
M AN888
Programming the Palm OS™ for Embedded IR Applications
INTRODUCTION
This application note strives to impart core,
fundamental programming concepts and design
considerations for the development of Palm OS®

application programs. Attention is given to each of the
fundamental areas of Palm OS application
development in the “C” programming language.

A Palm OS application program to interface to an
embedded system via IrCOMM is included in the
Appendices of this application note. This source code
shows the system calls that can be used for IR
communication.

Appendix A describes the system and documents the
tool used to create this Palm® application program and
Appendix B through Appendix G is the Palm
Application Program source code.

Figure 1 shows an IrDA® standard system, where a
Palm PDA device is communicating to an embedded
system. In this system, the Palm PDA operates as the
Primary device and the embedded system operates as
the Secondary device.

FIGURE 1: PALM™ PDA - EMBEDDED SYSTEM BLOCK DIAGRAM

Author: Frank Ableson
CFG Solutions Inc.
Mark Palmer
Microchip Technology Inc.

Palm™ Handheld Device
with IrDA® Standard Port

Embedded System with IrDA® Port

MCP215X Optical
Transceiver

Circuitry

Host Controller
and Embedded

Circuitry
or

MCP2140

(Secondary Device)

(Primary Device)
 2004 Microchip Technology Inc. DS00888A-page 1

AN888

Terminology
Below is a list of useful terms and their definitions:

• Palm OS device: Any device running the Palm
OS operating system. This includes devices from
Palm Computing such as the V and m series
units, the IBM® Workpad, a Sony Clié®, or a
Handspring® Visor®.

• HotSync™: The process of synchronizing the
Palm OS device to a host system.

• Host System: The computer with which a Palm
OS device performs a HotSync. The host system
is also where development takes place. Host
systems are typically Windows®, Macintosh® or
Linux.

• Conduit: Code containing the logic necessary for
synchronizing a database on the Palm OS device
with the host system. Each conduit is invoked
during the HotSync operation. Conduits on the PC
platform are packaged as dynamically linked
libraries (DLLs). Conduits work differently under
Linux, where each conduit is an application
instead of a library.

• POSE: The Palm OS Emulator. A desktop tool
useful for debugging applications.

• Primary Device: The IrDA standard device that
queries for other devices.

• Secondary Device: The IrDA standard device
that waits to detect IR communication before
doing any IR communication.

• Host Controller: The controller in the embedded
system that communicates to the MCP215X or
MCP2140.

• MCP215X: An IrCOMM protocol handler IC that
supports IR communication from 9600 baud to
115,200 baud.

• MCP2140: A low-cost IrCOMM protocol handler
IC that supports IR communication at 9600 baud.

• Protocol Stack: A set of network protocol layers
that work together. Figure 2 shows the IrDA
standard protocol stack.

• IrCOMM (9-wire “cooked” service class): IrDA
standard specification for the protocol to replace
the serial cable (using flow control).

FIGURE 2: IrDA DATA - PROTOCOL
STACKS

IrTran-P IrObex IrLan IrComm (1) IrMC

LM-IAS Tiny Transport Protocol (Tiny TP)

IR Link Management - Mux (IrLMP)

IR Link Access Protocol (IrLAP)

Asynchronous
Serial IR (2, 3)
(9600 -115200 b/s)

Serial IR
(1.152 Mb/s)

Synchronous
4 PPM
(4 Mb/s)

Optional IrDA data
protocols not

Supported by
the MCP215X

supported by the
MCP215X and MCP2140

Synchronous

Note 1: The MCP215X and MCP2140
implement the 9-wire “cooked” service
class serial replicator.

2: An optical transceiver is required.

3: The MCP2140 support 9600 Baud IR
communication only.

and MCP2140
DS00888A-page 2  2004 Microchip Technology Inc.

AN888

Environment Basics
This application note begins with a discussion of the
basics of the Palm OS environment, including resource
limitations, tasking model, user interface basics and
deployment options. Palm OS application developers
must understand these basic boundaries to
successfully develop for this platform. As the
application note progresses, more detailed information
conveys the specifics of communications programming
for the Palm OS platform.

Resource limitations
Palm OS devices face typical hand-held computer
system resource limitations, such as storage capacity,
available Random Access Memory (RAM), processor
speed, input devices and power consumption.
Fortunately, working with restricted resources is
nothing new to the embedded developer. These
limitations go beyond the problem of not having enough
resources to run all of the applications common on the
desktop. They also pose specific challenges to the
developer building the applications. For example, a
Palm OS application cannot allocate an arbitrarily large
data structure since heap memory is limited (measured
in Kilobytes instead of Megabytes). Global variables
consume part of this allocation, leaving a very finite
amount of space for dynamically allocated data
structures.

The storage capacity of Palm OS devices currently
range from 2 Mbytes to 64 Mbytes. There is no real
distinction made between what is traditionally
considered volatile RAM and nonvolatile, or persistent
storage, as in a hard drive on a desktop. Storage of
applications, database records and running
applications consume this relatively scarce resource.
This shared space means that the quantity of Address
or DateBook records stored on a device directly
impacts the space available for the applications
themselves.

More importantly, this resource consumption can
directly impact the application needing to allocate
temporary storage for an operation at run-time. The
preferred algorithm for a specific problem may fail on
devices with too many Address records. For example,
an application cannot slowly spool a graphical print job,
due to insufficient storage space.

EMULATING A MULTI-TASK ENVIRONMENT
The operating system is multi-tasking, though the
threads are not available for “user” applications; the
few existing threads are for system use only.
Surprisingly, Palm OS applications do an elegant job of
emulating a multi-tasking environment. Applications
create this effect by remembering the currently
displayed record when the application ends. When the
application is restarted, it jumps directly to the most
recently displayed record, as if the application had
been running the entire time. In reality, the application
was terminated and restarted.

USER INTERFACE (UI) AND APPLICATION
PROGRAMMING INTERFACE (APIs)
The Palm OS offers an economical User Interface (UI).
Traditional user interface elements (such as edit boxes,
lists, drop-downs, bitmaps, etc.) are available for
building applications. Limited screen size and lack of a
keyboard impose some restrictions on the user
interface. Later-model devices add greater color depth,
bringing a little more appeal to the display. The Palm
OS provides a rich Application Programming Interface
(API) for manipulating each type of user interface
element.

The UI should be thought out in advance, based on
what the customer needs to achieve with the
application. Care should be taken to ensure that the UI
is easy to use.

Some suggestions that can help are:

• Keep the UI “clean” by minimizing the number of
buttons, pull downs, icons, etc.

• Minimize the number of steps performed to see
vital information:
- most information should be accessible in a

minimal (1 or 2) number of stylus taps
• Optimize which features to include to ensure a

positive user experience

APIs are available for virtually every action necessary
in a Palm OS application. It is possible for a user
application to go straight to the metal (the Hardware)
on a Palm OS device. This practice is discouraged in
most cases and is considered a programming “hack”.
This may cause the user application to no longer work
on a later-model device, due to different hardware
characteristics. However, this technique of “hacking”
can offer interesting opportunities to insert custom
code into various portions of the operating system. The
result is similar to the functionality of a TSR in the days
of DOS, where an interrupt vector is “hooked”, allowing
custom code to be invoked when certain events occur.
The recommended technique for function (or trap)
hooking for the Palm OS involves using a hack
manager to coordinate the precedence of multiple
custom hacks in use at the same time.
 2004 Microchip Technology Inc. DS00888A-page 3

AN888

PALM OS DATABASE TYPES
The Palm OS file system is actually a database
manager. Everything stored on a Palm OS device is a
database. Applications are stored as databases, while
user interface components are stored as resource
databases. Of course, data, such as phone numbers
and to-do lists, are stored as records in a database.
Figure 3 shows a representation of the Palm Database
Header, while Example 1 shows what the programming
structure looks like.
Two database types of primary concern on the Palm
OS are:

• PRC
• PDB
The first database type is commonly referred to as a
“PRC” because of the file extension used on host
systems. The PRC file contains a “ready to run” Palm
OS application, or a Palm OS Shared Library (the end
result of the build process). The applications built in this
application note result in files with a PRC extension,
which are loaded to a Palm OS device.

The second type of database is a “PDB” file. The PDB
contains data stored in what is traditionally considered
a database. A data-collection application stores the
captured information in a database on the Palm OS
device. When this type of database is backed up to the
host system, the file extension is PDB.

While the host system relies on file extensions, the
Palm OS distinguishes databases by their “type”. The
type is designated by a 32-bit value stored in the
database itself.

Typical values:
• appl: Palm OS application (prc extension on host)
• libr: Palm OS Shared Library

(prc extension on host)
• data: Traditional record storage (pdb extension on

host)

There are other database types, but the PRC and PDB
represent the majority of databases encountered when
working in this environment.

FIGURE 3: PALM DATABASE HEADER

EXAMPLE 1: PALM DATABASE HEADER

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015

typedef struct
{
 Int8 name[dmDBNameLength];
 UInt16 attributes;
 UInt32 creationDate;
 UInt32 modificationDate;
 UInt32 lastbackupDate;
 UInt32 modificationNumber;
 LocalID appInfoID;
 LocalID sortInfoID;
 UInt32 type;
 UInt32 creator;
 UInt32 uniqueIDSeed;
 RecordListType recordlist;
} DatabaseHdrType;

Byte
00h name

20h attributes version
24h creationDate
28h modificationDate
2Ch lastBackupDate
30h modificationNumber
34h appInfoID
38h sortInfoID
3Ch type
40h creator
44h uniqueIDSeed
48h recordList
4Ch
DS00888A-page 4  2004 Microchip Technology Inc.

AN888

DEPLOYING PALM OS APPLICATIONS
The Palm OS database structure plays an important
role in defining the available deployment models for
applications. The database storage mechanism
constrains individual records to approximately
64 Kbytes, minus some overhead. This constraint
requires program code to fit into a single database
record. Additionally, all function calls (or jumps) must
be plus or minus 32 Kbytes from the current program
counter location.

Palm OS applications are typically written as
monolithic, single-segment programs. These
applications are known as single-segment because
they are contained within the 64 Kbyte single-record-
size limit. As applications grow in code size, these two
restrictions demand a solution. An alternative to the
single-segment application is the multi-segment
application. A multi-segment application has code
spanning multiple database records. Development
tools resolve function calls across code segments.
However, some functions are now further than
32 Kbytes apart in code space. A technique that helps
the linker resolve these “far” function references calls
for placing commonly used code in centrally located
segments, with the intent of making those functions fall
within 32 Kbyte of any other locations in the
application. (See Figure 4).

Another option is to “in-line” functions. This is the
practice of copying the code into place as opposed to
“calling” on it from another location. In-line functions
resolve the linking problem at the expense of creating
a larger application. When the application grows in
size, the linking problems may be exacerbated. These
code-placement techniques work in many instances,
yet some applications require even more flexibility. The
solution comes in the form of a code library.

FIGURE 4: SINGLE SEGMENT

SHARED LIBRARIES
It is generally accepted as good practice to break code
into reusable pieces. The most elegant way of
performing this is in the form of a code library, ideally
one loadable at run-time. Sharing code at run-time
allows many applications to utilize the same functions
without the overhead of storing multiple copies of the
same code on the device. This conservation of space
is crucial in a limited resource environment such as the
Palm OS. These loadable, reusable units are called
“Shared Libraries” on the Palm OS.

A shared library is a single-segment code resource that
is post-linked into a PRC file. A shared library is
installed in the same manner as traditional
applications. It does not show up in the list of
applications, but rather is available for use by Palm OS
applications. An application loads the shared library on
demand. The Palm OS ships with many shared
libraries, with the most popular being used for
communications functions, such as Infrared (IrLibrary)
and Networking (Net.lib). Many third-party products are
also packaged as shared libraries (see Figure 5).
The shared library is an attractive mechanism for
deploying commonly used functionality. However, it
does have two significant drawbacks. The first
limitation is code size. A shared library is constrained to
a single segment. A more annoying feature of shared
libraries is the lack of global variables. A shared library
is forbidden to utilize global variables or statically
initialized variables, which become global variables at
link time. There are techniques for providing global-like
structures to cope with this limitation. For additional
information on shared libraries, see the “Resources”
section.

FIGURE 5: SHARED LIBRARY

Segment
jumps up to
-32 KBytes from PC

PC

jumps up to
+32 KBytes from PC

Segment
A

Segment
B

Segment
C

Shared
Library

A

Shared
Library

B

 2004 Microchip Technology Inc. DS00888A-page 5

AN888

PALM OS COMMUNICATIONS CAPABILITIES

A BRIEF INTRODUCTION
The Palm OS boasts an impressive array of
communications options. The available features vary
according to the manufacturer and model of the target
device. For example, some devices have wireless
networking capabilities, while others have a Universal
Serial Bus (USB) connector instead of the traditional
serial (RS-232) connector.

Infrared communications hardware is common on
virtually all Palm OS devices, with later-model devices
having enhanced IrDA standard software capabilities.
The Palm VII model contains a radio modem providing
connectivity to Palm's proprietary network, Palm.net®.
Other Palm OS devices gain access to the Internet via
a variety of commercially available modems. The area
of communications is always in transition as new
technologies arise. For example, Bluetooth™ and Wi-Fi
(802.11b, wireless Ethernet) technologies are finding
their way into new devices (such as the Palm
Tungsten™ C).

INFRARED COMMUNICATIONS
The application built and discussed in this application
note uses a high-level, infrared protocol called
IrCOMM. This protocol is designed as a wire-replace-
ment technology. Infrared technology is very
compelling for data collection for many reasons,
including:
• Availability: Virtually every later model PDA and

laptop contains an IrDA port.
• Cost: IrDA communications may be added to a

custom design very economically, as
demonstrated in this application note.

• Convenience and Compatibility: Working without
wires means no cables, gender-changers, or any
other gadgets to make two devices communicate.
This is vital to the frequent traveler or technician
in the field.

For more information regarding the IrCOMM protocol,
visit the IrDA organization web site at:

http://www.irda.org

Note 1: As with any O.S., application program
compatibiliy issues can arise between
different versions.. So a program that
functions on V4.x of the O.S. may be
required to be “tuned” for V5.x of the O.S.

2: Due to the number of Palm PDA
processor manufacturers, hardware
dependancies may be encountered. This
likelyhood increases as the application
software “gets closer” to the hardware.
This is more likely when doing “Raw IR”
communication.
DS00888A-page 6  2004 Microchip Technology Inc.

AN888

PALM OS COMMUNICATIONS LINE-UP

Serial/USB
Every Palm OS device is equipped with either a
Universal Serial Bus (USB) or RS-232 UART
connection. The most common example of this
communication capability is during the HotSync
process, which is when the Palm OS device
synchronizes its contents with the host system.

APIs are available for Serial Communications, however
USB interaction is limited to the HotSync process; it is
not available for custom Palm applications.

Infrared Library
Programming the infrared communications port of a
Palm OS device may be accomplished in a number of
different ways. The SDK provides a fairly rich set of API
functions for performing activities such as device
discovery, packet sending, and registering callback
functions (useful for notification when certain events
have taken place).

Programming the IrLibrary is arguably the most
complex manner by which to communicate via infrared
on the Palm. This application note does not venture
into the specifics of IrLibrary programming, but other
resources are available on this topic. See the
“Resources” section for more information regarding
IrLibrary programming examples and applications.

IrCOMM
As mentioned earlier, IrCOMM is a wire-replacement
protocol, sitting near the top of the IrDA protocol stack.
The most convenient manner with which to leverage
the IrCOMM protocol is through the use of the Palm OS
Serial Manager APIs. Communicating with an IrCOMM
device (such as the Microchip MCP215X series)
requires a special identifier to the SrmOpen() function.
This will be discussed in more detail later in the
application note.

Object Exchange (OBEX)
The most common use of Infrared communications on
the Palm OS platform is “beaming”. Users share
information, such as Address records or applications,
via beaming. The underlying protocol in action is known
as Object Exchange, more commonly known as OBEX.
OBEX is similar to HTTP in that it shares “typed”
information. The Palm OS Exchange Manager APIs
provide access to these functions. This application note
does not discuss Exchange Manager programming.
For additional information on Exchange Manager, refer
to the “Recommended Reading” section of this
application note.

BlueTooth
BlueTooth is a limited-range radio frequency
technology, sharing the same frequency spectrum as
802.11b (Wi-Fi technology). BlueTooth technology is
finding its way into the Palm OS arena in the form of
add-ons by releasing BlueTooth cards from Palm
Computing® that fit into the expansion slot found on the
latest Palm devices, as well as integrated into the PDA
itself (such as the Palm Tungsten T2 model). Other
manufacturers provide various forms of “sleds”, or don-
gles, boasting BlueTooth connectivity.

BlueTooth programming may be accomplished through
a rich API set, known as BtLibrary. BtLibrary may be
likened to the IrLibrary, providing a rich set of functions
and mechanisms for discovering devices and
interacting with them. For more straight-forward, wire-
replacement applications, the Palm OS Serial Manager
API provides a means for communicating with another
BlueTooth device when the device is operating in the
BlueTooth Serial Port Profile (SPP). Wire-replacement
is but one of many “profiles” defined in the BlueTooth
specification. This application note does not
demonstrate BlueTooth development, though more
information may be found in the “Resources” section.

Network Programming
The Palm OS provides a rich set of network
programming interfaces, roughly equivalent in function
to the Berkeley Sockets API. Both TCP and UDP
connections may be established over a variety of
underlying transports. A network connection may be
established via a traditional dial-up modem, a CDPD
radio modem, an “Ethernet cradle”, a BlueTooth
adapter in its LAN profile and more. Networking APIs
are found in the Net.lib shared library.

The topic of communications programming for the
Palm OS is vast and beyond the scope of this
application note. For more information on the this topic,
please see the “Resources” section at the end of this
application note.

Note: The Palm OS does not provide a Windows
networking client. More information on
network programming may be found in the
“Resources” section.
 2004 Microchip Technology Inc. DS00888A-page 7

AN888

PALM OS SDK & APPLICATION
ARCHITECTURE BASICS
This section explores the Palm OS SDK, including API
functions, data types and how they work together in a
typical Palm OS application. The basic structure of a
Palm OS application is also examined. An
understanding of these topics is a key ingredient to
developing applications for the Palm OS platform.

API Functions
It is crucial to understand the facilities provided by the
SDK as they are the lifeblood of Palm OS development.
Documentation for Palm OS has traditionally been
supplied in the form of Acrobat® PDF files. However,
some development tools, such as DeveloperStudio by
Falch.net, makes the information available via context-
sensitive help. Open a source file created from the new
Palm OS Framework Project wizard and scan the
various function calls. Highlight any function and press
the F1 key for help.

Syntax, style and data types require some attention.
SDK functions are organized into categories based on
their role. All functions of the same category have the
same two or three-letter prefix. Table 1 shows some
examples.

TABLE 1: SDK FUNCTIONS

Data Types
Data types fall into two categories:

1. Scalar.
2. Composite.
Scalar data types are variables that are not broken
down into sub fields. Table 2 shows some Palm OS
scalar data types and their equivalent data type in other
environments.

TABLE 2: DATA TYPES

The other category is the composite, or user-defined,
data type. The SortRecordInfoType (shown in
Example 2) is an example of this kind of data type. It
uses other data types to construct the composite
representation required. This example was taken from
the DataMgr.h header file.

A pointer data type is designated with a 'Ptr' at the end,
as shown in line #1 of Example 3.
Pointer variables are denoted with a capital 'P' at the
end. In line #3 of Example 3, the syntax for defining a
pointer to a SortRecordInfoType is shown.

EXAMPLE 2: DATA TYPE SYNTAX

EXAMPLE 3: POINTER DATA TYPE AND VARIABLE SYNTAX

Prefix SDK Category

Frm Form manipulation functions
Fld Field manipulation functions
Net Networking functions
Exg Exchange Manager functions, used for

Infrared Beaming
Srm Serial Manager functions
Ir Infrared Library functions

Palm OS®
Scalar
Data Type

Equivalent
Data Type Format

UInt8 byte unsigned 8 bits
Char char signed 8 bits
UInt16 word unsigned 16 bits
Int16 short signed 16 bits
UInt32 dword unsigned 32 bits
Int32 long signed 32 bits
UInt8* unsigned char *,

or byte *

Line #
001
002
003
004
005

typedef struct
{
 UInt8 attributes; // record attributes;
 UInt8 uniqueID[3]; // unique ID of record
} SortRecordInfoType;

Line #
001
002
003

typedef SortRecordInfoType *SortRecordInfoPtr;

SortRecordInfoPtr sortinfoP;
DS00888A-page 8  2004 Microchip Technology Inc.

AN888

“C” Runtime Functions
On most platforms, it is common to utilize standard C
runtime functions, such as string manipulation routines
like sprintf() or strcpy(). Palm OS provides its own
version of these and other “runtime” functions. String
manipulation functions all start with 'Str' and can be
found in the documentation.

Event-Driven System
The Palm OS is an event-based operating system.
Typical events are pen taps, button presses, menu
selections and so forth. The operating system and
application work in tandem to service the event queue.
The operating system enqueues events as they occur.
The primary responsibility of any Palm OS application
is to service the event queue. Both the operating
system and application may service the queue. Both
may add events, and both may remove events.
The operating system supports a single user-interface
application. Multitasking is not available for custom
applications. There are limited 'background tasks' in
the operating system, though these are minimal and
deal with low-level communications drivers. These
drivers enable modem or network access for the
device. A network connection takes place at a lower
level than the user application, though the user
application often initiates and terminates the underlying
connection. It is perfectly feasible (and common) for
one application to establish a connection and then
terminate itself. This allows another application, the
active user interface, to make use of the network
connection, if so desired. This is the manner in which
the Network Preferences panel operates. The
operating system is responsible for managing the low-
level communications driver and the single user-inter-
face task. Custom applications, such as those built in
this application note, have complete control of the
device. The custom application, though, must be
mindful of the underlying OS's need for processor
cycles to handle and respond to interrupts sufficiently.

Starting the Application
There are multiple ways to start an application. It may
be initiated from the main application launcher interface
as well as from another application. Launch codes are
arguments passed to the application at start-up. These
launch codes permit the application to make appropri-
ate decisions on how to behave and operate. For
example, with a normal launch, the application displays
its full user interface. A 'Find' launch code causes the
program to search its database, but not necessarily dis-
play the normal user interface.
There are three topics fundamental to a Palm OS
application. These are:
1. Launch Codes
2. Main EventLoop
3. Event Handlers
The next few sections walk through code examples of
“boiler plate” Palm OS applications.

Note 1: Do not attempt to use the standard C
“runtime” routines.

2: The StrPrintF function is unforgiving with
regard to improper data type sizes in the
format string.
 2004 Microchip Technology Inc. DS00888A-page 9

AN888

PilotMain
PilotMain is the entry point for a Palm OS application.
PilotMain performs the same role as the main() function
in other C language environments. The arguments to
PilotMain determine the role the application is to
perform. Example 5 shows the PilotMain code.

The cmd parameter represents the launch code (see
Line #1 of code). This code may request a normal
launch, as this example demonstrates, or it may be one
of a finite list of values. These values include launch
codes to inform applications that the HotSync operation
is complete or that the date or time has been changed.
The SDK documentation enumerates all available
launch codes.
The parameter cmdPBP (see Line #1 of code) may
point to a structure required for a particular launch
code. For example, the launch code sysAppLaunch-
CmdGoto is used to instruct an application to initiate its
user interface and display a particular record. The
structure accessible via the cmdPBP parameter
contains the necessary information to perform the
action of displaying a specific database record.
Example 4 shows what the structure looks like.

The launchFlags parameter (see Line #1 of code)
allows further refinement of how the application
operates. One interesting flag is sysAppLaunch-
FlagSubCall. This value allows the application to call
its own PilotMain function again and again.

Under a normal launch, the application performs any
initialization required and then enters its main Event-
Loop (see Line #14 of code).

EXAMPLE 4: STRUCTURE

EXAMPLE 5: PILOTMAIN

Line #
001
002
003
004
005
006
007
008
009
010

typedef struct
{
 Int16 searchStrLen;
 UInt16 dbCardNo;
 LocalID dbID;
 UInt16 recordNum;
 UInt16 matchPos;
 UInt16 matchFieldNum;
 UInt32 matchCustom;
} GoToParamsType;

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025

UInt32 PilotMain(UInt16 cmd, void *cmdPBP, UInt16 launchFlags)
{
 Err error;

 switch (cmd)
 {
 case sysAppLaunchCmdNormalLaunch:
 // Application start code
 error = StartApplication();
 if (error)
 return error;

 // Maintain event loop
 EventLoop();

 // Stop application
 StopApplication();
 break;
 default:
 break;

 }

 return 0;
}
DS00888A-page 10  2004 Microchip Technology Inc.

AN888

EventLoop & Event Handlers
A Palm OS application's primary activity is to service
events received from the operating system. This
process is accomplished via a function named
EventLoop (see Line #1 of code). A typical Event-
Loop function is presented in Example 6.

The EventLoop continually looks for new events by
calling the EvtGetEvent function (see Line #10 of
code). Once an event has been received, the
EventLoop passes the event to a series of event han-
dlers (see Lines #12 - #20 of code). There is a priority
to the event handlers, demonstrated in the calling
sequence as events “trickle down” through various

handlers. The EventLoop function continues until an
appStopEvent is received (see Line #22 of code),
which signals the Event Loop to terminate.
The operating system itself is given the first opportunity
to process an event. The operating system services
events, such as a hard key press. If the operating
system is not interested in the event, the event is
passed on to the MenuHandleEvent handler (see
Line #15 of code). The MenuHandleEvent function is
responsible for tracking menu interaction. If both the
Sys and Menu handlers decline to process an event,
the event is passed to application-defined functions.

EXAMPLE 6: EVENTLOOP

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

static void EventLoop(void)
{
 Err error;
 EventType event;

 // Main event loop
 do
 {
 // Get next event
 EvtGetEvent(&event, evtWaitForever);

 // Handle event
 if (!SysHandleEvent(&event))
 {
 if (!MenuHandleEvent(0, &event, &error))
 {
 if (!ApplicationHandleEvent(&event))
 FrmDispatchEvent(&event);
 }
 }
 }
 while (event.eType != appStopEvent);
}
 2004 Microchip Technology Inc. DS00888A-page 11

AN888

Example 7 shows the ApplicationHandleEvent function
(see Line #1 of code). This function generally deals
with only one event, the FrmLoadEvent (see Line #10
of code).

EXAMPLE 7: APPLICATION HANDLE EVENT

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033

static Boolean ApplicationHandleEvent(EventPtr event)
{
 UInt16 formID;
 FormPtr form;
 Boolean handled = false;

 // Application event loop
 switch (event->eType)
 {
 case frmLoadEvent:
 // Handle form load events
 formID = event->data.frmLoad.formID;
 form = FrmInitForm(formID);
 FrmSetActiveForm(form);

 switch (formID)
 {
 case frmMain:
 // Set event handler for frmMain
 FrmSetEventHandler(form,
 (FormEventHandlerPtr) FrmMain_HandleEvent);
 break;
 default:
 break;
 }
 handled = true;
 break;
 default:
 break;
 }

 return handled;
}
DS00888A-page 12  2004 Microchip Technology Inc.

AN888

Form Event Handlers - An Introduction To
User Interface Events
As an event trickles down through the series of event
handlers without being serviced, it will eventually fall to
the current form event handler. This function is
application-defined to service relevant events, such as
menu events, button selects, pop-up list selections and
so on. In short, the form event handler deals with user-
interface events, the point at which most substantive
Palm OS development starts. The other functions are
more or less boiler-plate code that is copied from
project to project.

Each event carries with it specific information pertinent
to that event. For example, a button selection event
contains the identifier for the button, while a pen tap
contains the screen coordinates of the pen at the time
the tap was recorded. The following code snippet
demonstrates the handling of a button press. This
application's user interface contains a single button
labeled ‘Hit Me’.
Example 8 shows how the frmMain_HandleEvent

initializes the form and assigns the form's event
handler. ‘Cases’ are added for each additional form in
order to assign the appropriate event handler function.

EXAMPLE 8: FORM EVENT HANDLER

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

Boolean frmMain_HandleEvent(EventPtr event)
{
 FormPtr form;
 Boolean handled = false;

 switch (event->eType)
 {
 case ctlSelectEvent:
 switch (event->data.ctlSelect.controlID)
 {
 // HitMe receives an event
 case HitMe:
 handled = frmMain_HitMe_OnSelect(event);
 break;
 }
 break;
 case frmOpenEvent:
 // Repaint form on open
 form = FrmGetActiveForm();
 FrmDrawForm(form);
 handled = true;
 break;
 default:
 break;
 }

 return handled;
}
 2004 Microchip Technology Inc. DS00888A-page 13

AN888

Code Organization
When an event occurs in the UI, such as a button being
tapped on the device, a ctlSelectEvent makes its way
to the form event handler. Referring to the code sample
above, the event handler examines the controlID of the
event and dispatches it accordingly to another function
named frmMain_HitMe_OnSelect, listed in Example 9.

This function simply displays a message dialog with the
words “Hi there”.
It is not necessary to break out each and every control
or action to a separate function. This is a matter of
organization, ultimately driven by programming style
and readability.

EXAMPLE 9: DATA TYPE

Line #
001
002
003
004
005
006
007

static Boolean frmMain_HitMe_OnSelect(EventPtr event)
{
 // Insert code for HitMe
 FrmCustomAlert(Info, "Hi there", NULL, NULL);

 return true;
}
DS00888A-page 14  2004 Microchip Technology Inc.

AN888

PALM OS SERIAL MANAGER
PROGRAMMING
This section will discuss the Serial Manager API
functions and the parameter that allows the function to
communicate using the IrDA standard.

Serial Manager - the Universal
Communications API
The Palm OS exposes a versatile communications
programming interface known as the Serial Manager.
The Serial Manager permits a developer to interact with
an arbitrary stream-based communications resource
via a common API library, regardless of the
characteristics of the underlying resource. For
example, opening a physical serial port, a “raw”
infrared port, an IrComm resource or Bluetooth
resource may be accomplished with the same Serial
Manager function call, as seen in Example 10.
The <port id> is a 32-bit value identifying the specific
port (see Line #5 of code).

SrmOpen Details
The first argument of the SrmOpen function (see Line
#1 of code) indicates the desired communications
resource. The value may be either a logical port
number or the name of a particular port. Common
values are:

• 0x8000 - logical value for the RS-232 serial port
• 0x8001 - logical value for the IR Port
• 'ircm' - IrCOMM virtual port name
• 'rfcm' - Bluetooth serial port profile

The second argument of the SrmOpen function
indicates the baud rate desired. In Example 9, this
value is set to 9600. In standard serial
communications, it is common to change the speed
and other port settings after a successful SrmOpen
call. When IrCOMM is selected as the port, the baud
rate will automatically start at 9600 baud for the
negotiation process. After negotiation, the interface will
operate at the negotiated baud rate (which will be
limited to a maximum by the baud parameter of the
SrmOpen function).

The Serial Manager function SrmControl is used for
controlling port characteristics, such as baud rate and
flow control settings. The functions SrmGetStatus and
SrmGetDeviceInfo allow querying of current port
settings.

The third, and final, argument of the SrmOpen function
is the address of a variable of type UInt16. Upon a
successful open, this variable is populated with a value
identifying the open communications resource, or
simply, the port identifier. All subsequent invocations of
Serial Manager functions require this value as the first
parameter.
The return value from the SrmOpen function is the
standard Palm OS Err data type. A return value of zero
indicates success. Any other value represents an error
condition. The Palm OS SDK documentation
enumerates the possible error conditions for the
SrmOpen function.

EXAMPLE 10: SrmOpen

Line #
001
002
003
004
005
006
007
008
009
010
011

Err err = 0;
UInt16 port = 0;
Char buf[100];

 err = SrmOpen(<port id>,9600,&port);
 if (err)
 {
 StrPrintF(buf,"Unable to open port, error is [%d]",err);
 FrmCustomAlert(Info,buf,NULL,NULL);
 }
 // successful open
 2004 Microchip Technology Inc. DS00888A-page 15

AN888

Sending/Transmitting Data
Once the communications resource is open and the
communications characteristics are set to their desired
state, the transfer of information may commence. The
function below demonstrates data transmission via the
Serial Manager function SrmSend.

Example 11 shows how the function attempts to send
the entire string represented by the single argument to
the function dataP. If an error occurs during the
attempt, an Alert notifies the user. Notice that this
function expects a null-terminated string. However, the
SrmSend function can accept binary data as well.

The SrmSend function (see Line #8 of code) requires a
valid port identifier as the first argument. The additional
arguments to the function are the base address of a
memory buffer containing the data to be sent, the
number of bytes to send and the address of a variable
to record any errors that may occur during the send
attempt. The return code of the function indicates the
number of bytes actually sent to the port.

EXAMPLE 11: SENDING DATA

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015

void SendData(Char * dataP)
{
 Err err;
 UInt32 bytestosend = StrLen(dataP);
 UInt32 bytessent = 0;
 Char buf[100];

 bytessent = SrmSend(port,(const void *)dataP,bytestosend,&err);
 if (bytessent != bytestosend || err != 0)
 {
 StrPrintF(buf,"Error during send [%ld] out of [%ld] err = [%d]",
 bytessent,bytestosend,err);
 FrmCustomAlert(Info,buf,NULL,NULL);
 }
}
DS00888A-page 16  2004 Microchip Technology Inc.

AN888

Options When Sending
There are many functions available in the Serial
Manager concerning the sending of data. The most
commonly used function is SrmSend, as demonstrated
above. When the SrmSend function is invoked, the
data passes through a FIFO (first in, first out) buffer. All
functions have a special purpose in manipulating this
FIFO buffer.

The SrmSendCheck function obtains the number of
bytes remaining to be sent in the FIFO transmit buffer.
The first argument is, as usual, the port identifier. The
second argument is the address of a UInt32 variable.
This second value is populated with the current depth
of the FIFO transmit buffer. A zero return value
indicates success, with a non-zero value indicating an
error.

The SrmSendFlush function flushes the transmit FIFO
buffer without sending the contents. This function is
commonly used when initializing a communications
resource. The port is first opened with SrmOpen and
then the transmit buffer is flushed to ensure that no
stray data finds its way to a target device with a call to
SrmSendFlush.
The SrmSendWait function attempts to send any data
remaining in the transmit buffer. It returns when either
the buffer has been completely sent, or the elapsed
time exceeds the port time-out value, known as
ctsTimeout. The ctsTimeout is set by the SrmControl
function. For more information regarding these
functions, please refer to the Palm OS SDK help, found
through the Falch.net DeveloperStudio Help menu or
from the Palm OS SDK documents directly.

Reading/Receiving Data
The code listed below is responsible for moving data
from a Serial Manager-managed receive FIFO buffer
into the application's own buffer. It attempts to read
<bytesavailable> characters from the resource.
Example 12 shows how this code uses the
SrmReceive function to read data from the receive
FIFO. The arguments to the SrmReceive function
include the usual port identifier, the starting address of
a buffer to store the read data, the number of bytes to
read, a time-out value and a variable to record any
errors during the read activity. The function returns the
number of bytes actually read.
SrmReceive's signature is similar to the SrmSend
function, except that it includes an additional
parameter, namely the time-out. A call to SrmReceive
returns after reading the requested number of bytes, or
the time-out period has elasped. The time-out is
expressed in Palm OS system ticks. The SDK function
SysTicksPerSecond is used for determining the timing
values on a specific device. Using this function to
calculate a time-out value, rather than a fixed constant,
allows an application to run on any Palm OS device,
even if the underlying time granularity changes.

EXAMPLE 12: READING DATA

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017

void ProcessPort(UInt32 bytesavailable)
{
 UInt32 bytestoread = 0;
 UInt32 bytesread = 0;
 Err err;
 Char buf[100];
 Char buffer[<sufficient size>];

 // read data into buffer
 bytesread = SrmReceive(port,buffer,bytestoread,SysTicksPerSecond(),&err);
 if (bytesread != bytestoread || err != 0)
 {
 StrPrintF(buf,"Error during read [%d] out of [%d] err = [%d]",
 bytesread,bytestoread,err);
 FrmCustomAlert(Info,buf,NULL,NULL);
 }
}
 2004 Microchip Technology Inc. DS00888A-page 17

AN888

Options When Receiving
Similar to the Send functions, the Serial Manager also
provides functions for manipulating the receive FIFO
buffer.
The SrmReceiveCheck function checks for the number
of available bytes in the receive FIFO buffer. This
function is often used in an application's EventLoop
when looking to process data received in an
asynchronous fashion. This application note's sample
application demonstrates this technique. Example 13
shows the relevant code snippet.

SrmReceiveFlush is a useful function typically used
immediately after opening a communications resource.
This function removes all data from the receive buffer,
minimizing the chances that an application reads stale,
unwanted data from the buffer. In addition to the port
identifier, this function takes an argument specifying a
time-out period. When invoked, the receive buffer is
flushed. The function then waits the requested number
of system ticks, expecting more data to arrive. If
additional data arrives, the newly-arrived data is
removed from the receive buffer and the function again
waits for the full time-out period. The function will only
return when an entire time-out period has elapsed
without the receipt of additional data.

The SrmReceiveWait function takes three arguments
after the required port identifier, byte count and time-
out value arguments are used to direct this function.
The function does not return until either the receive
FIFO depth reaches the requested byte count or the
time-out period expires.

Though it is beyond the scope of this application note,
there are additional mechanisms for an application to
be notified when data has arrived in a “callback”
fashion. For more information regarding this technique,
refer to the “Recommended Reading” section.

EXAMPLE 13: CHECKING FOR DATA

Line #
001
002
003
004
005
006
007
008

 if (commsactive == true && rawreadmode == true)
 {
 SrmReceiveCheck(portid,&bytestoread);
 if (bytestoread > 0)
 {
 ReadIntoBuffer(bytestoread);
 }
 }
DS00888A-page 18  2004 Microchip Technology Inc.

AN888

Closing the Port
When the communications resource is no longer
required, it may be closed with a call to the SrmClose
function. The lone parameter of this function is the port
identifier. It is important to close a communications
resource when the Palm application terminates. If not
closed, the appilcation shall remain open and,
effectively, unavailable to the application when it next
attempts to open the port without additional complexity
in the application. A common technique for avoiding
this troublesome situation is to place a call to SrmClose
at the conclusion of the application's event loop.

Serial Programming and the MCP21XX
Family
This application note discusses and demonstrates the
steps necessary for communicating with the MCP215X
devices. These devices implement the IrCOMM
protocol in the Application Layer. This is in the upper
echelon of the IrDA stack (see Figure 2). When
interacting with the IrComm protocol, there are two
options on the Palm OS platform:
1. To use the Serial Manager functions as

described above and demonstrated in the appli-
cation note's demonstration application. This
provides basic connectivity and is appropriate
for most applications.

2. To use the IrLibrary directly. This is a much more
complex approach, particularly for developers
new to the Palm OS platform. However, there is
additional control available to the developer at
this level. For example, the IrDA standard
discovery process is available to the application
when it is not available to an application
choosing to employ the Serial Manager.

For more information regarding the IrLibrary, please
see the “Resources” section at the end of this
application note.
When communicating with the MCP2120 (an UART to
IrDA standard encoder/decoder device), the only
option available to the Palm OS developer is to use the
Serial Manager API. The port identifier for the “raw ir”
port is 0x8001. In addition, the SrmControl function
must be utilized to enable and disable the IR
transceiver. Example 14 shows an example of these
calls.

It is important to enable and disable the receive
capability of the IR transceiver, as it is common for
some devices to “receive” that which has been sent. It
does not occur on all devices, but an application
developer is well advised to perform the enable/disable
when appropriate. The Rx capability should be
disabled when sending data. Be sure that the
application sends all data via a call to SrmSendWait()
and then re-enables the Rx capability.

EXAMPLE 14: IrDA CONTROL

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020

UInt16 paramlength;
UInt32 flags;

 // enable ir
 flags = 0;
 paramlength = sizeof(flags);
 err = SrmControl(portid, srmCtlIrDAEnable,
 (void *) &flags,¶mlength);

 // enable rx
 flags = 0;
 paramlength = sizeof(flags);
 err = SrmControl(portid, srmCtlRxEnable,
 (void *) &flags,¶mlength);

 // disable rx
 flags = 0;
 paramlength = sizeof(flags);
 err = SrmControl(portid, srmCtlRxDisable,
 (void *) &flags,¶mlength);
 2004 Microchip Technology Inc. DS00888A-page 19

AN888

Communications Routines
This section attempts to break down the pertinent code
snippets found in the comms.c module. This module
contains the majority of the logic required for the
demonstration application. In addition, the EventLoop
function, found in main.c, is examined to learn the
modifications necessary for receiving data in an
asynchronous fashion. The remaining modules simply
provide a framework and boiler plate code for a Palm
OS application.
The application makes use of a handful of global
variables listed in Example 15.

The commsactive flag guides the behavior of the
EventLoop code (see Example 19).

The portid represents the communications resource
opened with the SrmOpen function. All Serial Manager
functions use this variable to identify the open port.
The rawreadbuffer accepts data as it is received by the
SrmReceive function.
rawreadmode and rawreadsize are helper variables to
assist in properly reading data via the IR port.

To establish the connection to the Secondary device,
the code in Example 16 is invoked .
This code attempts to open the port with a call to
SrmOpen (line # 007) using the 'ircm' parameter,
instructing the Palm's Serial Manager to open the
communications port and implement the IrComm
protocol. The requested speed is 9600 baud.
Line # 016 is a call using the SrmSend function. This
call has a payload size of zero (third parameter).
Without this line, the link is not actually established (the
connection negotiation does not take place). This call
to send data with a payload size of zero bytes tricks the
stack into negotiating and sending an empty data
frame, thereby establishing the link without actually
sending application data. Without this approach, the
link would not be established until an application sent a
packet to the device.

EXAMPLE 15: GLOBAL VARIABLES

EXAMPLE 16: OPENING THE PORT

Note 1: The behavior of this “trick” varies from
device to device and OS versions. It is
advised to thoroughly test this on your
target platform/device.

2: This trick appears not to be well behaved
in Palm OS V5.2.1.

Line #
001
002
003
004
005
006

/* communications global variables */
Boolean commsactive = false;
UInt16 portid = 0;
Boolean rawreadmode = false;
UInt8 rawreadbuffer[1024];
UInt16 rawreadsize;

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020

Boolean OpenPort()
{
Err e;
char buf[100];

 // attempt to connect
 e = SrmOpen('ircm',9600,&portid);
 if (e)
 {
 StrPrintF(buf,"Failed to open port [%d]",e);
 FrmCustomAlert(ErrorAlert,buf,NULL,NULL);
 return false;
 }
 // now set any port parameters desired
 // push out a zero sized packet to bring up the interface
 SrmSend(portid,buf,0,&e);
 commsactive = true;

 return true;
}
DS00888A-page 20  2004 Microchip Technology Inc.

AN888

Transmitting a Byte of Data
The code shown in Example 17 will transmit a byte of
data on the IR port (once the port has been
successfully opened).
This code sends a single byte of value 5 (or hex 0x35)
to the IR Demo board (line # 014 and line # 015). Notice
the use of the SrmSendFlush (line # 009),
SrmReceiveFlush (line # 011) and SrmSendWait (line
020) routines. These routines take measures to clean
out buffers prior to initiating this “transaction”. Once the
data has been sent, the QueryVendingMachineRe-
sponse() function (line # 021) is invoked to process the
results. Here is a description of the code, as it is too
lengthy to present in full here.

The QueryVendingMachineResponse checks for
data availability in the receive buffer while in a main
loop. This loop will run for no more than 5 seconds, or
until a complete message has been received from the
Secondary device. As data is received, it is parsed,
with the relevant information being extracted from the
application message received from the Secondary
device. Any data received is then displayed on the
screen of the Palm device.

EXAMPLE 17: QUERY IR DEMO BOARD

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022

void QueryVendingMachine()
{
Err e;
UInt8 b;

 // clear out send and receive buffers

 SrmSendFlush(portid);

 SrmReceiveFlush(portid,SysTicksPerSecond()*1.5);

 // send query to the device ... ascii 5 or hex 0x35
 b = '5';
 if (SrmSend(portid,(void *) &b,1,&e) != 1)
 {
 FrmCustomAlert(ErrorAlert,"Failed To Query Demo Board",NULL,NULL);
 return;
 }
 SrmSendWait(portid);
 QueryVendingMachineResponse();
}
 2004 Microchip Technology Inc. DS00888A-page 21

AN888

Data Receive Window
When the Palm application is expected to receive a
large amount of data from the Secondary Device, the
ReadIntoBuffer() function (shown in Example 18) can
be used. This routine is invoked from the EventLoop
when data is available in the receive FIFO.

Example 18 shows the relevant code snippet from the
EventLoop, demonstrating a technique for reading data
as it is received.

EXAMPLE 18: READ DATA

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020

/*
 read data and then update the trace byte count UI
*/
void ReadIntoBuffer(UInt32 bytestoread)
{
UInt32 bytes;
FormPtr f = FrmGetActiveForm();
ControlPtr cptr =
 (ControlPtr) FrmGetObjectPtr(f,FrmGetObjectIndex(f,TRACECOUNT));
Err e;

 bytes = SrmReceive(portid,&rawreadbuffer[rawreadsize],min(bytestoread,
 sizeof(rawreadbuffer) - rawreadsize),SysTicksPerSecond(),&e);
 rawreadsize += bytes;
 StrPrintF(tracebuffermsg,"Trace : %d Bytes",rawreadsize);
 CtlSetLabel(cptr,tracebuffermsg);
 CtlDrawControl(cptr);
 FrmDrawForm(f);

}
DS00888A-page 22  2004 Microchip Technology Inc.

AN888

EXAMPLE 19: CHECKING FOR DATA

Line #
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

Err error;
EventType event;
UInt32 bytestoread;
// Main event loop
do
{
 // Get next event
 EvtGetEvent(&event, 10);

 if (event.eType == nilEvent)
 {
 // check to see if we should service the communications port
 if (commsactive == true && rawreadmode == true)
 {
 SrmReceiveCheck(portid,&bytestoread);
 if (bytestoread > 0)
 {
 ReadIntoBuffer(bytestoread);
 }
 }
 }
...
}
 2004 Microchip Technology Inc. DS00888A-page 23

AN888

Overview of Conduits
This application note has focused on the specifics of
writing a Palm OS application and, in particular,
interacting with the MCP215X demo board. While IrDA
standard communications are extremely useful for
communicating with a device in the field, a common
question arises when determining the best manner to
move data to and from the host environment, which is
typically a Windows-based computer. The prescribed
manner for this activity is a Palm OS desktop conduit.
As defined in the introduction of this application note,
the conduit acts as a loadable module to the HotSync
Manager. The conduit is responsible for intelligently
exchanging data between a Palm resident database
and the desktop.
There are two typical usage profiles for Palm/
MCP215X applications, of which conduits play a role in
both:

1. The first, and most common, is the classical
data collection scenario where the Palm OS
based device is employed to collect data in the
field. The application communicates with the
device via the infrared port and stores collected
information into a Palm resident database. Upon
return to the office or lab, the data is moved to
the desktop via a Conduit for subsequent
recording and/or analysis.

2. The second scenario involves the use of a Palm
application for updating firmware and/or
configuration information of a device in the field.
In this case, the Conduit loads data (which may
be a Hex file) onto the Palm device and the
Palm-based application is responsible to
transmit that information to the device in the
field.

Custom conduits must be written to perform these
functions. Palm provides a conduit development kit that
provides the scaffolding and hooks to create conduits
with Microsoft® Visual C++®, Microsoft VB/.Net and
Java™. In addition, it is possible to write conduits for
the Linux® platform as well.

Example IrDA Standard System
An example system was developed for testing of the
Palm application software. This system uses a
hardware board to implement the embedded IrDA
standard system, a Palm PDA and the Palm
Application Program. Appendix A discusses the
system, including the operational aspects that
determine the requirements for the Palm Application
Program.
Appendix B through Appendix G show the actual
source code for the Palm Application Program. This
program was developed with Falch.net's
DeveloperStudio. The Falch.net's DeveloperStudio
IDE automatically generates much of the application
code (User Interface aspects), leaving only the “meat”
of the key tap functions to be defined.

Falch.net's DeveloperStudio was chosen for its clean
packaging, compatibility, ease-of-use and comparative
low-cost. An attractive feature of DeveloperStudio is its
integration with, and use of, the open source PRC-Tools
suite. This compatibility permits the use of various GNU
tools and utilities, such as make. Projects created with
DeveloperStudio may be compiled from the command
line with make. Additionally, source-code management
of a PRC/DeveloperStudio project fits nicely with
existing tools in many programming shops. These
features are helpful to developers who port their
products to the Palm OS. Falch.net's context-sensitive
help system, which also provides “tool tips” function pro-
totypes, is a nice bonus, particularly for the beginner.

Note 1: Falch.net's DeveloperStudio has a demo
version for evaluation purposes.

2: The Palm Application Program in
Appendix B - Appendix G exceeds the
allowances of the Falch.net's
DeveloperStudio Demo Version
capabilities.
DS00888A-page 24  2004 Microchip Technology Inc.

AN888

While the Palm Application Program is developed
using Falch.net DeveloperStudio, the programming
concepts and API calls are identical to CodeWarrior®.
The Falch.net DeveloperStudio source code should be
easily modified for the CodeWarrior development
platform.

Table 3 shows the versions of the different products
that were used in the development and validation of the
Palm Application Program.

TABLE 3: DEVELOPMENT TOOL
VERSIONS

Palm Application Code Descriptions
The Palm Application Program called MCP215XDemo
is shown in Appendix B through Appendix G. This
program is created with two forms. These forms are:
• The primary user interface form
• An “About” form

There is no requirement that each form have its own C
module, though it is common practice to do so.
Table 4 briefly describes the role of each source file
and has a link to the Appendix which contains that
source file.
The following section describes the operation of some
of the code from these source files.

For more information about the operation of the system
(Embedded System and Palm Application Program),
please refer to Appendix A.

TABLE 4: MCP215XDEMO SOURCE FILES

Tool Version Comment

Falch.net IDE V2.7.2.0
Palm Desktop V4.1
Palm m105 PDA model

V3.5.1 O.S. Version
Sony PEG-SJ22 PDA model

V4.1 O.S. Version
Sony PEG-S360 PDA model

V4.0 O.S. Version
Palm® Zire™ 21 PDA model

V5.2.1 O.S. Version

File Name Description Appendix

Main.c Entry Point of the application, fundamental, boiler-plate code. Contains
PilotMain and the EventLoop, among other functions. With the exception of
a few variable references and slight modification to the EventLoop function,
this source file has not changed from its original state as created by the
Falch.net Framework wizard.

Appendix B

frmMain.c Handles interactions with the primary user interface. There is quite a bit of
customizing done in this module. Each user interface element (sans the
Menus) is backed by code in this module.

Appendix C

Menu.c Handles menu selections. This module is very minimal and represents a
typical menu-handling module useful for dispatching menu selections. Note
the use of a switch statement for the specific menu command invoked.

Appendix D

Comms.c This module contains communication variables and function usage
examples. In addition, this module contains routines for formatting and
parsing commands to and from the IR Demo Board. This particular module
is explored in more detail in the next section.

Appendix E

FrmAbout.c Code for the “About” form Appendix F
MCP2150Demo.h,
Comms.h,
MCP2150Demo_Res.h

Include Files Appendix G
 2004 Microchip Technology Inc. DS00888A-page 25

AN888

Resources
For information on HackMaster, a popular tool for man-
aging multiple “hacks”, or Trap handlers, used to
modify normal Palm OS behavior, visit:

http://www.daggerware.com/hackmstr.htm

For additional books and tutorials on Palm OS
development, visit:

http://www.palmos.com/dev/support/docs/
other.html

Additional Palm OS tutorials may be found at:

http://www.palm-communications.com
For information on Shared Library development, visit:

http://oasis.palm.com/dev/kb/papers/1670.cfm
For support with Falch.net's DeveloperStudio, visit:

http://www.falch.net/Support/

Recommended Reading
Table 5 gives a list of additional documentation on
Palm OS development and Table 6 shows the
documentation available from PalmSource™.

TABLE 5: ADDITIONAL PALM OS READING
Title Author ISBN

Palm OS Programmer’s API Reference Palm Corporation 0595737110
Palm OS Programmer’s Companion, vol. I Palm Corporation 3004-006-HW *
Palm OS Programmer’s Companion, vol. II Palm Corporation 3005-003-HW *
Palm File Format Specification Palm Corporation 1400527384
Using Palm OS Emulator Palm Corporation 0595737153
Palm OS Programming Bible, 2nd Edition Lonnon R. Foster 0764549618
Palm OS Programming for Dummies Liz O'Hara and John Schettino 0764505637
Palm OS Programming: The Developer's Guide,
2nd Edition

Neil Rhodes and Julie McKeehan 1565928563

Palm OS Programming from the Ground Up Robert Mykland 0072222891
Palm Programming (Sam's Professional Series) Glenn Bachmann 0672314932
Teach Yourself Palm Programming in 24 Hours Gavin Maxwell 0672316110
Programming Visual Basic for the Palm OS
(O'Reilly Palm)

Matthew Holmes, Patrick Burton,
and Roger Knoell

0596002009

NS Basic Programming for Palm OS Michael J. Verive 0969584466
Palm Database Programming Eric Gigure 0471354015
Official Pendragon Forms for Palm OS Starter Kit Debra Sancho and Ivan Phillips 0764546511
Advanced Palm Programming: An Expert's Guide... Steve Mann and Ray Rischpater 0471390879
Palm OS Network Programming Greg Winton 0596000057
* Avaliable for download at: www.palmos.com/dev/support/docs/
DS00888A-page 26  2004 Microchip Technology Inc.

AN888

TABLE 6: PALM OS DOCUMENTATION (AVAILABLE AT WWW.PALMSOURCE.COM)

Title Date Description

Palm OS Companion
and Reference

12/12/2002 Provides extensive conceptual and "how-to" development information in the
Companion, and official reference information of Palm OS functions and data
structures in the Reference. Includes:
• Palm OS Programmer’s API Reference
• Palm OS Programmer’s Companion, vol. I
• Palm OS Programmer’s Companion, vol. II

Palm File Format
Specification

5/1/2001 Provides the data layout specifications of installable files (PRC), databases
(PDB), and web clipping applications (PQA).

Using Palm OS Emulator
Creating Content for
Web Browser

8/30/2002 Describes how to create small screen content for Palm OS 5 Web Browser.

Constructor for Palm OS 11/14/2002 Describes how to use Constructor for Palm OS to build graphical user
interfaces for Palm OS applications.

Front-End Processor
Developer's Guide

12/06/2002 Describes how to create a language front-end processor for Palm Powered
handhelds and documents how applications can interface with front-end
processors.

Integrating Palm OS
Applications with Web
Browser

8/30/2002 Describes how Palm OS applications can interact with Palm OS 5 Web
Browser.

Palm Desktop
Extensibility Framework

11/11/2002 Describes how to write software for the Palm Desktop Extensibility
Framework. Includes step-by-step descriptions of how to develop add-ins
with Visual Basic® and C++, and how to develop extensions with C++.

Palm OS Development
Tools Guide

11/14/2002 Describes Palm tools that can be used to develop, test, and debug Palm OS
applications: Palm Simulator, Palm Debugger, Palm Reporter, console
window and resource overlay tools.

Palm OS 5 ARM
Programming

5/31/2002 Describes how to use ARM subroutines to improve the performance of Palm
OS 5 applications.

Palm OS User Interface
Guidelines

12/11/2002 Describes how to design applications for Palm Powered handhelds so that
they conform to the Palm OS user interface guidelines.

Testing with Palm OS
Simulator

11/14/2002 Describes how to use Palm OS Simulator to test your Palm OS applications.

Using Palm OS Emulator 12/16/2002 Describes how to use Palm OS Emulator to test your Palm OS applications.
Web Clipping
Developer's Guide

5/1/2001 Describes how to develop wireless applications using "lightweight" HTML.

Zen of Palm 12/06/2002 Describes design philosophies and practices for developing Palm OS
applications.

Conduit Documentation
- Windows

7/1/2002 Provides extensive conceptual and reference information on developing
conduits to exchange and synchronize data between a Windows application
and a Palm Powered handheld.

Palm OS Programming
Recipes

— Palm OS Programming recipes are technical articles with step-by-step expla-
nations describing how to perform specific tasks related to Palm OS pro-
gramming. They are different from existing sample code because they have
step-by-step explanations about specific subjects.
 2004 Microchip Technology Inc. DS00888A-page 27

AN888

SUMMARY
This application note has shown some of the
fundamental “C” programming concepts and design
considerations for the development of Palm OS
application programs. Attention was given to the Serial
Manager API calls for IrCOMM communications.
Using the source code from the example Palm
Application Program should allow you to get your
custom application to connect to an embedded IrDA
Standard system using either the MCP215X or
MCP2140 devices.

Biography
Frank Ableson is a consultant specializing in the
development of IrDA application programs for Palm
OS, PocketPC OS, Symbian® OS and Windows OS
systems. For inquiries into consulting services, please
contact Frank via e-mail at mchp@cfgsolutions.com.
DS00888A-page 28  2004 Microchip Technology Inc.

AN888

APPENDIX A: EXAMPLE IrDA

STANDARD SYSTEM
DESCRIPTION

A description of the example IrDA Standard system is
provided to allow better understanding of the Palm
Application Program functions. This Palm OS
Application Program communicates with an embedded
system to transfer data and control operation/status.
The embedded system acts as an IrDA Standard
Secondary device. Figure A-1 shows this example IrDA
Standard system with a Primary device (Palm PDA)
and a Secondary device (embedded system).
Figure A-2 shows a detailed block diagram of the
embedded system (Secondary device). For additional
information on the implementation of an Embedded
System, please refer to AN858, “Interfacing the
MCP215X to a Host Controller”, DS00858.

The embedded system (IR Demo Board 1) uses a
40-pin PICmicro® microcontroller and an MCP215X
device.

FIGURE A-1: PALM™ PDA - EMBEDDED SYSTEM BLOCK DIAGRAM

FIGURE A-2: EMBEDDED SYSTEM (IR DEMO BOARD 1) BLOCK DIAGRAM

Note: The “IR Demo Board 1”, which is used as
the embedded system, is not currently
available for purchase.
This system can be created using a
PICDEM™ 2 Plus demo board and an
MCP2150 developer’s board (in the
MCP2120/MCP2150 Developer’s Kit).

Palm™ Handheld Device
with IrDA® Standard Port

Embedded System with IrDA Port

MCP215X Optical
Transceiver

Circuitry

Host Controller
and Embedded

Circuitry
or

MCP2140

ICD

Power
Power LED

MCP215X

9V Battery

Power Supply

Encoder / Decoder

3

PICmicro®

MCU

SEE

SW3

SW2

RESET

MCP215X Header

LCD Module
(2 Line x 16 Character)

RD7 RD0

CTS RTS CD DSR

TX RX RI DTR

VR1

VR2

Discrete
Transceiver
Header 1

Header 2

JP4

JP7

J1

J5

U5

U3
U2U1

JP3

JP2

JP1
JP5J4 JP6

(LCD Contrast)

(40-pin)
 2004 Microchip Technology Inc. DS00888A-page 29

AN888

Embedded System Firmware Operation
The embedded system has two programs that can be
selected to run. The first is a “Vending Machine” and
the second is a “240 Byte Data Transfer”.

VENDING MACHINE
This demo emulates a “Vending Machine” by counting
the number of each item (“Soda” and “Candy”)
dispensed.

Each time the SW2 button is depressed, the counter for
the number of “Sodas” is incremented. Each time the
SW3 button is depressed, the counter for the number
of “Candies” is incremented. Each Counter is an 8-bit
value and can display a value from 0 to 255 (decimal).

The program monitors for “data” being received from
the IR port (received on the Host UART) and will then
respond with the appropriate data. Table A-1 shows the
two commands of the “Vending Machine” program.

TABLE A-1: “VENDING MACHINE”
COMMANDS

240 BYTE DATA TRANSFER
Depressing SW2 and SW3 will cause the program in
the PICmicro microcontroller to execute the “Xfer 240
Bytes” routine. In this demo, the PIC16F877 receives a
single byte from the IrDA standard Primary device. This
received byte is moved to PORTD (displayed on the
LEDs) and then a 240 byte table is transmitted back to
the Primary device.

Palm Application Program User Interface
In this case, the main User Interface (UI) form
(Figure A-3) either displays all the information required,
has a button to do the requested action or has a button
to display the information (Trace Buffer).
The Connect button causes the application to attempt
to connect to the Secondary device. Once this
command is completed, the N changes to a Y.

FIGURE A-3: IrDA™ DEMO MAIN FORM

Command
Value

(ASCII)
Hex

Value Demo Program

5 0x35 Transfer the current “Soda”
and “Candy” counter values to
the Primary device.

6 0x36 Clear the current “Soda” and
“Candy” counters.

Note: All other values are ignored

Note: The byte sent by the Primary device is
expected, since most PDA’s will not
establish a link until data is sent. This
application program forces the link open
when the “connect” button is depressed by
transmitting a null data packet (a packet
with 0 data bytes).

Note: After tapping on the Connect button, the
other buttons of the application can be
tapped for their desired operation. The CD
(DSR) signal will not “turn on” until one of
these other buttons is tapped. This
modification was done to address Palm OS
V5.2.1 operation.
DS00888A-page 30  2004 Microchip Technology Inc.

AN888

VENDING MACHINE
To interface to the embedded system running the
Vending Machine program, the main UI form displays
all the information the user needs (Figure A-3).

The Read Data button can then be tapped, causing the
“read data command” to be sent to the embedded
system. The embedded system will respond with
strings that include the following information:

• # of Sodas Sold
• # of Candies Sold
• Change Box (% Full)

If the Clear Data button is tapped, the Clear Data
Confirm dialog box will be presented to verify the
request. Tapping the Yes button will then send the
“clear data command”. A “read data command” is then
sent to verify that the embedded system received the
“clear data command”.

240 BYTE DATA TRANSFER
To interface to the embedded system running the
Vending Machine program, the main UI form displays
some of the information the user needs (Figure A-3).

Once the Palm has connected to the embedded
system (Secondary device), tap on one of the keyboard
buttons (“123” or “ABC”). This will bring up either a
numeric or alpha keyboard. Tap on a single character
and then tap on the Done button. That character will be
displayed on the line titled “TX Data (ASCII)”. To
transmit that byte, tap on the Send button.

Notice that the Trace line indicates the number of bytes
received (initially it was ‘0’). To view the Trace buffer,
tap on the Show button. To clear the trace buffer, tap on
the Reset button.

Description of Graphical User Interface
(GUI)
The GUI consists of a number of user interface
elements, including command buttons, text labels and
a text entry field.
• The “Connect” button attempts to establish a

connection to the IR demo board. The Palm
device is acting as the Primary device and the
demo board as the Secondary device. To the
Palm Developer, it is a call to SrmOpen with a
parameter of 'ircm'. The label to the left of the
button provides an indication of connection.

• The “Read Data” button causes a query to be sent
to the demo board, requesting the number of
sodas, candies and change box information. Data
received from the demo board are parsed and
displayed in text labels.

• The “Clear Data” button sends a command to the
demo board instructing it to reset the application
level counters. The command to “Read Data” is
then sent to ensure that the registers were
cleared.

• The “ASCII/HEX” button toggles the application
between ASCII and HEX modes. This value is
used when preparing and transmitting data to the
IR Demo board. This is useful when there is a
need to send a “non-printable” value, such as low-
order ASCII. For example, to send the value 0x03,
use the keyboard or Graffiti to enter “03” (without
the quotes). This will be converted to 0x03 and
transmitted.

• The “Send” button initiates the aforementioned
sending process. If the “HEX” mode is selected
and the string is not properly formatted as two
characters per “byte value”, an error message will
display. The error checking performed in this
application is minimal so be sure to enter the
appropriate values.

• The “Send File” button
• The “Show” button causes a message box or Alert

in Palm parlance to be displayed. This data may
be larger than the viewable area of the Alert. To
see all of the data, drag the stylus down the length
of the Alert's window, which will cause it to scroll
the additional data into view.

• The “Reset” button clears the Palm application's
receive data buffer. Note that this buffer is
different than the operating system buffer used by
the SrmReceive functions.
 2004 Microchip Technology Inc. DS00888A-page 31

AN888

Development Tools
There are a number of options available for developing
applications for the Palm OS. Some environments
focus on form-based applications, insulating the
developer from some of the underlying details of the
operating system. “C” language is the most common,
and best-supported, language for the platform and is
used in this application note.

Two tool options for C language development are
generally available:

1. The commercial option is CodeWarrior for Palm
OS, produced by Metrowerks®.

2. The open source option is a toolset called
“PRC-Tools”. PRC Tools includes the open
source GNU C compiler (gcc) popular on many
other platforms.

In conjunction with free SDK bundles from Palm
Computing, both packages provide everything to build
applications for Palm OS. The various books available
on Palm OS programming cover both of these tools.

A third toolset option available is a hybrid option which
is a commercial product available from Falch.net. The
Falch.net DeveloperStudio provides a modern GUI
interface (for Windows only), yet leverages the PRC
tools (open source compiler) under the hood to actually
compile and link the application. The graphical form
layout and debug environment are very intuitive.
Falch.net provides an evaluation license suitable for
creating the applications demonstrated in this
application note.

The best source for information on Palm OS
development tools is the Palm Computing web site:

http://www.palmos.com/dev.

Links to all the major development tools, as well as in-
depth reviews and comparisons, are available.

BUILD STAGES
Regardless of the C-based toolset developers have
chosen, there are three stages of the build process for
a Palm OS application or library.

1. The first stage is compilation, where source
code is transformed into object code.

2. The next stage is linking, where all function
references are resolved.

3. The final stage is known as post-linking. Post-
linking combines the executable code and user
interface elements into a database suitable for
storage on the Palm OS device. Once the post-
linking step is complete, the database
(application or library) is ready for installation to
the device via the HotSync operation.

Development for the Palm OS is cross-platform
because the build process takes place on the host
system, not on the run-time platform of the Palm OS
device itself. The iterative steps of edit, compile, load
and debug can be very tedious. The Palm OS Emulator
(or POSE) is an invaluable tool for the application
developer. POSE runs as a graphical application on the
host environment and is capable of running Palm OS
applications and libraries. POSE catches errors that
may take weeks to find on a real device. It is also
capable of testing communications applications by
redirecting communications through the host
environment's resources, such as a communications
port or a network interface.

Other useful tools for this application note include a
terminal emulation program, such as the Embedded
Companion Suite for Palm OS or HyperTerminal® for
Windows® based systems.

TABLE A-2: PDA DEVELOPMENT TOOL LINKS

Note: This application note assumes that the
reader has successfully established the
required build environment including either
Falch.net DeveloperStudio or CodeWarrior
and has also installed a current version of
the Palm Desktop Software.

Tool Manufacturer Web Link Comment

CodeWarrior Metrowerks http://www.metrowerks.com ‘C’ language
PRC-Tools OSDN

(Open Source
Development
Network, Inc.), or
SourceForge, or
VA Software
Corporation

http://prc-tools.sourceforge.net/
http://sourceforge.net/projects/prc-tools/

Open source toolset

DeveloperStudio
for Palm OS

Falch.net http://www.Falch.net Modern GUI interface for PRC-Tools

Palm OS and
ROM files

PalmSource http://www.palmsource.com/ Good source for information
DS00888A-page 32  2004 Microchip Technology Inc.

AN888

Code Module Description
The MCP215X demo application is created with two
forms, the primary user interface and an “About” form.
There is no requirement that each form have its own C
module, though it is common practice to do so. In this

application, the About form is simply a dialog and
therefore has no need of it's own C module. In addition
to the form handling C module, there are three
additional C files in the project. Table A-3 briefly
describes the role of each module.

TABLE A-3: PALM APPLICATION PROGRAM FUNCTIONS
File Name Description Appendix

Main.c Entry Point of the application, fundamental, boiler-plate code. Contains
PilotMain and the EventLoop, among other functions. With the exception of
a few variable references and slight modification to the EventLoop function,
this source file has not changed from its original state as created by the
Falch.net Framework wizard.

Appendix B

frmMain.c Handles interactions with the primary user interface. There is quite a bit of
customizing done in this module. Each user interface element (sans the
Menus) is backed by code in this module.

Appendix C

Menu.c Handles menu selections. This module is very minimal and represents a
typical menu handling module useful for dispatching menu selections. Note
the use of a switch statement for the specific menu command invoked.

Appendix D

Comms.c This module contains communications variables and function usage
examples. In addition, this module contains routines for formatting and
parsing commands to and from the IR Demo Board. This particular module
is broken out in more detail in the next section.

Appendix E

FrmAbout.c Code for the “About” form Appendix F
MCP2150Demo.h,
Comms.h,
MCP2150Demo_Res.h

Include Files Appendix G
 2004 Microchip Technology Inc. DS00888A-page 33

AN888

APPENDIX B: PALM SOURCE CODE - MAIN.C

FIGURE B-1: MAIN.C - PAGE 1

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

/**
 *
 * Created with Falch.net DeveloperStudio
 * http://www.falch.net/
 *
 * File : main.c
 *
 * Description :
 *
 * History:
 * Name Date Description
 * ---- ---- -----------
 * Frank Ableson March 2003 Created
 *
 ***/

#include <PalmOS.h>

#include "MCP215XDemo.h"
#include "MCP215XDemo_res.h"

extern Boolean commsactive;
extern UInt16 portid;
extern Boolean rawreadmode;

/***
 *
 * FUNCTION: StartApplication
 *
 * DESCRIPTION: This routine will launch the application's main form
 *
 * PARAMETERS: none
 *
 * RETURNED: returns nothing
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created

 *
 ***/
DS00888A-page 34  2004 Microchip Technology Inc.

AN888

FIGURE B-2: MAIN.C - PAGE 2

static int StartApplication(void)
{
 FrmGotoForm(frmMain);
 return 0;
}

/***
 *
 * FUNCTION: ApplicationHandleEvent
 *
 * DESCRIPTION: This routine is called from the event loop, and its
 * main responsibility is to load forms and set form
 * eventhandlers.
 *
 * PARAMETERS: EventPtr event Pointer to the event
 *
 * RETURNED: handled/not handled
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created
 *
 ***/

static Boolean ApplicationHandleEvent(EventPtr event)
{
 UInt16 formID;
 FormPtr form;
 Boolean handled = false;

 // Application event loop
 switch (event->eType)
 {
 case menuEvent:
 // Set event handler for application
 handled = ApplicationHandleMenu(event->data.menu.itemID);
 break;
 case frmLoadEvent:
 // Handle form load events
 formID = event->data.frmLoad.formID;
 form = FrmInitForm(formID);
 FrmSetActiveForm(form);

 switch (formID)
 {
 case frmMain:
 // Set event handler for frmMain
 FrmSetEventHandler(form,
 (FormEventHandlerPtr) frmMain_HandleEvent);
 break;
 default:
 break;
 }
 handled = true;
 break;
 default:
 break;
 }
 return handled;
}
 2004 Microchip Technology Inc. DS00888A-page 35

AN888

FIGURE B-3: MAIN.C - PAGE 3

/***
 *
 * FUNCTION: EventLoop
 *
 * DESCRIPTION: The eventloop polls the event que for new events and
 * dispatches them to the different event handlers.
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: Nothing
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created
 *
 ***/

static void EventLoop(void)
{
 Err error;
 EventType event;
 UInt32 bytestoread;

 // Main event loop
 do
 {
 // Get next event
 EvtGetEvent(&event, 10);
 if (event.eType == nilEvent)
 {
 // check to see if we should service the communications port
 if (commsactive == true && rawreadmode == true)
 {
 SrmReceiveCheck(portid,&bytestoread);
 if (bytestoread > 0)
 {
 ReadIntoBuffer(bytestoread);
 }
 }
 }
 // Handle event
 if (!SysHandleEvent(&event))
 {
 if (!MenuHandleEvent(0, &event, &error))
 {
 if (!ApplicationHandleEvent(&event))
 FrmDispatchEvent(&event);
 }
 }
 }
 while (event.eType != appStopEvent);
 if (commsactive) ClosePort();
}
DS00888A-page 36  2004 Microchip Technology Inc.

AN888

FIGURE B-4: MAIN.C - PAGE 4

/***
 *
 * FUNCTION: StopApplication
 *
 * DESCRIPTION: this routine closes all open forms by calling
 * FrmCloseAllForms()
 *
 * PARAMETERS: Nothing
 *
 * RETURNED: Nothing
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created
 *
 ***/

static void StopApplication(void)
{
 // Insert stop code here
 FrmCloseAllForms();
}
 2004 Microchip Technology Inc. DS00888A-page 37

AN888

FIGURE B-5: MAIN.C - PAGE 5
/***
 *
 * FUNCTION: PilotMain
 *
 * DESCRIPTION: Main entrypoint for the application
 *
 * PARAMETERS: cmd Application Launchcode
 * cmbBPB Pointer to a structure that is
 * associated with the launch code.
 * launchFlags value providing extra information about
 * the launch
 *
 * RETURNED: Result of the launch
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created
 *
 ***/

UInt32 PilotMain(UInt16 cmd, void *cmdPBP, UInt16 launchFlags)
{
 Err error;
 switch (cmd)
 {
 case sysAppLaunchCmdNormalLaunch:
 // Application start code
 error = StartApplication();
 if (error)
 return error;

 // Maintain event loop
 EventLoop();

 // Stop application
 StopApplication();
 break;
 default:
 break;
 }
 return 0;
}
DS00888A-page 38  2004 Microchip Technology Inc.

AN888

APPENDIX C: PALM SOURCE CODE - FRMMAIN.C

FIGURE C-1: FRMMAIN.C - PAGE 1

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

/**
 *
 * Created with Falch.net DeveloperStudio
 * http://www.falch.net/
 *
 * File : frmMain.c
 *
 * Description :
 *
 * History:
 * Name Date Description
 * ---- ---- -----------
 * Frank Ableson March 2003 Created
 *
 ***/

#include <PalmOS.h>
#include "MCP215XDemo.h"
#include "MCP215XDemo_res.h"

#include "comms.h"

extern Boolean commsactive;
extern UInt8 rawreadbuffer[1024];
extern UInt16 rawreadsize;
extern Boolean rawreadmode;
char tracebuffermsg[100];

static UInt8 AsciiHexMode = 0; // 0 is ascii, 1 is hex
static Char * AsciiHexModeStrings[] = {"ASCII","Hex "};

static Char * YorN[] = {"Y ","N "};
static Char * ConnectDisconnect[] = {"Disconnect","Connect"};
 2004 Microchip Technology Inc. DS00888A-page 39

AN888

FIGURE C-2: FRMMAIN.C - PAGE 2

UInt8 hexdecode(UInt8 c)
{
 switch (c)
 {
 case 'a':
 case 'b':
 case 'c':
 case 'd':
 case 'e':
 case 'f':
 return (UInt8) (c - 'a' + 10);
 case 'A':
 case 'B':
 case 'C':
 case 'D':
 case 'E':
 case 'F':
 return (UInt8) (c - 'A' + 10);
 case '0':
 case '1':
 case '2':
 case '3':
 case '4':
 case '5':
 case '6':
 case '7':
 case '8':
 case '9':
 return (UInt8)(c - 0x30);
 }
 return 0;
}
DS00888A-page 40  2004 Microchip Technology Inc.

AN888

FIGURE C-3: FRMMAIN.C - PAGE 3

static Boolean frmMain_CONNECT_OnSelect(EventPtr event)
{
Err e = 0;
char buf[100];
FormPtr f = FrmGetActiveForm();
ControlPtr cptr = (ControlPtr)FrmGetObjectPtr(f,FrmGetObjectIndex(f,AREWECONNECTED));
ControlPtr cptr2 = (ControlPtr)FrmGetObjectPtr(f,FrmGetObjectIndex(f,CONNECT));

 // Insert code for CONNECT/DISCONNECT
 if (commsactive == false)
 {
 if (OpenPort())
 {
 //FrmCustomAlert(InfoAlert,CtlGetLabel(cptr),NULL,NULL);
 // tell the user that we think we have a connection
 CtlSetLabel(cptr,YorN[0]);
 CtlSetLabel(cptr2,ConnectDisconnect[0]);
 //CtlDrawControl(cptr);
 FrmDrawForm(f);
 // toggle the button display to say "Disconnect"
 }
 }
 else
 {
 // FrmCustomAlert(InfoAlert,"Disc",NULL,NULL);
 // FrmCustomAlert(InfoAlert,CtlGetLabel(cptr),NULL,NULL);
 // disconnect
 ClosePort();
 CtlSetLabel(cptr,YorN[1]);
 //CtlDrawControl(cptr);
 CtlSetLabel(cptr2,ConnectDisconnect[1]);
 FrmDrawForm(f);
 }
 return true;
}
 2004 Microchip Technology Inc. DS00888A-page 41

AN888

FIGURE C-4: FRMMAIN.C - PAGE 4

static Boolean frmMain_SEND_OnSelect(EventPtr event)
{
FormPtr f = FrmGetActiveForm();
FieldPtr pfield = FrmGetObjectPtr(f,FrmGetObjectIndex(f,TXDATA));
MemHandle h;
char *p;
Int16 i,j,k;
char c;
 // Insert code for SEND
 if (!commsactive) return true;
 // get the text in the field and send it in either ascii or interpret it as "hex"
 p = NULL;
 h = FldGetTextHandle(pfield);
 if (h != 0)
 {
 p = MemHandleLock(h);
 if (!p)
 {
 FrmCustomAlert(ErrorAlert,"Unable To Send",NULL,NULL);
 return;
 }
 // we now have data ... let's process it!
 if (AsciiHexMode == 0)
 {
 // send ascii
 Send(p,StrLen(p));
 }
 else
 {
 // check that this string is an even length
 j = (UInt8) StrLen((Char *)p);
 if ((j % 2) != 0)
 {
 FrmCustomAlert(ErrorAlert,"This is an invalid hex string!",NULL,NULL);
 }
 else
 {
 // walk thru this, converting every 2 characters into a byte to send
 for (i=0;i<j;i+=2)
 {
 k = 16 * hexdecode(p[i]);
 k += hexdecode(p[i+1]);
 c = (Char) k;
 Send((UInt8*) &c,1);
 }
 }
 }
 StrCopy (p,””);
 MemSet((Char*)p,(Int16) MemHandleSize(h),0x00);
 FldSetTextHandle(pfield,h);
 FldDrawField(pfield);
 MemHandleUnlock(h);
 }
DS00888A-page 42  2004 Microchip Technology Inc.

AN888

FIGURE C-5: FRMMAIN.C - PAGE 5

 else
 {
 FrmCustomAlert(ErrorAlert,"Unable To Send",NULL,NULL);
 return;
 }
 rawreadmode = true;
 return true;
}

static Boolean frmMain_CLEARDATA_OnSelect(EventPtr event)
{
 // Insert code for CLEARDATA
 if (!commsactive) return true;
 if (FrmCustomAlert(ConfirmAlert,"Clear Counters, Are You Sure",NULL,NULL) == 0)
 {
 ClearVendingMachine();
 QueryVendingMachine();
 }
 return true;
}
static Boolean frmMain_READDATA_OnSelect(EventPtr event)
{
//UInt8 payload = 0x35;
//UInt8 response[100];

 // Insert code for READDATA
 if (!commsactive) return true;
 QueryVendingMachine();
 return true;
}

static Boolean frmMain_ASCIIHEX_OnSelect(EventPtr event)
{
 FormPtr f = FrmGetActiveForm();
 ControlPtr cptr =
 (ControlPtr)FrmGetObjectPtr(f,FrmGetObjectIndex(f,ASCIIHEXINDICATOR));

 // Insert code for ASCIIHEX
 if (AsciiHexMode == 0)
 {
 AsciiHexMode = 1;
 }
 else
 {
 AsciiHexMode = 0;
 }
 CtlSetLabel(cptr,AsciiHexModeStrings[AsciiHexMode]);
 FrmDrawForm(f);
 return true;
}
 2004 Microchip Technology Inc. DS00888A-page 43

AN888

FIGURE C-6: FRMMAIN.C - PAGE 6
static Boolean frmMain_SHOWTRACE_OnSelect(EventPtr event)
{
 // Insert code for SHOWTRACE
 FrmCustomAlert(RawDataAlert,(char *) rawreadbuffer,NULL,NULL);
 return true;
}

static Boolean frmMain_RESETTRACE_OnSelect(EventPtr event)
{
FormPtr f = FrmGetActiveForm();
ControlPtr cptr = (ControlPtr) FrmGetObjectPtr(f,FrmGetObjectIndex(f,TRACECOUNT));

 // Insert code for RESETTRACE
 if (FrmCustomAlert(ConfirmAlert,"Reset Trace Buffer, Are You Sure",NULL,NULL) == 0)
 {
 MemSet(rawreadbuffer,sizeof(rawreadbuffer),0x00);
 rawreadsize = 0;
 StrPrintF(tracebuffermsg,"Trace : %d Bytes",rawreadsize);
 CtlSetLabel(cptr,tracebuffermsg);
 //CtlDrawControl(cptr);
 FrmDrawForm(f);
 }
 return true;
}

static Boolean frmMain_cmdABC_OnSelect(EventPtr event)
{
FormPtr f = FrmGetActiveForm();
ControlPtr cptr = (ControlPtr)FrmGetObjectPtr(f,FrmGetObjectIndex(f,cmdABC));

 // set focus to TXData field
 FrmSetFocus(f,FrmGetObjectIndex(f,TXDATA));
 // show keyboard
 SysKeyboardDialog(kbdAlpha);
 // deselect button
 CtlSetValue(cptr,0);
 return true;
}

static Boolean frmMain_cmdOneTwoThree_OnSelect(EventPtr event)
{
FormPtr f = FrmGetActiveForm();
ControlPtr cptr = (ControlPtr)FrmGetObjectPtr(f,FrmGetObjectIndex(f,cmdOneTwoThree));
 // set focus to TXData field
 FrmSetFocus(f,FrmGetObjectIndex(f,TXDATA));
 // show keyboard
 SysKeyboardDialog(kbdNumbersAndPunc);
 // deselect button
 CtlSetValue(cptr,0);
 return true;
}
static Boolean frmMain_cmdOneTwoThree_OnSelect(EventPtr event)
{
FormPtr f = FrmGetActiveForm();
ControlPtr cptr = (ControlPtr)FrmGetObjectPtr(f,FrmGetObjectIndex(f,cmdOneTwoThree));
 // set focus to TXData field

FrmSetFocus(f,FrmGetObjectIndex(f,TXDATA));
// show keyboard

 SysKeyboardDialog(kbdNumbersAndPunc);
 // deselect button
 CtlSetValue(cptr,0);

return true;
}

DS00888A-page 44  2004 Microchip Technology Inc.

AN888

FIGURE C-7: FRMMAIN.C - PAGE 7

/***
 *
 * FUNCTION: frmMain_HandleEvent
 *
 * DESCRIPTION: Handles a Form event
 *
 * PARAMETERS: event pointer to an event structure
 *
 * RETURNED: returns handled/not handled
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created
 *
 ***/

Boolean frmMain_HandleEvent(EventPtr event)
{
 FormPtr form;
 Boolean handled = false;

 switch (event->eType)
 {
 case ctlSelectEvent:
 switch (event->data.ctlSelect.controlID)
 {
 // SENDFILE receive an event
 case SENDFILE:
 handled = frmMail_SENDFILE_OnSelect (event);
 break;
 // RESETTRACE receives an event
 case RESETTRACE:
 handled = frmMain_RESETTRACE_OnSelect(event);
 break;
 // SEND receives an event
 case SEND:
 handled = frmMain_SEND_OnSelect(event);
 break;
 // CLEARDATA receives an event
 case CLEARDATA:
 handled = frmMain_CLEARDATA_OnSelect(event);
 break;
 2004 Microchip Technology Inc. DS00888A-page 45

AN888

FIGURE C-8: FRMMAIN.C - PAGE 8

 // READDATA receives an event
 case READDATA:
 handled = frmMain_READDATA_OnSelect(event);
 break;
 // CONNECT receives an event
 case CONNECT:
 handled = frmMain_CONNECT_OnSelect(event);
 break;
 // ASCIIHEX receives an event
 case ASCIIHEX:
 handled = frmMain_ASCIIHEX_OnSelect(event);
 break;
 // SHOWTRACE receives an event
 case SHOWTRACE:
 handled = frmMain_SHOWTRACE_OnSelect(event);
 break;
 // cmdABC receives an event
 case cmdABC:
 handled = frmMain_cmdABC_OnSelect(event);
 break;
 // cmdOneTwoThree receives an event
 case cmdOneTwoThree:
 handled = frmMain_cmdOneTwoThree_OnSelect(event);
 break;
 }
 break;
 case frmOpenEvent:
 // Repaint form on open
 form = FrmGetActiveForm();
 FrmDrawForm(form);
 WinDrawLine(0,42,160,42);
 handled = true;
 break;
 default:
 break;
 }

 return handled;
}
DS00888A-page 46  2004 Microchip Technology Inc.

AN888

APPENDIX D: PALM SOURCE CODE - MENU.C

FIGURE D-1: MENU.C - PAGE 1

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

/**
 *
 * Created with Falch.net DeveloperStudio
 * http://www.falch.net/
 *
 * File : Menu.c
 *
 * Description :
 *
 * History:
 * Name Date Description
 * ---- ---- -----------
 * Frank Ableson March 2003 Created
 *
 ***/

#include <PalmOS.h>
#include "MCP215XDemo.h"
#include "MCP215XDemo_res.h"
 2004 Microchip Technology Inc. DS00888A-page 47

AN888

FIGURE D-2: MENU.C - PAGE 2

/***
 *
 * FUNCTION: ApplicationHandleMenu
 *
 * DESCRIPTION: This routine handles menu events
 *
 * PARAMETERS: id of the menu recieveing a click
 *
 * RETURNED: handled/not handled
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created
 *
 ***/

Boolean ApplicationHandleMenu(UInt16 menuID)
{
 Boolean handled = false;
 EventType evt;

 switch (menuID)
 {
 case mnuHelp:
 FrmCustomAlert(InfoAlert,"help is on the way !",NULL,NULL);
 handled = true;
 break;
 case mnuAbout:
 FrmDoDialog(FrmInitForm(frmAbout));
 handled = true;
 break;
 case mnuClose:
 evt.eType = appStopEvent;
 EvtAddEventToQueue(&evt);
 handled = true;
 break;
 default:
 break;
 }

 return handled;
}
DS00888A-page 48  2004 Microchip Technology Inc.

AN888

APPENDIX E: PALM SOURCE CODE - COMMS.C

FIGURE E-1: COMMS.C - PAGE 1

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

// comms.c
// this source file contains the bulk of communications interaction
// for the demo application.
// Frank Ableson
// frank@cfgsolutions.com
// 973 448 1844

#include <PalmOS.h>
#include "MCP215XDemo_res.h"
#include "comms.h"

#define min(a,b) (a < b ? a : b)

/*
 communications global variables
*/
Boolean commsactive = false;
UInt16 portid = 0;
Boolean rawreadmode = false;
UInt8 rawreadbuffer[1024];
UInt16 rawreadsize;

/* Descriptive Text Labels */
char sodalabel[100];
char candieslabel[100];
char tracebuffermsg[100];

Boolean OpenPort()
{
Err e;
char buf[100];

 // attempt to connect
 e = SrmOpen('ircm',9600,&portid);
 if (e)
 {
 StrPrintF(buf,"Failed to open port [%d]",e);
 FrmCustomAlert(ErrorAlert,buf,NULL,NULL);
 return false;
 }
 // now set any port parameters desired
 // push out a zero sized packet to bring up the interface
 SrmSendFlush(portid);
 SrmReceiveFlush (portid, SysTicksPerSecond ()/2);
// buf[0] = oxff;
// SrmSend (portid,buf,1,&e);
 commsactive = true;
 return true;
}
 2004 Microchip Technology Inc. DS00888A-page 49

AN888

FIGURE E-2: COMMS.C - PAGE 2

void ClosePort()
{
 SrmClose(portid);
 commsactive = false;
}

static void DoEvents()
{
EventType evt;

 do
 {
 EvtGetEvent(&evt,10);
 SysHandleEvent(&evt);
 } while (evt.eType != nilEvent);
}

void Send(UInt8 * data,UInt32 size)
{
Err e;

 // clear out send and receive buffers
 SrmSendFlush(portid);
 SrmReceiveFlush(portid,SysTicksPerSecond()*1.5);

 if (SrmSend(portid,(void *) data,size,&e) != size)
 {
 FrmCustomAlert(ErrorAlert,"Failed To Send Data",NULL,NULL);
 return;
 }
 SrmSendWait(portid);
}

void QueryVendingMachine()
{
Err e;
UInt8 b;

 // clear out send and receive buffers
 SrmSendFlush(portid);
 SrmReceiveFlush(portid,SysTicksPerSecond()*1.5);

 // send query to the device ... ascii 5 or hex 0x35
 b = '5';
 if (SrmSend(portid,(void *) &b,1,&e) != 1)
 {
 FrmCustomAlert(ErrorAlert,"Failed To Query Demo Board",NULL,NULL);
 return;
 }
 SrmSendWait(portid);
 QueryVendingMachineResponse();
}
DS00888A-page 50  2004 Microchip Technology Inc.

AN888

FIGURE E-3: COMMS.C - PAGE 3

void QueryVendingMachineResponse()
{
UInt32 bytestoread,bytesread;
Boolean done = false;
char msg[100];
char buf[100];
char search[] = {0x0d,0x0a,0x0a,0x00};
char c;
char * p1;
char * p2;
char * p3;
char * p4;
Boolean foundstart,foundend;
UInt32 offset;
Err e;
UInt32 starttime,now;
UInt32 b;
EventType evt;
ControlPtr cptr;

 // go get the response....
 foundstart = foundend = false;
 offset = 0;
 MemSet(buf,sizeof(buf),0x00);
 MemSet(msg,sizeof(msg),0x00);
 starttime = TimGetSeconds();
 DoEvents();
 2004 Microchip Technology Inc. DS00888A-page 51

AN888

FIGURE E-4: COMMS.C - PAGE 4

 while (!done)
 {
 e = 0;
 bytestoread = 0;
 SrmReceiveCheck(portid,&bytestoread);
 if (bytestoread > 0)
 {
 bytesread = SrmReceive(portid,&buf[offset],
 bytestoread,SysTicksPerSecond(),&e);
 if (e == 0)
 {
 // process whatever data has been read
 //FrmCustomAlert(InfoAlert,buf,NULL,NULL);
 p1 = StrStr(buf,search);
 if (p1)
 {
 p1+=3; // skip past start of message signature
 p2 = StrStr(p1,search);
 if (p2)
 {
 // found both start and end of message ... parse it out ...
 // 0d0a0atext = number0d0atext = number0d0a0a
 // p1 p3 p2
 p3 = StrChr(p1,0x0d);
 if (p3)
 {
 // read to the left until the character is a space
 p4 = p3;
 while (*p4 != ' ')
 {
 p4--;
 if (p4 == p1)
 {
 FrmCustomAlert(ErrorAlert,
 "Failed to Parse Response.",NULL,NULL);
 goto leave;
 }
 }
 // ok, let's see what we're left with!
 *p3 = 0x00;
 //FrmCustomAlert(InfoAlert,p4,NULL,NULL);
 StrPrintF(sodalabel,"# of Sodas Sold = %s ",p4);
 cptr = (ControlPtr)FrmGetObjectPtr(FrmGetActiveForm(),
 FrmGetObjectIndex(FrmGetActiveForm(),SODAS));
 CtlSetLabel(cptr,sodalabel);
 // now do the same for the second value
 p4 = p2;
 while (*p4 != ' ')
 {
 p4--;
 if (p4 == p3)
 {
 FrmCustomAlert(ErrorAlert,
 "Failed to Parse Response.",NULL,NULL);
 goto leave;
 }
 }
DS00888A-page 52  2004 Microchip Technology Inc.

AN888

FIGURE E-5: COMMS.C - PAGE 5

 // ok, let's see what we're left with!
 *p2 = 0x00;
 //FrmCustomAlert(InfoAlert,p4,NULL,NULL);
 StrPrintF(candieslabel,"# of Candies Sold = %s ",p4);
 cptr = (ControlPtr)FrmGetObjectPtr(FrmGetActiveForm(),
 FrmGetObjectIndex(FrmGetActiveForm(),CANDIES));
 CtlSetLabel(cptr,candieslabel);
 done = true;
 FrmDrawForm(FrmGetActiveForm());
 }
 else
 {
 FrmCustomAlert(ErrorAlert,
 "Couldn't Parse Response Message!",NULL,NULL);
 }
 }
 }
 goto leave;
 }
 else
 {
 // error occurred reading ...
 StrPrintF(msg,"Error Reading Response From Demo Board - %d",e);
 FrmCustomAlert(ErrorAlert,msg,NULL,NULL);
 }
 }
 // check to see how long we've been waiting for a complete response
 if (TimGetSeconds() - starttime > 5)
 {
 // there's a problem, this should've come back right away...
 FrmCustomAlert(ErrorAlert,
 "Error Getting Response From Demo Board- Timeout.",NULL,NULL);
 goto leave;
 }
 }
 leave:
}
 2004 Microchip Technology Inc. DS00888A-page 53

AN888

FIGURE E-6: COMMS.C - PAGE 6
void ClearVendingMachine()
{
Err e;
UInt8 b;
 // clear out send and receive buffers
 SrmSendFlush(portid);
 SrmReceiveFlush(portid,SysTicksPerSecond()*1.5);

 // send command to the device ... ascii 6 or hex 0x36
 b = '6';
 if (SrmSend(portid,(void *) &b,1,&e) != 1)
 {
 FrmCustomAlert(ErrorAlert,"Failed To Query Demo Board",NULL,NULL);
 return;
 }
 SrmSendWait(portid);
}
/*
 read data and then update the trace byte count UI
*/
void ReadIntoBuffer(UInt32 bytestoread)
{
UInt32 bytes;
FormPtr f = FrmGetActiveForm();
ControlPtr cptr = (ControlPtr) FrmGetObjectPtr(f,FrmGetObjectIndex(f,TRACECOUNT));
Err e;

 bytes = SrmReceive(portid,&rawreadbuffer[rawreadsize],
 min(bytestoread,sizeof(rawreadbuffer) - rawreadsize),
 SysTicksPerSecond(),&e);
 rawreadsize += bytes;
 StrPrintF(tracebuffermsg,"Trace : %d Bytes",rawreadsize);
 CtlSetLabel(cptr,tracebuffermsg);
 //CtlDrawControl(cptr);
 FrmDrawForm(f);
}

send file (large amount of data) to secondary device
*/
void SendFile()
{
Int16 packets,i;
Char c;
Char buf[16+1];
Err e;

c = 48;
for (packets=0;packets<15;packets++)

 {
 i=0;
 for (i=0;i<16;i++)
 {

 buf[i] = c++;
 if (c > 122) c = 48;
 }
 SrmSend(portid,buf,16,&e);
 SrmSendFlush(portid);
// buf[16] = 0x00;
// FrmCustomAlert(InfoAlert,buf,NULL,NULL);
 }
}

DS00888A-page 54  2004 Microchip Technology Inc.

AN888

APPENDIX F: PALM SOURCE CODE - FRMABOUT.C

FIGURE F-1: FRMABOUT.C - PAGE 1

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

/**
 *
 * Created with Falch.net DeveloperStudio
 * http://www.falch.net/
 *
 * File : frmAbout.c
 *
 * Description :
 *
 * History:
 * Name Date Description
 * ---- ---- -----------
 * Frank Ableson March 2003 Created
 *
 ***/

#include <PalmOS.h>
#include "MCP215XDemo.h"
#include "MCP215XDemo_res.h"

/***
 *
 * FUNCTION: frmAbout_HandleEvent
 *
 * DESCRIPTION: Handles a Form event
 *
 * PARAMETERS: event pointer to an event structure
 *
 * RETURNED: returns handled/not handled
 *
 * REVISION HISTORY:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created
 *
 ***/
 2004 Microchip Technology Inc. DS00888A-page 55

AN888

FIGURE F-2: FRMABOUT.C - PAGE 2

Boolean frmAbout_HandleEvent(EventPtr event)

{

 FormPtr form;

 Boolean handled = false;

 switch (event->eType)

 {

 case frmOpenEvent:

 // Repaint form on open

 form = FrmGetActiveForm();

 FrmDrawForm(form);

 handled = true;

 break;

 default:

 break;

 }

 return handled;

}
DS00888A-page 56  2004 Microchip Technology Inc.

AN888

APPENDIX G: PALM SOURCE CODE - INCLUDE FILES

FIGURE G-1: MCP2150DEMO.H

FIGURE G-2: COMMS.H

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

/**
 *
 * Created with Falch.net DeveloperStudio
 * http://www.falch.net/
 *
 * File : MCP215XDemo.h
 *
 * Description :
 *
 * History:
 * Name Date Description
 * ---- ---- -----------
 * Administrator 11/21/2002 11:55:59 PM Created
 *
 ***/

Boolean ApplicationHandleMenu(UInt16 menuID);
Boolean frmMain_HandleEvent(EventPtr event);
Boolean frmAbout_HandleEvent(EventPtr event);

Boolean OpenPort();
void ClosePort();
void QueryVendingMachine();
void QueryVendingMachineResponse();
void ClearVendingMachine();
void ReadIntoBuffer(UInt32 bytestoread);
void Send(UInt8 * data,UInt32 size);
void SendFile ();
 2004 Microchip Technology Inc. DS00888A-page 57

AN888

FIGURE G-3: MCP2150DEMO_RES.H
#define frmMain 1000
#define cmdOneTwoThree 1000
#define cmdABC 1001
#define CONNECT 1002
#define READDATA 1003
#define CLEARDATA 1004
#define SODAS 1005
#define CANDIES 1006
#define ASCIIHEX 1007
#define TXDATA 1008
#define SHOWTRACE 1009
#define RESETTRACE 1010
#define ASCIIHEXINDICATOR 1011
#define TRACECOUNT 1012
#define AREWECONNECTED 1013
#define SEND 1014
#define SENDFILE 1015
#define frmAbout 1001
#define cmdClose 1000
#define InfoAlert 1000
#define ErrorAlert 1001
#define ConfirmAlert 1002
#define RawDataAlert 1003
#define mnufrmMain 1000
#define mnuClose 1000
#define mnuConfigCommunications 1001
#define mnuConfigTerminal 1002
#define mnuHelp 1003
#define mnuAbout 1004
DS00888A-page 58  2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical
components in life support systems is not authorized except
with express written approval by Microchip. No licenses are
conveyed, implicitly or otherwise, under any intellectual
property rights.
 2004 Microchip Technology Inc.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE and PowerSmart are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,
SEEVAL, SmartShunt and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net,
dsPICworks, ECAN, ECONOMONITOR, FanSense,
FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP,
ICEPIC, microPort, Migratable Memory, MPASM, MPLIB,
MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICtail,
PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC,
Select Mode, SmartSensor, SmartTel and Total Endurance
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2004, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00888A-page 59

Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in October
2003 . The Company’s quality system processes and procedures are
for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial
EEPROMs, microperipherals, non-volatile memory and analog
products. In addition, Microchip’s quality system for the design and
manufacture of development systems is ISO 9001:2000 certified.

DS00888A-page 60  2004 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338
Phoenix
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966
Fax: 480-792-4338
San Jose
1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Unit 706B
Wan Tai Bei Hai Bldg.
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building
No. 2 Fengxiangnan Road, Ronggui Town
Shunde City, Guangdong 528303, China
Tel: 86-765-8395507 Fax: 86-765-8395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

11/24/03

WORLDWIDE SALES AND SERVICE

