
AN870
SNMP V2c Agent for Microchip TCP/IP Stack
INTRODUCTION
Simple Network Management Protocol (SNMP) is one
of the key components of a Network Management
System (NMS). SNMP is an application layer protocol
that facilitates the exchange of management informa-
tion among network devices. It is a part of the TCP/IP
protocol suite.

SNMP is an Internet protocol that was originally
designed to manage different network devices, such as
file servers, hubs, routers and so on. It can also be
used to manage and control an ever increasing number
of small embedded systems connected to one another
over any IP network. Systems can communicate with
each other using SNMP to transfer control and status
information, creating a truly distributed system.

SNMP is used in a variety of applications where remote
monitoring and controlling of the network node is
desired, such as a network printer, online Uninterrupted
Power Supply (UPS), security cameras, home and
industrial appliances monitor and control, automatic
energy meter readings, etc.

Unlike more familiar human-oriented protocols, like
HTTP, SNMP is considered a machine-to-machine
protocol.

There are three key components of TCP/IP Network
Management:

• MIB – Management Information Base is a
collection of the variables (managed objects) the
network elements/agents store. The individual
variables are identified by Object Identifiers
(OIDs).

• SMI – Structure of Management Information is a
set of common structures and a way to refer to
variables in the database.

• SNMP – Simple Network Management Protocol is
the protocol used to communicate between the
manager and the network element agent.

Microchip TCP/IP Stack supports two versions of
SNMP:

• SNMP Version 1 (SNMP V1)
• SNMP Version 2 Community-Based (SNMP V2c)

Most of the features are common to both versions.
SNMP V2c offers additional protocol operations, such
as Get_Bulk, a rich set of error indications,
community-based access, etc.

The SNMP Agent described here is designed to run on
Microchip’s PIC® microcontrollers and is implemented
using services provided by the free Microchip TCP/IP
Stack. The following main features are included:

• Portable across all PIC18, PIC24, PIC32 MCUs
and dsPIC® DSC families of microcontrollers

• Functions independently of RTOS or application
• SNMP ‘C’ source code is supported on

Microchip’s MPLAB® IDE and can be compiled
with PIC18, PIC24, PIC32 MCUs and dsPIC DSC
compilers ‘out of the box’

• Supports SNMP Version V1 and V2c over User
Datagram Protocol (UDP)

• Supports Get, Get_Bulk, Get_Next, Set and
Trap Protocol Data Units (PDUs)

• Supports up to 255 dynamic OIDs and unlimited
constant OIDs

• Supports sequence variables with a 7-bit index
• Supports enterprise-specific Trap(s) with one

variable information
• Handles access to constant OIDs automatically
• Utilizes a MIB that can be stored internally or

externally on EEPROM
• Includes PC-based Microchip customized MIB

script compiler

Author: Amit Shirbhate
Microchip Technology Inc.

Note: The Microchip SNMP Agent does not contain built-in TCP/UDP statistic counters. The number of TCP/UDP
packets transmitted/received by the node is generally maintained for applications running on switches, routers
or where the packet count is crucial to the node application. The user application, if required, should
implement the packet counter mechanism and also define and manage the corresponding changes to the
application MIB file.
© 2009 Microchip Technology Inc. DS00870B-page 1

AN870

This document describes the SNMP protocol to explain
the implementation and design of the SNMP Agent. For
more information about the SNMP protocol, refer to:

• RFC 3416 and related documents
• TCPIP Stack Help.chm file (Microchip

Solutions\Microchip\Help), which comes with the
Microchip TCP/IP Stack

The latest Microchip TCP/IP Stack (in installer format)
can be downloaded from (www.microchip.com/tcpip).

The TCP/IP Stack and the accompanying software
tools, particularly the MPFS2 Microchip File System
Generator and mib2bib Microchip MIB script compiler
utility, are required utilities for the Microchip SNMP
Agent.

SNMP PROTOCOL OVERVIEW
SNMP is an application layer communication protocol
that defines a client-server relationship. Its relationship
to the TCP/IP Protocol Stack is shown in Figure 1.

SNMP describes a standard method to access variables
residing in a remote device. It also specifies the format
in which this data must be transferred and interpreted.
Once a device is SNMP-enabled, any SNMP compatible
host system SNMP Manager/Client can monitor and
control that device. The SNMP Manager uses the UDP
Port Number 161 to send requests to the agent. The
agent uses the UDP Port Number 162 to send Trap(s)
or notification events to the manager. The manager can
request data from the agent or set variable values in the
agent. The agent can respond and report events.

The SNMP collects Network Management Station
(NMS) information in two ways:

• The agents on the network are polled by NMS
software.

• Agents send alerts to the SNMP Managers. The
alert can be sent to all the SNMP Managers in the
community.

FIGURE 1: LOCATION OF SNMP IN THE TCP/IP PROTOCOL STACK

FIGURE 2: OVERVIEW OF THE SNMP MODEL

DHCP SNMP HTTP FTP

UDP TCP

IP ICMP

PPP SLIP ARP

Modem USART Ethernet

Application Layer

Transport Layer

Internet Layer

Network Access

Physical Layer

Embedded Device

Network Device

Memory for

Network Monitored Device

Management
Protocol (SNMP)

Managed Nodes (SNMP Agent) Management
Information
Base (MIB)

Network
Management
Station (NMS)

SNMP
Manager

Network
SNMP over

(NMS)

MIB and Other
Web Pages

Memory for
MIB and Other
Web PAGES

Memory for
MIB and Other
Web Pages
DS00870B-page 2 © 2009 Microchip Technology Inc.

www.microchip.com/tcpip
www.microchip.com/tcpip

AN870
SNMP TERMINOLOGY
This application note frequently uses terminology
described by the SNMP specification, which we will
briefly review here. Figure 2 shows how the associated
terminology applies to the typical SNMP model. The
SNMP Agent is also referred to as SNMP server and
the SNMP Client is also referred to as SNMP Manager.

Network Management Station (NMS)
The NMS is one side of the SNMP Client-Server setup;
the other side is the SNMP Agent. Because our focus
in this document is on the agent, we will only discuss
NMS here briefly.

Typically, the NMS is a personal computer running
special or customized software that monitors and con-
trols managed devices; it could be any other embedded
device too. NMS acts as an SNMP Client, periodically
polling an SNMP Agent for data.

Once a device is SNMP enabled, any commercial or
customized NMS software can be used to monitor the
device. NMS can be used to monitor the collection of
similar or dissimilar devices. Many of the commercially
available PC-based NMS systems provide a graphical
representation of managed devices. Also, the addition
of devices to a network does not require change in
NMS software. Uploading the new device’s ASN.1 MIB
file to the NMS software provides the option to manage
the device. All of these features give SNMP the
functionality that makes it a popular choice for network
as well as device management. There are several
SNMP NMS Manager/Client or MIB browser software
vendors, for instance, SNMPc Manager from
CastleRock Computing, LoriotPro from LUTEUS,
iReasoning MIB browser and Trap Receiver and so on.

Managed Node (SNMP Agent)
A Managed Node (or SNMP Agent, as it is very often
called) is the device that is being managed by NMS. The
SNMP Agent is the software running on the Managed
Node or the network elements, such as a microcontroller
on an embedded device, switches, routers and so on.
The SNMP Agent implements the server portion of the
SNMP protocol, acting as the agent between the device
application and the NMS software. The relationship is
not necessarily one-to-one, as a single agent can simul-
taneously serve data to several Network Management
Stations. The agent waits for NMS requests and
responds with the appropriate information.

Management Information Base (MIB)
Each SNMP Agent stores its own special collection of
variables, called the Management Information Base
(MIB). To organize the MIB, SNMP defines a schema,
known as the Structure of Management Information
(SMI).

Figure 3 shows a generic SMI. The MIB is structured in
a tree-like fashion, with one root at the top of the tree
and one or more children below the root. Each child
may contain one or more children of its own, thus cre-
ating an entire tree. The bottom-most nodes that do not
have any children are called leaf nodes. These nodes
contain the actual data.

SNMP and other RFC documents for the Internet
define several MIBs. Figure 4 shows a subtree of the
actual MIB for the Internet. Subtrees, such as “system”,
“udp” and “tcp”, are standard MIBs that are defined by
specific RFC documents. These and other standard
MIBs should not be modified if the SNMP Agent needs
to be compatible with other NMS software.

A special subtree, called “enterprise”, is defined for
private enterprises. Any SNMP Agent device manufac-
turer may obtain its own Private Enterprise Number
(PEN) from Internet Assigned Number Authority
(IANA). Once assigned a PEN, the manufacturer may
add or remove any number of subtrees beneath it, as
required. Applications can be made at the web site:
http://pen.iana.org/pen/PenApplication.page.
© 2009 Microchip Technology Inc. DS00870B-page 3

http://pen.iana.org/pen/PenApplication.page

AN870

FIGURE 3: GENERIC STRUCTURE OF MANAGEMENT INFORMATION (SMI)

FIGURE 4: EXAMPLE OF AN ACTUAL SMI (PARTIAL INTERNET SUBTREE)

Variable1

Variable2 Variable3 Variable4

Variable6 Variable7

Variable5

Root

Object Identifier

Leaf

internet(1)

directory(1) private(4)experimental(3)

root

iso(1)

system(1) tcp(6) ...

mib(1)

mgmt(2)

enterprises(1)

...

1.3.6.1.2.1

org(3)

dod(6)

1.3.6.1
OID of this Node:

OID of this Node:
DS00870B-page 4 © 2009 Microchip Technology Inc.

AN870

Object Identifier (OID)
Each node in the MIB tree is identified by a sequence
of decimal numbers, called Object Identifier (OID). A
specific node is uniquely referenced by its own OID and
that of its parents’ OIDs. Such an OID is written in
“dotted decimal” notation, similar to those used by IP
addresses but not limited to four levels. For example,
the OID for the system node in Figure 4 is written as
‘1.3.6.1.2.1.1’. For the convenience of readers, an OID
is frequently written with each node name and its OID
in parenthesis. Using this convention, the OID for
the system node can be rewritten as:
iso(1).org(3).dod(6).
internet(1).mgmt(2).mib(1).system(1).

By virtue of OID assignments, the first number is always
either ‘1’ or ‘2’, and the second number is less than 40.
The first two numbers, ‘a’ and ‘b’, are encoded as one
byte, having the value 40a + b. For the Internet, this
number is 43. As a result, the system OID is transmitted
as ‘43.6.1.2.1.1’, not ‘1.3.6.1.2.1.1’.

SNMP Security
In SNMP, security is administered in two ways:

• Through community-based access architecture
• By sending a Trap if a predefined event occurs

There are different types of configuration parameters to
be configured to an agent depending on the kind of
security required:

1. A firewall should be used to protect the SNMP
Agent from the Internet.

2. Authentication failure Traps are sent to the
Manager NMS.

3. Only requests from the SNMP community group
members should be responded to.

4. Accept request/information PDU from the host
belonging to a list of IP addresses. This is an
application-specific implementation.

SNMP Community
Pairing of the SNMP Agent with some arbitrary set of
SNMP application entities is called an SNMP community.
An SNMP community is a group to which an agent and
the NMS belongs. Each SNMP community is named by
a string of octets, which is known as ‘community name’
for the particular community. The community name is
used to identify the group.

An SNMP Agent can be a member of more than one
SNMP community. An agent does not respond to the
request from management stations which do not
belong to one of its communities. The pairing of SNMP
Access mode with the SNMP MIB view is called an
SNMP community profile. A shared printer in a LAN
can be used as an example to understand the SNMP
V2c community concept. Every user in the LAN has
access to some of the limited variables of the printer,
such as the printer_name, location, uptime,
contact and so on. These are standard MIB2 system
variables.

These variables provide general printer information to
users (SNMP Clients). These variables are the
members of the ‘public’ community of the printer, and
every user in LAN is also a default member of the
‘public’ community.

Some of the MIB variables of the printer, like queuing
priorities, order print job, suspend, printing formats
and so on, can be accessed by limited users. These
types of variables are known as private variables. The
private variables are members of the ‘private’ commu-
nity and can be accessed only by a member of the
same ‘private’ community. These variables will be
located as child to ‘enterprise’ node, identified by PEN
as OID in the MIB.

Note: The Microchip SNMP MIB script,
discussed later in this document, requires
that all SNMP OIDs start with ‘43’.
© 2009 Microchip Technology Inc. DS00870B-page 5

AN870

SNMP PROTOCOL DATA UNIT
(SNMP PDU)
Data packets exchanged between two SNMP nodes
are called Protocol Data Units (PDUs). SNMP V1 and
V2c define six main types of data packets, which are
exchanged between the SNMP Agent and Client.

• Get_Request – Get one or more variables’
information from the agent (manager to agent).

• Get_Next_Request – Get next variable informa-
tion in the MIB after one or more variables are
specified in the request (manager to agent).

• Get_Bulk_Request – Get bulk operation is
normally used to retrieve a large amount of data,
particularly from large data tables residing in agent
memory (manager to agent).

• Set_Request – Set is to configure one or more
variables in the agent (manager to agent).

• Get_Response – Return variable information for
the requested OID (agent to manager).

• Trap – Notification from the agent to the manager
of a predefined event occurrence (agent to
manager).

All Get and Set PDUs share a common message
format; the format for Trap PDUs is somewhat
different.

The two formats are compared in Figure 5.

FIGURE 5: PDU FORMATS FOR Get/Set AND Trap PACKETS

Note: Users of the Microchip SNMP Agent do not need to know the details of the PDU format or its encoding;
the SNMP Agent module automatically handles all of the low-level protocol details, including the
encoding and decoding of data variables. For more information on the individual PDU fields, refer to
RFC 1157 and RFC 3416.

Version

Community

PDU Type

Request ID

Error Status

Error Index

name1

value1

Get and Set PDU Format

Trap PDU Format

SNMP Header Get/Set Header Variables

namen

valuen
• • •

• • •

name1

value1

namen

valuen
• • •

• • •
Enterprise

Agent Address

Trap Type

Code
Time-Stamp

Trap Header Variables
DS00870B-page 6 © 2009 Microchip Technology Inc.

AN870

SNMP PDU TYPES
It is mandatory for all SNMP Agents to be able to gener-
ate Get_Response and Trap PDUs, and to receive
and process Get_Request, Get_Next_Request,
Get_Bulk_Request and Set_Request PDUs.

Get_Request

• (PDU Type = 0x00)

This PDU is generated and transmitted as a
request to get information or value of the
requested OID.

Upon receipt of the Get_Request PDU, the
receiving entity (the agent) processes each vari-
able binding in the variable binding list to produce
a Get_Response PDU. The response PDU has
the same values as the corresponding fields of the
received request, except in cases stated below:

- If the requested OID is found in the MIB data-
base, and the request is authenticated for the
access privileges, the value field is set to the
value of the requested variable. Access
privileges refer to community name and the
read/ write access to the variable.

- If the requested variable binding name does
not have an OID prefix that exactly matches
the OID prefix of any potential variable
accessible by this request, then the value
field is set to noSuchObject.

- Otherwise, the value field is set to
noSuchInstance, and the error-status and
the error-index fields would be
correspondingly set.

Get_Next_Request

• (PDU Type = 0x01)

This PDU is generated and transmitted as a
request to get information or the value of the lexi-
cographical successor of the requested OID. Upon
receipt of this request PDU, the receiving entity
(the agent) processes each variable binding in the
variable binding list to produce a Get_Response
PDU. The response PDU has the same values as
the corresponding fields of the received request,
except in cases stated below:

- The variable is located, which is in the lexico-
graphically (in alphabetical order) ordered list
of the names of all variables accessible by
this request, and whose name is the first
lexicographical successor of the variable
binding’s name in the incoming
Get_Next_Request PDU. The correspond-
ing variable binding’s name and value fields
in the response PDU are set to the name and
value of the located variable.

- If there is no lexicographical successor to the
OID in the requested PDU, the value field in
the response PDU is set to endOfMibView
and the name field is set to the requested OID.

- Otherwise, the error-status field and the
error-index would be correspondingly set.

Get_Bulk_Request

• (PDU Type = 0x05)

Get_Bulk_Request PDU is to request and
transfer a large amount of information from the
agent to the client (NMS) within the single PDU
(particularly data from large tables). This will signif-
icantly reduce the PDU network traffic. Upon
receipt of this request PDU, the receiving entity
(the agent) processes each variable binding in the
variable binding list to produce a Get_Response
PDU, with the same request ID field.

Get_Bulk_Request is made by giving an OID
list along with a Max-Repetitions value and
Non-Repeater value.

The Get_Bulk operation is a continuous
Get_Next operation depending on the
Max-Repetitions value. The Non-Repeater
value determines the number of the first ‘N’ vari-
ables in the variable list of the request PDU for
which a simple Get operation must be performed.

The Get_Bulk operation is a result of a combi-
nation of Get operations for the first ‘N’
(Non-Repeater) variables in the request PDU
and Get_Next continuous operation for each of
the remaining ‘R’ variables in the variable list. The
Get_Next operation must be repeated for ‘M’
(Max-Repetitions) number of times for each of
the ‘R’ variables.

Set_Request

• (PDU Type = 0x03)

Set_Request PDU is generated and transmitted
from an SNMP Client or the management station.
The PDU contains the variable and the
corresponding value to be set to the variable in the
agent. The Set_Request will be processed at the
agent if it is originated from the source, which is
part of the group/community an agent belongs to.
Otherwise, the agent can generate an
AuthenticationFailure Trap, if configured so.
The variable to be set has to be of the read/write type.

Depending upon the data type, variable type and
access mode, the agent can generate the
notWritable, wrongType, wrongLength,
wrongEncoding, wrongValue, noCreation,
inconsistentName, inconsistentValue, resource-
Unavailable, genErr, NoError, commitFailed and
undoFailed errors in the response PDU.
© 2009 Microchip Technology Inc. DS00870B-page 7

AN870

Trap PDU
• (PDU Type = 0x04)

A Trap PDU is generated and transmitted by an
agent if an exception occurs. The exception has to
be defined with the agent and the Trap destination
IPs to be configured with. There are different types
of Trap(s):

- ColdStart Trap (Type = 0): If the agent is
reinitializing itself with either the agent’s con-
figuration or the protocol entity implementation
is altered.

- WarmStart Trap (Type = 1): If the agent is
reinitializing itself with neither the agent’s
configuration, nor the protocol entity, the
implementation is altered.

- LinkDown Trap (Type = 2): If one of the
communication links of the agent fails, the
Trap PDU will have the name and the
instance of the interface instance that failed.

- LinkUp Trap (Type = 3): Indicates that one
of the communication links of the agent has
come up.

- AuthenticationFailure Trap (Type = 4):
Signifies that an unauthenticated request has
come for private variable access from a non-
member of the community. This Trap adds
the security to the agent. In this case, the
agent can be configured to hibernate to
protect from any unauthorized access or
snooping.

- EgpNeighborLoss Trap (Type = 5): Signifies
that an Exterior Gateway Protocol (EGP) neigh-
bor, with whom the agent had an EGP link, is
no longer in the link and the peer relationship is
no longer obtained.

- EnterpriseSpecific Trap (Type = 6):
Signifies that the sending agent has
encountered an enterprise-specific event.
The Trap field will have the code of the event
that occurred.

Get_Response

• (PDU Type = 0x02)

The response PDU is generated by the SNMP
Agent once it receives a Get_Request,
Get_Next_Request, Get_Bulk_Request or
Set_Request PDU.

If the error status field of the response PDU is not
zero, the value fields of the variable bindings in the
variable bindings list are ignored on the manager’s
side.

If the error-status and error-index fields are both
non-zero, then the error-index value is the index
of the variable in the variable binding for which the
request processing failed. The SNMP
Manager/Client NMS should be able to properly
handle errors, such as noSuchName, badValue,
readOnly, etc.
DS00870B-page 8 © 2009 Microchip Technology Inc.

AN870

SNMP PDU PROCESSING
The actual SNMP Agent is implemented by several
files working together with the Microchip TCP/IP Stack.
The SNMP Agent and the corresponding APIs are
implemented in SNMP.c and CustomSNMPApp.c.
Apart from this, a few callback functions must also be
implemented to provide communication among the
SNMP module, the host application and the rest of the
TCP/IP Stack.

The SNMP Application Program Interfaces (APIs) are
well-defined methods for communicating between
applications and the SNMP Agent, and are also
designed to make application design easier for the
user. Example 1 illustrates the PDU processing by the
agent. This pseudocode enables the users to under-
stand the execution flow at the Microchip SNMP Agent
for the received request PDUs from the manager/client.

EXAMPLE 1: SNMP PDU PROCESSING FLOW – PSEUDOCODE
main()
{

while(1)
StackApplications();

}

StackApplications()
{

#if defined(STACK_USE_SNMP_SERVER)
SNMPTask();

#endif
}

SNMPTask()

{
//Read the request PDU and populate the PDU Info Data Base
ProcessHeader(&pduInfoDB,community, &communityLen)
{
 // This function populates response as it processes community string.

IsValidCommunity(community, len);

 // Fetch and validate PDU type.
 IsValidPDU(&pdu);

 // Ask main application to verify community name against requested PDU type.
 SNMPValidateCommunity(community);
}

}

© 2009 Microchip Technology Inc. DS00870B-page 9

AN870
EXAMPLE 1: SNMP PDU PROCESSING FLOW – PSEUDOCODE (CONTINUED)
//Process each of the variables in varbind list
ProcessVariables(&pduInfoDB,community, communityLen);
{

while(1)
{

switch(StateMachineState)
{
// Before each variables are processed, prepare necessary header.
case SM_PKT_STRUCT_LEN_OFFSET:
case SM_RESPONSE_PDU_LEN_OFFSET:
case SM_ERROR_STATUS_OFFSET :
case SM_ERROR_INDEX_OFFSET :
case SM_FIND_NO_OF_REQUESTED_VARBINDS:

//Find number of OIDs/varbinds's data requested in received PDU.
FindOIDsInRequest(varBindingLen.Val);

case SM_FIND_NO_OF_RESPONSE_VARBINDS:
//Calulate number of variables to be responded for the received request
//Refer RFC 3416
noOfVarToBeInResponse = Getbulk_N + (Getbulk_M * Getbulk_R);

case SM_VARBIND_STRUCT_OFFSET:
case SM_VARSTRUCT_LEN_OFFSET:
case SM_POPULATE_REQ_OID:

//Populate received pdu for the requested OIDs.
IsValidOID(OIDValue, &OIDLen);
//Verify if trying to access the private object
if(SNMPCheckIfPvtMibObjRequested(OIDValue))

if(SNMPValidateCommunity(rxedCommunityName)==READ_COMMUNITY ||
WRITE_COMMUNITY

case SM_FIND_OID_IN_MIB:
//Search for the requested OID in the MIB database with the agent.
OIDLookup(pduDbPtr,OIDValue, OIDLen, &OIDInfo);
if(oidLookUpRet != TRUE)

//Set the error index and error code accrodingly
else

//proceed to next state in the statte machine
case SM_NON_REPETITIONS:

/*Variables in get,get_next,set and get_bulk request(non-repetition
variables)are processed in this part of the state machine.*/
if(pduType == SNMP_SET)

ProcessSetVar(pduDbPtr,&OIDInfo, &errorStatus);
else if(pduType == SNMP_GET || pduType == SNMP_V2C_GET_BULK)

ProcessGetVar(&OIDInfo,FALSE);
else if(pduDbPtr->pduType == SNMP_GET_NEXT)

ProcessGetNextVar(&OIDInfo);
/*If the request command processing is failed, update the error status,
error index accordingly and response pdu.*/

case SM_MAX_REPETITIONS:
/*Process each variable in request as Get_Next for Getbulk_M
(Max_repetition) times */
for(repeatCntr=0;repeatCntr<Getbulk_M;repeatCntr++)
{

//Process every veriable in the request.
for(varBindCntr=0;varBindCntr<Getbulk_R;varBindCntr++)
{

OIDLookup(pduDbPtr,OIDValue, OIDLen, &OIDInfo))
ProcessGetBulkVar(&OIDInfo, &OIDValue[0],&OIDLen,&successor);

}
 }

 }
}

}
DS00870B-page 10 © 2009 Microchip Technology Inc.

AN870

ABSTRACT SYNTAX NOTATION
(ASN) LANGUAGE
Each MIB variable contains several attributes, such as
data type, access type and Object Identifier. SNMP
uses a special language, called Abstract Syntax
Notation Version 1 (ASN.1), to describe details about
variables. ASN.1 is also used to describe SNMP and
other protocol data exchange formats. ASN.1 is written
as a text file and compiled using an ASN syntax com-
piler. Most of the NMS and SNMP Agent software is

designed to read ASN files and build MIBs accordingly.
An example of a variable description in ASN.1 syntax is
shown in Example 2.
There are commercially available ASN.1MIB builders
that allow users to build ASN.1 MIBs graphically with-
out the need to learn ASN syntax first. The Microchip
SNMP Agent uses its own special script to describe its
agent OIDs, as well as its own script compiler to create
compact binary representations of the MIB. The cus-
tom script also allows the assignment of constant data
to OIDs. The Microchip MIB script and its compiler are
described in greater detail, starting on page 14.
Example 2 provides the Microchip demo ASN.1 MIB file.

EXAMPLE 2: MICROCHIP SNMP ASN.1 MIB FILE
Microchip DEFINITIONS ::= BEGIN

IMPORTS
 enterprises, IpAddress, Gauge, TimeTicks FROM RFC1155-SMI
 DisplayString FROM RFC1213-MIB
 OBJECT-TYPE FROM RFC-1212
 TRAP-TYPE FROM RFC-1215;

microchip OBJECT IDENTIFIER ::= { enterprises 17095 }

product OBJECT IDENTIFIER ::= { microchip 1 }
setup OBJECT IDENTIFIER ::= { microchip 2 }
control OBJECT IDENTIFIER ::= { microchip 3 }

 ON-OFF ::= INTEGER { ON(1), OFF(0) }

name OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Name of product. e.g. PICDEM.net etc."
 ::= { product 1 }

version OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Version string. e.g. 1.0"
 ::= { product 2 }

date OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Date of version"
 ::= { product 3 }

ledD5 OBJECT-TYPE
 SYNTAX INTEGER { OFF(0), ON(1) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "D5 LED connected LATA2"
 ::= { control 1 }

ledD6 OBJECT-TYPE
 SYNTAX INTEGER { OFF(0), ON(1) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "D6 LED connected to LATA3"
 ::= { control 2 }
© 2009 Microchip Technology Inc. DS00870B-page 11

AN870

EXAMPLE 2: MICROCHIP SNMP ASN.1 MIB FILE (CONTINUED)
pushButton OBJECT-TYPE
 SYNTAX INTEGER { OPEN(1), CLOSED(0) }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "8-bit A/D value"
 ::= { control 3 }

analogPot0 OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "10-bit A/D value"
 ::= { control 4 }

analogPot1 OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "10-bit A/D value"
 ::= { control 5 }

lcdDisplay OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..15))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Second line of LCD on PICDEM.net board"
 ::= { control 6 }

traps OBJECT-TYPE
 SYNTAX SEQUENCE OF TrapEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Trap table"
 ::= { setup 1 }
trapEntry OBJECT-TYPE
 SYNTAX TrapEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Single trap entry containing trap receiver info."
 INDEX { trapReceiverNumber }
 ::= { traps 1 }
DS00870B-page 12 © 2009 Microchip Technology Inc.

AN870

EXAMPLE 2: MICROCHIP SNMP ASN.1 MIB FILE (CONTINUED)
trapEntry ::=
 SEQUENCE {
 trapReceiverNumber
 INTEGER,
 trapEnabled
 INTEGER,
 trapReceiverIPAddress
 IpAddress,
 trapCommunity
 DisplayString
 }
trapReceiverNumber OBJECT-TYPE
 SYNTAX INTEGER (0.. 4)
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Index of trap receiver"
 ::= { trapEntry 1 }

trapEnabled OBJECT-TYPE
 SYNTAX INTEGER { Yes(1), No(0) }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Indicates if this trap entry is enabled or not."
 ::= { trapEntry 2 }

trapReceiverIPAddress OBJECT-TYPE
 SYNTAX IpAddress
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Trap receiver IP address"
 ::= { trapEntry 3 }

trapCommunity OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..7))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Trap community to be used by agent to send trap"
 ::= { trapEntry 4 }

END
© 2009 Microchip Technology Inc. DS00870B-page 13

AN870

Binary Encoding Rules (BER)
SNMP uses ASN.1 syntax to describe its packet and
variable contents. ASN is an abstract syntax; that is, it
does not specify how the actual data is encoded and
transmitted between two nodes. A special set of rules,
called Binary Encoding Rules (BER), is used to encode
what is described by the ASN.1 syntax. BER is
self-contained and platform independent. Each data
item encoded with BER contains its data type, data
length and its actual value; this is in contrast to regular
data, where only the data content is given.

A data variable encoded by BER consists of a tag byte,
one or more length bytes and one or more value bytes.
The tag byte describes the data type associated with
the current data variable. The length byte(s) gives the
number of bytes used to describe the data content. The
value bytes are the actual data content. Figure 6 shows
the breakdown of typical BER values and an example
of encoding.

It is not necessary for users to learn the encoding rules.
The SNMP Agent automatically handles encoding and
decoding of all supported data types.

FIGURE 6: GENERIC BER FORMAT
(TOP) AND AN EXAMPLE OF
BER ENCODING (BOTTOM)

DESCRIBING THE MIB WITH
MICROCHIP MIB SCRIPT
Microchip’s SNMP Agent uses a custom script to
describe the MIB. This script is designed to simplify the
MIB definition and its integration with the main applica-
tion. The actual MIB used by the SNMP Agent is a
binary image created by the Microchip mib2bib (MIB to
BIB) compiler (page 23).

Microchip MIB Script Commands
A Microchip MIB file is an ASCII text file consisting of
multiple command lines. Each command line consists of
a single command, starting with the dollar sign character
(“$”), and one or more command parameters delimited
with commas and enclosed in parentheses. Lines that do
not start with a dollar sign are interpreted as comments
and are not processed by the compiler. Commands must
be written in a single line; they cannot span multiple lines.

The MIB script language includes a total of five
commands, each having a specific syntax. Only one
command, DeclareVar, is mandatory; the others are
optional depending on the application and the types of
information to be defined. In practice, at least one other
command will be used in defining an MIB. The syntax of
the script commands is explained on page 14
through 26.

Example 3 shows a Microchip MIB file. In this example,
seven separate items are being defined. In the script,
“Microchip MIB Compiler (mib2bib)”, a read-only node
is being established at the OID of 43.6.1.2.1.1.5; it con-
tains the identifier string, “PICDEM.net 2”, as static
information.

In the fourth section of the Microchip MIB script,
“microchip.control”, a node with dynamic LED5
status information is being established at the OID of
43.6.1.4.1.1.17095.3.1. The variable, called “LED_D5”,
is assigned an identifier of 1.

In section, “microchip.setup”, a two-column,
four-row data array is being created with the following
variables:

• TRAP_RECEIVER_ID
• TRAP_RECEIVER_ENABLED
• TRAP_RECEIVER_IP

• TRAP_COMMUNITY

Example 3 provides the Microchip script demo, SNMP
MIB file.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1

Number Length ValueTag

2 1 5 8 to 8n 0 to n # of bits

Encoding the Integer Value ‘49’ (0x31):

Tag Byte Length Byte(s) Value Byte(s)

Note: • Both the ASN.1 MIB file and the Microchip
MIB script use the same .mib file exten-
sion, but the files have distinctly different
purposes. The ASN.1 MIB file is used by
the MIB browser (NMS) to properly display
context for your application.

 • The Microchip MIB script is compiled
using mib2bib to create a BIB file. The BIB
file is later converted using MPFS2 to
store the MIB data for your application in
internal Flash or EEPROM.
DS00870B-page 14 © 2009 Microchip Technology Inc.

AN870

DeclareVar

This command declares a single variable and all of its mandatory attributes.

Status
Mandatory

Syntax
$DeclareVar(oidName, dataType, oidType, accessType, oidString)

Parameters
oidName

Name of this OID variable. This name must be unique and must follow the ANSI ‘C’ naming convention, i.e., it must not
start with a number and must not contain special characters (‘&’, ‘+’, etc.). If this variable is declared to be dynamic, the
MIB compiler will define a ‘C’ define symbol using the variable name in the mib.h header file. The main application
includes this header file and refers to this OID using oidName.
dataType

Data type of this OID variable; valid keywords are:

oidType

OID variable type. Valid keywords are:

AccessType

OID access type: Valid keywords are:

oidString

Full “dotted decimal” string describing this variable. If this OID is part of the Internet MIB subtree, the first two OIDs,
iso(1).org(3), must be written as decimal ‘43’ (i.e., system OID will be written as ‘43.6.1.2.1.1’).
The OID string for all OID variables must contain the same root (i.e., if the first OID variable is declared with 43 as a root
node, all following variables must also contain 43 as a root node).

Keyword Description

BYTE 8-bit data.
WORD 16-bit (2-byte) data.
DWORD 32-bit (4-byte) data.
IP_ADDRESS 4-byte IP address data.
COUNTER32 4-byte COUNTER32 data as defined by the SNMP specification.
GAUGE32 4-byte GAUGE32 data as defined by the SNMP specification.
OCTET_STRING Up to 127 bytes of binary data bytes.
ASCII_STRING Up to 127 bytes of ASCII data string.
OID Up to 127 bytes of dotted decimal OID string value. If any of the individual OID values are

greater than 127, the total number of allowable OID bytes will be less than 127.

Keyword Description

SINGLE If this variable contains a single value.
SEQUENCE If this variable contains an array of values. All variables with an oidType of SEQUENCE

must be assigned an “index” OID variable using the SequenceVar command.

Keyword Description

READONLY If this variable can only be read.
READWRITE If this variable can be read and written.
© 2009 Microchip Technology Inc. DS00870B-page 15

AN870

Result
If compiled successfully, this command will create a new OID variable. This variable can be used as an OID parameter
in other commands, such as StaticVar, DynamicVar or SequenceVar.

Precondition
None

Examples
This command declares an OID variable, named “sysName”, as defined in the standard MIB subtree system:
$DeclareVar(sysName, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.5)

This command declares an OID variable of type, BYTE:
$DeclareVar(LED_D5, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
DS00870B-page 16 © 2009 Microchip Technology Inc.

AN870

StaticVar

This command declares a previously defined OID variable as static (i.e., OID containing constant data) and assigns
constant data to it.

Status
Optional; required only if the application needs to define static OID variables.

Syntax
$StaticVar(oidName, data, …)

Parameters
oidName

Name of OID variable that is being declared as a static. This oidName must have been declared by a previous
DeclareVar command.

data

Actual constant data for oidName. This data will be interpreted using the data type defined in the DeclareVar
command:

Result
If compiled successfully, this command will declare the given oidName as a static OID. A static OID contains constant
data that is stored in the BIB. Static OIDs are automatically managed by the SNMP Agent module; the application need
not implement callback logic to provide data for this OID variable.

Precondition
The given oidName must have been declared using the previous DeclareVar command.

Examples

This command declares an OID variable, named “sysName”, as defined in the standard MIB subtree system:
$StaticVar(sysName, PICDEM.net running Microchip SNMP Agent)

These commands declare an OID variable, named “sysID”:
$DeclareVar(sysID, OID, SINGLE, READONLY, 43.6.1.2.1.1.2)
$StaticVar(sysID, 43.6.1.4.1.17095)

These commands declare an OID variable of a MAC type address:
$DeclareVar(macID, OCTET_STRING, SINGLE, READONLY, 44.6.1.4.1.17095.10)
$StaticVar(macID, 0, 1, 2, 3, 4, 5)

Data Type Format Requirement

BYTE, WORD, or DWORD Must be written in decimal notation.
IP_ADDRESS and OID Must be written in appropriate dotted decimal notation for data type.
ASCII_STRING Must be free form ASCII string with no quotes. Commas, parentheses and

backslashes must be preceded by the backslash (“\”) as an escape character.
OCTET_STRING Must be written in multiple individual bytes separated by commas.
© 2009 Microchip Technology Inc. DS00870B-page 17

AN870

DynamicVar

This command declares a previously defined OID variable as dynamic. A dynamic OID variable is managed by the main
application. The main application is responsible for providing or updating the value associated with this variable.

Status
Optional; required only if the application requires dynamic OID variables.

Syntax
$DynamicVar(oidName, id)

Parameters
oidName

Name of OID variable that is being declared as dynamic. It must have been declared by a previous DeclareVar
command.

id

Any 8-bit identifier value, from 0 to 255. It must be unique among all dynamic OID variables. The main application uses
this value to refer to the actual OID string defined by oidName.

Result
If compiled successfully, this command will declare the given oidName as a dynamic variable. An entry will be created
in the mib.h header file of the form:
#define oidName id
An application can refer to this dynamic OID by including the mib.h header in the source file that needs to refer to this
OID.

Precondition
The given oidName must have been declared using the previous DeclareVar command.

Example
These commands declare an OID variable, named LED_D5, as a dynamic variable:
$DeclareVar(LED_D5, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
$DynamicVar(LED_D5, 5)

Note: An OID variable of data type OID cannot be declared as dynamic.
DS00870B-page 18 © 2009 Microchip Technology Inc.

AN870

SequenceVar

This command declares a previously defined OID variable as a sequence variable and assigns an index to it. A
sequence variable can contain an array of values and any instance of its values can be referenced by an index. More
than one sequence variable may share a single index, creating multi-dimensional arrays. The current version limits the
size of the index to 7 bits wide, meaning that such arrays can contain up to 127 entries.

Status
Optional; required only if the application needs to define sequence variables.

Syntax
$SequenceVar(oidName, indexName)

Parameters
oidName

Name of OID variable that is being declared as a sequence. This oidName must have been declared by a previous
DeclareVar command with an oidType of SEQUENCE.

indexName

Name of OID variable that will form an index to this sequence. It must have been declared by a previous DeclareVar
command with a dataType of BYTE.

Result
If compiled successfully, this command will declare the given oidName as a dynamic variable.

Precondition
A given oidName must have been declared using a previous DeclareVar command with an oidType of SEQUENCE.

Example
These commands declare a Trap table, called TRAP_RECEIVER, consisting of four columns:

• TRAP_RECEIVER_ID
• TRAP_ENABLED
• TRAP_RECEIVER_IP

• TRAP_COMMUNITY

Any row in this table can be accessed using TRAP_RECEIVER_ID as an index.

$DeclareVar(TRAP_RECEIVER_ID, BYTE, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.1)
$DynamicVar(TRAP_RECEIVER_ID, 1)
$SequenceVar(TRAP_RECEIVER_ID, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_RECEIVER_ENABLED, BYTE, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.2)
$DynamicVar(TRAP_RECEIVER_ENABLED, 2)
$SequenceVar(TRAP_RECEIVER_ENABLED, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_RECEIVER_IP, IP_ADDRESS, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.3)
$DynamicVar(TRAP_RECEIVER_IP, 3)
$SequenceVar(TRAP_RECEIVER_IP, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_COMMUNITY, ASCII_STRING, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.4)
$DynamicVar(TRAP_COMMUNITY, 4)
$SequenceVar(TRAP_COMMUNITY, TRAP_RECEIVER_ID)

Note: The dataType of indexName must be BYTE. All sequence variables must also be declared as dynamic.
© 2009 Microchip Technology Inc. DS00870B-page 19

AN870

AgentID

This command assigns a previously declared OID variable of type OID as an Agent ID for this SMNP Agent. The OID
variable defined to be an Agent ID must be supplied in the SNMPNotify function to generate a Trap.

Status
Optional; required only if application needs to generate Trap(s).

Syntax
$AgentID(oidName, id)

Parameters
oidName

Name of OID variable that is being declared as a sequence. This oidName must have been declared by a previous
DeclareVar command with an oidType of OID.

id

An 8-bit identifier value to identify this Agent ID variable.

Result
If compiled successfully, this command will declare the given oidName as a dynamic variable.

Precondition
The given oidName must have been declared using a previous DeclareVar command with an oidType of OID. It
must also have been declared static using a previous StaticVar command.

Example
The following command sequence declares the Agent ID for this SNMP Agent:

$DeclareVar(MICROCHIP, OID, SINGLE, READONLY, 43.6.1.2.1.1.2)
$StaticVar(MICROCHIP, 43.6.1.4.1.17095)

$AgentID(MICROCHIP, 255)

Note: The data type of oidName must be OID; oidName must be declared static.
DS00870B-page 20 © 2009 Microchip Technology Inc.

AN870

EXAMPLE 3: MICROCHIP SNMP MIB SCRIPT
**
* MIB-2 SYSTEM MIB
**
$DeclareVar(SYS_NAME, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.5)
$StaticVar(SYS_NAME, PICDEM.net 2)

$DeclareVar(SYS_DESCR, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.1)
$StaticVar(SYS_DESCR, Microchip TCP/IP stack running SNMP Agent)

$DeclareVar(SYS_CONTACT, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.4)
$StaticVar(SYS_CONTACT, techsupport@microchip.com)

$DeclareVar(SYS_LOCATION, ASCII_STRING, SINGLE, READONLY, 43.6.1.2.1.1.6)
$StaticVar(SYS_LOCATION, Near Your Desk)

$DeclareVar(SYS_SERVICES, BYTE, SINGLE, READONLY, 43.6.1.2.1.1.7)
$StaticVar(SYS_SERVICES, 7)

$DeclareVar(SYS_UP_TIME, TIME_TICKS, SINGLE, READONLY, 43.6.1.2.1.1.3)
$DynamicVar(SYS_UP_TIME, 250)

$DeclareVar(MICROCHIP, OID, SINGLE, READONLY, 43.6.1.2.1.1.2)
$StaticVar(MICROCHIP, 43.6.1.4.1.17095)

This declaration is must if this agent is going to send traps out.
Application must pass this OID name as one of the parameter when generating
trap. Without a valid AgentID definition, SNMPNotify would fail.
$AgentID(MICROCHIP, 255)
**
* END OF MIB-2 SYSTEM MIB
**

**
* MICROCHIP - PICDEM.net MIB
**

--
- microchip.product
--
$DeclareVar(PRODUCT_NAME, ASCII_STRING, SINGLE, READONLY, 43.6.1.4.1.17095.1.1)
$StaticVar(PRODUCT_NAME, Microchip SNMP Agent)

$DeclareVar(PRODUCT_VERSION, ASCII_STRING, SINGLE, READONLY, 43.6.1.4.1.17095.1.2)
$StaticVar(PRODUCT_VERSION, v1.0)

$DeclareVar(VERSION_DATE, ASCII_STRING, SINGLE, READONLY, 43.6.1.4.1.17095.1.3)
$StaticVar(VERSION_DATE, May 2003)
© 2009 Microchip Technology Inc. DS00870B-page 21

AN870

EXAMPLE 3: MICROCHIP SNMP MIB SCRIPT (CONTINUED)
--
- microchip.setup
--
TRAP RECEIVER is table with following format:
 TRAP_RECEIVER_ID is index.

 TRAP_RECEIVER_ID | TRAP_ENABLED | TRAP_RECEIVER_IP | TRAP_COMMUNITY

 0..3 | OFF(0)/ON(0) | X.X.X.X | ASCII_STRING(0..7)
 --

$DeclareVar(TRAP_RECEIVER_ID, BYTE, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.1)
$DynamicVar(TRAP_RECEIVER_ID, 1)
$SequenceVar(TRAP_RECEIVER_ID, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_RECEIVER_ENABLED, BYTE, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.2)
$DynamicVar(TRAP_RECEIVER_ENABLED, 2)
$SequenceVar(TRAP_RECEIVER_ENABLED, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_RECEIVER_IP, IP_ADDRESS, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.3)
$DynamicVar(TRAP_RECEIVER_IP, 3)
$SequenceVar(TRAP_RECEIVER_IP, TRAP_RECEIVER_ID)

$DeclareVar(TRAP_COMMUNITY, ASCII_STRING, SEQUENCE, READWRITE, 43.6.1.4.1.17095.2.1.1.4)
$DynamicVar(TRAP_COMMUNITY, 4)
$SequenceVar(TRAP_COMMUNITY, TRAP_RECEIVER_ID)

--
- microchip.control
--
microchip.control.ledD5
$DeclareVar(LED_D5, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.1)
$DynamicVar(LED_D5, 5)

microchip.control.ledD6
$DeclareVar(LED_D6, BYTE, SINGLE, READWRITE, 43.6.1.4.1.17095.3.2)
$DynamicVar(LED_D6, 6)

microchip.control.pushButton
$DeclareVar(PUSH_BUTTON, BYTE, SINGLE, READONLY, 43.6.1.4.1.17095.3.3)
$DynamicVar(PUSH_BUTTON, 7)

microchip.control.analogPot0
$DeclareVar(ANALOG_POT0, WORD, SINGLE, READONLY, 43.6.1.4.1.17095.3.4)
$DynamicVar(ANALOG_POT0, 8)

microchip.control.lcdDisplay
$DeclareVar(LCD_DISPLAY, ASCII_STRING, SINGLE, READWRITE, 43.6.1.4.1.17095.3.6)
$DynamicVar(LCD_DISPLAY, 10)

**
* END OF MICROCHIP - Demo MIB
**
DS00870B-page 22 © 2009 Microchip Technology Inc.

AN870
MICROCHIP MIB COMPILER
(mib2bib)
In addition to the source code for the SNMP Agent, the
companion file archive for this application note includes
a simple command line compiler for 32-bit versions of
the Microsoft® Windows® operating system. The
compiler, named “mib2bib” (management information
base to binary information base), converts the
Microchip MIB script into a binary format compatible
with the Microchip SNMP Agent. It accepts Microchip
MIB script in ASCII format and generates two output
files: the binary information file, snmp.bib, and the C
header file, mib.h. The binary file can be included in a
Microchip File System (MPFS2) image.

The complete command line syntax for mib2bib is:

mib2bib [/?] [/h] [/q] <MIBFile>
[/b=<OutputBIBDir>] [/I=<OutputIncDir]

where:

/? Displays command line help.

/h Displays detail help for all script commands.

/q Overwrites existing snmp.bib and mib.h files.

<MIBFile> is the input MIB script file.

<OutputBIBDir> is the output BIB directory where
snmp.bib should be copied. If a directory is not
specified, the current directory will be used.

<OutputIncDir> is the output Inc directory where
mib.h should be copied. If a directory is not specified,
the current directory will be used.

For example, the command:

mib2bib MySNMP.mib

compiles the script, MySNMP.mib, and generates the
snmp.bib and mib.h output files in the same directory.

On the contrary, the command:

mib2bib /q MySNMP.mib /b=WebPages

compiles the MySNMP.mib script file and overwrites
the existing output files. It also specifies that the
snmp.mib file is located in the subdirectory,
WebPages. Because it is not specified, mib.h is
assumed to be in the current directory.

If compilation is successful, mib2bib displays the statis-
tics on the binary file, including the number of OIDs and
the Agent ID, and the output file size. A typical display
following a successful run is shown in Example 4.

The MIB compiler is a simple rule script compiler. While
it can detect and report many types of parsing errors, it
has these known limitations:

• All command lines must be written in single line.
• All command parameters must immediately end

with either a comma (‘,’) or right parenthesis. For
example, $DeclareVar(myOID,
ASCII_STRING …), will fail because the
ASCII_STRING keyword is not immediately
followed by a comma.

• All numerical data must be written in decimal
notation.

mib2bib reports all errors with a script name, line num-
ber, error code and actual description of the error. A list
of errors, with their explanations, is provided in Table 1.

EXAMPLE 4: TYPICAL OUTPUT DISPLAY FOR A mib2bib COMPILATION
C:\Microchip Solutions\Microchip\TCPIP Stack\Utilities>mib2bib.exe snmp.mib
mib2bib v1.0.1 (Oct 14 2003)
Copyright (c) 2003 Microchip Technology Inc.

Input MIB File : C:\Microchip Solutions\Microchip\TCPIP Stack\Utilities\snmp.mib
Output BIB File: C:\Microchip Solutions\Microchip\TCPIP Stack\Utilities\snmp.bib
Output Inc File: C:\Microchip Solutions\Microchip\TCPIP Stack\Utilities\mib.h

BIB File Statistics:

 Total Static OIDs : 9
 Total Static data bytes: 57
 Total Dynamic OIDs : 10
 (mib.h entries)
 Total Read-Only OIDs : 3
 Total Read-Write OIDs : 7

 Total OIDs : 19

 Total Sequence OIDs : 4
 Total AgentIDs : 1
===
 Total MIB bytes : 224
 (snmp.bib size)
© 2009 Microchip Technology Inc. DS00870B-page 23

AN870

TABLE 1: mib2bib RUN-TIME ERROR CODES
Error Description Reason

1000 Unexpected End-Of-File (EOF) found End-Of-File was reached before the end of
command.

1001 Unexpected End-Of-Line (EOL) found End-Of-Line was reached before the end of
command.

1002 Invalid escape sequence detected; only ‘,’, ‘\’, ‘(‘, or’)’ may
follow ‘\’

All occurrences of ‘,’, ‘(‘, ’)’, ‘\’ must be preceded
by ‘\’.

1003 Unexpected empty command string received Command does not contain any parameter.
1004 Unexpected right parenthesis found Right parenthesis was found in place of a

parameter.
1005 Invalid or empty command received Command does not contain sufficient

parameters.
1006 Unexpected escape character received A ‘\’ character was detected before or after

parameters were expected.
1007 Unknown command received —
1008 Invalid parameters: expected $DeclareVar(oidName,

dataType, oidType, accessType, oidType)
—

1009 Duplicate OID name found Specified OID name is already in use.
1010 Unknown data type received Data type keyword does not match one of the

allowed keywords.
1011 Unknown OID type received OID type keyword does not match one of the

allowed keywords.
1012 Empty OID string received —
1013 Invalid parameters: expected $DynamicVar(oidName,

id)
—

1014 OID name is not defined —
1015 Invalid OID ID received – must be between 0-255 inclusive —
1016 Invalid parameters: expected $StaticVar(oidName,

value)
—

1017 Invalid parameters: expected $SequenceVar(oidName,
index)

—

1018 Current OID already contains a static value This OID has already been declared static.
1019 Invalid number of index parameters received All SequenceVar must include only one index.
1020 OID of sequence type cannot contain static data All sequence OID variables must be dynamic.
1021 This is a duplicate OID or the root of this OID is not the

same as previous OID(s), or this OID is a child of a
previously defined OID

All OID strings must contain the same root OID.

1022 Invalid index received; must be BYTE data value All sequence index OID must be of data type,
BYTE.

1023 Invalid OID access type received; must be READONLY or
READWRITE

—

1024 Current OID is already assigned an ID value Current OID is already declared as dynamic.
1025 Duplicate dynamic ID found Current OID is already declared as dynamic

with duplicate ID.
1026 No static value found for this OID Current OID was declared static, but does not

contain any data.
1027 No index value found for this OID Current OID was declared as sequence, but

does not contain any index.
DS00870B-page 24 © 2009 Microchip Technology Inc.

AN870
1028 OID data scope (dynamic/static) is not defined Current OID was declared, but was not defined
to be static or dynamic.

1029 Invalid data value found Data value for current OID does not match with
its data type.

1030 Invalid parameters: expected $AgentID(oidName, id) —
1031 Only OID data type is allowed for this command AgentID command must use OID name of OID

data type.
1032 This OID must contain static OID data AgentID command must use OID name of

static data.
1033 This OID is already declared as an Agent ID Only one AgentID command is allowed.
1034 An Agent ID is already assigned Only one AgentID command is allowed.
1035 OID with READWRITE access cannot be static An OID was declared READWRITE and made

static.
1036 OID of OID data type cannot be dynamic Current version does not support OID variable

of data type, OID.
1037 This OID is already declared as dynamic —
1038 This OID is already declared as static —
1039 This OID does not contain the Internet root. The Internet

root of ‘43’ must be used if this is an Internet MIB
All internet OIDs must start with ‘43’. This is a
warning only and will not stop script generation.

1040 The given value was truncated to fit in a specified data type An OID was declared as BYTE or WORD but the
value given in StaticVar exceeded the data
range.

1041 The given string exceeds a maximum length of 127 All OCTET_STRING and ASCII_STRING must
be less than 128.

1042 Invalid OID name detected; OID name must follow
standard ‘C’ variable naming convention

All OID names must follow ‘C’ naming
convention as these names are used to create
‘define’ statements in the mib.h file.

1043 Total number of dynamic OIDs exceeds 256 This version supports total dynamic OIDs of 256
only. All dynamic OID IDs must range from
0-255.

TABLE 1: mib2bib RUN-TIME ERROR CODES (CONTINUED)
Error Description Reason
© 2009 Microchip Technology Inc. DS00870B-page 25

AN870

BIB Format
The binary image of the MIB generated by the compiler
is an optimized form of a modified binary tree. The core
SNMP module reads this information from the MPFS2
image and uses it to respond to remote NMS requests.

A BIB image consists of one or more node or OID
records. A parent node is stored first, followed by its
left-most child. This structure is repeated until the leaf
nodes of this tree are reached. The second left-most
child of the original parent is then stored in the same
manner, and the process is repeated until the entire
tree is stored.

Each record consists of several fields defined below.
The format of a single BIB record takes the form:
<oid>, <nodeInfo>, [id], [siblingOffset],
[distantSiblingOffset], [dataType], [dataLen],
[data], [{IndexCount, <IndexNodeInfo>,
<indexDataType>}]…

Some fields, indicated by angle brackets (“< >”), are
always present; other fields in square brackets (“[]”)
are optional depending on characteristics of the current
node. The IndexCount, IndexNodeInfo and
indexDataType fields, delimited with braces (“{ }”), are
optional but always occur together. The siblingOffset
and distantSiblingOffset are 16 bits wide; all other
fields are 8 bits wide.

The oid field is the 8-bit OID value.

The nodeInfo field is an 8-bit data structure with each
bit serving as a flag for a different node feature.

The id field is the 8-bit variable ID for the node as defined
by the MIB script command, DynamicVar. This field is
only defined for leaf nodes, where bIsIDPresent = 1.
A leaf node is one that does not have any child (i.e.,
bIsParent = 0).

The siblingOffset field contains the offset (with
respect to the beginning of the BIB image) to the sibling
node immediately to its right. Here we define a sibling
as a node that shares the same parent node; a parent
is the linked node immediately above it. This is defined
only if bIsSibling is ‘1’.

The distantSiblingOffset field contains the offset to a
distant sibling. This is present only if
bIsDistantSibling is ‘1’. A distant sibling is
defined as a leaf node that shares an ancestor (more
than one level up) with another leaf node. In other
words, for any given node, either siblingOffset or
distantSiblingOffset will be defined, but not both at
once.

The dataType field specifies the data type for this node.
This is defined only for leaf nodes (bIsParent = 0). The
supported data types are provided in the following table.

The dataLen field defines the length of constant data.
It is defined only for a leaf node with bIsConstant = 1
(i.e., a static node).

The data field contains the actual data bytes. As above,
only leaf nodes with bIsConstant = 1 (static nodes)
will have this field.

The IndexCount field contains the index number for
this node. This is defined only if this node is of the
sequence type (bIsSequence = 1). Since only one
index is allowed in this version, this value (when
defined) will always be ‘1’.

The IndexNodeInfo field is an 8-bit data structure that
works like the nodeInfo field; individual bit definitions
are the same. This is defined only if this node is of the
sequence type (bIsSequence = 1).

The indexDataType field defines the data type of the
index node; it works identically to the dataType field
and uses the same definitions. This is defined only if
this node is of the sequence type (bIsSequence = 1).

Bit Name When Set (= 1)

0 bIsDistantSibling Node has distant sibling
1 bIsConstant Node has constant data
2 bIsSequence Node is a sequence
3 bIsSibling Node has a sibling
4 bIsParent Node is a parent
5 bIsEditable Node is writable
6 bIsAgentID Node is an Agent ID variable
7 bIsIDPresent Node contains ID

Hex Value Data Type

00 BYTE

01 WORD

02 DWORD

03 OCTET_STRING

04 ASCII_STRING

05 IP_ADDRESS

06 COUNTER32

07 TIME_TICKS

08 GAUGE32

09 OID
DS00870B-page 26 © 2009 Microchip Technology Inc.

AN870
COMPILING THE SNMP AGENT
For those who are already familiar with SNMP and the
Microchip Stack, we will start by outlining the process
for incorporating the SNMP Agent into an application. If
you need to familiarize yourself a little more with SNMP
first, refer to the “SNMP Protocol Overview” section
on page 2.

The flowchart in Figure 7 outlines the general steps for
developing a Microchip SNMP Agent. There are two
main processes involved: developing the MIB and
using that to develop the actual agent. Each process,
in turn, has several steps. All of these are covered later
in this document.

The major steps are:

1. Download and install the accompanying source
files for the SNMP Agent.

2. Using the Microchip custom MIB script
(page 14), define the enterprise-specific private
MIB. The ASN.1 standard MIB file should also
be defined, which maps to the custom script.

3. Use the included MIB compiler (mib2bib,
page 23) to build a binary MIB image (“BIB”).

4. Include the generated BIB file into an MPFS2
image and either download or link the MPFS2
image data file. For more information on how to
use the MPFS2 tool, refer to the “Getting
Started>>Uploading Web Pages” section of
Microchip TCPIP Stack Help.chm.

5. Create an application project that contains all of
your required files, plus the following Microchip
TCP/IP Stack and SNMP Agent files:
• ETH97J60.c/h (MAC driver layer for

Microchip PIC18F97J60 family TCPIP Stack),
ENC28J60.c/h (MAC driver layer for
Microchip 10Base-T stand-alone Ethernet
controller), ENCX24J600.c/h (MAC driver
layer for Microchip 10/100Base-T
stand-alone Ethernet controller) or ZeroG
wireless PHY and MAC related files if using a
wireless WiFi solution.

• ARP.c
• IP.c

• UDP.c
• SNMP.c
• CustomSNMPApp.c

• StackTsk.c
• MPFS2.c
• MPFSImg2.c (to save the MIB file image,
MPFSImg2, in the code memory)

• Helpers.c

• Delay.c

Use TCPIP Demo App-CXX according to the
selected host controller (C18, C30 or C32).

It contains all of the required files and also the
Microchip TCPIP Stack and SNMP Agent files.

6. Modify your main application source file to
include the SNMP header files and the MIB def-
inition file, and implement the SNMP callback
functions.

Once successfully built, you can use any standard
SNMP management software or NMS software to
access your SNMP Agent device. Users can develop
their own customized NMS software to monitor and
control their SNMP Agent.

Note: The other Microchip files may have to be
included depending on the other modules
that are selected.
© 2009 Microchip Technology Inc. DS00870B-page 27

AN870

FIGURE 7: OVERVIEW OF THE SNMP AGENT DEVELOPMENT PROCESS

MIB Text File

Microchip
MIB Compiler

(mib2bib)
MPFS2 Builder

Binary MIB File
(.bib)

MPFS2 Image
(binary or C)mib.h File

Device-Specific
Compiler

Complete
Application

OR

MPFS2 Data File
(C language)

MPFS2 Image
(binary or C)

MIB Development

SNMP Agent Development

Application Source
Files

Web Page Files
(optional)

Microchip
TCP/IP Stack

Files

in Microchip
MIB Format
DS00870B-page 28 © 2009 Microchip Technology Inc.

AN870
DEMO SNMP AGENT APPLICATION
To better demonstrate the abilities of the SNMP Agent,
the TCP/IP stack is provided with a demo application.
You can find the “SNMPv2c Getting Started Guide” at
C:\Microchip Solutions\Microchip\Help.
Using Microchip’s PICDEM.net™ 2 or Explorer 16
Development Board as a hardware platform, it allows the
user to control the board parameters in real time. Key
features of the demo include:

• Implements a complete MIB defined in ASN.1
syntax for use with NMS software

• Provides access to simple variables, such as
LEDs and push button switches

• Illustrates read/write access to a multi-byte
ASCII_STRING variable

• Implements run-time configurable Trap table
• Illustrates read/write access to a four-column
Trap table

• Facilitates retrieval of a large amount of
information from the agent by supporting
Get_Bulk operation

• Implements DHCP to obtain automatic IP address
• Other configuration parameters
• MIB storage location selection

The following macros decide the storage location
for the MIB image (MPFSImg2):
- MPFS_USE_EEPROM (MPFSImg2 gets

stored in external EEPROM)
- MPFS_USE_SPI_FLASH (MPFSImg2 gets

stored in external SPI Flash)

The demo SNMP application requires that one
of the above macros be defined or both com-
mented in TCPIPConfig.h. If both the macros
are commented, then the internal Flash is
selected as the storage media for the MPFS2
image.

• STACK_USE_SNMP_SERVER (enables SNMP
server)

Once a HEX file is built or selected, follow the standard
procedure for your device programmer when
programming the microcontroller.

When the microcontroller is programmed and powered
up, the system LED should blink to indicate that the
application is running. The LCD display will show:

TCPStack Vx.xx <IP address>
On the first line (the version number may differ depend-
ing on the release version of the application), there is
either a configuration message or an IP address shows
on the second line.

Once programmed, the application may still need to be
configured properly before it is put on a real network.

Refer to the “Getting Started>>Connecting to the
Network” section in the Microchip TCPIP Stack
Help.chm file.

Downloading the MPFS2 Image
The Microchip File System (MPFS2) allows users to
store binary image information for Stack related com-
ponents in memory. The software utility,
mib2bib.exe, for creating MPFS2 binary images
comes with the Stack.

Users can store their MIB information (in BIB format) in
memory using MPFS2. The SNMP demo application
includes an MPFS2 binary image named,
mpfsimg2.bin, which contains the MIB in binary
format.

Refer to the “Getting Started>>Uploading Web Pages”
section in the Microchip TCPIP Stack Help.chm file.
© 2009 Microchip Technology Inc. DS00870B-page 29

AN870

Using NMS Software with the SNMP
Agent and Microchip MIB
The demo application includes a MIB definition file writ-
ten in ASN.1 syntax. This file, mchip.mib, defines the
SMI for the development board’s private Microchip
MIB; it is also the basis for the MIB in the MPFS2
image. Figure 8 shows the full tree view of the MIB.

Any commercial or non-commercial NMS software that
is ASN.1 compatible should be able to read and com-
pile it. Once it is loaded, you can use the NMS software
to display the Microchip MIB and communicate with the
SNMP Agent’s demo application. Refer to the
“SNMPV2c Getting Started Guide”, distributed with the
Microchip TCPIP Stack, to know how to upload a MIB

file to a particular MIB browser, how to access the MIB
variables, experience a Trap demo and to understand
how the SNMP Agent responds to third-party NMS.

There are several SNMP NMS Manager/Client software
vendors, such as SNMPc Manager from CastleRock
Computing, LoriotPro from LUTEUS, iReasoning MIB
Browser and Trap Receiver, and so on.

FIGURE 8: STRUCTURE OF THE PRIVATE MICROCHIP MIB IN THE DEMO APPLICATION

Note: The list of NMS software vendors provided
here is for reference only. There are many
other commercial NMS software available
from different vendors. Users can also
develop their own customized NMS soft-
ware. Which NMS software to be used is
solely at the users discretion and pertaining
to application requirements.

Microchip
(17095)

product(1) setup(2) control(3)

name(1) version(2) date(3)

trapTable(1)

trapEntry(1)

trapReceiverNumber(1) trapEnabled(2) trapReceiverIPAddress(3) trapCommunity(4)

ledD5(1)

ledD6(2)

pushButton(3)

analogPot0(4)

analogPot1(5)

lcdDisplay(6)
DS00870B-page 30 © 2009 Microchip Technology Inc.

AN870

The MIB definition in the demo application allows
real-time I/O and management of these features on the
development board:

• Trap receiver information
• Switch LEDs, D5 and D6, on and off
• Read the status of push button, S3
• Read two analog potentiometer values
• Write a message of up to 16 characters to the first

line of the on-board LCD display

PRODUCT SUBTREE
This subtree provides product related information, such
as name, version and date. Its OIDs are listed in
Table 2.

Trap TABLE SUBTREE
This subtree is an example of how an Agent would
remember and accept a Trap configuration as set by
remote NMS. This is a table consisting of four
columns. The size of this table is limited to 2 entries,
as defined by TRAP_TABLE_SIZE in the header file,
SNMP.h. Once a Trap table entry is created with
TrapEnabled set (= 1), the development board will
generate a Trap whenever a push button switch is
pushed. The OIDs for this subtree are listed in
Table 3.

CONTROL SUBTREE
This subtree provides real-time I/O control of the
development board. The OIDs are listed in Table 4.

TABLE 2: PRODUCT SUBTREE AND ASSOCIATED OIDs

TABLE 3: Trap TABLE SUBTREE AND ASSOCIATED OIDs

TABLE 4: CONTROL SUBTREE AND ASSOCIATED OIDs

OID Name Access/Data Type Purpose

Name Read-Only, String Board name
Version Read-Only, String Version number string
Date Read-Only, String Release date (month, year)

OID Name Access/Data Type Purpose

TrapReceiverNumber Read-Only, Integer Index to this table
TrapEnabled Read/Write, Integer Enables this entry to receive Trap:

1 = Enabled
0 = Disabled

TrapReceiverIPAddress Read/Write, IP Address IP address of NMS that is interested in
receiving Trap

TrapCommunity Read/Write, String with Length of
8 Characters

Community name to be used when
sending Trap to this receiver

OID Name Access Type Purpose

LedD5 Read/Write, Integer Switch on/off LED, D5:
1 = On
0 = Off

LedD6 Read/Write, Integer Switch on/off LED, D6:
1 = On
0 = Off

PushButton Read-Only, Integer Read status of push button switch, S3:
1 = Open
0 = Closed

AnalogPot0 Read-Only, Integer Read 10-bit value of potentiometer, AN0
LcdDisplay Read/Write, 16 Characters Long String Reads/writes first line of on-board LCD
© 2009 Microchip Technology Inc. DS00870B-page 31

AN870

Experimenting with the SNMP Agent
Demo Application

ADDING STATIC VARIABLE OIDs TO THE MIB
Any number of static OIDs can be added to the MIB
without making any changes to the SNMP Agent
source files.

• Define the new static variable to both the ASN.1
MIB and Microchip MIB scripts.

• Create a new BIB file with the mib2bib compiler.
• Include this file in the MPFS2 image and

download the new image into the EEPROM.

ADDING DYNAMIC VARIABLE OIDs TO THE MIB
• Define the dynamic OID to both the ASN.1 MIB

and Microchip MIB scripts.
• Compile the Microchip MIB script using the

mib2bib tool. The new header file, MIB.h, is
generated. Note the new dynamic or sequence
variable ID defined in the MIB.h file by the
mib2bib tool.

• Now, change the CustomSNMPApp.c file.
• Make corresponding changes in the
SNMPGetVar(), SNMPGetNextIndex() and
SNMPSetVar() callback functions to
accommodate these new dynamic or sequence
variable IDs. Map them to the respective
variable’s RAM value.

• Build the project and program the microcontroller.

Those already familiar with the Microchip TCP/IP Stack
and its accompanying HTTP2 server should be aware
of incorporating the web server pages and the MIB for
the SNMP Agent into a single MPFS2 image (ensure
that there is enough room in the EEPROM for every-
thing). The process assumes that the files for the Stack
are already installed and the files for the web pages are
in the WebPages2 directory.

First, generate the SNMP MIB’s BIB image as
mentioned on page 23; use the command prompt:

mib2bib /q snmp.mib /b=WebPages2

This writes snmp.bib to the directory, WebPages2
(the mib.h header file will be written to its default
directory).

CONFIGURING A NEW Trap
Trap is an event notification from the SNMP Agent to
the Manager/Client NMS when a predefined event
occurs at the agent.

The event should already be defined by the user in the
application. The event can be an analog potentiometer
value, thermostat reading, counter value crossing the
threshold value, an AuthenticationFailure Trap
in case of access of MIB variables with a wrong
community name or a push of a button on the target
board, etc.

To enable the agent to send the Trap to the manager:

1. Comment the following macro in the
TCPIPConfig.h file,

 #define SNMP_TRAP_DISABLED

2. Configure the destination addresses for the
Trap PDU (Trap capture utility’s/manager’s IP
address); use the SET feature from the manager
in the agent’s Trap information table (MIB
variable: trapReceiverIPAddress).

3. Enable sending the Trap for the particular
destination (MIB variable: trapEnabled).

4. Configure the Trap community name for the
individual destination IP addresses. The
community name in the Trap message is the
community name for the manager to receive the
Trap with. Manager’s Trap capture utility will
not process the received Trap PDU destined to
its address if the community name does not
match. Depending on the community name, the
received PDU is forwarded from the manager to
the application, which processes the Trap(s) for
the particular community.

(MIB variable: trapCommunity)

5. Enable the Trap capture feature for the
manager. For a few SNMP Managers, the Trap
capture is enabled by default and the captured
Trap information can be seen as the Trap is
received. For some managers, it has to be
enabled or a separate Trap capture utility has to
be installed.

To demonstrate the Microchip Trap demo applications,
refer to “SNMPv2c Getting Started Guide” in Microchip
TCP/IP Stack Version 5.00 and later (C:\Microchip
Solutions\Microchip\Help).
DS00870B-page 32 © 2009 Microchip Technology Inc.

AN870

ADDING A Trap HANDLER
This section provides the information about what
functions must be used to add a Trap handler.

It also explains the Trap processing at the Microchip
SNMP Agent.

EXAMPLE 5: ADDING A Trap HANDLER

In the above code snippet:

• The SNMPTrapDemo();
generates the Trap PDU if the demo event
occurs. Users can add their Trap-specific events
in this function definition.

• The SNMPSendTrap();
generates the Trap PDU depending on the below
global variable values.

• The gSendTrapFlag is the global flag to send
the Trap, SET, if the event occurs.

BYTE gSendTrapFlag=FALSE;

• gOIDCorrespondingSnmpMibID is the MIB
variable ID from MIB.h, generated by
mib2bib.exe. This is used to search the vari-
able OID in the MIB to be sent in the Trap PDU. If
the event is not for a particular MIB variable, then
the Enterprise OID can be sent:
BYTEgOIDCorrespondingSnmpMibID=
MICROCHIP;

• For the user-defined events, this
gGenericTrapNotification type should
always be ENTERPRISE_SPECIFIC BYTE
gGenericTrapNotification=
ENTERPRISE_SPECIFIC;

• gSpecificTrapNotification is a
vendor-specific Trap code for the particular event
or the event Trap ID assigned by vendor. This is
the ID of the variable by which manager
implementation can understand the event type.

BYTE gSpecificTrapNotification=
VENDOR_TRAP_DEFAULT;

Define the event-specific ID in the ‘enum’ in the
SNMP.h file as shown below:
typedef enum

{

VENDOR_TRAP_DEFAULT =0x0,

BUTTON_PUSH_EVENT =0x1,

POT_READING_MORE_512=0x2

}VENDOR_SPECIFIC_TRAP_NOTIFICATION_TYPE;

Update the above global variables in the application
code where it is required to generate a Trap. The
SNMPSendTrap() will make sure that the Trap is sent
to the preconfigured IP addresses in the Trap
information table.

main()
{

#if defined(STACK_USE_SNMP_SERVER) && !defined(SNMP_TRAP_DISABLED)
SNMPTrapDemo(); /*Trap Demo for (Analog Pot0 value > 512, or if BUTTON3 on the dev

board is Pushed*/

/*”gSendTrapFlag” GLobal flag is SET if the predefined event occurs. It is getting SET
for MIB variable access with wrong community name and 'AuthenticationFailure' trap
is generated.*/

if(gSendTrapFlag)
{

SNMPSendTrap(); //Prepares Trap PDU for the event
}

#endif
}

© 2009 Microchip Technology Inc. DS00870B-page 33

AN870

The following pseudo code depicts a typical
implementation example to add a Trap handler:

EXAMPLE 6: ADDING A Trap HANDLER EXAMPLE
main()
{while(1){

SNMPTrapDemo();//Use any one of these two functions to define your Trap Event.
SNMPSendTrap();}

}

/*This function handles the Trap Event definition, Trap PDU generation and transmission
together.*/

SNMPTrapDemo()
{

if(AnalogPot0 >512) //Analog Potentiometer Event
{

gSendTrapFlag=TRUE;
gSpecificTrapNotification=POT_READING_MORE_512;
gGenericTrapNotification=ENTERPRISE_SPECIFIC;

//Make and send Trap PDU
SendNotification(anaPotNotfyCntr, ANALOG_POT0, analogPotVal);

}
if(BUTTON3_IO == 0) //Push Button Event
{

gSendTrapFlag=TRUE;
gSpecificTrapNotification=BUTTON_PUSH_EVENT;
gGenericTrapNotification=ENTERPRISE_SPECIFIC;
SendNotification(buttonPushNotfyCntr, PUSH_BUTTON, buttonPushval);

}
if(User_Defined_Event_Happened)//User event definition can be added here

 {
gSendTrapFlag=TRUE;
gSpecificTrapNotification=User_define_event;
gGenericTrapNotification=ENTERPRISE_SPECIFIC;
sendNotification();

}
}

DS00870B-page 34 © 2009 Microchip Technology Inc.

AN870

Users can also use the following function to send Trap
notification; the event is defined in a separate function.
The global variables, as discussed above, are updated
with the event information.

If the configured destination manager IP address is not
reachable, this notification function will retry for a max-
imum of 5 seconds before discarding the transmission
of the Trap PDU.

EXAMPLE 7: Trap NOTIFICATION

GENERATING AN MPFS2 IMAGE
Microchip provides the MPFS2 image generator tool,
MPFS2.exe, included with the TCPIP Stack. This tool
is available in the Utilities directory.

1. Set the input directory path of all files to be
converted to the MPFS2 format in Source
Settings.

2. Set Processing Options for the image to be
generated.

3. Set the destination path for the generated
MPFSImg2.bin in Output Files.

This tool also uploads the mpfsupload bin file
to the target board using the HEX image upload
capability of the Stack.

4. The corresponding setting should also be made
in Upload Settings of the tool.

This image is copied to the external EEPROM.

/*This function handles only trap generation and transmission. The global variables for the trap
notification and transmission are updated in the application code. This will send the trap only
in the next iteration on the super while(1) loop in the main() function.*/

void SNMPSendTrap(void)
{

switch(smState)//State Machine
{

case SM_PREPARE:
//Prepare the TRAP PDU
SNMPNotifyPrepare(remHostIpAddrPtr,trapInfo.table[receiverIndex].community,

trapInfo.table[receiverIndex].communityLen,
MICROCHIP, // Agent ID Var
gSpecificTrapNotification, // Notification code.
SNMPGetTimeStamp());

smState++;
break;

case SM_NOTIFY_WAIT:
/*Check if the destination is available*/

if(SNMPIsNotifyReady(remHostIpAddrPtr))
{

smState = SM_PREPARE;
 val.byte = 0;

receiverIndex++;

//application has to decide on which SNMP var OID to send. Ex. PUSH_BUTTON
SNMPNotify(gOIDCorrespondingSnmpMibID, val, 0);//Send TRAP PDU

 smState = SM_PREPARE;
UDPDiscard();
break;

}
}

//Try for max 5 seconds to send TRAP, do not get block in while()
if((TickGet()-TimerRead)>(5*TICK_SECOND)|| (receiverIndex == TRAP_TABLE_SIZE))
{

UDPDiscard();
smState = SM_PREPARE;
gSendTrapFlag=FALSE;
return;

}

}

© 2009 Microchip Technology Inc. DS00870B-page 35

AN870
CONCLUSION
The SNMP Agent presented here provides another
protocol option for the Microchip TCP/IP Stack.
Together with the Stack and the user’s application, it
provides a compact and efficient ‘over the network’
management agent that can run on any of the
8/16/32-bit PIC® microcontrollers. Its ability to run
independently of an RTOS or application makes it
versatile, while its ability to handle up to 256 dynamic
variable OIDs and an unlimited number of static OIDs
makes it flexible.

REFERENCES
• Internet Engineering Task Force (IETF)

- RFC 1157 (for SNMP V1)
- RFC 3416 (for SNMP V2c)

• J. Case, M. Fedor, M. Schoffstall and J. Davin, “A
Simple Network Management Protocol (SNMP)”,
RFC 1157. SNMP Research, Performance
Systems International and MIT Laboratory for
Computer Science, May 1990.

• A. S. Tanenbaum, “Computer Networks (Third
Edition)”. Upper Saddle River NJ: Prentice-Hall
PTR, 1996.

• W. R. Stevens, “TCP/IP Illustrated, Volume 1: The
Protocols”. Reading MA: Addison-Wesley, 1994.
DS00870B-page 36 © 2009 Microchip Technology Inc.

AN870
APPENDIX A: SOURCE CODE FOR
THE SNMP AGENT

Because of their size and complexity, complete source
code listings for the software discussed in this applica-
tion note are not provided here. A complete archive file
is available with all the necessary source and support
files in installer format for the following:

• Microchip SNMP Agent
• Microchip MIB Script Compiler (mib2bib)
• MPFS2 Image Builder

Refer to the Microchip TCPIP Stack Help.chm file for
the descriptions of all the APIs of the modules. These
files are required for development with the Microchip
SNMP Agent. These archive files may be downloaded
from the Microchip corporate web site at:
www.microchip.com/tcpip.
© 2009 Microchip Technology Inc. DS00870B-page 37

www.microchip.com/tcpip
www.microchip.com/tcpip
www.microchip.com/tcpip

AN870

NOTES:
DS00870B-page 38 © 2009 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2009 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00870B-page 39

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00870B-page 40 © 2009 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

03/26/09

	Introduction
	SNMP Protocol Overview
	FIGURE 1: Location of SNMP in the TCP/IP Protocol Stack
	FIGURE 2: Overview of the SNMP Model

	SNMP Terminology
	Network Management Station (NMS)
	Managed Node (SNMP Agent)
	Management Information Base (MIB)
	FIGURE 3: Generic Structure of Management Information (SMI)
	FIGURE 4: Example of an Actual SMI (Partial Internet Subtree)

	Object Identifier (OID)
	SNMP Security
	SNMP Community

	SNMP Protocol Data Unit (SNMP PDU)
	FIGURE 5: PDU Formats for Get/Set and Trap Packets

	SNMP PDU Types
	Get_Request
	Get_Next_Request
	Get_Bulk_Request
	Set_Request
	Trap PDU
	Get_Response

	SNMP PDU Processing
	EXAMPLE 1: SNMP PDU Processing Flow – Pseudocode
	EXAMPLE 1: SNMP PDU Processing Flow – Pseudocode (Continued)

	Abstract Syntax Notation (ASN) Language
	EXAMPLE 2: Microchip SNMP ASN.1 MIB File
	EXAMPLE 2: Microchip SNMP ASN.1 MIB File (Continued)
	EXAMPLE 2: Microchip SNMP ASN.1 MIB File (Continued)
	Binary Encoding Rules (BER)
	FIGURE 6: Generic BER Format (Top) and an Example of BER Encoding (Bottom)

	Describing the MIB with Microchip MIB Script
	Microchip MIB Script Commands
	EXAMPLE 3: Microchip SNMP MIB Script
	EXAMPLE 3: Microchip SNMP MIB Script (Continued)

	Microchip MIB Compiler (mib2bib)
	EXAMPLE 4: Typical Output Display for a mib2bib Compilation
	TABLE 1: mib2bib Run-Time Error Codes
	BIB Format

	Compiling the SNMP Agent
	FIGURE 7: Overview of the SNMP Agent Development Process

	Demo SNMP Agent Application
	Downloading the MPFS2 Image
	Using NMS Software with the SNMP Agent and Microchip MIB
	FIGURE 8: Structure of the Private Microchip MIB in the Demo Application
	Product Subtree
	Trap Table subtree
	Control Subtree
	TABLE 2: Product Subtree and Associated OIDs
	TABLE 3: Trap Table Subtree and Associated OIDs
	TABLE 4: Control Subtree and Associated OIDs

	Experimenting with the SNMP Agent Demo Application
	Adding Static Variable OIDs to the MIB
	Adding Dynamic Variable OIDs to the MIB
	Configuring a New Trap
	Adding a Trap Handler
	EXAMPLE 5: Adding a Trap Handler
	EXAMPLE 6: Adding a Trap Handler Example
	EXAMPLE 7: Trap Notification

	Generating an MPFS2 Image

	Conclusion
	References
	Appendix A: Source Code for the SNMP Agent
	Worldwide Sales and Service

