
AN877
DeviceNet™ Group 2 Slave Firmware for PIC18 with CAN
INTRODUCTION

The DeviceNet™ system is an open network standard,
built on the Controller Area Network (CAN), designed
to reduce the cost and time to install industrial devices
while providing compatibility with multiple vendors. The
DeviceNet specification is available from the Open
DeviceNet Vendor Association, Inc. (ODVA). Example
DeviceNet devices might include motor starters,
valves, sensors, displays and more.

The DeviceNet specification covers multiple layers, from
the wiring and protection circuits, up to the software
protocol and application definition (see Figure 1);
however, this application note only focuses on a specific
development of the software known in the specification
as the Predefined Master/Slave Connection Set. To be
even more accurate, this application note only presents
a slave node within the Predefined Connection Set, also
referred to as a Group 2 Slave.

The Group 2 Slave developed here is designed with the
following features:

• Supports Polling Messaging
• Supports Multicast Polling Messaging
• Supports Change of State/Cyclic Messaging

• Supports Bit Strobe Messaging
• Supports Acknowledged Fragmentation
• Supports Unacknowledged Fragmentation

This application note, with attached firmware, is pro-
vided to accelerate the process to design a Group 2
Slave node but not do all of the work. There are many
details to a slave node that require an understanding of
the target application; therefore, this implementation is
provided in a very general form with numerous config-
urable parameters, event handling functions and vari-
ables that must be set or developed for the application.
Essentially, you cannot develop a DeviceNet applica-
tion without some knowledge of the DeviceNet system
and its specification. It is a good idea to have the
complete specification available for reference while
designing a node.

The firmware associated with this document may
change as new features are added.

Throughout this application note, there are references
to the specification. All references are to Volume I of
the specification unless otherwise noted.

FIGURE 1: LAYER PROTOCOL

OVERVIEW OF THE FIRMWARE

The DeviceNet system is described in the specification
as a collection of objects. Figure 2 shows a simplified
view of the object model. There are a number of possi-
ble objects within the object model but the required
objects include:

• Connection Object
• Message Router Object
• Identity Object

• DeviceNet Object

These are the objects that are developed in this
application note. Other objects not listed may become
available in future revisions of the firmware.

The Connection Object

The Connection Object manages all communications
between the CAN bus and higher level objects and
contains a number of source files. It can contain
multiple instances as defined by the Predefined
Master/Slave Connection Set (see Chapter 7 of the
specification). Table 1 lists the files associated with the
Connection Object.

Author: Ross Fosler
Microchip Technology Inc.

DeviceNet™
Protocol

CAN
Protocol

Physical
Layer

Transmission
Media Media Layer

Physical Layer

Data Link Layer

Application Layer
 2003 Microchip Technology Inc. DS00877A-page 1

AN877
The DeviceNet Object

In this design, there is one instance of the DeviceNet
Object. It contains network related information about
the node, such as baud rate, MAC ID and more. It is
split into two source files as shown in Table 2; one file
contains lower level information, while the other is
application dependent and requires development
based on the requirements of the application.

The Identity Object

The Identity Object contains information that identifies
the device, such as serial number and description. Like
the DeviceNet Object and the Connection Object, there
are some application specific dependencies that must
be developed for the Identity Object. Table 3 identifies
the files associated with the Identity Object.

The Router Object

The Router Object routes Explicit Messages to the
appropriate object. In this design, routes are static, plus
the object has no external visibility over the DeviceNet
system.

FIGURE 2: SIMPLE OVERVIEW OF OBJECT CONNECTION

Message
Router

Connection Object

Identity
Object

DeviceNet™
Object

Application Related
Objects

CAN bus

I/O
 M

essaging

E
xp

lic
it

M
es

sa
gi

ng
DS00877A-page 2  2003 Microchip Technology Inc.

AN877
TABLE 1: CONNECTION OBJECT RELATED FILES

TABLE 2: DeviceNet OBJECT RELATED FILES

TABLE 3: IDENTITY OBJECT RELATED FILES

TABLE 4: ADDITIONAL HELPER FILES

File Name Description

conn.c This file contains several connection managing functions to capture communications events and
dispatch them to appropriate instances or other managing functions.

conn1.c This file provides the Predefined Explicit Messaging connection functionality.

conn2.c This file provides the Predefined Polled/Change of State/Cyclic I/O Messaging connection
functionality.

conn3.c This file provides the Predefined Bit Strobed I/O Messaging connection functionality.

conn4.c This file provides the Predefined Change of State/Cyclic I/O Messaging connection functionality.

conn5.c This file provides the Predefined Multicast Polled I/O Messaging connection functionality.

conn6.c This file provides the Unconnected Explicit Messaging functionality which looks similar to other
regular I/O connections, but does not support all the events and fragmentation.

conn7.c This file provides the Duplicate MAC ID Messaging functionality which looks similar to other
regular I/O connections, but does not support all the events and fragmentation.

frag.c This file contains the I/O Fragmentation managing functions.

CAN.C This file contains the abstracted CAN driver routines. The functions are abstract to support the
possibility of having a variety of CAN options.

EMM.c This file is referred to as the Explicit Messaging Manager. It contains functions to interface Explicit
Messaging to the router. Routing specific information is parsed and placed in the Router Object.

UEMM.c This file is referred to as the Unconnected Explicit Messaging Manager. It contains functions to
interface Unconnected Explicit Messaging to the router. However, only the “Allocate” and “Release”
commands directed to the DeviceNet Object are allowed; all other messages are ignored.

NASM.c This file contains the Network Access State Machine functions. These functions are bound
together with the Identity Object and the Duplicate MAC ID Message.

UsrConn.c Application specific logic for the Connection Object is contained within this file; therefore, this file
must be developed for the application.

File Name Description

dnet.c This file contains most of the required logic for the DeviceNet Object. It contains DeviceNet global
variables and Explicit Message handling for the commands identified in Section 5-5 of the
specification.

UsrDNet.c Logic that depends on the application is contained within this file; therefore, this file must be
developed for the application.

File Name Description

ident.c This file contains most of the required logic for the Identity Object. It contains global variables and
Explicit Message handling for the commands identified in Volume II, Section 6-2 of the
specification.

UsrIdent.c Logic that depends on the application is contained within this file; therefore, this file must be
developed for the application.

File Name Description

class.h Defined classes of objects.

errors.h Defined Explicit Messaging errors.

typedefs.h Internal data types.
 2003 Microchip Technology Inc. DS00877A-page 3

AN877
THE CONNECTION OBJECT

The Connection Object, as shown in Figure 3, is the
largest and most complex object in the design. Within
the object, all data and error events must be managed
which explains the complexity.

All events are received by the managing functions
within the conn.c file through calls to the CAN driver.
The events are decoded and dispatched to the appro-
priate instance based on the availability of the connec-
tion. Note that an instance of a connection does not
exist until it is explicitly created (see Section 5-5 of the
specification). The only two messages that are received
without explicitly instantiating a connection are the
Unconnected Explicit Request Message and the
Duplicate MAC ID Check Message (see Section 7-2 of
the specification).

Once instantiated, each instance manages the events
that it receives. In general, the events include:

• ConnxCreate – Creates the object
• ConnxClose – Closes the object
• ConnxTimerEvent – Handles connection

related timers
• ConnxRxEvent – Handles received data

• ConnxTxOpenEvent – Handles transmit
availability

• ConnxTxEvent – Notification when data has
been put on the bus

• ConnxExplicitEvent – Handles Explicit
Messaging requests

At the upper level of the Connection Object are addi-
tional managers which process the received data for
the instances. This includes Unconnected and Con-
nected Explicit Message handling, Network Access
Control (see Chapter 6 of the specification) and the
application specific I/O.

FIGURE 3: THE CONNECTION OBJECT AND HIGHER MANAGEMENT OBJECTS

Inst. 1
(conn1.c)

Inst. 2
(conn2.c)

Inst. 3
(conn3.c)

Inst. 4
(conn4.c)

Inst. 5
(conn5.c)

Msg. 6
(conn6.c)

Msg. 7
(conn7.c)

Tx, Rx, Fragmentation,
and Time Managing

Functions
(conn.c, frag.c)

Unconnected
Explicit Message

Manager
(UEMM.c)

Explicit Message
Manager
(EMM.c)

Network Access
Manager
(NASM.c)

Abstract CAN
Driver Functions

(CAN.C)

User I/O
Interface

(UsrConn.c)
DS00877A-page 4  2003 Microchip Technology Inc.

AN877
Internal Connection Object Services

The Connection Object manages I/O connection data
movement to and from the user supplied buffer. It is up
to the application to decide how to handle the data
above the Connection Object.

There are up to four possible predefined instances that
are defined (see Chapter 7 of the specification):

• Polled Messaging
• Bit Strobed Messaging
• Cyclic/Change of State Messaging
• Multicast Polled Messaging

Some basic internal services are provided through the
Connection Object for the purpose of managing I/O data.

mConnReadRdy

Query the Connection Object to determine the status of the read buffer of the specified connection number. Returns true
if a message has been received and is waiting in the receive buffer. Valid numbers are 1 through 7; however, only
numbers 2 through 5 should be used since these are where the I/O connections reside.

Syntax

unsigned char mConnReadRdy (unsigned char hInstance)

Example

if (mConnReadRdy(2))
{

// Process application stuff
ApplicationProcess();
// Free the connection to accept more data
mConnRead(2);

}

mConnWriteRdy

Query the Connection Object to determine the status of the write buffer of the specified connection number. Returns
true if the buffer is open to accept new data from transmission. Valid numbers are 1 through 7; however, only numbers
2 through 5 should be used since these are where the I/O connections reside.

Syntax

unsigned char mConnWriteRdy (unsigned char hInstance)

Example

if (mConnWriteRdy(2))
{

// Process application stuff
ApplicationProcess();
// Release the connection to write the data
mConnWrite(2);

}

 2003 Microchip Technology Inc. DS00877A-page 5

AN877
mConnRead

Calling this function with the appropriate instance number will indicate to the Connection Object that all data has been
processed and the connection should be ready to receive more data.

Syntax

void mConnRead (unsigned char hInstance)

mConnWrite

Calling this function with the appropriate instance number will indicate to the Connection Object that all data has been
loaded into the connection’s buffer for transmitting on the bus.

Syntax

void mConnWrite (unsigned char hInstance)
DS00877A-page 6  2003 Microchip Technology Inc.

AN877
Connection Object Events
There are events and global registers that cannot be
defined without the application. For this reason, they
are passed up to the UsrConn.c object for application
specific processing. Code must be developed in this file
to manage appropriate events.

Upon instantiation, a “Create Event” is generated with
the appropriate instance number passed. This event
must be handled to set up some application dependent
attributes. The attributes that must be set up are:

• Produced path
• Consumed path
• Produced path length
• Consumed path length
• Pointer to the consumed data
• Pointer to the produced data
• Length of the consumed data
• Length of the produced data

Like the “Create Event”, there is also a “Close Event”
when the connection is closed. This is provided to notify
the application when the connection is no longer available.

Two other events that may or may not necessarily be
set up are the “Rx Event” and the “Tx Event”. These
events are generated when data has been transmitted
or received. These are provided for any application
specific event handling; however, they do not neces-
sarily need to be handled as an event. Receive and
transmit can be polled through normal Connection
Object functions.

One other event is the “Set Attribute Event”. This event
must be handled for any attribute that is not entirely
dependent on the Connection Object alone. The
attributes are:

• _ATTRIB_CLASS_TRIGGER

• _ATTRIB_PRODUCED_CONN_PATH

• _ATTRIB_CONSUMED_CONN_PATH

• _ATTRIB_PRODUCED_CONN_SIZE

Not all attributes are required to be settable; however,
the event must be handled to generate an error if the
event occurs.

UsrConnCreateEvent

This event function is called when a connection is created by an allocate request. The instance number is passed indi-
cating the source of the event. This event is an indication to the application to provide resources necessary for the con-
nection to function. Other than application specific resources, buffer space and path information must be provided. If
resources are not available, then the application should return ‘0’ to this event; otherwise, the application should return
any other value to allow the creation of the connection.

Syntax
unsigned char UsrConnCreateEvent (unsigned char hInstance)

Example
unsigned char UsrConnCreateEvent(unsigned char hInstance)
{

switch (hInstance)
{

case 2:
// Set path information according to Appendix I
// of the DeviceNet specification
// Set the connection sizes
uConn2.attrib.consumed_con_size.word = 13;
uConn2.attrib.produced_con_size.word = 20;

// Set the pointers to the buffers
uConn2.rx.pMsg = uConn2RxBuffer;
uConn2.tx.pMsg = uConn2TxBuffer;

return(1);
case 3:

// Set path and connection information
return(1);

case 4:
// Set path and connection information
return(1);

case 5:
// Set path and connection information
return(1);

}
}

 2003 Microchip Technology Inc. DS00877A-page 7

AN877
UsrConnCloseEvent

This event function is called when a connection is closed by a time-out or release request. The instance number is
passed indicating the source of the event. This event is an indication to the application to release any allocated
resources.

Syntax

void UsrConnCloseEvent (unsigned char hInstance)

UsrConnRxDataEvent

This event function is called when a connection has received data. The instance number is passed indicating the source
of the event.

Syntax

void UsrConnRxDataEvent (unsigned char hInstance)

UsrConnTxDataEvent

This event function is called when a connection has transmitted its data. The instance number is passed indicating the
source of the event.

Syntax

void UsrConnTxDataEvent (unsigned char hInstance)

UsrConnSetAttribEvent

This event is generated when an attribute that is defined by the application has been requested to be changed by an
Explicit Message. The application must decode the attribute and generate an appropriate response to the request. Refer
to the Router Object for details on internal services to handle Explicit Message responses.

Syntax

void UserConnSet AttribEvent (unsigned char hInstance)

Example

switch (mRouteGetAttributeID())
{

case _ATTRIB_CLASS_TRIGGER:
// Process request to set this attribute
break;

case _ATTRIB_PRODUCED_CONN_PATH:
// Process request to set this attribute
break;

case _ATTRIB_CONSUMED_CONN_PATH:
// Process request to set this attribute
break;

case _ATTRIB_PRODUCED_CONN_SIZE:
// Process request to set this attribute
break;

}
DS00877A-page 8  2003 Microchip Technology Inc.

AN877
Connection Attributes

Connection attributes are common to all I/O connec-
tions. Depending on the connection, some of the
attributes may not be settable. Table 5 lists and identifies
the attributes.

TABLE 5: COMMON VISIBLE CONNECTION ATTRIBUTES

Attribute Definition

state Indicates the state of the connection instance.

transportClass Indicates the type of connection.

produced_cid This attribute contains the produced connection ID.

consumed_cid This attribute contains the consumed connection ID.

initial_comm_char

produced_con_size This specifies the maximum size of the produced message for this connection.

consumed_con_size This specifies the maximum size of the consumed message for this connection.

expected_packet_rate This specifies the minimum rate at which data is expected to be received for this
connection.

produced_path_len Specifies the length of the produced path information.

produced_path Specifies the produced path.

consumed_path_len Specifies the length of the consumed path information.

consumed_path Specifies the consumed path.
 2003 Microchip Technology Inc. DS00877A-page 9

AN877
THE DeviceNet OBJECT

The DeviceNet Object contains primarily device spe-
cific information; some of this information is application
specific and some does not depend on the application.
Thus, like other objects in this design, it is split. Most of
the decoding, general logic and global variables are
provided in dnet.c, while application dependent
functions and globals are available in UsrDNet.c.

Internal DeviceNet Object Services

In this section, several internal services are identified
and described which are available to manage the
DeviceNet Object and the device. These services should
be used by the application’s managing functions to indi-
cate any hardware changes. For example, the applica-
tion should use the functions mDNetSetMACSwChange
and mDNetSetBaudSwChange to indicate any changes
in the switches, if switches are installed in the device.

mDNetSetMACID

This function sets the MAC ID. Use this at initialization time.

Syntax

void mDNetSetMACID (USINT MACID)

mDNetSetSetBaudRate

This function sets the baud rate. Valid values are 0, 1 and 2. Use this at initialization time.

Syntax

void mDNetSetBaudRate (USINT BaudRate)

mDNetSetBOI

Set the bus off interrupt action. This should be asserted at initialization and can be asserted during normal operation
when handling a “Set Attribute Event”.

Syntax

void mDNetSetBOI (BOOL BOI)

mDNetSetMACSwChange

Set the MAC ID switch change indication if supported. The application should use this to notify the DeviceNet Object of
the change. Typically, if the application has switches, it should notify the DeviceNet firmware that the switch has
changed since last reset.

Syntax

void mDNetSetMACSwChange (BOOL SwitchChange)

mDNetSetBaudSwChange

Set the baud rate switch change indication if supported. The application should use this to notify the DeviceNet Object
of the change. Typically, if the application has switches, it should notify the DeviceNet firmware that the switch has
changed since last reset.

Syntax

void mDNetSetBaudSwChange (BOOL SwitchChange)

Note: Many of the functions are purely macro
based, so extra code space is not used if
the function is not used in the application.
DS00877A-page 10  2003 Microchip Technology Inc.

AN877
mDNetSetMACSwValue

Set the MAC ID switch value if supported. The application should use this to notify the DeviceNet Object of the switch
value.

Syntax

void mDNetSetMACSwValue (USINT SwitchValue)

mDNetSetBaudSwValue

Set the baud rate switch value if supported. The application should use this to notify the DeviceNet Object of the switch
value.

Syntax

void mDNetSetBaudSwValue (USINT SwitchValue)

mDNetGetMACID

Get the current MAC ID value stored in the DeviceNet Object.

Syntax

USINT mDNetGetMACID ()

mDNetGetBaudRate

Get the current baud rate value stored in the DeviceNet Object.

Syntax

USINT mDNetGetBaudRate()

mDNetGetBOI

Get the current bus off interrupt value stored in the DeviceNet Object.

Syntax

BOOL mDNetGetBOI ()

mDNetGetBusOffCount

Get the current bus off count value stored in the DeviceNet Object. This value is updated by the Connection Object Error
Management function.

Syntax

USINT mDNetGetBusOffCount ()

mDNetGetAllocChoice

Get the current allocation choice byte. This value is changed based on the requests from the server and the internal
watchdog timers. This could be used internally to get an indication of what connection has been allocated.

Syntax

USINT mDNetGetAllocChoice ()
 2003 Microchip Technology Inc. DS00877A-page 11

AN877
mDNetGetMasterMACID

Get the current allocated Master MAC ID. Valid values are 0 to 63 and 255. A value of 255 indicates that no client has
allocated this node.

Syntax

USINT mDNetGetMasterMACID ()

mDNetMACSwChange

Get the stored MAC ID switch change value.

Syntax

void mDNetSetBOI (unsigned char MACID)

mDNetBaudSwChange

Get the stored baud rate switch change value.

Syntax

void mDNetSetBOI (unsigned char MACID)

mDNetGetMACSwValue

Get the stored MAC ID switch value.

Syntax

USINT mDNetGetMACSwValue ()

mDNetGetBaudSwValue

Get the stored baud rate switch value.

Syntax

USINT mDNetGetBaudSwValue ()
DS00877A-page 12  2003 Microchip Technology Inc.

AN877
DeviceNet Object Events

There are two events that must be handled by the appli-
cation that occur in the DeviceNet Object, which are
listed below.

Within the UsrDNetInitEvent function, several
attributes specific to the DeviceNet Object must be set.
For example, the MAC ID and the baud rate can be

switch values, or internal values stored in memory,
depending on the application design. Thus, these initial-
izations are left to the application designer. The same
situation applies to the UsrDNetSetAttribEvent
function. Refer to Section 5-5 of the specification for
information on the DeviceNet Object. The specification
identifies the settable attributes and the conditions that
enable the settable attributes.

UsrDNetInitEvent

This event occurs when the DeviceNet Object is initialized. A number of attributes must be set up.

Syntax

void UsrDNetInitEvent (void)

Example

void UsrDNetInitEvent(void)
{

mDNetSetMACID(12);
mDNetSetBaudRate(0);
mDNetSetBOI(0);
mDNetSetMACSwChange(0);
mDNetSetBaudSwChange(0);
mDNetSetMACSwValue(0);
mDNetSetBaudSwValue(0);

}

UsrDNetSetAttribEvent

The “Set Attribute Event” occurs when the setting of an attribute cannot be handled internally because of some
application dependency.

Syntax

void UsrDNetSetAttribEvent (void)

Example

void UsrDNetSetAttribEvent(void)
{

switch (mRouteGetAttributeID())
{

case _ATTRIB_MAC_ID:
// Application code to handle setting MAC ID
break;

case _ATTRIB_BAUD_RATE:
// Application code to handle setting baud rate
break;

case _ATTRIB_BOI:
// Application code to handle setting BOI
break;

}
}

 2003 Microchip Technology Inc. DS00877A-page 13

AN877
THE IDENTITY OBJECT

The Identity Object contains device identification infor-
mation; some of this information is application specific
and some does not depend on the application. Thus,
like other objects in this design, it is split. Most of the
decoding, general logic and global variables are
provided in ident.c, while application dependent
functions and globals are available in UsrIdent.c.

Identity Object Events

UsrIdentityCommunicationFaultEvent

This event is generated when communications has faulted (i.e., the bus off count has exceeded 255). Refer to Chapter 6
of the DeviceNet specification.

Syntax

void UsrIdentityCommunicationFaultEvent(void)

UsrIdentityFaultEvent

This event occurs when the Network Access State Machine has been corrupted. If this ever occurs, a Reset is probably
necessary.

Syntax

void UsrIdentityFaultEvent(void)

UsrIdentityReset

This function is called when a Reset has been requested. This occurs through an Explicit Messaging request.

Syntax

void UsrIdentityReset(void)

Example

void UsrIdentityReset(void)
{

USINT resetData;

// Ignore the first byte (it is actually the attribute ID)
mRouteGetByte();

// Verify that one byte has been received
if (mRouteTestValidInputDataLen(1))
{

// Get the data (6-2.3.1)
resetData = mRouteGetByte();

if (resetData == 0)
{

// Perform a soft reset
}
else if (resetData == 1)
{

// Perform an ‘out of the box’ reset
}

}
}

DS00877A-page 14  2003 Microchip Technology Inc.

AN877
UsrIdentityInitEvent

This is the initialization event. The identity globals must be set up in this event.

Syntax

void UsrIdentityInitEvent(void)

Example

ROM unsigned char cProductName[] = {"Microchip Device"};

void UsrIdentityInitEvent(void)
{

mIdentitySetVendorID(12345);
mIdentitySetDeviceType(2);
mIdentitySetProductCode(3);
mIdentitySetMajorRevision(1);
mIdentitySetMinorRevision(0);
mIdentitySetStatus(0);
mIdentitySetSerial(28933892);
mIdentitySetNameP(cProductName);
mIdentitySetNameLen(sizeof(cProductName));

}

 2003 Microchip Technology Inc. DS00877A-page 15

AN877
Internal Identity Object Services

The following identifies and describes several internal
services that are available to manage the Identity
Object and the device. These services should be used
by the application’s managing functions to indicate any
changes related to the Identity Object, most notably the
status of the device. For example, the application
should use the function, mIdentitySetStatus, to
indicate any application level Fault conditions. See the
functions below.

mIdentitySetVendorID

Use this to set the vendor ID of the node. This number is assigned by ODVA.

Syntax

void mIdentitySetVendorID (UINT VendorID)
void mIdentitySetVendorIDL (USINT VendorID)
void mIdentitySetVendorIDH (USINT VendorID)

mIdentityGetVendorID

Use this to get the stored vendor ID.

Syntax

UINT mIdentityGetVendorID (void)
USINT mIdentityGetVendorIDL (void)
USINT mIdentityGetVendorIDH (void)

mIdentitySetDeviceType

Use this to set the device type.

Syntax

void mIdentitySetDeviceType (UINT DeviceType)
void mIdentitySetDeviceTypeL (USINT DeviceType)
void mIdentitySetDeviceTypeH (USINT DeviceType)

mIdentityGetDeviceType

Use this to get the device type.

Syntax

UINT mIdentityGetDeviceType (void)
USINT mIdentityGetDeviceTypeL (void)
USINT mIdentityGetDeviceTypeH (void)

mIdentitySetProductCode

Set the product code.

Syntax

void mIdentitySetProductCode (UINT ProductCode)
void mIdentitySetProductCodeL (USINT ProductCode)
void mIdentitySetProductCodeH (USINT ProductCode)
DS00877A-page 16  2003 Microchip Technology Inc.

AN877
mIdentityGetProductCode

Get the product code.

Syntax

UINT mIdentityGetProductCode (void)
USINT mIdentityGetProductCodeL (void)
USINT mIdentityGetProductCodeH (void)

mIdentitySetMajorRevision

Set the major revision.

Syntax

void mIdentitySetMajorRevision (USINT MajorRev)

mIdentityGetMajorRevision

Get the major revision.

Syntax

USINT mIdentityGetMajorRevision (void)

mIdentitySetMinorRevision

Set the minor revision.

Syntax

void mIdentitySetMinorRevision (USINT MinorRev)

mIdentityGetMinorRevision

Get the minor revision.

Syntax

USINT mIdentityGetMinorRevision (void)

mIdentitySetSerial

Set the serial number.

Syntax

void mIdentitySetSerial (UDINT SerialNo)
void mIdentitySetSerialL (USINT SerialNo)
void mIdentitySetSerialH (USINT SerialNo)
void mIdentitySetSerialUL (USINT SerialNo)
void mIdentitySetSerialUH (USINT SerialNo)
 2003 Microchip Technology Inc. DS00877A-page 17

AN877
mIdentityGetSerial

Get the serial number.

Syntax

UDINT mIdentityGetSerial (void)
USINT mIdentityGetSerialL (void)
USINT mIdentityGetSerialH (void)
USINT mIdentityGetSerialUL (void)
USINT mIdentityGetSerialUH (void)

mIdentitySetStatus

Set the status of the device. This must be set by the application to indicate the current status of the device (see
Section 6-2.2 of the specification).

Syntax

void mIdentitySetStatus (WORD DevStat)
void mIdentitySetStatusL (unsigned char DevStat)
void mIdentitySetStatusH (unsigned char DevStat)

mIdentityGetStatus

Get the status of the device.

Syntax

WORD mIdentityGetStatus (void)
unsigned char mIdentityGetStatusL (void)
unsigned char mIdentityGetStatusH (void)

mIdentitySetNameP

Set a ROM pointer to the name of the device.

Syntax

void mIdentitySetNameP (ROM unsigned char pName)

mIdentitySetNameLen

Set the length of the name.

Syntax

void mIdentitySetNameLen (unsigned char NameLen)
DS00877A-page 18  2003 Microchip Technology Inc.

AN877
THE ROUTER OBJECT

Although the Router Object has no external visibility
through Explicit Messaging, it has many internal
functions for routing Explicit Message data. These
functions are listed and described in the “Internal
Routing Services” section.

Handling Explicit Messaging

Every application object that has attributes and ser-
vices has an Explicit Message handling function that
decodes the path information. The router automatically
parses the appropriate information and makes it avail-
able to the application. Plus, there are a number of
functions that are also available. All of the possible
functions are listed in the “Internal Routing Services”
section. Following are some of the more important
internal functions:

• mRoutePutByte – Put a byte into the response
buffer and automatically adjust some internal
pointers to the next byte in the buffer.

• mRouteGetByte – Read a byte from the receive
buffer and automatically adjust to the next byte in
the buffer.

• mRouteTestValidInputDataLen – Test the
length of the attribute data against the expected
data length.

• mRoutePutError – Set the appropriate error
response.

• mRouteGetServiceID – Get the service ID.
• mRouteGetInstanceID – Get the instance ID.
• mRouteGetAttributeID – Get the attribute ID.

• mRouteGetInBufferPtr – Get the pointer to
the buffer.

• mRouteGetInBufferDataLength – Get the
amount of data in the input buffer.

• mRouteGetOutBufferPtr – Get a pointer to
the output buffer.

• mRouteGetOutBufferLength – Get the
maximum length of the output buffer.

Refer to the source code for examples on handling
Explicit Messaging events.

Internal Routing Services

mRoutePutByte

Put a byte into the buffer to be transmitted by the Explicit Messaging connection. Internal pointers are maintained
automatically. Thus, multiple writes will write bytes sequentially in the buffer.

Syntax

void mRoutePutByte (USINT dataByte)

mRouteGetByte

Get a byte from the received Explicit Messaging connection buffer. Internal pointers are maintained automatically. Thus,
multiple reads will read bytes sequentially from the buffer.

Syntax

USINT mRouteGetByte (void)

mRouteTestValidInputDataLen

Verify the length of the input data. An error response is automatically generated if the boundary conditions are not met.

Syntax

unsigned char mRouteTestValidInputDataLen (unsigned char len)
 2003 Microchip Technology Inc. DS00877A-page 19

AN877
mRouteTestNonValidInputDataLen

Verify the length of the input data. An error response is automatically generated if the boundary conditions are not met.

Syntax

unsigned char mRouteTestNonValidInputDataLen (unsigned char len)

mRoutePutError

Put an error response in the buffer. Refer to errors.h and the specification for a list of known errors.

Syntax

void mRoutePutError (USINT errorCode)

mRouteRxLen

Get the receive data length.

Syntax

USINT mRouteRxLen (void)

mRouteTxLen

Get the transmit data length.

Syntax

USINT mRouteTxLen (void)

mRouteGetHeader

Get the header of the received Explicit Message.

Syntax

USINT mRouteGetHeader (void)

mRouteGetServiceID

Get the service ID of the received Explicit Message.

Syntax

USINT mRouteGetServiceID (void)

mRouteGetClassID

Get the class ID of the received Explicit Message.

Syntax

USINT mRouteGetClassID (void)
UINT mRouteGetClassID (void)
DS00877A-page 20  2003 Microchip Technology Inc.

AN877
mRouteGetInstanceID

Get the instance ID of the received Explicit Message.

Syntax

USINT mRouteGetInstanceID (void)
UINT mRouteGetInstanceID (void)

mRouteGetAttributeID

Get the attribute ID of the received Explicit Message.

Syntax

USINT mRouteGetAttributeID (void)

mRouteGetInBufferPtr

Get the pointer to the input buffer.

Syntax

USINT * mRouteGetInBufferPtr (void)

mRouteGetOutBufferPtr

Get the pointer to the output buffer.

Syntax

USINT * mRouteGetOutBufferPtr (void)

mRouteGetInBufferLength

Get the length of the input buffer.

Syntax

USINT mRouteGetInBufferLength (void)

mRouteGetInBufferDataLength

Get the length of data in the input buffer.

Syntax

USINT mRouteGetInBufferDataLength (void)

mRouteGetOutBufferLength

Get the length of the output buffer.

Syntax

USINT mRouteGetOutBufferLength (void)

mRouteGetOutBufferDataLength

Get the length of the data in the output buffer.

Syntax

USINT mRouteGetOutBufferDataLength (void)
 2003 Microchip Technology Inc. DS00877A-page 21

AN877
mRoutePutServiceID

Set the service ID. Typically this is used only when changing the Explicit Message response to an error response.

Syntax

void mRoutePutServiceID (USINT ServiceID)

mRoutePutInBufferPtr

Set the input buffer pointer.

Syntax

void mRoutePutInBufferPtr (USINT * pInBuf)

mRoutePutOutBufferPtr

Set the output buffer pointer.

Syntax

void mRoutePutOutBufferPtr (USINT * pOutBuf)

mRoutePutInBufferLength

Set the input buffer length.

Syntax

void mRoutePutInBufferLength (USINT length)

mRoutePutInBufferDataLength

Set the length of the data in the input buffer.

Syntax

void mRoutePutInBufferDataLength (USINT length)

mRoutePutOutBufferLength

Set the output buffer length.

Syntax

void mRoutePutOutBufferLength (USINT length)

mRoutePutOutBufferDataLength

Set the length of data in the output buffer.

Syntax

void mRoutePutOutBufferDataLength (USINT length)
DS00877A-page 22  2003 Microchip Technology Inc.

AN877
SUPPORTING FUNCTIONS
All of the managing and initialization functionality is
combined into a single source object. The primary
function is to manage communication, errors, time and
initialization while providing a simple interface. In this
case, there are three functions listed and described
below. These functions should be called by the
application’s main program.

Setting Up a Timer

The GoDNetProcessAllTickEvents function must
be called at the rate specified by the
TICK_RESOLUTION compile time option. The source
of the timing event can be determined by the
application. Refer to the source code for an example.

GoDNetProcessAllMsgEvents

This function processes all message and error management functions, essentially generating communications related
events. It should be called as often as possible to avoid missing events from the CAN driver.

Syntax

void GoDNetProcessAllMsgEvents (void)

Example

See example for the GoDNetInitializeAll function below.

GoDNetProcessAllTickEvents

This function combines all time related management into a single function. This function should be called based on an
application generated timing event. A timer or some external trigger could be used to do this.

Syntax

void GoDNetProcessAllTickEvents (void)

Example

See example for the GoDNetInitializeAll function below.

GoDNetInitializeAll

This function should be called at least one time. It generates all the initialization events, external and internal, to set up
the node for the DeviceNet system.

Syntax
void GoDNetInitializeAll (void)

Example

void main(void)
{

// Init the timer
TimerInit();

// Init all appropriate DeviceNet parameters
GoDNetInitializeAll();

while (1)
{

// Process all DeviceNet Messaging events
GoDNetProcessAllMsgEvents();

// Process all DeviceNet timer events
if (TimerIsOverflowEvent())

GoDNetProcessAllTickEvents();

// Process any application firmware
}

}

 2003 Microchip Technology Inc. DS00877A-page 23

AN877
COMPILE TIME SETUP

There are several compile time options that must be set
to configure the DeviceNet firmware. They are listed
and described in Table 6.

TABLE 6: COMPILE TIME OPTIONS

Option Definition

B125k_BRG1_SJW

Set the BRG values to achieve 125k for the desired clock frequency. Refer to
the PIC18FXX8 device data sheet (DS41159) for information on the CAN
module.

B125k_BRG1_PRESCALE

B125k_BRG2_SEG2PHTS

B125k_BRG3_WAKFIL

B125k_BRG2_SEG1PH

B125k_BRG3_SEG2PH

B125k_BRG2_PRSEG

B125k_BRG2_SAM

B250k_BRG1_SJW

Set the BRG values to achieve 250k for the desired clock frequency. Refer to
the PIC18FXX8 device data sheet (DS41159) for information on the CAN
module.

B250k_BRG1_PRESCALE

B250k_BRG2_SEG2PHTS

B250k_BRG3_WAKFIL

B250k_BRG2_SEG1PH

B250k_BRG3_SEG2PH

B250k_BRG2_PRSEG

B250k_BRG2_SAM

B500k_BRG1_SJW

Set the BRG values to achieve 500k for the desired clock frequency. Refer to
the PIC18FXX8 device data sheet (DS41159) for information on the CAN
module.

B500k_BRG1_PRESCALE

B500k_BRG2_SEG2PHTS

B500k_BRG3_WAKFIL

B500k_BRG2_SEG1PH

B500k_BRG3_SEG2PH

B500k_BRG2_PRSEG

B500k_BRG2_SAM

CLASS_WIDTH_16BIT If this parameter is true, then the Router Object will assume 16-bit class ID for
all connected Explicit Messages; otherwise, 8-bit is default.

INSTANCE_WIDTH_16BIT If this parameter is true, then the Router Object will assume 16-bit instance ID
for all connected Explicit Messages; otherwise, 8-bit is default.

TICK_RESOLUTION Set the tick resolution that will be supplied to the firmware. The resolution must
be 1, 2, 4, 8, 16 or 32 ms.

SUPPORT_POLLED Enable support for Polled I/O Messaging.

SUPPORT_BIT_STROBED Enable support for Bit Strobed I/O Messaging.

SUPPORT_MULTICAST_POLL Enable support for Multicast Polled I/O Messaging.

SUPPORT_COS Enable support for COS I/O Messaging.

SUPPORT_CYCLIC Enable support for Cyclic I/O Messaging.

SUPPORT_COS_BOTH_DIR Enable support for COS/Cyclic I/O Messaging for both directions.

FRAGMENTATION_UNACK Enable fragmentation support for I/O Messages.

FRAGMENTATION_ACK Enable fragmentation support for Explicit Messages.

EXPLICIT_ACK_TIMER Acknowledge time-out for fragmented transmission.

CONN_EXPLICIT_RX_SIZE Set the receive buffer size for Explicit Messages.
DS00877A-page 24  2003 Microchip Technology Inc.

AN877
CONN_EXPLICIT_TX_SIZE Set the transmit buffer size for Explicit Messages.

CONN_POLLED_RX_FRAG Allow fragmentation for Receive Polled Messages.

CONN_POLLED_TX_FRAG Allow fragmentation for Transmit Polled Messages.

CONN_MULTICAST_RX_FRAG Allow fragmentation for Receive Multicast Polled Messages.

CONN_MULTICAST_TX_FRAG Allow fragmentation for Transmit Multicast Polled Messages.

CONN_COS_CYCLIC_RX_FRAG Allow fragmentation for Receive COS/Cyclic Messages.

CONN_COS_CYCLIC_TX_FRAG Allow fragmentation for Transmit COS/Cyclic Messages.

ALLOW_MAC_ID

Enable visibility of these parameters within the DeviceNet Object.

ALLOW_BAUD_RATE

ALLOW_BOI

ALLOW_BUS_OFF_COUNT

ALLOW_ATTRIB_ALLOC_INFO

ALLOW_MAC_ID_SW_CH

ALLOW_BAUD_RATE_SW_CH

ALLOW_MAC_ID_SW_VAL

ALLOW_BAUD_RATE_SW_VAL

SETTABLE_BUS_OFF_COUNT

Enable settability of these parameters within the DeviceNet Object.
SETTABLE_BOI

SETTABLE_BAUD_RATE

SETTABLE_MAC_ID

CLASS_USER_DEFINED_1

These options set the application specific Explicit Messaging information for
the Router Object. The first parameter is the class ID and the second is the
name of the Explicit Message handling function. A class ID of ‘0’ is considered
non-existent.

CLASS_USER_DEFINED_1_NAME

CLASS_USER_DEFINED_2

CLASS_USER_DEFINED_2_NAME

CLASS_USER_DEFINED_3

CLASS_USER_DEFINED_3_NAME

CLASS_USER_DEFINED_4

CLASS_USER_DEFINED_4_NAME

CLASS_USER_DEFINED_5

CLASS_USER_DEFINED_5_NAME

CLASS_USER_DEFINED_6

CLASS_USER_DEFINED_6_NAME

CLASS_USER_DEFINED_7

CLASS_USER_DEFINED_7_NAME

CLASS_USER_DEFINED_8

CLASS_USER_DEFINED_8_NAME

TABLE 6: COMPILE TIME OPTIONS (CONTINUED)

Option Definition
 2003 Microchip Technology Inc. DS00877A-page 25

AN877
ABOUT THE CAN DRIVER

The Connection Object makes calls to the CAN driver
to set up communications and to capture the necessary
events, such as receive, transmit, and bus off. The
driver provided is only a very simple form of driver. The
functionality is heavily hardware dependent. A much
more complex driver is possible if the latency and pro-
cessing requirements become more stringent in the
application. The following is a list of driver functions
called by the Connection Object:

CANOpen

Open communications over CAN.

Syntax

NEAR unsigned char CANOpen(void)

CANClose

Close communications over CAN.

Syntax

NEAR unsigned char CANClose(void)

CANIsOpen

Query to determine if communications are open.

Syntax

NEAR unsigned char CANNIsOpen(void)

CANSetFilter

Set a filter. This is a request, thus the driver may not always be able to completely filter an entire CAN ID.

Syntax

NEAR unsigned char CANSetFilter(NEAR unsigned int filterID)

CANClrFilter

Clear a filter. This is a request, thus the driver may not always be able to completely remove filtering of an entire CAN ID.

Syntax

NEAR unsigned char CANClrFilter(NEAR unsigned int filterID)

CANSetBitRate

Set the bit rate for communications. The format for this follows:

DeviceNet: 0 = 125 kbps, 1 = 250 kbps, 2 = 500 kbps

This function will only work if communication is off-line.

Syntax

NEAR unsigned char CANSetBitRate(NEAR unsigned char bitrate)
DS00877A-page 26  2003 Microchip Technology Inc.

AN877
CANIsBusError

Check for a bus off error.

Syntax

NEAR unsigned char CANIsBusError(void)

CANIsRxRdy

Check to see if data is available.

Syntax

NEAR unsigned char CANIsRxRdy(void)

CANRead

Indicate to the driver that all data has been read. This should allow the driver to use the released resources to receive
more data.

Syntax

void CANRead(void)

CANIsTxRdy

Check to see if a buffer is available.

Syntax

NEAR unsigned char CANIsTxRdy(void)

CANIsMsgSent

Return the tag of the message that was placed on the bus.

Syntax

NEAR unsigned char CANIsMsgSent(void)

CANSend

Indicate to the driver that data has been loaded and is ready to send.

Syntax

void CANSend(NEAR unsigned char txTag)

CANGetRxCID

Get the received CAN ID.

Syntax

NEAR unsigned int CANGetRxCID(void)

CANGetRxCnt

Get the received count.

Syntax

NEAR unsigned char CANGetRxCnt(void)
 2003 Microchip Technology Inc. DS00877A-page 27

AN877
CANGetRxDataPtr

Get a pointer to the data.

Syntax

unsigned char * NEAR CANGetRxDataPtr(void)

CANGetRxDataTypX

Copy a block of bytes from the driver buffer to the specified location. Type 0 is 8 bytes, Type 1 is 7 bytes, Type 2 is 6
bytes.

Syntax

void CANGetRxDataTyp0(unsigned char * NEAR usrBuf)
void CANGetRxDataTyp1(unsigned char * NEAR usrBuf)
void CANGetRxDataTyp2(unsigned char * NEAR usrBuf)

CANPutTxCID

Load the CAN ID into the transmit.

Syntax

void CANPutTxCID(NEAR unsigned int txCID)

CANPutTxCnt

Set the amount of data loaded.

Syntax

void CANPutTxCnt(NEAR unsigned char txCount)

CANGetTxDataPtr

Get a pointer to the transmit buffer.

Syntax

unsigned char * NEAR CANGetTxDataPtr(void)

CANPutTxDataTypX

Copy a block of bytes from the specified location to the driver buffer. Type 0 is 8 bytes, Type 1 is 7 bytes, Type 2 is
6 bytes.

Syntax

void CANPutTxDataTyp0(unsigned char * NEAR usrBuf)
void CANPutTxDataTyp1(unsigned char * NEAR usrBuf)
void CANPutTxDataTyp2(unsigned char * NEAR usrBuf)

CANInit

Initialize the driver.

Syntax

void CANInit(void)
DS00877A-page 28  2003 Microchip Technology Inc.

AN877
ABOUT THE SAMPLE FIRMWARE

The firmware provided with this application note dem-
onstrates a simple loopback function in both the Explicit
and I/O data paths. In the I/O data path, Polled Mes-
saging is used to echo any data it receives. In the
Explicit path, sending a “Get Attribute” request to
CLASS 64, INSTANCE 1, ATTRIBUTE 64, will send an
Explicit response with all the data received in the “Get
Attribute” request. Figure 4 shows the basic object
model. Refer to the App.c file for information about the
Application Object.

FIGURE 4: BASIC OBJECT MODEL

Message
Router

Connection Object

Identity
Object

DeviceNet™
Object

Loopback
(App.c)

CAN bus

P
olled I/O

E
xp

lic
it

M
es

sa
gi

ng

Class = 64
 2003 Microchip Technology Inc. DS00877A-page 29

AN877
Along with the DeviceNet specific files and a simple
Loopback Application Object are demonstration timer
functions in Timer.c. The DeviceNet system does
specify some timing requirements. The Demonstration
Timer Object is designed to use Timer0; however, the
network stack does not limit timing operations to any
particular time input.

The project has many files. To reduce confusion,
images of the project files are presented in Figure 5.
The recommended storage class for the entire project
is ‘Overlay’ with the exception of the CAN driver,
CAN.C, which should use the ‘Static’ storage class.

FIGURE 5: PROJECT FILES
DS00877A-page 30  2003 Microchip Technology Inc.

AN877
FUTURE OBJECTS

There are two objects that may become available in
future revisions of the associated source code that are
not currently available. They are the Assembly Object
and the Parameter Object. These objects are not
required by the specification; however, many
applications may require them.

MEMORY USAGE

Memory usage varies considerably based on the opti-
mizations and compile time options. Typical minimum
build is about 8k, while the maximum is about 12.5k.

SUMMARY

There are many parts of the firmware to work with to
design a DeviceNet node. Again, here are the key
items to remember:

• Compile Time –There are several compile time
options listed in Table 6 that should be set.

• Initialization Code – The Connection, Identity,
and DeviceNet Objects all have initialization
parameters that must be set prior to normal
operation.

• Explicit Messaging Events – All the objects,
except for the Router, have some Explicit
Messaging events that are not handled internally
because they rely on some specific application
level information. Thus, they must be handled by
the application.

• Network and Other Events – There are several
other events, such as initialization, that must be
handled appropriately. These must be developed
by the application designer.

• Application Objects – The Application Object or
Objects must, of course, be defined and
developed. Each object must handle Explicit
Messaging as well as some I/O Messaging.

• Set Up Timing – A time source is required to
maintain connection based timers. This must be
provided by the application designer.

• The Main Managing Functions – The main
managing functions must be called appropriately
to capture all events.

APPENDIX A: SOURCE CODE

The complete source code, including any demo appli-
cations and necessary support files, is available for
download as a single archive file from the Microchip
corporate web site, at:

www.microchip.com
 2003 Microchip Technology Inc. DS00877A-page 31

AN877
NOTES:
DS00877A-page 32  2003 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.
DS00877A-page 33
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE and PowerSmart are registered trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

AmpLab, FilterLab, microID, MXDEV, MXLAB, PICMASTER,
SEEVAL and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.

Application Maestro, dsPICDEM, dsPICDEM.net, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPIC, Select Mode,
SmartSensor, SmartShunt, SmartTel and Total Endurance are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2003, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2003 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

DS00877A-page 34  2003 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

Phoenix
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966
Fax: 480-792-4338

San Jose
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950
Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Australia
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599
China - Fuzhou
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060
China - Shenzhen
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393
China - Shunde
Room 401, Hongjian Building
No. 2 Fengxiangnan Road, Ronggui Town
Shunde City, Guangdong 528303, China
Tel: 86-765-8395507 Fax: 86-765-8395571
China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205
India
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or
82-2-558-5934
Singapore
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850
Taiwan
Kaohsiung Branch
30F - 1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910
France
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands
P. A. De Biesbosch 14
NL-5152 SC Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

07/28/03

WORLDWIDE SALES AND SERVICE

	Introduction
	FIGURE 1: Layer Protocol

	Overview of the Firmware
	The Connection Object
	The DeviceNet Object
	The Identity Object
	The Router Object
	FIGURE 2: Simple overview of Object Connection
	TABLE 1: Connection Object Related Files
	TABLE 2: DeviceNet Object Related Files
	TABLE 3: Identity Object Related Files
	TABLE 4: Additional Helper Files

	The Connection Object
	FIGURE 3: The Connection Object and Higher Management Objects
	Internal Connection Object Services
	mConnReadRdy
	mConnWriteRdy
	mConnRead
	mConnWrite

	Connection Object Events
	UsrConnCreateEvent
	UsrConnCloseEvent
	UsrConnRxDataEvent
	UsrConnTxDataEvent
	UsrConnSetAttribEvent

	Connection Attributes
	TABLE 5: Common Visible Connection Attributes

	The DeviceNet Object
	Internal DeviceNet Object Services
	mDNetSetMACID
	mDNetSetSetBaudRate
	mDNetSetBOI
	mDNetSetMACSwChange
	mDNetSetBaudSwChange
	mDNetSetMACSwValue
	mDNetSetBaudSwValue
	mDNetGetMACID
	mDNetGetBaudRate
	mDNetGetBOI
	mDNetGetBusOffCount
	mDNetGetAllocChoice
	mDNetGetMasterMACID
	mDNetMACSwChange
	mDNetBaudSwChange
	mDNetGetMACSwValue
	mDNetGetBaudSwValue

	DeviceNet Object Events
	UsrDNetInitEvent
	UsrDNetSetAttribEvent

	The Identity Object
	Identity Object Events
	UsrIdentityCommunicationFaultEvent
	UsrIdentityFaultEvent
	UsrIdentityReset
	UsrIdentityInitEvent

	Internal Identity Object Services
	mIdentitySetVendorID
	mIdentityGetVendorID
	mIdentitySetDeviceType
	mIdentityGetDeviceType
	mIdentitySetProductCode
	mIdentityGetProductCode
	mIdentitySetMajorRevision
	mIdentityGetMajorRevision
	mIdentitySetMinorRevision
	mIdentityGetMinorRevision
	mIdentitySetSerial
	mIdentityGetSerial
	mIdentitySetStatus
	mIdentityGetStatus
	mIdentitySetNameP
	mIdentitySetNameLen

	The Router Object
	Handling Explicit Messaging
	Internal Routing Services
	mRoutePutByte
	mRouteGetByte
	mRouteTestValidInputDataLen
	mRouteTestNonValidInputDataLen
	mRoutePutError
	mRouteRxLen
	mRouteTxLen
	mRouteGetHeader
	mRouteGetServiceID
	mRouteGetClassID
	mRouteGetInstanceID
	mRouteGetAttributeID
	mRouteGetInBufferPtr
	mRouteGetOutBufferPtr
	mRouteGetInBufferLength
	mRouteGetInBufferDataLength
	mRouteGetOutBufferLength
	mRouteGetOutBufferDataLength
	mRoutePutServiceID
	mRoutePutInBufferPtr
	mRoutePutOutBufferPtr
	mRoutePutInBufferLength
	mRoutePutInBufferDataLength
	mRoutePutOutBufferLength
	mRoutePutOutBufferDataLength

	Supporting Functions
	Setting Up a Timer
	GoDNetProcessAllMsgEvents
	GoDNetProcessAllTickEvents
	GoDNetInitializeAll

	Compile Time Setup
	TABLE 6: Compile Time Options�

	About the CAN Driver
	CANOpen
	CANClose
	CANIsOpen
	CANSetFilter
	CANClrFilter
	CANSetBitRate
	CANIsBusError
	CANIsRxRdy
	CANRead
	CANIsTxRdy
	CANIsMsgSent
	CANSend
	CANGetRxCID
	CANGetRxCnt
	CANGetRxDataPtr
	CANGetRxDataTypX
	CANPutTxCID
	CANPutTxCnt
	CANGetTxDataPtr
	CANPutTxDataTypX
	CANInit

	About the Sample Firmware
	FIGURE 4: Basic Object Model
	FIGURE 5: Project Files

	Future Objects
	Memory Usage
	Summary
	Appendix A: Source Code
	Worldwide Sales and Service

