ; Pointer into table
.equ pTabBaseW, w5 ; Pointer into table base
.equ Y0W, w6 ; Y0 = SinTable[Index]
.equ ParkParmW, w7 ; Base of ParkParm structure

;; Note: RemainderW and Work0W must be even registers

;=================== LOCAL DATA =====================

.section .ndata, "d"
 SinTable:
DS00908B-page 62 © 2007 Microchip Technology Inc.

AN908

.word 0,1608,3212,4808,6393,7962,9512,11039
.word 12540,14010,15446,16846,18205,19520,20787,22005
.word 23170,24279,25330,26319,27245,28106,28898,29621
.word 30273,30852,31357,31785,32138,32413,32610,32728
.word 32767,32728,32610,32413,32138,31785,31357,30852
.word 30273,29621,28898,28106,27245,26319,25330,24279
.word 23170,22005,20787,19520,18205,16846,15446,14010
.word 12540,11039,9512,7962,6393,4808,3212,1608
.word 0,-1608,-3212,-4808,-6393,-7962,-9512,-11039
.word -12540,-14010,-15446,-16846,-18205,-19520,-20787,-22005
.word -23170,-24279,-25330,-26319,-27245,-28106,-28898,-29621
.word -30273,-30852,-31357,-31785,-32138,-32413,-32610,-32728
.word -32767,-32728,-32610,-32413,-32138,-31785,-31357,-30852
.word -30273,-29621,-28898,-28106,-27245,-26319,-25330,-24279
.word -23170,-22005,-20787,-19520,-18205,-16846,-15446,-14010
.word -12540,-11039,-9512,-7962,-6393,-4808,-3212,-1608

;=================== CODE =====================
.section .text
.global _SinCos
.global SinCos

_SinCos:
SinCos:

;; Base of qAngle, qSin, qCos group in ParkParm structure
mov.w #_ParkParm+#Park_qAngle,ParkParmW

;; Calculate Index and Remainder for fetching and interpolating Sin
mov.w #TableSize,Work0W
mov.w [ParkParmW++],Work1W ; load qAngle & inc ptr to qCos
mul.uu Work0W,Work1W,RemainderW ; high word in IndexW

;; Double Index since offsets are in bytes not words
add.w IndexW,IndexW,IndexW

;; Note at this point the IndexW register has a value 0x00nn where nn
;; is the offset in bytes from the TabBase. If below we always
;; use BYTE operations on the IndexW register it will automatically
;; wrap properly for a TableSize of 128.

mov.w #SinTable,pTabBaseW ; Pointer into table base

;; Check for zero remainder
cp0.w RemainderW
bra nz,jInterpolate

;; Zero remainder allows us to skip the interpolation and use the
;; table value directly

add.w IndexW,pTabBaseW,pTabPtrW
mov.w [pTabPtrW],[ParkParmW++] ; write qSin & inc pt to qCos

;; Add 0x40 to Sin index to get Cos index. This may go off end of
;; table but if we use only BYTE operations the wrap is automatic.

add.b #0x40,IndexW
add.w IndexW,pTabBaseW,pTabPtrW
mov.w [pTabPtrW],[ParkParmW] ; write qCos
return

jInterpolate:

;; Get Y1-Y0 = SinTable[Index+1] - SinTable[Index]
add.w IndexW,pTabBaseW,pTabPtrW
mov.w [pTabPtrW],Y0W ; Y0
inc2.b IndexW,IndexW ; (Index += 2)&0xFF
© 2007 Microchip Technology Inc. DS00908B-page 63

AN908

add.w IndexW,pTabBaseW,pTabPtrW
subr.w Y0W,[pTabPtrW],Work0W ; Y1 - Y0

;; Calcuate Delta = (Remainder*(Y1-Y0)) >> 16

mul.us RemainderW,Work0W,Work0W

;; Work1W contains upper word of (Remainder*(Y1-Y0))
;; *pSin = Y0 + Delta

add.w Work1W,Y0W,[ParkParmW++] ; write qSin & inc pt to qCos

;; ================= COS =========================

;; Add 0x40 to Sin index to get Cos index. This may go off end of
;; table but if we use only BYTE operations the wrap is automatic.
;; Actualy only add 0x3E since Index increment by two above

add.b #0x3E,IndexW
add.w IndexW,pTabBaseW,pTabPtrW

;; Get Y1-Y0 = SinTable[Index+1] - SinTable[Index]
add.w IndexW,pTabBaseW,pTabPtrW
mov.w [pTabPtrW],Y0W ; Y0

inc2.b IndexW,IndexW ; (Index += 2)&0xFF
add.w IndexW,pTabBaseW,pTabPtrW
subr.w Y0W,[pTabPtrW],Work0W ; Y1 - Y0

;; Calcuate Delta = (Remainder*(Y1-Y0)) >> 16

mul.us RemainderW,Work0W,Work0W

;; Work1W contains upper word of (Remainder*(Y1-Y0))
;; *pCos = Y0 + Delta

add.w Work1W,Y0W,[ParkParmW] ; write qCos
 return

.end
DS00908B-page 64 © 2007 Microchip Technology Inc.

AN908
REVISION HISTORY
Revision A (June 2005)
Initial release of this document.

Revision B (October 2007)
This revision corrects the second equation in Figure 3.
© 2007 Microchip Technology Inc. DS00908B-page 65

AN908

NOTES:
DS00908B-page 66 © 2007 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2007 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The
Embedded Control Solutions Company are registered
trademarks of Microchip Technology Incorporated in the
U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00908B-page 67

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00908B-page 68 © 2007 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

10/05/07

	Introduction
	Software Features
	Vector Control Theory
	Background
	Vector Control
	FIGURE 1: Vector Control Block Diagram
	Coordinate Transforms
	FIGURE 2: ClarkE Transform
	FIGURE 3: Park Transform
	FIGURE 4: Inverse Park
	FIGURE 5: Inverse Clarke
	Flux Estimator
	EQUATION 1: Magnetizing Current
	EQUATION 2: Flux Speed
	EQUATION 3: Flux Angle
	PI Control
	FIGURE 6: PI Control
	Space Vector Modulation
	FIGURE 7: Space Vector Modulation
	FIGURE 8: Average Space Vector Modulation
	TABLE 1: Space Vector Modulation Inverter States
	FIGURE 9: PWM for Period T

	Code Description
	Conventions
	Variable Definition and Scaling
	Individual Source File Descriptions
	FIGURE 10: Vector Control Interrupt Service Routine

	Demo Hardware
	Recommended Motor and Encoder
	FIGURE 11: Hardware setup Using dsPICDEM Motor Control Development System
	FIGURE 12: Leeson motor with mounted incremental encoder
	If You Select Another Motor...
	Phase Current Feedback
	Motor Wiring Configuration
	Jumper Placement
	External Connections
	Port Usage
	TABLE 2: DSpic Device pORT uSAGE sUMMARY

	Project Setup and Device Programming
	Importing the HEX File
	Setting Up a New Project
	Device Frequency

	Software Operation
	Buttons
	LEDs
	LCD
	Troubleshooting

	Software Tuning
	Diagnostics Mode
	FIGURE 13: Diagnostics Circuit
	Adjusting the PID Gains
	Example Scope Plots
	FIGURE 14: IQ vs. Velocity, 500 to 1000 RPM Step
	FIGURE 15: Phase Current Vs. Velocity, 1000 to 2000 RPM step, TR = 0.078 sec
	FIGURE 16: Phase Current vs. Velocity, 1000 to 2000 RPM step, OPEN Loop
	FIGURE 17: Phase Current vs. Velocity, 1000 to 2000 RPM STEP, TR = 0.039 sec

	Appendix A. References
	Appendix B. Source Code
	Header Files
	C Files
	Assembly Files
	UserParms.h
	ACIM.c
	Encoder.c
	InitCurModel.c
	MeasCur.s
	ClarkePark.s
	CurModel.s
	InvPark.s
	CalcRef.s
	CalcVel.s
	FdWeak.s
	OpenLoop.s
	PI.s
	ReadADC0.s
	SVGen.s
	Trig.s

	Revision History
	Using the dsPIC30F for Vector Control of an ACIM
	Worldwide Sales and Service

