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Implementing FIR and IIR Digital Filters 

Using PIC18 Microcontrollers
INTRODUCTION

The Microchip PICmicro® PIC18 family of microcontrol-
lers are popularly known for their logic and controlling
functions. In addition, these microcontrollers have built-
in hardware multipliers and multiple file pointers. These
features, along with the built-in analog-to-digital con-
verter (ADC), make PIC18 microcontrollers a compe-
tent choice for applications where logic and controlling
functions are combined with signal processing
applications.

This application note demonstrates how the PIC18
family of microcontrollers can be used to implement
digital FIR and IIR filters.

The process of building a digital filter involves the
following two distinct phases: 

• Design phase
• Realization phase

Design Phase

The design phase involves specifying filter characteris-
tics (e.g., frequency response, phase response, etc.)
and deriving the input output transfer function or filter
coefficients from the specifications. Many software
tools are available to generate filter coefficients from
the specified filter characteristics.

Realization Phase

The realization phase involves the selection of a
structure to implement the transfer function. The struc-
ture may be a circuit if the filter is built by hardware, or
may be a software program if implemented on
microcontrollers.

FIR FILTER IMPLEMENTATION 

Equation 1 shows the computation performed by an
FIR filter.

EQUATION 1: Y[N] COMPUTATION

Where N is the number of taps and a0, a1, ... aN–1 are N
filter coefficients. The N filter coefficients can be posi-
tive or negative depending on the characteristics of the
filter. The computation performed by an FIR filter is
implemented in a PIC18 microcontroller in two stages.

First, the output value y1[n] is computed using the
formula shown in Equation 2.

EQUATION 2: Y1[N] COMPUTATION

Second, X[n], as shown in Equation 3, is subtracted
from y1[n] to obtain y[n].

EQUATION 3: X[n] COMPUTATION

X[n] represents the sum of all input samples from the
latest to the previous N–1 samples, multiplied by 128.

In calculating y1[n], we have added 128 to all filter coef-
ficients. This is done to make the signed filter coeffi-
cients (supplied through the include file) unsigned to
utilize the unsigned multiplier available in the PIC18
family of microcontrollers.

FIR Filter Code

The code for the FIR filter is written in several individual
macros. This enables the user to implement the FIR fil-
ter in a modular fashion. Flow Charts of the main rou-
tine and Interrupt Service Routine are shown in
Figure E-1 and Figure E-2, respectively.

The example code (expl_fir.asm) in Appendix D
shows how to use the macros to implement an FIR fil-
ter. This code example includes several include files
and macros. Table 1 lists the include files used and
their descriptions.

Note: This application note assumes the reader
understands the basics of digital filters and
their types. Refer to Appendix A should
you require additional information.

Author: B. K. Anantha Ramu
Microchip Technology Designs 
(India) Pvt. Ltd.

y[n] = x[n]*a0+x[n–1]*a1+x[n–2]*a2+....+ x[n-N+1]*aN–1

y1[n] = x[n]*(a0 + 128) + x[n–1]*(a1 + 128) +
    x[n–2]*(a2 + 128)+...+x[n–N+1]*(aN-1 + 128)

X[n] = x[n]*128 + x[n–1]*128 +...+ x[n–N+1]*128
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TABLE 1: FIR FILTER EXAMPLE CODE INCLUDE FILES

Table 2 provides a list of the macros used and their
descriptions.

TABLE 2: FIR FILTER MACROS

Depending upon the user setup, the parameters listed
in Table 3 may need to be assigned.

TABLE 3: FIR FILTER PARAMETERS

File Name Description

Coef.inc Defines the number of taps and filter coefficients.

Port.inc Finds the TRIS ports corresponding to the ports OUT_PORT_HIGH and OUT_PORT_LOW 
selected by the user, and defines constants for Timer1, CCP2, and A/D Converter initialization.

fir_buf.inc Defines buffer spaces used by FIR filter macros.

fir_mac.inc Contains FIR filter macros.

Peri.inc Contains macros to initialize TRIS ports, Timer1 registers, CCP2 registers, T3CON and A/D 
Converter registers.

int.inc Contains a macro that enables interrupt priority, assigns high priority for A/D interrupt, enables 
high priority interrupt, and enables A/D interrupt.

Macro Name Argument
Other Macros 

Invoked
Description

FIR_FILTER None RPT_MULACC,
MULACC

Implements FIR filter. The number of taps and filter coefficients 
are defined in the coef.inc file.

MULACC None None Multiplies the sample value pointed by FSR0 with the filter 
coefficient pointed by FSR2. The product available in 
PRODH:PRODL register is then added to the 24-bit value 
stored in the output_most, output_middle, and 
output_least variables.

RPT_MULACC Rpt, loop MULACC Adds instructions to form a loop in which code for the macro 
MULACC is added ‘rpt’ times.

INIT_PERIPHERALS None None Sets up/initializes input port, output port, A/D Converter, CCP 
module and Timer1.

SET_INTR_FILTER None None Sets up interrupt for real-time operation of the filter. 

INIT_FILTER None None Initializes the buffers used by the filter at the beginning of the 
program.

Value/Parameter Name Description/Assignment

IN_PORT Assign the port used to sample analog signal.

INPUT The source register of I/P samples to the filter. When the A/D Converter is used, assign 
ADRESH.

OUT_PORT_HIGH The port used to output the Most Significant Byte of the filter output. User must assign 
the port used for this purpose.

OUT_PORT_LOW The port used to output the Least Significant Byte of the filter output. User must assign 
the port used for this purpose.

clock_freq Assign the processor clock frequency used in Hz.

sample_freq Assign the desired sample frequency in Hz.

num_of_mulacc Depending upon the sampling frequency required and program memory available, 
assign a value >= 1 & <= num_of_taps.
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Data Storage and Computation

FIGURE 1: COMPUTATION IN MACRO MULACC

After designing the filter, the filter coefficients are to be
scaled to integers between -128 and +127. The filter
coefficients and length of the filter are entered in the
include file before assembling and compilation.

RAM Locations

The following lists the RAM locations used by the
software to implement the FIR filter. 

• coeff

This RAM area stores ’offset coefficients’ of the filter.
Offset coefficients are the values obtained by adding
128 to the filter coefficients supplied to the code
through the include file. Filter coefficients decide the
characteristics of the filter. The user must design the
filter coefficients for the required characteristics of
the filter.

• buffer

This RAM area contains two buffer spaces, buf1
and buf0, which store identical values. The stored
values are the sample values of the analog input sig-
nal, starting from latest to previous (N–1) values.
These values are unsigned 8-bit numbers. Figure 4
illustrates how input samples are stored in the buff-
ers buf0 and buf1 for a tap length N equal to 4. The
buf0 buffer space is pointed by FSR0 and buf1 is
pointed by FSR1. The purpose of having two identi-
cal buffers is to reduce the number of instructions
required to compute the output sample.

Computation requires N multiplications and N accumu-
lations or additions (called as MAC) while calculating
y1[n]. During each multiplication, different operands are
required (one sample value from RAM area buffer
and one filter coefficient from RAM area coeff).
Therefore, the pointer should be updated after each
multiplication to point to the correct operand. Multiplica-
tion is to be done in such a way that the coefficient a0
should always be multiplied by the latest sample, a1
should always be multiplied by one sample previous to
the latest sample, and so on up to the last coefficient,
aN–1, which is to be multiplied by the oldest sample. 

We’ll assume that our scheme of storing input samples
is like that shown in Figure 2 (we’ll call this Scheme 1).
In this scheme, the input samples are stored in the
order of their arrival, with the latest sample being stored
always at the bottom of the buffer and the oldest sam-
ple at the top of the buffer. While entering the MAC rou-
tine, it is sufficient to set the pointer to point to the latest
sample. While in MAC, it is required to decrement the
pointer after each multiplication to be ready to fetch the
next operand. Since we are using the FSR register as
a pointer, we do not need to add any extra instruction
to decrement the pointer to point to the next operand
after each multiplication. However, the problem with
this type of storing scheme is that after each new sam-
ple arrives, the entire buffer must be rewritten N times,
as shown in Figure 2. This step adds extra instructions
and therefore, increases the computation time.

FSR2

FSR0

output_most
output_middle
output_least

output_most
output_middle
output_least

am 128+

x n m–[ ]

(a0+128)*x[n]+(a1+128)*x[n–1]+..+(a(m–1)*128)*x[n-m+1]

(a0+128)*x[n]+(a1+128)*x[n-1]+..+(a(m–1)+128)*x[n–m+1]+(am+128)*x[n–m]

(am+128)*x[n-m]
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FIGURE 2: BUFFER ARRANGEMENT SCHEME 1 (NUMBER OF TAPS N = 4)

Consider another scheme (we’ll call Scheme 2) of stor-
ing the samples, where the samples are stored in a cir-
cular fashion, as illustrated in Figure 3. With this
scheme, we will not overwrite the entire buffer like in
Scheme 1. In Scheme 2, the new sample value
replaces the oldest sample value. In this case, the posi-
tion of the latest sample varies. In the MAC routine, we

must check the pointer to verify whether it has reached
the top of the buffer. If the top of the buffer is reached,
the pointer must be reset to the bottom of the buffer.
This checking must be done after each access of the
operand and therefore, will demand instructions to
check N number of times. As seen, there are problems
with Scheme 2 as well.

FIGURE 3: BUFFER ARRANGEMENT SCHEME 2 (NUMBER OF TAPS N = 4)
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Now consider the scheme illustrated in Figure 4. This
scheme stores the samples in the same fashion as
Scheme 2, but we have two buffers called buf0 and
buf1. After arrival of a new sample, it is stored in both
the buffers. At the beginning of the MAC routine, we
initialize the pointer to point to the latest sample in buf0.

Depending upon the latest sample position, at some
point of time the pointer will cross the boundary of buf0,
with the exception of when the latest sample position is

at the bottom of buf0. In this case, the pointer will not
cross the boundary of buf0. However, we do not need
to check and reset the pointer because it will be pointing
to the desired sample, even though the sample is not in
buf0. Therefore, we have avoided the extra instruc-
tions needed to check and reset the pointer, in addition
to avoiding adding extra instructions to rewrite the entire
buffer after the arrival of each new sample.

FIGURE 4: BUFFER ARRANGEMENT USED IN FIR IMPLEMENTATION
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Variables

• output_least, output_middle, 
output_most

These three variables together store the computed
filter output sample value y[n]. This value is a 24-bit
signed 2's complement number. The Most Significant
bit of output_most is the sign bit.

• smpl_sum_x256_most, 
smpl_sum_x256_middle, 
smpl_sum_x256_least 
These three variables together store a value 256
times the sum of all input samples from present to
previous (N–1) samples, i.e., 2*X[n]. The value is a
24-bit signed 2's complement number. The Most
Significant bit of smpl_sum_x256_most is the sign
bit.

These three locations hold an intermediate result
that enables faster x128 multiplication implementa-
tion. The sum of the input samples are stored in the
most and middle bytes. Then, if we consider the full
24-bit, it is the same as x256 multiplication of the
sum. Only one shift to the right of this data will
produce x128 value of the sum of the input samples.

• smpl_sum_x128_most, 
smpl_sum_x128_middle, 
smpl_sum_x128_least

These three variables together store a value 128
times the sum of all input samples from present to
previous (N–1) samples, i.e., X[n]. The value is a
24-bit signed 2's complement number. The Most
Significant bit of smpl_sum_x128_most is the sign
bit.

• INPUT

The address assigned to this constant will specify the
source of input samples for the FIR filter.

• OUTPUT_PORT_HIGH, OUT_PORT_LOW 
The addresses assigned to these constants decide
where the filter output is taken. 

FIR FILTER SOFTWARE

The overall FIR filter software contains two parts:

• Initialization routine
• Computation routine

Initialization Routine

The initialization routine is executed only once at the
start of the program. The computation routine is exe-
cuted repeatedly every time a new input sample
arrives. When the filter is implemented as a real-time
filter-to-filter signal from the A/D converter, the compu-
tation routine is included in the A/D Interrupt Service
Routine. 

The Initialization routine does the following:

1. Stores the offset filter coefficients in RAM area
coeff. The value of offset filter coefficients is
obtained by adding 128 to the filter coefficients
entered in the include file.

2. Configures OUTPUT_PORT_HIGH and 
OUTPUT_PORT_LOW as output ports.

3. Configures IN_PORT.

4. Clears TMR1H:TMR1L registers.
5. Configures CCP2 module for compare in

Special Event Trigger mode.
6. Configures A/D Converter.
7. Clears buf0 and buf1. 

8. Initializes X[n] to zero.
9. Enables interrupt priority level.
10. Assigns low priority for all interrupts except A/D

interrupt.
11. Enables high priority interrupt.

12. Switches on Timer1.

Computation Routine

The computation routine is entered each time a new
input sample is available in the register assigned to
INPUT. When a filter is implemented as a real-time filter
using samples from on-chip ADC, then the computation
routine is included under the Interrupt Service Routine.

The Interrupt Service Routine does the following:

1. Clears interrupt flag.

2. Checks whether FSR1 pointer has crossed the
bottom of buf1.

3. If bottom of buf1 is crossed, FSR0 and FSR1
are reset to top of their respective buffers.

4. Subtracts the oldest sample value, which is now
being pointed by FSR0 and FSR1 from X[n].

5. Writes the A/D conversion result in the buffer at
the location pointed by FSR0 and FSR1.

6. Adds latest sample value (i.e., A/D conversion
result) to X[n].

7. Resets the FSR2 register to point to the first
coefficient (i.e., which corresponds to the latest
sample).

8. Clears the output result registers.

9. Multiplies the filter coefficients with the input
samples and adds the products to get y1[n].

10. Subtracts X[n] from y1[n] to get y[n].
11. Outputs the y[n] value on the output port.
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The time spent for the execution of the Interrupt Ser-
vice Routine limits the maximum sampling frequency.
The code provides a trade-off between execution time
and the amount of program memory used by means of
the value entered for the constant num_of_mulacc.
This value gives the number of MAC routines used in the
software loop in the Interrupt Service Routine. The
higher the value for this constant, the lower the execu-
tion time, which enables us to go to a higher sampling
frequency. For a filter of tap length N, the value of
num_of_mulacc can range from 1 to N. The user
should ensure that for the entered value of
num_of_mulacc, there is a sufficient number of
available program memory locations.

Code Examples

Following are two examples of code for
num_of_taps=31, and num_of_mulacc=1 and
num_of_mulacc=2. These examples illustrate how
the code changes with num_of_mulacc. The code in
italics forms the MAC routine. Num_of_mulacc speci-
fies how many times the MAC routine is repeated in a
loop. In Example 1, the instruction decfsz count, F
is executed 31 times, and the instruction goto Loop1
is executed 30 times. In Example 2, the same instruc-
tions are executed 15 and 14 times, respectively.
Therefore, Example 2 takes less time for computation
than Example 1. However, Example 2 requires more
program memory than Example 1.

EXAMPLE 1: num_of_mulacc=1

EXAMPLE 2: num_of_mulacc=2

Procedure to Implement an FIR Filter

This procedure references freeware (see Appendix F)
used to generate coefficients.

1. Determine the maximum frequency, for
example, F Hz of the signal to be filtered.

2. Choose a sampling frequency (Fs ≥ 2F Hz).

3. Decide on the filter characteristics required.
4. Input the filter characteristics using the coefficient

generation freeware to get the coefficients.
5. Scale the coefficients so they are integers

between -128 and +127.
6. Add the scaled coefficients and the number of

taps into the include file.
7. Build and generate the HEX code. 
8. Transfer the program to the PIC18 microcontroller.

9. Run the program and check the filter
characteristics.

movlw loop
movwf count ;Loop = D’31’

Loop1 movf POSTDEC0,W
mulwf POSTINC2
movf PRODL,W
addwf output_least
movf PRODH,W
addwfc output_middle
clrf WREG
addwfc output_most
decfsz count, F
goto Loop1

T
hi

s 
lo

op
 is

 e
xe

cu
te

d 
31

 ti
m

es

Note: Steps 1 through 6 are explained in greater
detail in Appendix B.

movlw loop
movwf count ;Loop = D’15’

Loop1 movf POSTDEC0,W
mulwf POSTINC2
movf PRODL,W
addwf output_least
movf PRODH,W
addwfc output_middle
clrf WREG
addwfc output_most 
movf POSTDEC0,W
mulwf POSTINC2
movf PRODL,W
addwf output_least
movf PRODH,W
addwfc output_middle
clrf WREG
addwfc output_most 
decfsz count, F
goto Loop1
movf POSTDEC0,W
mulwf POSTINC2
movf PRODL,W
addwf output_least
movf PRODH,W
addwfc output_middle
clrf WREG
addwfc output_most 

T
hi

s 
lo

op
 is

 e
xe

cu
te

d 
15

 ti
m

es
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IIR FILTER IMPLEMENTATION

The IIR filter is implemented in the form of a number of
sections connected in cascade, as shown in Figure 5.
Each section is referred to as a BIQUAD section. Each
BIQUAD section itself is an IIR filter, which computes
output samples from the present input sample, two pre-
vious input samples and two previous output samples.
Implementing the overall IIR filter in the form of BIQUAD
sections decreases the sensitivity to round-off errors
and gives better control to ensure stability of the filter.

FIGURE 5: IMPLEMENTATION OF IIR FILTER IN THE FORM OF BIQUAD SECTIONS 
CONNECTED IN CASCADE

Each BIQUAD section implements the following
equation.

EQUATION 4: BIQUAD EQUATION

Where xi[n] denotes the nth input sample, yi[n]
denotes nth output sample of section i and ai_0, ai_1,
ai_2, bi_1 and bi_2 are the filter coefficients of section i. 

The code for the IIR filter is written in the form of several
macros. This enables the user to implement the IIR fil-
ter in a modular fashion. Flow charts of the main routine
and Interrupt Service Routine are shown in Figure E-3
and Figure E-4, respectively.

The example code (expl_iir.asm) in Appendix D
shows how to use the macros to implement an IIR filter.
This code example includes several include files and
macros. Table 4 lists the include files used and their
descriptions:

TABLE 4: IIR FILTER INCLUDE FILES.

BUF4

O/P

OUTPUT3_1

OUTPUT3_2

BUF3

OUTPUT2_2

OUTPUT2_1
BUF2

OUTPUT1_2

OUTPUT1_1

I/P

BUF1

SECTION1
coefs: a1_0,
a1_1, a1_2,
b1_1, b1_2

O/P offset
correction:

YK1

SECTION2
coefs: a2_0,
a2_1, a2_2,
b2_1, b2_2

O/P offset
correction:

YK2

SECTION3
coefs: a3_0,
a3_1, a3_2,
b3_1, b3_2

O/P offset
correction:

YK3

I/P offset: K3I/P offset: K2

yi[n] = ai_0*xi[n] + ai_1*xi[n–1] + ai_2*xi[n–2] –
    bi_1*yi[n–1] – bi_2*yi[n–2]

File Name Description

Coef.inc Defines the filter characteristics. This file defines filter coefficients of each BIQUAD section, the 
number of BIQUAD sections used, input offset constants K2, K3, etc., and output offset 
correction YK1,YK2, YK3, etc.

Port.inc Determines the TRIS ports corresponding to the ports OUT_PORT_HIGH and OUT_PORT_LOW 
selected by the user. Defines constants for Timer1, CCP2, and A/D Converter initialization.

iir_buf.inc Defines buffer spaces used by IIR filter macros.

iir_mac.inc Contains macros of the IIR filter.

Peri.inc Contains macros to initialize TRIS ports, Timer1 registers, CCP2 registers, T3CON and A/D 
Converter registers.

int.inc Contains the macro which enables interrupt priority, assigns high priority for A/D interrupt, 
enables high priority interrupt, and enables A/D interrupt.
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Table 5 provides a list of macros used and their
descriptions:

TABLE 5: IIR FILTER MACROS

Depending upon the user setup, the parameters listed
in Table 6 may need to be assigned.

TABLE 6: IIR FILTER PARAMETERS

Macro Name Arguments
Other Macros 

Invoked
Description

IIR_FILTER None BIQUAD, 
TRNSFR, 
UNSIGNXSIGN_0, 
UNSIGNXSIGN, 
SIGNXSIGN,
CLEAR

Implements an IIR filter in the form of BIQUAD sections 
connected in cascade. The number of BIQUAD sections 
used and the coefficients for each section are input from 
the include file.

BIQUAD Input, 
a0, a1, a2,
b1, b2, 
output,
output1, 
output2

TRNSFR, 
UNSIGNXSIGN_0, 
UNSIGNXSIGN, 
SIGNXSIGN,
CLEAR

This macro implements one BIQUAD IIR filter section by 
implementing the equation:
y[n]=a0*x[n]+a1*x[n–1]+a2*x[n–2]-b1*y[n–1]-b2*y[n–2]
where x’s and y’s refer to input and output values of the 
BIQUAD IIR filter and a0, a1, a2, b1, and b2 are filter 
coefficients.

UNSIGNXSIGN_0 X, coef, acc CLEAR Multiplies unsigned value in register X with the signed lit-
eral value coef. The result is spread over the locations 
acc, acc+1, acc+2, and acc+3. This macro is intended to 
be used at the beginning of a series of multiply accumulate 
operations.

UNSIGNXSIGN X, coef, acc None Multiplies unsigned value in register X with signed literal 
value ‘coef’. The result is spread over the locations acc, 
acc+1, acc+2 and acc+3. This macro is intended to be 
used after using the macro UNSIGNXSIGN_0 at the begin-
ning of a series of multiply accumulate operations.

SIGNXSIGN X, coef, acc None Multiplies the signed value stored at locations X, X+1 and 
X+2 with the signed value supplied through literal constant 
coef. The product is subtracted from the value stored in 
locations acc, acc+1,acc+2 and acc+3.

CLEAR loc None Clears consecutive three locations loc, loc+1 and loc+2.

INIT_PERIPHERALS None None Sets up/initializes input port, output port, 
A/D Converter, CCP module and Timer1.

SET_INTR_FILTER None None Sets up interrupt for real-time operation of the filter.

INIT_FILTER None CLEAR Initializes the buffers used by the filter at the beginning of 
the program.

Value/Parameter Name Description/Assignment

IN_PORT The port used to sample the analog signal.

INPUT The source register of I/P samples to the filter. When the A/D Converter is used to assign 
ADRESH.

OUT_PORT_HIGH The port used to output the Most Significant Byte of the filter output. User must assign the 
port used for this purpose.

OUT_PORT_LOW The port used to output the Least Significant Byte of the filter output. User must assign 
the port used for this purpose.

clock_freq Assign the processor clock frequency used in Hz.

sample_freq Assign the desired sample frequency in Hz.
 2002 Microchip Technology Inc. DS00852A-page 9
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Data Storage and Computation

Figure 6 shows the input and output buffers used for
each BIQUAD section.

FIGURE 6: COMPUTATION IN MACRO BIQUAD
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x[n-1]

bi_1
sum

sum+1

sum+2

sum+3

SIGNXSIGN

outputi_1

outputi_1+1

outputi_1+2

ai_0*x[n]+ai_1*x[n–1]+ai_2*x[n–2]-bi_1*y[n–1]–bi_2*y[n–2]

y[n-2]

bi_2 sum

sum+1

sum+2

sum+3

SIGNXSIGN

outputi_2

outputi_2+1

outputi_2+2

x[n-1]
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Figure 7 shows the computations performed to
compute the output.

FIGURE 7: COMPUTATION PERFORMED IN A BIQUAD SECTION i
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Memory Locations

• bufi’s

These are memory locations buf1, buf1+1 and
buf1+2 for the first section, buf2, buf2+1 and
buf2+2 for the second section and so forth, covering
all the BIQUAD sections used. These locations store
the input samples for their respective sections. Bufi
stores the present input sample, bufi+1 stores pre-
vious input sample and bufi+2 stores previous to
previous input sample for section i. The data stored
in these locations represent 8-bit unsigned numbers.

• outputi_1’s

These are locations output1_1, output1_1+1
and output1_1+2 for section1, output2_1,
output2_1+1 and output2_1+2 for section 2 and
so forth, covering all the BIQUAD sections used. The
locations outputi_1, outputi_1+1 and
outputi_1+2 together store previous output value
of section i. The bits stored in these locations
together represent a 2’s complement signed number.
Outputi_1 stores Most Significant Byte,
outputi_1+1 stores Middle Significant Byte and
outputi_1+2 stores Least Significant Byte.

• outputi_2’s

These are locations output1_2, output1_2+1
and output1_2+2 for section 1, output2_2,
output2_2+1 and output2_2+2 for section 2 and
so forth, covering all the BIQUAD sections used. The
locations outputi_2, outputi_2+1 and
outputi_2+2 together store previous to previous
output value of section i. The bits stored in these
locations together represent a 2’s complement
signed number. Outputi_2 stores Most Significant
Byte, outputi_2+1 stores Middle Significant Byte
and outputi_2+2 stores Least Significant Byte.

• sum, sum+1, sum+2, and sum+3

These locations together store the intermediate
result after multiplication and addition. Together
these locations represent a 32-bit signed 2’s comple-
ment number. Sum represents Most Significant Byte,
while sum+3 represents Least Significant Byte.

• Constants Ki’s and YKi’s

The input for each BIQUAD section is an unsigned
8-bit number, while the output is a 24-bit signed num-
ber. Since sections are connected in cascade, the
output of a preceding section feeds the input of the
next section, which creates the need to convert the
24-bit signed number to an 8-bit unsigned number.
This conversion can be done by rounding off the
24-bit number to 8-bits and adding a constant value
Ki. A constant value YKi is deducted from the output
to correct for the extra value Ki input for section i.
The constant values of the Ki’s and YKi’s are input
through the include file used to input the filter
coefficients.

IIR Filter Software

The overall IIR filter software contains two parts:

• Initialization routine

• Computation routine

The initialization routine is executed only once at the
start of the program. The computation routine is exe-
cuted repeatedly every time a new input sample
arrives. When the filter is implemented as a real-time
filter-to-filter signal from the A/D Converter, the compu-
tation routine is included in the A/D Interrupt Service
Routine.

Initialization Routine

The initialization routine (expl_iir.asm) does the
following:

1. Configures OUTPUT_PORT_HIGH and 
OUTPUT_PORT_LOW as output ports.

2. Configures IN_PORT.

3. Clears TMR1H:TMR1L registers.
4. Configures CCP2 module for compare in

Special Event Trigger mode.
5. Configures A/D Converter.
6. Enables interrupt priority level.

7. Assigns low priority for all interrupts except A/D
interrupt.

8. Enables high priority interrupt.
9. Clears x[n]'s for first BIQUAD section.
10. For BIQUAD sections other than the first, the

x[n]'s are initialized with constants Ki supplied
from the include file.

11. For BIQUAD sections other than the first, y[n]'s
are initialized with YKi's.

12. Switches on Timer1.

Computation Routine

The Interrupt Service Routine does the following:

1. Clears interrupt flag.
2. Moves sampled value (i.e., ADRESH contents)

to buf1.
3. Executes the following six actions starting with

the first BIQUAD section to the last BIQUAD
section in sequential order.
a. Computes the output (32-bits) of the

present BIQUAD section (i).
b. Rounds off the above result to 8-bits.
c. Adds input offset (K(i+1)) of next section

(if it is not a last section).
d. Subtracts output offset correction (YKi).

e. Moves this result to the input buffer of next
section (buf(i+1)).

f. If it is the last section, then the result is also
moved to the output port.
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Procedure to Implement an IIR filter

This procedure requires the use of digital filter coeffi-
cient generation freeware (see Appendix F) and a
Microsoft® Excel® spreadsheet ‘coef modifier’ (see
Figure C-4). This spreadsheet is available for down-
load from the Microchip web site (see Appendix G for
more information).

1. Determine the maximum frequency (e.g., F Hz)
of the signal to be filtered.

2. Choose a sampling frequency Fs ≥ 2F Hz.
3. Decide on the filter characteristics required and

arrive at filter specifications.
4. Input filter specifications using digital filter coef-

ficient generation freeware to get the coeffi-
cients a0, a1, a2, b1 and b2 for each BIQUAD
section and the number of BIQUAD sections
required.

5. Determine the maximum gain ‘gc’ for each
BIQUAD section.

6. Enter the coefficients (a1_0, a1_1, a1_2,
b1_1...) and gain (gc1, gc2, ...) into the spread-
sheet to get the gain normalized coefficients.

7. Determine the optimum input offset constants
Ki’s for each BIQUAD section other than the first
BIQUAD section and output offset correction
from the spreadsheet.

8. Enter the modified coefficients, input offset coef-
ficients Ki’s, and output offset correction
constants YKi’s into the include file coef.inc.

9. Build and generate the HEX code. 
10. Transfer the program to the PIC18 microcontroller.
11. Run the program and check the filter

characteristics.

TESTING AND PERFORMANCE

The FIR and IIR filter can be used for off-line process-
ing or for real-time processing. The code examples,
expl_fir.asm (for FIR) and expl_iir.asm (for IIR)
in Appendix D, demonstrate how to filter an analog sig-
nal input to one of the I/P ports of an on-chip A/D Con-
verter, and get the filtered 2 bytes output through any of
the ports assigned to OUT_PORT_HIGH and
OUT_PORT_LOW. The block diagram of this setup is
shown in Figure 8.

The FIR and IIR filters were tested on a PICDEM™ 2
demo board using a PIC18C452 microcontroller (see
Figure 9 for the circuit diagram). The analog signal to be
filtered is fed through PORTA pin AN1. The code per-
forms computation on the input samples x[n] and gen-
erates one output sample y[n] each time one sample is
input through an A/D Interrupt Service Routine.

The filtered output samples y[n] are fed to the 16-bit
DAC constructed with PORTB (LS Byte) and PORTD
(MS Byte) outputs and the R-2R ladder network on the
PICDEM 2 demo board. Between each input (DA0-
DA15) and output (DA-OP), the R-2R ladder network
can be viewed as a voltage divider, which gives a fraction
of the input voltage at the output. The output voltage is
the sum of contributions of all the sixteen inputs.

The resistor values are such that the contribution at the
output due to each input is proportional to their bit
weightage. Therefore, the Least Significant bit (DA0)
gives the least contribution at the output and the Most
Significant bit (DA15) contributes highest and 215 times
more than the contribution of the Least Significant bit.
Equivalently, the output is the weighed sum of the input
bits. Therefore, it represents the equivalent analog
value of the digital word at PORTB and PORTD outputs.
Please note that a logic ‘1’ at PORTD7 produces a -5V
at Q1 collector (because transistor Q1 switches off),
unlike at other PORTD and PORTB pins, which produce
a 5V for logic ‘1’. This is because of the 2’s complement
notation used to represent the numbers.

The -5V for the transistor Q1 is to be supplied from an
external source because there is no -5V supply
available in the PICDEM 2 demo board.

The output from the DAC is then passed through a low-
pass filter, whose cut-off frequency is half the sampling
frequency. The final analog output is available at the
output of this low-pass filter.

FIGURE 8: TEST SETUP OF FIR/IIR FILTER

Note: Steps 1 through 8 are explained in greater
detail in Appendix C.
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Converter
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cascade) or FIR Filter
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0-5V swing
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FIGURE 9: CIRCUIT DIAGRAM FOR IMPLEMENTATION OF FIR AND IIR FILTERS
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Sampling and A/D Conversion

The analog signal to be filtered is input to the on-chip
PIC18C452 A/D Converter through PORTA pin AN1.
The A/D Converter outputs a digital number
representing the analog signal level in 8-bit unsigned
format. 

To sample the input analog signal at regular intervals,
CCP2 is used in Compare mode with a special event
trigger feature. The processor clock frequency is to be
entered for the value of clock_freq in the
expl_fir.asm or expl_iir.asm files. The sam-
pling rate of the input analog signal is determined by
the value entered for sample_freq in either the
expl_fir.asm or the expl_iir.asm files. The lit-
eral values comph and compl are computed (automat-
ically during compilation time) using sampling
frequency sample_freq and clock frequency
clock_freq and then loaded to registers CCPR2H and
CCPR2L, respectively.

The sampling rate of the input analog signal is con-
trolled by the value in the CCPR2H:CCPR2L register.
The CCP2 module that uses these registers is config-
ured to work as a compare module in Special Event
Trigger mode. In Compare mode, the 16-bit
CCPR2H:CCPR2L value is constantly compared
against the TMR1H:TMR1L value. TMR1 is configured
to work on the processor internal clock. When a match
occurs, an internal hardware trigger is generated. This
trigger resets the TMR1H:TMR1L register and starts
A/D conversion. This Trigger mode is known as
‘Special Event Trigger mode’.

Following are the advantages of using the CCP module
in Special Event Trigger mode.

1. Accurate sampling interval is maintained.
2. TMR1H:TMR1L is cleared automatically after

overflow.
3. GO bit is set automatically after TMR1H:TMR1L

overflow.
4. Had we used Timer1 without CCP module, 2

interrupt routines would have been required:
one for Timer1 overflow and the other for A/D
interrupt.

5. Because of the previous reasons, code length is
reduced which is very critical for signal
processing.

FIR Filter Performance

Filter coefficients were designed for a low-pass and a
high-pass filter, each of tap length 31. The coefficients
were input in the include file and the performance was
checked. The frequency response of these filters are
shown in Figure 10 and Figure 11, respectively. The
corresponding include files are shown in Example 3
and Example 4.
 2002 Microchip Technology Inc. DS00852A-page 15
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FIGURE 10: FREQUENCY RESPONSE OF LOW-PASS FILTER 500 Hz CUT-OFF

FIGURE 11: FREQUENCY RESPONSE OF HIGH-PASS FILTER 600 Hz CUT-OFF
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EXAMPLE 3: LOW-PASS FILTER (500 Hz CUT-OFF) INCLUDE FILE

;*****************************************************************************
;Low pass filter
;Sampling frequency 8000 Hz
;Number of taps 31
;Pass band ripple 1 dB
;Stop band attenuation 40dB
;Cut-off frequency 500 Hz
;Stop band frequency 600 Hz
;*****************************************************************************

 CONSTANT num_of_taps=D’31’ ;Enter the filter tap length here
 CONSTANT dist_to_last_tap=num_of_taps-1
 CONSTANT dist_to_prv_to_last_tap=num_of_taps-2
;define filter coeffs here

CONSTANT coeff0=0xf8 ;corresponds to the latest sample
CONSTANT coeff1=0xf0
CONSTANT coeff2=0xe9
CONSTANT coeff3=0xe5
CONSTANT coeff4=0xe5
CONSTANT coeff5=0xe9
CONSTANT coeff6=0xf2
CONSTANT coeff7=0x0
CONSTANT coeff8=0x12
CONSTANT coeff9=0x26
CONSTANT coeff10=0X3c
CONSTANT coeff11=0X51
CONSTANT coeff12=0X64
CONSTANT coeff13=0x72
CONSTANT coeff14=0x7c
CONSTANT coeff15=0x7f
CONSTANT coeff16=0x7c
CONSTANT coeff17=0x72
CONSTANT coeff18=0x64
CONSTANT coeff19=0x51
CONSTANT coeff20=0x3c
CONSTANT coeff21=0x26
CONSTANT coeff22=0x12
CONSTANT coeff23=0x0
CONSTANT coeff24=0xf2
CONSTANT coeff25=0xe9
CONSTANT coeff26=0xe5
CONSTANT coeff27=0xe5
CONSTANT coeff28=0xe9
CONSTANT coeff29=0xf0
CONSTANT coeff30=0xf8 ;corresponds to the oldest sample
 2002 Microchip Technology Inc. DS00852A-page 17
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EXAMPLE 4: HIGH-PASS FILTER (600 Hz CUT-OFF) INCLUDE FILE

;*****************************************************************************
;High pass filter
;Sampling frequency 8000 Hz
;Number of taps 31
;Pass band ripple 1 dB
;Stop band attenuation 40dB
;Cut-off frequency 600 Hz
;Stop band frequency 500 Hz
;*****************************************************************************

 CONSTANT num_of_taps=D’31’ ;Enter the filter tap length here
 CONSTANT dist_to_last_tap=num_of_taps-1
 CONSTANT dist_to_prv_to_last_tap=num_of_taps-2
;define filter coeffs here

CONSTANT coeff0=0xfe ;corresponds to the latest sample
CONSTANT coeff1=0xff
CONSTANT coeff2=0x01
CONSTANT coeff3=0x02
CONSTANT coeff4=0x04
CONSTANT coeff5=0x05
CONSTANT coeff6=0x05
CONSTANT coeff7=0x03
CONSTANT coeff8=0x01
CONSTANT coeff9=0xfe
CONSTANT coeff10=0Xf9
CONSTANT coeff11=0Xf5
CONSTANT coeff12=0Xf0
CONSTANT coeff13=0xed
CONSTANT coeff14=0xea
CONSTANT coeff15=0x7f
CONSTANT coeff16=0xea
CONSTANT coeff17=0xed
CONSTANT coeff18=0xf0
CONSTANT coeff19=0xf5
CONSTANT coeff20=0xf9
CONSTANT coeff21=0xfe
CONSTANT coeff22=0x01
CONSTANT coeff23=0x03
CONSTANT coeff24=0x05
CONSTANT coeff25=0x05
CONSTANT coeff26=0x04
CONSTANT coeff27=0x02
CONSTANT coeff28=0x01
CONSTANT coeff29=0xff
CONSTANT coeff30=0xfe ;corresponds to the oldest sample
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The observed execution times and the corresponding
maximum sampling frequencies for filter of tap
length 31 are shown in Table 7.

 

Table 8 lists the memory requirements for the 31 tap
filter.

TABLE 7: 31 TAP FILTER PERFORMANCE STATISTICS

num_of_mulacc ISR Execution Time
Maximum Sampling
Frequency Possible

MIPs Requirement at 
8 kHz Sampling 

Frequency

1 76.8 µsec 13.02 kHz 3.07

31 58 µsec 17.24 kHz 2.32

Note:  Processor clock frequency = 20 MHz.

TABLE 8: 31 TAP FILTER MEMORY REQUIREMENTS

num_of_mulacc Program Memory Locations Data Memory Locations

1 358 103

31 828 103
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IIR Filter Performance

Filter coefficients were designed for low-pass and high-
pass filters with three BIQUAD sections. The following
are the filter coefficients include files and response
plots of these filters.

EXAMPLE 5: LOW-PASS FILTER INCLUDE FILE 
;*********************************************************************
;Low pass Butterworth filter
;cut-off frequency 500 Hz
;*********************************************************************

;specify the number of biquad sections in the following line
CONSTANT NUMBER_OF_SECTIONS=3
;*******************SECTION 1*****************************************
CONSTANT a1_0=0X4
CONSTANT a1_1=0X9
CONSTANT a1_2=0X4

CONSTANT b1_1=0x3B0
CONSTANT b1_2=0XD2
CONSTANT YK1=D’0’ ;enter this value in decimal representation only
;*******************SECTION 2*****************************************
CONSTANT K2=0x40
CONSTANT a2_0=0X7
CONSTANT a2_1=0Xe
CONSTANT a2_2=0X7

CONSTANT b2_1=0X35b
CONSTANT b2_2=0X77
CONSTANT YK2=D’64’ ;enter this value in decimal representation only
;*******************SECTION 3*****************************************
CONSTANT K3=0x40
CONSTANT a3_0=0x7
CONSTANT a3_1=0XF
CONSTANT a3_2=0X7

CONSTANT b3_1=0X376
CONSTANT b3_2=0X94
CONSTANT YK3=D’62’ ;enter this value in decimal representation only
;*********************************************************************
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FIGURE 12: FREQUENCY RESPONSE OF LOW-PASS FILTER 500 Hz CUT-OFF 

EXAMPLE 6: HIGH-PASS FILTER INCLUDE FILE
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;*********************************************************************
;High pass Butterworth filter
;cut-off frequency 600 Hz
;sampling frequency 8000 Hz
;*********************************************************************

;specify the number of biquad sections in the following line
CONSTANT NUMBER_OF_SECTIONS=3
;*******************SECTION 1*****************************************
CONSTANT a1_0=0X6c
CONSTANT a1_1=0X2d7
CONSTANT a1_2=0X6c

CONSTANT b1_1=0x39b
CONSTANT b1_2=0Xcb
CONSTANT YK1=D’0’ ;enter this value in decimal representation only
;*******************SECTION 2*****************************************
CONSTANT K2=0x80
CONSTANT a2_0=0Xa8
CONSTANT a2_1=0X350
CONSTANT a2_2=0Xa8

CONSTANT b2_1=0X340
CONSTANT b2_2=0X66
CONSTANT YK2=D’0’ ;enter this value in decimal representation only
;*******************SECTION 3*****************************************
CONSTANT K3=0x80
CONSTANT a3_0=0xb6
CONSTANT a3_1=0X36c
CONSTANT a3_2=0Xb6

CONSTANT b3_1=0X35c
CONSTANT b3_2=0X85
CONSTANT YK3=D’0’ ;enter this value in decimal representation only
;*********************************************************************
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FIGURE 13: FREQUENCY RESPONSE OF HIGH-PASS FILTER 600 Hz CUT-OFF

Table 9 shows the execution time and the correspond-
ing maximum sampling frequency and MIPs for the
above filters.

The memory requirements for the above filters are as
follows.
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TABLE 9: IIR FILTER PERFORMANCE STATISTICS

Filter Execution Time
Average Execution 
Time Per BIQUAD 

Section

Maximum Sampling
Frequency Possible

MIPs at 8 kHz 
Sampling Rate

Low-pass
500 Hz cut-off

60.2 µs 20.07 µs 16.611 kHz 2.41

High-pass
600 Hz cut-off

61.2 µs 20.4 µs 16.339 kHz 2.448

Note: Processor clock frequency = 20 MHz.

TABLE 10: IIR FILTER MEMORY REQUIREMENTS

Filter Program Memory Locations Data Memory Locations

Low-pass
500 Hz cut-off

301 34

High-pass
600 Hz cut-off

306 34
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CONCLUSION

The software modules developed for FIR and IIR digital
filters have been optimized for the execution speed of
the PIC18 family of microcontrollers. For example, only
one quarter of the available 10 MIPs can be used for fil-
tering if a signal is sampled at the rate of 8 kHz, when
a 6th order IIR filter or a 31 tap FIR filter is realized. The
remaining MIPs are available to execute other applica-
tions as required by the user. Moreover, the software is
linkable and relocatable. 

Compile time options are provided to easily change the
number of filter taps (in case of FIR), or the order of the
filter (in case of IIR), sampling frequency, etc. There-
fore, the software modules can easily be used for a
variety of applications, such as filtering various kinds of
sensor outputs (where the sampling rate may be much
less than 8 kHz), as well as detecting some selected
frequency components present in a speech signal.
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APPENDIX A: DIGITAL FILTER 
BASICS

In signal processing, signals are often encountered that
contain unwanted information, such as random noise
or interference, or there is a need to selectively extract
a signal of interest merged with several other signals.
Filters are used in these situations to separate the
signals of interest from others.

Filters can be analog or digital. Analog filters use elec-
tronic circuits made from components, such as resis-
tors, capacitors, inductors and so forth, to produce the
required filtering effect. At all stages, the signal being
filtered is an electrical voltage or current, which is the
direct analogue of the physical quantity (e.g., a sound
or video signal or transducer output) involved.

A digital filter uses a digital processor to perform
numerical calculations on sampled values of the signal.
The processor may be a general purpose computing
machine, such as a PIC18 microcontroller or a
specialized DSP chip.

So that an analog signal in the form of voltage or cur-
rent can be filtered, it must be converted to digital num-
bers to perform computations. Therefore, an Analog-to-
Digital Converter (ADC) is used to transform the volt-
age or current to numbers. This process of converting
the signal to digital numbers involves two processes,
known as Sampling and Quantization. 

Sampling is the process of sensing the analog values
at discrete time intervals. Quantization is the process of
converting the sensed analog voltage to discrete val-
ues. Note that with quantization, the signal values are
approximated to a finite set of values. The value
obtained after sampling and quantization is referred to
as Sample Value. Do we need to convert all instanta-
neous values of an analog signal to numbers? If the
answer is yes, this is an impossible task. Fortunately
the answer is no, provided the signal satisfies certain
conditions. The Nyquist Sampling theorem states this
condition. 

According to this theorem, if the signal has frequency
components only up to a frequency of F Hz, then the
signal must be sampled at 2F times/sec or more to
prevent loss of signal information.

After sampling and quantization, the signal is in the
form of a sequence of numbers.

Let us now examine the effect of computation on the
sequence of numbers. Consider a sequence of num-
bers …, 1, 2, 1, 2, 1, 2, 1, …. This sequence represents
a triangular wave analog signal. If each sample value is
multiplied by the value k, this results in the sequence
…., k, 2k, k, 2k, k, ... By performing this computation,
the pattern of the sequence is not altered; however, the
values are being scaled, which may result in
amplification (for k>1) or attenuation (k<1).

The above computation is an example of an All-pass fil-
ter. This filter will pass all frequencies; therefore, the
input pattern is repeated as it is.

The input to output sample relation in the above
example can be represented by Equation A-1.

EQUATION A-1: TAP LENGTH 1 FILTER

Where x[n] represents nth input sample and y[n]
represents nth output sample. 

In this equation, we are considering only one input
sample to compute the present output sample. This is
a filter of tap length 1. There is only one filter coefficient
whose value is k.

In Equation A-1 only one sample value was used. Con-
sider the following example, where two previous sam-
ples will be used with one present sample, as shown in
Equation A-2. Because three input values are being
taken for computation, this is a filter of tap length 3.

EQUATION A-2: TAP LENGTH 3 FILTER 

The result of Equation A-2 gives a sequence of num-
bers that will fluctuate with the average value of the
previous two samples and one present sample. If there
is riding noise over a signal envelope, as shown in
Figure A-1, then this computation can remove the
riding noise by means of averaging, as shown in
Figure A-2.

The filter coefficients for this example are 1/3, 1/3, 1/3.

FIGURE A-1: SIGNAL ENVELOPE WITH 
NOISE

Instead of two previous samples, if a large number of
previous samples are considered, then the output
sequence of numbers will almost remain constant,
which represents the D.C. component of the input
signal. This computation results in a low-pass filter. 

y[n] = k * x[n]

                3               3                3                y[n] =    x[n–2] +    x[n–1] +   x[n]
                1               1                1
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At this point, two specific digital filter examples have
been considered. Now we will generalize the above
examples of digital filters.

A digital filter, in its most general form, takes in an input
sequence of numbers x[n], performs computations on
these numbers and outputs results of these computa-
tions as another sequence of numbers y[n]. In general,
the output sequence of numbers can be expressed as
shown in Equation A-3.

EQUATION A-3: FILTER OUTPUT 
SEQUENCE

FIGURE A-2: SIGNAL ENVELOPE WITH 
NOISE AVERAGED OUT

Note that along with the present and previous input
samples, we have included the previous output sam-
ples (i.e., y[n-1], y[n-2] …) also in the computation of
present output sample. This is further discussed in
"Types of Digital Filters".

To form an equivalent to an analog filter, the input
sequence of numbers is derived by passing the analog
signal (to be filtered) through an ADC, as discussed
earlier. Normally, an anti-aliasing filter (must be an ana-
log filter) precedes the ADC to remove all frequencies
above the 1/2 of sampling frequency. The output
sequence y[n] is converted to an analog signal by a
DAC, followed by a low-pass filter. A general form of
signal processing using digital filter is illustrated in
Figure A-3. The computation performed on the sam-
pled values decides the characteristics of the filter. 

Digital filters offer the following advantages over their
analog counterparts:

1. A digital filter is programmable (i.e., its operation
is determined by program stored in a processors
memory). This means the digital filter can easily
be changed without affecting the circuitry (hard-
ware). An analog filter can only be changed by
redesigning the filter circuit.

2. Digital filter performance is repeatable and
reliable. 

3. Requires no tuning components.
4. Free from component drift.

5. Does not require precision components.
6. Superior performance.
7. Digital filters are very versatile in their ability to

process signals in a variety of ways; this
includes the ability of some types of digital filters
to adapt to changes in the characteristics of the
signal. 

However, the dynamic range of digital filters is drasti-
cally low compared to analog filters because of the
finite quantization of levels.

FIGURE A-3: SIGNAL PROCESSING USING A DIGITAL FILTER

y[n] = a0x[n] + a1x[n–1] + .... + aMx[n–M] + b1y[n–1] + 
    b2y[n–2] + .... + bNy[n–N]

ADC Processor DAC

Unfiltered
Analog
Signal

Sampled
Digitized
Signal

Digitally
Filtered
Signal

Filtered
Analog
Signal

V

t
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Types of Digital Filters

Generally, y[n] is computed as the sum of weighed
present and previous input samples and previous
output samples, as shown in Equation A-4.

EQUATION A-4: FILTER COMPUTATION

Where a0, a1, ... aM and b1, b2, ... bN are constants and
referred to as filter coefficients. M+1 and N are the
number of input and output samples used for
computation.

If b1 through bN are all zeros, then y[n] does not depend
on the previous output samples (i.e., there is no feed-
back). In this case, this type of filter is termed as a
Finite Impulse Response (FIR) filter. Since there is no
feedback term if the input sequence stops (i.e., x[n]’s
become zeros), then y[n]’s also will become zeros after
some delay. If any one of the coefficients b1 through bN
are non-zero, the filter is called an Infinite Impulse
Response (IIR) filter. For the FIR filter, the sequence of
coefficients a0, a1, .. aM also represent the response of
the filter for a unit impulse (also called an impulse
response).

The advantages of FIR filters are:

• They can be designed to have linear phase 
response with respect to frequency, whereas IIR 
filters do not have linear phase response.

• They are always stable, unlike IIR filters.

The disadvantages of FIR filters over IIR filters are:

• FIR filters take relatively more memory and 
computation time.

• FIR filters cannot give sharper cut-off than IIR 
filters for the same number of filter coefficients.

As stated above, FIR filters can achieve perfect phase
linearity.

FIR filters having phase linearity are referred to as Lin-
ear Phase FIR filters. The impulse response (or filter
coefficients) of Linear Phase FIR filters is either sym-
metric or anti-symmetric (as shown in Figure A-4). If
the impulse response is symmetric and there is an odd
number of coefficients, the filter is referred to as a Type
1 filter. If the impulse response is symmetric and the
number of coefficients is even, then the filter is called a
Type 2 filter. Likewise, if the impulse response is anti-
symmetric and the number of coefficients is odd or
even, these filters are referred to as Type 3 or Type 4
filters, respectively.

FIGURE A-4: FILTER RESPONSE TYPES

y[n] = a0x[n] + a1x[n–1] + .... + aMx[n–M] + b1y[n–1]+ 
    b2y[n–2] + .... + bNy[n–N]

Type 1 FIR Filter Response

Type 2 FIR Filter Response

Type 3 FIR Filter Response

Type 4 FIR Filter Response
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FIR Filter Design Methods

The following three methods are commonly used for
FIR filter design:

• Fourier Series
• Frequency Sampling

• Remez Exchange

FOURIER SERIES

This method is based on the fact that the frequency
response of a digital filter is periodic. Therefore, a digi-
tal filter can be expanded in the form of Fourier Series.
Because this series contains an infinite number of
terms, the expansion is truncated to a finite number of
terms. The coefficients of these terms are then used as
filter coefficients. However, because of truncation, the
filter characteristics may change. To prevent this, the
filter response must be determined using these coeffi-
cients and compared with the expected response. If the
results are not satisfactory, the number of terms are
increased and the iteration is repeated until the
expected response is achieved.

Because of the finite number of terms of expansion, the
frequency response exhibits overshoots and under-
shoots near the regions of cut-off frequency, which is
known as Gibbs phenomenon. To avoid this, the trun-
cated coefficients are multiplied by a set of coefficients
known as Window Function (e.g., Kaiser, Bartlett,
Hamming, and so on). 

FREQUENCY SAMPLING

In the Fourier Series method, the desired frequency
response is specified in continuous frequency domain.
In contrast, in the Frequency Sampling method, the
desired frequency response is specified in discrete fre-
quency domain. Inverse discrete Fourier transform is
then used to obtain the filters impulse response or filter
coefficients.

REMEZ EXCHANGE

This method minimizes the maximum error between
the desired frequency response and the actual fre-
quency response. Filters designed with this method
meet the given specification with the lowest filter order.

IIR Filter Design Methods

The common method of designing an IIR filter is as fol-
lows. The transfer function H(S) of an analog filter is
derived for the required specifications. This transfer
function is then converted to Z domain (H(Z)), which
represents the Z transform of the transfer function of
the desired digital filter. The conversion from S domain
to Z domain can be done by any of the following
methods:

• Impulse Invariant
• Step Invariant

• Bilinear Transformation
• Matched Z

IMPULSE INVARIANT

In this method, the S domain transfer function is con-
verted to time domain impulse response f(t). From f(t),
the digital filter impulse response is derived, where the
value of the digital filter impulse response is equal to
the value of the analog filter impulse response at time
intervals T, i.e., h[n]=f(nT).

The impulse response is then converted to transfer
function in Z domain by taking Z transform of h(n), as
shown in Equation A-5.

EQUATION A-5: IMPULSE RESPONSE 
CONVERSION

STEP INVARIANT

This method is similar to the Impulse Invariant method,
except the step response is used instead of impulse
response.

BILINEAR TRANSFORMATION

The S in the continuous transfer function is substituted
with the Z expression below to create the transfer
function of the digital filter, S = 2(Z-1) / T(Z+1).

The resulting expression for H(Z) is independent of T
because T gets cancelled out.

MATCHED Z

In this method, the poles and zeros of the transfer func-
tion H(S) are mapped directly to poles and zeros of the
transfer function H(Z) by substituting terms (S+a) with
1-e-aTZ-1. For example, a pole/zero at s = -a is mapped
to pole/zero at e-aT.

H Z( ) h k[ ]Z k–

0

∞

∑=
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APPENDIX B: FIR FILTER INCLUDE 
FILE PREPARATION 
EXAMPLE

In the following example, a freeware program (see
Appendix F) was used to design coefficients for a FIR
low-pass filter with the following specifications:

• Sampling frequency: 8000 Hz

• Pass-band frequency: 3000 Hz
• Stop-band frequency: 3300 Hz
• Pass-band ripple: 2 db

• Stop-band attenuation: 40 db

Figure B-1 provides a visual representation of the rela-
tionships between each of the parameters and the filter
that is being designed.

FIGURE B-1: FILTER PARAMETER 
RELATIONSHIPS

The required specifications were entered in the coeffi-
cient generation freeware. Table B-1 lists the resulting
coefficients.

Pass-band Freq

Pass-band Ripple

Stop-band
Attenuation

Stop-band 

Magnitude
dB

Freq

Freq

TABLE B-1: INITIAL FILTER 
COEFFICIENTS

H[0] 0.004667

 H[1] 0.056084

H[2] 0.018875

H[3] -0.026130

H[4] 0.025119

H[5] -0.016081

H[6] -0.001788

H[7] 0.023866

H[8] -0.040989

H[9] 0.042084

H[10] -0.019634

H[11] -0.027082

H[12] 0.089986

H[13] -0.153881

H[14] 0.201432

H[15] 0.781025

H[16] 0.201432

H[17] -0.153881

H[18] 0.089986

H[19] -0.027082

H[20] -0.019634

H[21] 0.042084

H[22] -0.040989

H[23] 0.023866

H[24] -0.001788

H[25] -0.016081

H[26] 0.025119

H[27] -0.026130

H[28] 0.018875

H[29] 0.056084

H[30] 0.004667
DS00852A-page 28  2002 Microchip Technology Inc.



AN852
The initial filter coefficients received are then trans-
lated, so that the maximum value maps to 127 and the
translated values are rounded to the nearest integer.
Table B-2 lists the translated filter coefficients and the
corresponding HEX code. The HEX values are then
entered into the include file and used to implement the
FIR filter.

TABLE B-2: TRANSLATED FILTER 
COEFFICIENTS

Filter 
Coefficient

Translated 
Integer Value

HEX Code

H[0] 1 01

H[1] 9 09

H[2] 3 03

H[3] -4 FC

H[4] 4 04

H[5] -3 FD

H[6] 0 00

H[7] 4 04

H[8] -7 F9

H[9] 7 07

H[10] -3 FD

H[11] -4 FC

H[12] 15 0F

H[13] -25 E7

H[14] 33 21

H[15] 127 7F

H[16] 33 21

H[17] -25 E7

H[18] 15 0F

H[19] -4 FC

H[20] -3 FD

H[21] 7 07

H[22] -7 F9

H[23] 4 04

H[24] 0 00

H[25] -3 FD

H[26] 4 04

H[27] -4 FC

H[28] 3 03

H[29] 9 09

H[30] 1 01
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The following include file was created using the HEX
values from Table B-2.

EXAMPLE B-1: FIR FILTER INCLUDE FILE

CONSTANT num_of_taps=D'31’ ;Enter the filter tap length here 
CONSTANT dist_to_last_tap=num_of_taps-1
CONSTANT dist_to_prv_to_last_tap=num_of_taps-2
;define filter coeffs here
CONSTANT coeff0=0x01 ;corresponds to the latest sample
CONSTANT coeff1=0x09
CONSTANT coeff2=0x03
CONSTANT coeff3=0xfc
CONSTANT coeff4=0x04
CONSTANT coeff5=0xfd
CONSTANT coeff6=0x00
CONSTANT coeff7=0x04
CONSTANT coeff8=0xf9
CONSTANT coeff9=0x07
CONSTANT coeff10=0xfd
CONSTANT coeff11=0xfc
CONSTANT coeff12=0x0f
CONSTANT coeff13=0xe7
CONSTANT coeff14=0x21
CONSTANT coeff15=0x7f
CONSTANT coeff16=0x21
CONSTANT coeff17=0xe7
CONSTANT coeff18=0x0f
CONSTANT coeff19=0xfc
CONSTANT coeff20=0xfd
CONSTANT coeff21=0x07
CONSTANT coeff22=0xf9
CONSTANT coeff23=0x04
CONSTANT coeff24=0x00
CONSTANT coeff25=0xfd
CONSTANT coeff26=0x04
CONSTANT coeff27=0xfc
CONSTANT coeff28=0x03
CONSTANT coeff29=0x09
CONSTANT coeff30=0x01 ;corresponds to the oldest sample
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APPENDIX C: IIR FILTER INCLUDE 
FILE PREPARATION 
EXAMPLE

For this example, we’ll assume that we want an IIR
Butterworth high-pass filter with the following
specifications:

• Sampling frequency: 8000 Hz

• Cut-off frequency: 500 Hz
• Stop-band frequency: 200 Hz
• Pass-band ripple: 1 db

• Stop-band attenuation: 40 db

The coefficients in this example were designed using
public domain freeware (see Appendix F).

Using the above specifications, the following
coefficients are obtained for a sixth order filter.

Determining Peak Gain

Using the coefficients for each BIQUAD section, we can
now determine the peak gains gc1, gc2, and gc3 by
plotting frequency response. The frequency response
plots shown in Figure C-1, Figure C-2 and Figure C-3
were created using a freeware program (see
Appendix F).

As seen from these figures, the peak gains for sections
1, 2, and 3 are gc1=0.6941, gc2=0.6475 and
gc3=1.139, respectively.

TABLE C-1: FIR FILTER COEFFICIENTS

Section Coefficient Decimal Value

1

a1_0 0.5000000000000

a1_1 -1.000000000000

a1_2 0.5000000000000

b1_1 -1.408666209103

b1_2 0.5005623325360

2

a2_0 0.5000000000000

a2_1 -1.000000000000

a2_2 0.5000000000000

b2_1 -1.509681989763

b2_2 0.6081680055271

3

a3_0 0.5000000000000

a3_1 -1.000000000000

a3_2 0.5000000000000

b3_1 -1.723786170135

b3_2 0.8362395431481
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FIGURE C-1: SECTION 1 FREQUENCY RESPONSE

FIGURE C-2: SECTION 2 FREQUENCY RESPONSE

AMPLITUDE RESPONSE
6.941

6.240

5.539

4.838

4.127

3.436

2.735

2.034

1.333

0.632

-0.069

0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500

Frequency, rad/s x 10^ 4

G
ai

n 
x 

10
^-

1

AMPLITUDE RESPONSE
6.475

5.521

5.167

4.513

3.259

3.205

2.551

1.897

1.243

0.529

-0.065

0.000 0.250 0.500 0.750 1.000 1.250 1.500 1.750 2.000 2.250 2.500

Frequency, rad/s x 10^ 4

G
ai

n 
x 

10
^-

1

DS00852A-page 32  2002 Microchip Technology Inc.



AN852
FIGURE C-3: SECTION 3 FREQUENCY RESPONSE
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Coef Modifier

Use the spreadsheet ‘coef modifier’ (see Figure C-4) to
calculate the gain normalized filter coefficients (a1_0,
a1_1, a1_2, etc.) and output offset correction (YK1,
YK2, etc.). 

1. Open ‘coef modifier’. 

2. Enter the coefficients and peak gains previously
obtained into their respective cells in the
spreadsheet.

3. Select input offset values K2, K3, etc., so that
the input values to each BIQUAD section never
go negative.

Using the coefficients a1_0, a1_1, etc., an include file
(see Figure 1) can be created.

FIGURE C-4: COEF MODIFIER SPREADSHEET
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EXAMPLE C-1: HIGH-PASS BUTTERWORTH FILTER INCLUDE FILE

;*********************************************************************
;High pass Butterworth filter
;sampling frequency 8000 Hz
;Cut-off frequency 500 Hz
;Stop band frequency 200 Hz
;Pass band ripple 1 dB
;Stop band attenuation 40 dB
;*********************************************************************
;specify the number of biquad sections in the following line
CONSTANT NUMBER_OF_SECTIONS=3
;*******************SECTION 1*****************************************
CONSTANT a1_0=0XB8
CONSTANT a1_1=0X371
CONSTANT a1_2=0XB8

CONSTANT b1_1=0x369
CONSTANT b1_2=0X80
CONSTANT YK1=D’0’ ;enter this value in decimal representation only
;*******************SECTION 2*****************************************
CONSTANT a2_0=0XC6
CONSTANT a2_1=0X38B
CONSTANT a2_2=0XC6

CONSTANT b2_1=0X382
CONSTANT b2_2=0X9C
CONSTANT K2=128
CONSTANT YK2=D’5’ ;enter this value in decimal representation only
;*******************SECTION 3*****************************************
CONSTANT a3_0=0X70
CONSTANT a3_1=0X2E1
CONSTANT a3_2=0X70

CONSTANT b3_1=0X3B9
CONSTANT b3_2=0XD6
CONSTANT K3=128
CONSTANT YK3=D’-4’ ;enter this value in decimal representation only
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APPENDIX D: EXAMPLE PROGRAMS

FIR Filter Program (expl_fir.asm)

;FIR filter program example expl_fir.asm
list p=18c452 ;specifies the processor used.
#include<p18c452.inc>
#include<coef.inc> ;This defines filter characteristics.

;Enter number of taps and filter coefficients in
;this file.

CONSTANT IN_PORT=RA1 ;Enter the input port used. Options available
;are RA1,RA2,RA3,RA4,RA5,RA6

CONSTANT OUT_PORT_HIGH=PORTD ;Enter the output port used for Most
;significant byte. Options available are
;PORTB, PORTC and PORTD.

CONSTANT OUT_PORT_LOW=PORTB ;Enter the output port used for least
;significant byte. Options available are
;PORTB, PORTC and PORTD.
;Do not use the same port used for 
;OUT_PORT_HIGH.

CONSTANT INPUT=ADRESH ;Enter the source register of I/P samples to
;the filter

;**********************************************************************************
;The value assigned to this constant ’num_of_mulacc’ determines the number of MULACC 
;routines used in software loop. The idea of providing this is to give the user a 
;flexibility for a trade-off between number of program memory locations used and the 
;execution time of interrupt service routine. Higher the value of this number lower 
;the execution time and hence higher the maximum usable sampling frequency. The value 
;of this constant can range from 1 to num_of_taps.
CONSTANT num_of_mulacc=D’31’
;**********************************************************************************
CONSTANT sample_freq=D’8000’ ;Enter the desired sample frequency
CONSTANT clock_freq=D’20000000’ ;Enter the processor clock frequency

#include port.inc ;sets up ports
;Note:- Pins RA0-RA6 defined as analog i/p
;ports in this file. User can modify this file
;if any of RA’s is to be used as digital i/o’s

#include fir_buf.inc ;Defines buffer spaces for FIR filter
;----------------------------------------------------------------------------------
;user memory assignments
;----------------------------------------------------------------------------------

#include fir_mac.inc ;includes FIR filter macros
#include peri.inc ;peripheral initialization macros
#include int.inc ;interrupt settings macro

CODE 0x0
rst

goto start

int_hi CODE 0x8
goto int_service_hi

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller
products.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
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int_low CODE 0x18
goto int_service_low

main CODE 

start
INIT_PERIPHERALS ;Initializes peripherals

;**********************************************************************************
;user can enter code here to set interrupts he is using
;Note: interrupt priority is enabled and all user interrupts should be assigned low
;priority.
;**********************************************************************************

SET_INTR_FILTER ;Sets interrupt settings for filter 
INIT_FILTER ;Initializes filter buffers.

bsf T1CON,TMR1ON ;Now that every thing is set timer is switched
;on now to begin sampling.

;**********************************************************************************
;user’s code can be entered here
;**********************************************************************************

goto $

int_service_hi
bcf PIR1,ADIF ;clears A/D interrupt flag

FIR_FILTER ;Filters the signal supplied through INPUT.
;filtered o/p (24 bit 2’s complement) 
;available in locations output_most, output_middle 
;and output_least.

rlcf output_least,W ;filtered o/p shifted left to get a gain of 2
movwf OUT_PORT_LOW ;and output on output ports
rlcf output_middle,W ;
movwf OUT_PORT_HIGH ;
retfie FAST ;

;**********************************************************************************
int_service_low
;Users  interrupt service routine

retfie ;
;**********************************************************************************

END
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IIR Filter Program (expl_iir.asm)

;IIR filter program example expl_iir.asm
list p=18c452 ;specifies the processor used.
#include<p18c452.inc> ;
#include<coef.inc> ;This defines filter characteristics. Enter number

;of BIQUAD sections used, filter coefficients for
;each BIQUAD section, input offsets(K’s) and output
;corrections (YK’s) in this file.

CONSTANT IN_PORT=RA1 ;Enter the input port used. Options available are
;RA1,RA2,RA3,RA4,RA5,RA6 

CONSTANT OUT_PORT_HIGH=PORTD ;Enter the output port used for Most significant
;byte. Options available are PORTB, PORTC and
;PORTD.

CONSTANT OUT_PORT_LOW=PORTB ;Enter the output port used for least significant
;byte. Options available are PORTB, PORTC and
;PORTD.
;Do not use the same port used for OUT_PORT_HIGH.

CONSTANT INPUT=ADRESH ;Enter the source register of I/P samples to the
;filter

CONSTANT sample_freq=D’8000’ ;Enter the desired sample frequency
CONSTANT clock_freq=D’20000000’ ;Enter the processor clock frequency

#include port.inc ;sets up ports 
;Note:- Pins RA0-RA6 defined as analog i/p ports in
;this file. User can modify this file if any of
;RA’s is to be used as digital i/o's

#include iir_buf.inc ;defines buffers for filter
;----------------------------------------------------------------------------------
;user memory assignments
;----------------------------------------------------------------------------------

#include iir_mac.inc ;includes iir filter macros
#include peri.inc ;peripheral initialization macros
#include int.inc ;interrupt settings 

CODE 0x0
rst

goto start

int_hi CODE 0x8
goto int_service_hi

int_low CODE 0x18
goto int_service_low

main CODE 

start
INIT_PERIPHERALS ;Initializes peripherals

;**********************************************************************************
;user can enter code here to set interrupts he is using note interrupt priority is
;enabled and all user interrupts should be assigned low priority.
;**********************************************************************************

SET_INTR_FILTER ;Sets interrupt settings for filter 
INIT_FILTER ;Initializes filter buffers.

bsf T1CON,TMR1ON ;Now that every thing is set timer is switched on
;now to begin sampling.

;**********************************************************************************
;user's code can be entered here
;**********************************************************************************

goto $

int_service_hi
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here bcf PIR1,ADIF ;clears A/D interrupt flag

IIR_FILTER ;Filters the signal supplied through INPUT.
;filtered o/p (32 bit 2’s complement) available in 
;locations sum, sum+1, sum+2 and sum+3.

there rlcf sum+2,W ;filtered o/p shifted left to get a gain of 
movwf OUT_PORT_LOW ;2 and output on output ports
rlcf sum+1,W ;
movwf OUT_PORT_HIGH ;
retfie FAST ;

;**********************************************************************************
int_service_low
;Users  interrupt service routine

retfie ;
;**********************************************************************************

END
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APPENDIX E: FLOW CHARTS

FIGURE E-1: MAIN ROUTINE OF FIR FILTER

Configure OUT_PORT_HIGH and
OUT_PORT_LOW as output ports.
Configure IN_PORT as input port.

Clear TMR1H:TMR1L.
Configure CCP2 module for compare in

Special Event Trigger mode.
Configure A/D Converter.

Clear buf0 and buf1.
Initialize X[n]’s to zeros.

Initialize FSR0 to point to beginning of buf0.
Initialize FSR1 to point to beginning of buf1.

Initialize FSR2 to point to first coefficient.

Store (filter coefficients+128)
in RAM area coeff.

Enable interrupt priority level.
Assign low priority for all interrupts

except A/D interrupt.
Enable high priority interrupt.

Switch on Timer1.

Wait

Start
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FIGURE E-2: INTERRUPT SERVICE ROUTINE OF FIR FILTER

Clear A/D Interrupt Flag

Has FSR1 reached 
the bottom of buf1?

Reset FSR0 and FSR1
to top of buf0 and buf1

respectively

Yes

No

Subtract oldest sample
value from X[n]

Write A/D conversion
result into locations
pointed to by FSR0

and FSR1

Add latest sample
value to X[n]

Set FSR2 to point
to coeff

Clear output result
registers

Multiply filter coeff with
input samples and add

products to get y’[n]

Subtract X[n] from y’[n]
to get y[n]

Output y[n] on the
output port

Return from Interrupt
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FIGURE E-3: MAIN ROUTINE OF IIR FILTER FIGURE E-4: INTERRUPT SERVICE 
ROUTINE OF IIR FILTER 
(3 BIQUADS) 

Wait

Enable interrupt priority level.
Assign low priority for all interrupts

except A/D interrupt.
Enable high priority interrupt.

Switch on Timer1.

Clear x[n]’s for first BIQUAD section.
For BIQUAD sections other than the first,

initialize x[n]’s with Ki’s.
For BIQUAD sections other than the first,

initialize y[n]’s with YKi’s.

Configure OUTPUT_PORT_HIGH and
OUTPUT_PORT_LOW as output ports.
Configure IN_PORT as input port.

Clear TMR1H:TMR1L.
Configure CCP2 module for compare

in Special Event Trigger mode.
Configure A/D Converter.

Start

Return from Interrupt

Output y[n] on
the output port

Correct for input offset of this section
y[n]=y3[n]–Y3K

Compute
y3[n]=a3_0*x3[n]+a3_1*x3[n–1]+a3_2

*x3[n–2]–b3_1*y3[n–1]–b3_2*y3[n–2]

Correct for input offset of this section
and add input offset of next section

x3[n]=y2[n]–Y2K+K3

Compute
y2[n]=a2_0*x2[n]+a2_1*x2[n–1]+a2_2

*x2[n–2]–b2_1*y2[n–1]–b2_2*y2[n–2]

Correct for input offset of this section
and add input offset of next section

x2[n]=y1[n]–Y1K+K2

Clear A/D Interrupt Flag

Compute
y1[n]=a1_0*x[n]+a1_1*x[n–1]+a1_2
*x[n–2]–b1_1*y1[n–1]-b1_2*y[n–2]
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APPENDIX F: REFERENCES

Following are the Worldwide web sites where digital fil-
ter design and coefficient generation freeware refer-
enced in this application can be obtained (users
assume any risk associated with using freeware from
these sites):

• http://www.eliteeng.com/downloads.htm

(Digital filter coefficient generation program)

• http://www.cmsa.wmin.ac.uk/filter_design.html
(CMSA filter designer)

• http://www.hta-bi.bfh.ch/CPG/software/dsplay.html
(Digital signal processing experimentation freeware)

• http://membres.lycos.fr/yannstrc/download.html

(BIQUAD coefficient generator)

• http://www.ece.uvic.ca/~cathy/PCsoftware/
(Digital filter designer/analyzer)

APPENDIX G: SOURCE CODE

Due to size considerations, the complete source code
for this application note is not included in the text.

You can download the source code, which includes
the spreadsheet ‘coef modifier’ from the Microchip
web site at:

www.microchip.com
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