INTRODUCTION

Bipolar low dropout regulators (LDOs) have become common place in a variety of portable applications, such as cell phones, pagers and PDAs. Their popularity stems from small packaging, high output current capability and precision output voltage specifications. However, the bipolar process technology from which these devices are fabricated brings inherent disadvantages, such as excessive supply current. This application note outlines the advantages of small geometry CMOS LDOs over bipolar LDOs and provides comparative test data of key regulator specifications for a popular pin-compatible bipolar LDO over Microchip’s CMOS LDOs.

SUPPLY CURRENT: CMOS VS. BIPOLAR

Figure 1(A) and Figure 1(B) compare the block diagram for a common bipolar regulator with that of an equivalent regulator fabricated in CMOS. The supply current to the bipolar device is composed of the bias current, plus a “ground current” (IGND) component shown in Figure 1(A). This is a fraction of the output current (determined by the hFE of the pass transistor) sunk through the output stage of the error amplifier. The “ground current” component of the CMOS regulator shown in Figure 1(B) is virtually zero, due to the extremely large drain-to-gate impedance of the CMOS pass transistor.

Another bipolar LDO pitfall occurs when a battery supplies V_{IN} and approaches a “low” condition. If the battery voltage is just below the level required to satisfy the minimum dropout voltage, the bipolar LDO responds by driving its PNP pass transistor as hard as possible in a fruitless attempt to restore V_{OUT} within regulation. This action causes a substantial increase in ground current, driving it as high as several milliamps. In turn, this causes an even greater load on the battery and further depresses battery voltage. This continues until the battery is exhausted.

FIGURE 1: Bipolar vs. CMOS LDO Regulator Schematics.
MICROCHIP’S CMOS LDO FAMILY

The CMOS LDO family from Microchip offers fixed and adjustable outputs with output currents of 50 mA, 100 mA and 300 mA in packages as small as the SOT-23A-5 (see Table 1). They're equipped with an ERROR output, a reference Bypass and Shutdown inputs in various combinations. The ERROR pin is an open-drain output which is normally high, but goes low when the LDO output falls 5% out of regulation. When the SHUTDOWN input is pulled low, the regulator’s circuitry is turned off and the supply current of the LDO drops to 0.5 µA (max). The Bypass input provides a means to add a capacitor to the LDO’s internal reference for lower noise operation. The Bypass pin may be left unconnected, if desired.

TABLE 1: MICROCHIP CMOS LDO FAMILY

<table>
<thead>
<tr>
<th>Device</th>
<th>Maximum Output Current (mA)</th>
<th>Adjustable Output</th>
<th>ERROR Output</th>
<th>BYPASS Input</th>
<th>SHDN Input</th>
<th>Package</th>
<th>V_DROPOUT @ Max I_OUT (Typ. mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1014</td>
<td>50</td>
<td>Note 1</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>85</td>
</tr>
<tr>
<td>TC1015</td>
<td>100</td>
<td>Note 1</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>180</td>
</tr>
<tr>
<td>TC1185</td>
<td>150</td>
<td>Note 1</td>
<td>—</td>
<td>X</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>270</td>
</tr>
<tr>
<td>TC1054</td>
<td>50</td>
<td>Note 1</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>85</td>
</tr>
<tr>
<td>TC1055</td>
<td>100</td>
<td>Note 1</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>180</td>
</tr>
<tr>
<td>TC1186</td>
<td>150</td>
<td>Note 1</td>
<td>X</td>
<td>—</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>270</td>
</tr>
<tr>
<td>TC1070</td>
<td>50</td>
<td>X (Note 2)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>85</td>
</tr>
<tr>
<td>TC1071</td>
<td>100</td>
<td>X (Note 2)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>180</td>
</tr>
<tr>
<td>TC1187</td>
<td>150</td>
<td>X (Note 2)</td>
<td>—</td>
<td>—</td>
<td>X</td>
<td>SOT-23A-5</td>
<td>270</td>
</tr>
<tr>
<td>TC1072</td>
<td>50</td>
<td>Note 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>SOT-23A-6</td>
<td>85</td>
</tr>
<tr>
<td>TC1073</td>
<td>100</td>
<td>Note 1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>SOT-23A-6</td>
<td>180</td>
</tr>
</tbody>
</table>

Note 1: Fixed Voltage Outputs available at 2.5, 2.7, 2.85, 3.0, 3.3, 3.6, 4.0 and 5.0 Volts (contact factory for custom voltages).

Note 2: Outputs may be adjusted from 2.2V to V_IN.

MICROCHIP VS. BIPOLAR: TEST RESULTS

The performance of Micrel’s MIC5205-3.0 LDO was compared in a side-by-side bench test with Microchip’s TC1015-3.0 CMOS LDO (both are 3V fixed output regulators). The devices have compatible pinouts and exhibited comparable performance with a few key exceptions.

Supply Current

The circuit shown in Figure 2 was used to measure supply current. Supply current was measured with a 100 µA load, a 50 mA load and a 100 mA load at 25°C. The results are summarized in Table 2. As outlined earlier, the supply current for the bipolar device consists of both a quiescent (bias) current and a larger “ground current” component. When the output current is at 100 mA, the bipolar LDO has a significantly higher supply current when compared to the Microchip CMOS LDO.

FIGURE 2: Measuring Supply Current and Dropout Voltage.
TABLE 2: SUPPLY CURRENT COMPARISON

<table>
<thead>
<tr>
<th>Device</th>
<th>(I_{5}) (µA) at (TA = 25^\circ C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I_{OUT} = 100 \mu A)</td>
</tr>
<tr>
<td>TC1015</td>
<td>50.3</td>
</tr>
<tr>
<td>MIC5205</td>
<td>77.2</td>
</tr>
</tbody>
</table>

Dropout Voltage

The circuit shown in Figure 2 was used to measure dropout voltage with loads of 100 µA, 10 mA, 50 mA and 100 mA at 25°C. The dropout is defined as the voltage difference from \(V_{IN} \) to \(V_{OUT} \) at the given load, with \(V_{OUT} \) at 2% below the nominal value. The results are summarized in Table 3. The TC1015 has better dropout performance for 100 µA, 10 mA and 50 mA loads. As noted earlier, the maximum current rating for the MIC5205 is 150 mA, versus 100 mA for the TC1015.

TABLE 3: DROPOUT VOLTAGE COMPARISON

<table>
<thead>
<tr>
<th>Device</th>
<th>(V_{DROPOUT}) (mV) at (TA = 25^\circ C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(I_{OUT} = 100 \mu A)</td>
</tr>
<tr>
<td>TC1015</td>
<td>2</td>
</tr>
<tr>
<td>MIC5205</td>
<td>5</td>
</tr>
</tbody>
</table>

Load Transient Response

The test circuit of Figure 3 was used to measure the LDO’s response to a 100 µA to 100 mA load transient, with measurements being made at 25°C. The results summarized in Table 4 were derived from estimating recovery times shown in the oscilloscope Figure 4 to Figure 9. Figure 4 shows the response of the MIC5205 (trace 1) and TC1015 (trace 2) to a 100 µA to 100 mA load step change. Trace 3 is the signal used to switch the 100 mA load, as shown in the circuit in Figure 3. The 100 mA load is switched on for 200 µsec and off for 800 µsec (in order to view the TC1015, the scope’s gain and time base will change in Figure 5 to Figure 9). The MIC5205 has not resumed normal regulation (800 µsec) after the 100 mA load is removed and produces a 1.4V output spike that is roughly 100 µsec wide when the load is switched on again.

TABLE 4: DROPOUT VOLTAGE COMPARISON

<table>
<thead>
<tr>
<th>Device</th>
<th>100 µA to 100 mA Recovery Time (µsec)</th>
<th>100 µA to 100 mA Recovery Time (µsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC1015</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>MIC5205</td>
<td>20</td>
<td>>1000</td>
</tr>
</tbody>
</table>

FIGURE 3: Load Transient Response Test Circuit.

FIGURE 4: 100 mA Load Transient, both LDOs.
As shown in Figure 5, the recovery time of the MIC5205 improves if the 470 pF bypass capacitor (used to improve output noise characteristics) is removed. Even with the bypass capacitor removed, when the 100 mA load is switched on, there is a 0.9V spike roughly 20 µsec wide (see Figure 6). It is likely that a larger output capacitor will be required.

Figure 7 and Figure 8 show the response of the TC1015 to the same 100 µA to 100 mA step change. Figure 7 shows the turn on recovery, while Figure 8 shows the turn off recovery. Both the turn on and turn off recovery times are roughly 3 µsec – much less than for the MIC5205. Figure 9 shows the TC1015 recovery when the load is switched on for only 4 µsec in order to see the turn on and turn off times in the same oscilloscope. Note that the transient spikes are less than 150 mV. The transient response for the TC1015 is more than adequate with 1 µF output and 470 pF bypass capacitors.
SUMMARY

Although pin compatible and sharing many similar performance specifications, the TC1015 has key advantages over the bipolar MIC5205. The TC1015 exhibits a load transient response that is much better than the MIC5205, while also demonstrating superior dropout performance at loads up to 50 mA. Microchip LDOs provide equivalent to superior performance, yet have a much lower supply current. Superior performance with lower supply current makes Microchip’s CMOS LDOs the regulators of choice for modern battery and low power applications.

FIGURE 9: TC1015, 100 µA to 100 mA Load Transient; (Recovery when Load is Switched on for only 4 µsec).
Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ, MPLAB, PIC, PICmicro, PICSTART, PRO MATE and PowerSmart are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Accuron, dsPIC, dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal, PowerInfo, PowerTool, rfPIC, Select Mode, SmartSensor, SmartShunt, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2003, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
AMERICAS
Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-286-8360 Fax: 765-286-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6205 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg., No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor, Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplasa
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd., Room 701, Bldg. D
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Room 005, 18/F
Building 2, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao
Rm. B503, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinnyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6168 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballerpup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

Germany
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
4 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Italy
Microchip Technology SRL
Steinbitstrasse 10
D-85737 Ismaning, Germany
Tel: 39-039-65791-1 Fax: 39-039-6899883

Netherlands
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinnyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6168 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup høj 1-3
Ballerpup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
4 Rue du Saule Trapu
Batiment A - 1er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinbitstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Pellazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG4 1STU
Tel: 44 118 921 5869 Fax: 44-118 921-5820