
AN740
Decoding the HCS101 for Non-Secure Applications
OVERVIEW

This application note describes the working of a
decoder for the HCS101 fixed-code encoder. The
decoder is implemented on Microchip’s smallest 8-pin
microcontroller with internal EEPROM, the
PIC12CE518.

KEY FEATURES

• Stand alone decoder
• Three function outputs
• Capable of learning a single transmitter

• Automatic baud rate detection
• Internal RC oscillator

TABLE 1: FUNCTIONAL INPUTS AND
OUTPUTS

FIGURE 1: DECODER PIN-OUT

INTRODUCTION TO THE HCS101

The HCS101 is a fixed-code encoder, designed for
remote control systems. It was developed to compli-
ment Microchip's KEELOQ® family of encoders. The
HCS101 does not contain code hopping technology
and is, therefore, intended for applications that don’t
involve a high level of security (i.e., remote indoor light-
ing, remote sprinkler operation, etc.). The HCS101 was
designed to be easily upgradable to a Hopping Code
KEELOQ encoder, should the need arise for a more
secure encoder in the same application. As a result, the
HCS101 is pin compatible with the following Microchip
KEELOQ encoders:

• HC200
• HC201

• HC300
• HC301
• HC320

• HC360
• HC361
• HC362

Mnemonic
Pin

Number
I/O/P
Type

Function

STREAM 4 I Demodulated
PWM Signal from
RF Receiver

LEARN 3 I Input to enter
LEARN Mode

LED 2 O Output to show the
status of the
LEARN Process

S0, S1, S2 5,6,7 O Function Outputs,
correspond to
Encoder Input pin

VDD 1 PWR 5V Power Supply

VSS 8 GND Common Ground

Author: Reston Condit
Microchip Technology, Inc.

1

2

3

4

8

7

6

5

Vss

LED

LEARN

STREAM

VDD

S2

S1

S0

PDIP, SOIC

P
IC

12
C

E
51

8

 2001 Microchip Technology Inc. Preliminary DS00740A-page 1

AN740
Code Word Transmission Format

The key to receiving data from the HCS101 encoder is
understanding its code word transmission format
(Figure 2). There are four distinct parts to every
HCS101 code word transmission:

• Preamble

• Header
• Data
• Guard Time

The preamble starts the transmission and consists of
repeating low and high phases each of length TE, the
elemental time period. The header consists of a low
phase which has a length 10*TE. Next, come 66 data
bits. The data bits are Pulse Width Modulated (PWM).
As seen in Figure 2, a logic one is equivalent to a high
of length TE, followed by a low of length 2*TE. A logic
zero is equivalent to a high of length 2*TE, followed by
a low of length TE. The final part of the code word trans-
mission is the guard time. This is the spacing before
another code word is transmitted.

Code Word Organization

The code word organization of the HCS101 makes it a
candidate for most remote needs. Figure 3 shows the
code word organization. In very simple applications
(like the one detailed in this application note), only the
first two bytes of the code word need be received and
operated on. Within these two bytes, the 10-bit serial
number provides transmitter recognition and the func-
tion bits provide functionality. For greater versatility, the
16-bit counter can be received as well. This counter
gives the HCS101 added security (a decoder can make
sure all transmissions are consecutive) and more func-
tionality (a button pressed consecutively in a certain
amount of time can be made to produce a different out-
put from the decoder, than if it was pressed just once).
The whole code word can be utilized for the most com-
plex applications.

FIGURE 2: CODE WORD TRANSMISSION FORMAT

FIGURE 3: CODE WORD ORGANIZATION

Logic ‘0’

Logic ‘1’

Data bit
Period

Preamble Header

Guard
 Time

Tp Th Tg

Start Pulse
(TE)

TE

Data bits
Td

Serial Number 3

(10-bits)

Transmission Direction

Serial Number 1Function
(0/4-bits)

(32/28-bits)

LSb first

S2 S1 S0 S3

S2 S1 S0 S3

(16-bits)

Counter ‘00’

(2-bits)

Function

(4-bits)
‘1’

(1-bit)
VLOW

(1-bit)

Serial Number 2

(32-bits)
DS00740A-page 2 Preliminary  2001 Microchip Technology Inc.

AN740
HCS101 Baud Rates

The HCS101 can be configured for two baud rates, one
with TE equivalent to 400 µS and the other, equivalent
to 200 µS. When the faster baud rate is used, alternate
code words are blanked out. This allows the user to
transmit at twice the amplitude of the 400 µS signal, still
within FCC regulations (this may not apply outside the
United States).

HARDWARE IMPLEMENTATION

The decoder is implemented on Microchip’s
PIC12CE518 microcontroller. The controller has an
operating frequency of 4 MHz. An internal RC oscillator
supplies this frequency. The PIC12CE518 is ideal for
use as a decoder because it contains 16 bytes of
onboard EEPROM, which is used to store the 10-bit
serial number of the transmitter.

The decoder was implemented in the circuit shown in
Figure 4. As seen, the decoder drives three outputs,
corresponding to S0, S1, and S2 on the encoder. The
LEARN button is used to enter LEARN mode and the
LEARN LED indicates the decoder status (for an expla-
nation of LEARN, see section SOFTWARE IMPLE-
MENTATION: LEARN). The RF module receives
transmitter data and feeds it into the decoder [pin 4].

FIGURE 4: DECODER CIRCUIT

Note 1: When first developing or debugging such
a system, the encoder can be directly
wired to the decoder, in order to isolate
software issues from receiver perfor-
mance issues. RF components can be
substituted in later, when the decoder is
working in a satisfactory manner.

2: The RF receiver module, specified in
Figure 4, is made by Telecontrolli, part
number RR6-434 (www.telecontrolli.com).

1
2
3
4
5
6
7
8
9
10

RF Receiver
Module

11
12
13
14
15

Antenna

VCC

VDD7

6

5

2

R1

R2

R3

R4

470 Ω

470 Ω

470 Ω

470 Ω

4

3

R5 10 k

LEARN

S2

S1

S0

LEARN

VSS

8PIC12CE518

1

GP0

GP1

GP2

GP5

GP3

GP4

0.1 µF
 2001 Microchip Technology Inc. Preliminary DS00740A-page 3

AN740
SOFTWARE IMPLEMENTATION

The software for the decoder has the following program
segments:

• MAIN loop routine

• RECEIVE routine
• LEARN routine

MAIN Loop

The MAIN loop is where the decoder program spends
most of its time. On every cycle through the MAIN loop,
three functions are always called:

• INITIAL routine
• TIMER routine
• CLOCK routine

The INITIAL routine simply initializes the I/O pins of
the microcontroller and sets the TMR0 prescaler.

The other two functions relate to timing in the decoder.
The PIC12CE518 only has one hardware timer, TMR0.
Because several timers are needed and only one hard-
ware timer exists, several software timers are created.
These timers are based on the principle of a person
checking his or her watch. TMR0 is allowed to run
freely without ever being reset. The functions TIMER
and CLOCK refer to TMR0 every time the MAIN loop is
run though, thereby constantly updating their respec-
tive timers, based on the change in TMR0 since they
were last called. The TIMER function updates the lower
and higher bytes (SX1TMR, SX2TMR) of the timer that
determines the length of time the LEDS are turned on.
The CLOCK function updates the lower and higher order
bytes (TMRLOW, TMRHIGH) of the timer that measures
data pulse widths.

The MAIN loop plays an important role in the RECEIVE
routine. Only one part of the RECEIVE routine need be
run through at any point in time. Therefore, MAIN
directs a state machine for the RECEIVE routine, based
on the program state, STATECNTR. As the program
advances through the RECEIVE subroutines,
STATECNTR is altered.

RECEIVE Routine

The RECEIVE routine gathers the first 32 bits of incom-
ing encoder transmissions. It starts by essentially wait-
ing for the data bus to go high. Once this occurs, it waits
for a valid header. As mentioned before, the header is
ten times the pulse element length, TE. Depending on
the encoder's baud rate, TE is either 200 µS or 400 µS.
Assuming uncalibrated encoders, TE could vary from
150 µS to 500 µS. This gives the header a length,
ranging from 1.5 mS to 5 mS. Therefore, the RECEIVE
routine's first task is to look for a low period which has

a length in this range. Once the header is detected, the
program advances the RECEIVE routine to begin deci-
phering the ensuing code word.

Rather than detect what baud rate is being used and
then measure pulses accordingly, a simpler approach
is used. Because the data bits in the code word are
pulse width modulated, a data bit equivalent to a one
has a 1:2 high to low ratio. Inversely, a data bit equiva-
lent to a zero has a 2:1 high to low ratio (refer to
Figure 3). Therefore, the RECEIVE routine simply mea-
sures the length of the high phase and compares it to
the low phase, in order to determine if the data bit is
logic 1 or 0.

After receiving the first 32-bits of the 64-bit code word,
the RECEIVE routine waits for the guard time. This is
done so that the routine will not begin detecting another
code word before the completion of the immediate one.
The serial number within the received data is then val-
idated against the serial number stored in EEPROM.
Should the serial number be valid, the function bits are
implemented. This results in the corresponding LED
being turned on.

LEARN Routine

LEARN is the method in which the decoder gets associ-
ated with a specific transmitter. During the LEARN rou-
tine, a decoder waits for a transmission from an
encoder and then memorizes the serial number in the
transmission. Once this process is completed, the
decoder will only perform commands that it receives
from that specific encoder.

LEARN mode is initialized by pushing the LEARN button.
At this point, the LEARN routine turns the LEARN LED
on. The decoder then waits for the reception of a trans-
mission, or until LEARN mode times out (after 8 sec-
onds). If the decoder receives a transmission while in
LEARN mode, the serial number from the transmitter is
stored in EEPROM and LEARN mode is exited. Refer to
section PROGRAM DEVELOPMENT: Helpful Files, for
information on the EEPROM read and write functions.

PROGRAM DEVELOPMENT

Experienced programmers, familiar with Microchip
products, might skip this section. However, a program-
mer just introduced to the Microchip product line may
find this section saves them time and headaches, while
developing software for a decoder.

Note: Please refer frequently to the source code,
Appendix A, as it will clarify the following
descriptions.
DS00740A-page 4 Preliminary  2001 Microchip Technology Inc.

AN740
Helpful Files

Microchip provides an abundance of files to aid in timely
code development. Template files for all Microchip
microcontrollers are available in MPLAB® Simulator and
at Microchip’s website, (http://www.microchip.com).
These files make it necessary for a software developer
to enter only the body of the code. All microcontroller
specific calibration and configuration is at the head of
each template. Each template also has an #include
statement for including the file containing the processor
specific variable definitions. The template file for the
PIC12CE518 is e518temp.asm. The variable defini-
tions are in a file named p12ce518.inc.

Source code for the functions that read and write data
to the internal EEPROM is available on Microchip's
website as well. The files named fl51xinc.asm and
flash51x.asm contain the code for these functions.
These functions are made available in the decoder pro-
gram by either including fl51xinc.asm, or by linking
flash51x.asm.

Indirect Referencing

Understanding indirect referencing is essential to writ-
ing more efficient software. Indirect referencing is used
extensively in the software for this decoder. Two spe-
cial function registers in all Microchip microcontrollers
were created in hardware primarily for this purpose.
These registers are the FSR and the INDF registers.
The FSR register is an indirect address pointer. In other
words, the address of the register whose contents is
desired for operation on, is moved into the FSR regis-
ter. The INDF register essentially refers to the contents
of the register pointed to by FSR. Indirect referencing is
very useful in the LEARN and VALIDATE portions of
the decoder software, because of the ease with which
it allows consecutive registers to be operated on.

Simulating a Code Word

Within MPLAB's simulation environment (MPLAB SIM),
a stimulus file (.sti) can be created that exactly models
a code word being sent from the encoder. This mod-
eled code word can be used to test the robustness of a
decoder's RECEIVE routine. Although a stimulus file is
just a simple text file, it is recommended that the stim-
ulus file be created in a spreadsheet. This way, files
that model both HCS101 baud rates can be created
with minimal effort. See Figure 5 for an example of a
pin stimulus file.

FIGURE 5: HCS101 PREAMBLE WITH
400 µS ELEMENT LENGTH

.

CONCLUSION

As seen in this application note, implementing a
decoder on the PIC12CE518 for Microchip's HCS101
encoder can be done in a very timely manner. The
resulting decoder and transmitter can be used in a wide
variety of remote applications and is cost efficient. For
remote applications that do not involve a high level of
security, Microchip's HCS101 fixed-code encoder is an
ideal choice.

MEMORY USAGE

In the PIC12CE518, the following memory was used:

Data Memory: 14 bytes

Program Memory: 334 bytes

EEPROM: 2 bytes

REFERENCES

AN659, Simple Code Hopping Decoder (DS00659)

AN665, Using KEELOQ to Generate Hopping
Passwords (DS00665)

PIC12C5XX Data Sheet (DS40139)

HCS101 Data Sheet (DS41115)

Note: In the case of the decoder, 1 cycle = 1 µS
(1 cycle = (1/4 MHz)/4).

Note: GP3 is the data input pin for the decoder.

CYCLE GP3
0 0
400 1
800 0
1200 1
1600 0
2000 1
2400 0
2800 1
3200 0
3600 1
 2001 Microchip Technology Inc. Preliminary DS00740A-page 5

AN740
APPENDIX A: SOURCE CODE

;***
;
; Filename: decode02.asm
; Date: 10/6/00
; File Version: Rev --
; Assembled using: MPASM v2.50.02
;
; Author: Reston A. Condit
; Company: Microchip Technologies Inc.
;
;
;***
;
; Files required:
; p12ce518.inc ; standard header file
; fl51xinc.asm ; EEPROM function file (available on
; Microchip’s website)
;***
;
; Notes:
;
;
;
;
;***

list p=12ce518,r=dec ; list directive to define processor
#include <p12ce518.inc> ; processor specific variable

; definitions

__CONFIG _CP_OFF & _WDT_ON & _MCLRE_OFF & _IntRC_OSC

;****************** VARIABLE DEFINITIONS *****************************

cblock 0x07
DATA0 ; 1st byte of received data
DATA1 ; 2nd byte of received data
DATA2 ; 3rd byte of received data
DATA3 ; 4th byte of received data
ORIGIN ; a reference used to increment TMRLOW
SX1TMR ; LED timer (low order)
SX2TMR ; LED timer (high order)
TMRLOW ; pulse width timer (low order)
TMRHIGH ; pulse width timer (high order)

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
DS00740A-page 6 Preliminary  2001 Microchip Technology Inc.

AN740
HIGHWDTH ; high pulse width
LOWWDTH ; low pulse width
STATECNTR ; program state counter
BITCNTR ; data stream bit counter
FLAGS ; flags
endc

COUNTR equ BITCNTR ; misc. counter

;************************ DEFINE STATEMENTS **************************

; PIC12CE518 setup parameters

#define GP_INITIAL B’011000’ ; inputs: GP3, GP4
; outputs: GP0, GP1, GP2, GP5

#define PRESCL B’10000001’ ; 1 TMR0 per 4 instruction cycles
; Cycle Frequency = 4 MHz/4 = 1 MHz
; TMR0 increment = 1us * 4 = 4us

; input and output definitions

#define S2 GPIO,0
#define S1 GPIO,1
#define S0 GPIO,2
#define STREAM GPIO,3 ; DATA stream
#define LRN GPIO,4 ; learn button
#define LED GPIO,5 ; learn LED

; Lables for the status counter

#define BEGN 0x00
#define BEGN1 0x01
#define HEADR 0x02
#define HEADR1 0x03
#define HIGHP 0x04
#define LOWP 0x05
#define RECRD 0x06
#define WAIT 0x07
#define VALID 0x08
#define IMPLMNT 0x09

; FLAGS is parced as follows

#define LERN FLAGS, 0 ; this flag is set when in learn mode
#define TOGGLE FLAGS, 1
#define HIGHLOW FLAGS, 2

;******************** Start of Program *******************************

org 0x1FF ; processor reset vector

; Internal RC calibration value is placed at location 0x1FF by
; Microchip as a movlw k, where the k is a literal value.

org 0x000 ; coding begins here
movwf OSCCAL ; update register with factory cal val

goto RESET ; initialize the program
 2001 Microchip Technology Inc. Preliminary DS00740A-page 7

AN740
;NOTE: The following include file is available on Microchip’s webpage.
; FL51XINC.ASM includes the necessary functions for reading and
; writing to the internal EEPROM of the PIC12CE518.

#include <fl51xinc.asm>; EEPROM functions

;***
; RESET
; Resets the PIC12CE518
;
; Input Variables:
; none
; Output Variables:
; none
;***

RESET
clrf FLAGS ; clear flags
clrf GPIO ; initialize inputs and outputs
movlw BEGN ; setup the state counter to call BEGIN
movwf STATECNTR
goto MAIN ; goto MAIN

;***
; MAIN
; The program continually loops in MAIN, calling out the
; necessary functions when needed.
;
; Input Variables:
; LRN -- learn button
; Output Variables:
; none
;***

MAIN
call INITIAL
call TIMER
call CLOCK

movlw B’000111’ ; check if S0, S1, or S2 is set
andwf GPIO, W ; if set call SXON
btfss STATUS, Z
call SXON

btfsc LRN ; if learn button is pushed call
call LRNDTCT ; LRNDTCT

btfsc LERN ; if in learn mode call LEARN
call LEARN

movf STATECNTR, W ; Mask out the high order bits of
andlw B’00001111’ ; STATECNTR (a noise guard)
addwf PCL, F ; The program clock (PCL) is incre-
goto BEGIN ; mented by STATECNTR in order
goto BEGIN1 ; to go to the appropiate routine
goto HEADER
goto HEADER1
goto HIGHPLSE
goto LOWPULSE
DS00740A-page 8 Preliminary  2001 Microchip Technology Inc.

AN740
goto RECORD
goto WAIT4END
goto VALIDATE
goto IMPLEMNT
goto RESET ; These RESET commands correct
goto RESET ; erronious values of STATECNTR
goto RESET ; not caught by the mask above.
goto RESET
goto RESET
goto RESET

;***
; INITIAL
; This routine is continually called, initializing the OPTION
; and GPIO registers in addition to clearing the watchdog timer.
; This is done to insure that over the lifetime up the chip,
; these vital registers will never change due to noise.
;
; Output Variables: none
; Input Variables: none
;***

INITIAL
clrwdt ; clear the watchdog timer

movlw GP_INITIAL ; setup the input and output pins
tris GPIO

movlw PRESCL ; setup TMR0 prescaler
option

retlw 0

;***
; SETWATCH
; Initialize the pulse width timer registers.
;
; Input Variables:
; none
; Output Variables:
; ORIGIN
;***

SETWATCH
movf TMR0, W ; record TMR0’s value in ORIGIN
movwf ORIGIN
clrf TMRLOW ; clear the low and high order timers
clrf TMRHIGH
retlw 0

;***
; CLOCK
; Continually updates TMRLOW and TMRHIGH.
;
; Input Variables:
; ORIGIN
; Output Variables:
; TMRLOW
; TMRHIGH
 2001 Microchip Technology Inc. Preliminary DS00740A-page 9

AN740
;***

CLOCK
movf ORIGIN, W ; TMRLOW is updated based on time
subwf TMR0, W ; passed since ORIGIN was set.
addwf TMRLOW, F ; TMRLOW resolution ~= 4us (like TMR0)
btfsc STATUS, C ; TMRLOW overflow ~= 1ms (2^8*4ms)
incf TMRHIGH, F ; TMRHIGH resolution ~= 1ms
nop ; TMRHIGH overflow ~= 0.24sec (2^8*1ms)
nop ;

 nop ; Nop and subtraction commands ensure
movlw 2 ; ORIGIN equals TMR0 as called upon
subwf TMR0, W ; in line 2 of CLOCK. (ORIGIN must
movwf ORIGIN ; be updated to equal the value
retlw 0 ; of TMR0 at time of operation with

; ORIGIN.)
;***
; TIMER
; Continually updates two higher order timers (SX1TMR and
; SX2TMR) for use in LED timing.
;
; Input Variables:
; none
; Output Variables:
; SX1TMR
; SX2TMR
;***

TIMER
btfss TOGGLE ; TOGGLE forces this routine to spend
goto TIMER1 ; 1/2 of TMR0 in TIMER and 1/2 in
movlw B’01111111’ ; TIMER1.
addwf TMR0, W ; TOGGLE toggles back and forth to a
btfss STATUS, C ; one the rate TMR0 overflows.
retlw 0 ; TMR0 overflow ~= 1ms (2^8*4us)
bcf TOGGLE ;
incfsz SX1TMR, F ; SX1TMR resolution ~= 1ms
retlw 0 ; SX1TMR overflow ~= 0.25sec (2^8*1ms)
incf SX2TMR, F ; SX2TMR resolution ~= 0.25sec
retlw 0 ; SX2TMR overflw ~= 1min (2^8*0.23sec)

TIMER1
movlw B’01111111’ ; Timer routine spends half its time
addwf TMR0, W ; in TIMER1 waiting to set TOGGLE
btfsc STATUS, C ; to one again
retlw 0
bsf TOGGLE
retlw 0

;***
; SXON
; Turns all outputs (S0, S1, S2) off when they timeout.
;
; Input Variables:
; SX2TMR
; Output Variables:
; S0
; S1
; S2
DS00740A-page 10 Preliminary  2001 Microchip Technology Inc.

AN740
;***

SXON
btfss SX2TMR, 0 ; When SX1TMR overflows, SX2TMR
retlw 0 ; will increment to 1. Recall this
bcf S0 ; will occur at 0.25 seconds
bcf S1 ; (2^8*1ms) after SX1TMR is
bcf S2 ; initiated.
retlw 0

;***
; LRNDTCT
; When the LEARN button is pushed this function places the
; program in LEARN mode by setting the LERN flag.
;
; Input Variables:
; none
; Output Variables:
; LED
; LERN
;***

LRNDTCT
btfsc LERN ; LEARN mode is initiated by setting
retlw 0 ; the LERN flag high, setting the
movlw BEGN ; State Counter to BEGN, turning the
movwf STATECNTR ; learn LED on and clearing the
bsf LERN ; higher order timers, SX1TMR and
bsf LED ; SX2TMR.
clrf SX1TMR
clrf SX2TMR
retlw 0

;***
; LEARN
; This routine learns the first two bytes of data received from
; the transmitter by storing these bytes in its internal EEPROM.
;
; Input Variables:
; none
; Output Variables:
; none
;***

LEARN
btfss SX2TMR, 5 ; If no valid reception is completed
goto LEARN1 ; within 8 seconds (2^5*0.25sec)
bcf LERN ; then exit LEARN mode, else goto
bcf LED ; LEARN 1.
goto MAIN

LEARN1
movlw VALID ; If the State Counter currently holds
xorwf STATECNTR, W ; the value for exectuting the
btfss STATUS, Z ; VALIDATE function, then a success-
retlw 0 ; ful reception has occurred.
movlw 0x00 ; Setup the EEADDR register to write
movwf EEADDR ; to the first EEPROM byte.
movlw DATA0 ; Move DATA0’s address into the FSR
 2001 Microchip Technology Inc. Preliminary DS00740A-page 11

AN740
movwf FSR ; register. (See 12CE518 data sheet
movlw 2 ; for indirect referensing.
movwf BITCNTR

LEARN2 movf INDF, W ; Move contents of address specified

movwf EEDATA ; by FSR into EEDATA.

LEARN3 call WRITE_BYTE ; write to EEPROM
btfss PC_OFFSET, 7 ; If an error occurred while writing,
goto LEARN3 ; try again.
incf EEADDR, F
incf FSR, F
decfsz BITCNTR, F ; perform write sequence for two bytes
goto LEARN2
bcf LED ; exit learn mode
bcf LERN
movlw BEGN
movwf STATECNTR
retlw 0

;***
; BEGIN
; This function looks for a possible start to the data stream.
;
; Input Variables:
; STREAM
; Output Variables:
; none
;***

BEGIN
btfsc STREAM
incf STATECNTR, F ; Make state BEGIN1
goto MAIN

BEGIN1
btfsc STREAM
goto MAIN
call SETWATCH
incf STATECNTR, F ; Make state HEADER
goto MAIN

;***
; HEADER
; Detects a valid header.
;
; Input Variables:
; STREAM
; Output Variables:
; none
;***

HEADER
btfsc STREAM ; The program loops here until 1.25ms
goto RESTART ; passes and if the data is still
btfss TMRHIGH, 0 ; low. If both hold true -> HEADER1.
goto MAIN ; 1.25ms occurs when:
movlw D’64’ ; TMRHIGH = 1 ~= 2^8*4us = 1ms
andwf TMRLOW, W ; TMRLOW = 64 ~= 64*4us = 0.25ms
btfsc STATUS, Z
DS00740A-page 12 Preliminary  2001 Microchip Technology Inc.

AN740
goto MAIN
incf STATECNTR, F ; Make state HEADER1
goto MAIN

HEADER1
movlw D’6’ ; If the data goes high before 6ms
subwf TMRHIGH, W ; then the header is valid, else
btfss STATUS, C ; restart.
goto HEADER2 ; TMRHIGH = 6 = 6*1ms = 6ms
goto RESTART

HEADER2
btfss STREAM
goto MAIN
call SETWATCH
movlw D’32’ ; Initiate BITCNTR to 32 in order to
movwf BITCNTR ; receive 32 bits of the data stream.
incf STATECNTR, F ; Make state HIGHPLSE
goto MAIN

;***
; HIGHPLSE
; Times the width of high pulses.
;
; Input Variables:
; STREAM
; Output Variables:
; none
;***

HIGHPLSE
btfsc TMRHIGH, 0 ; If TMRLOW overflows then RESTART
goto RESTART
btfsc STREAM
goto MAIN
movf TMRLOW, W ; Move the pulse width value to
movwf HIGHWDTH ; HIGHWDTH for later calculations.
call SETWATCH
incf STATECNTR, F ; Make state LOWPULSE
goto MAIN

;***
; LOWPULSE
; Times the width of low pulses.
;
; Input Variables:
; none
; Output Variables:
; none
;***

LOWPULSE
btfsc TMRHIGH, 0 ; If TMRLOW overflows then make
goto LOW2 ; state HEADER.
btfss STREAM
goto MAIN
movf TMRLOW, W ; Move the pulse width value to
movwf LOWWDTH ; LOWWDTH for later calculations.
call SETWATCH
incf STATECNTR, F ; Make state RECORD
 2001 Microchip Technology Inc. Preliminary DS00740A-page 13

AN740
goto MAIN
LOW2

movlw HEADR
movwf STATECNTR ; Make state HEADER if lowpulse is too
goto MAIN ; long.

;***
; RECORD
; Records each bit as it comes in from the data stream.
;
; Input Variables:
; STREAM
; Output Variables:
; DATA0
; DATA1
; DATA2
; DATA3
;***

RECORD
movf HIGHWDTH, W
subwf LOWWDTH, W ; The state of the carry bit after
rrf DATA3, F ; this operation reflects the data
rrf DATA2, F ; logic. This is then rotated
rrf DATA1, F ; into the storage bytes.
rrf DATA0, F
movlw HIGHP
movwf STATECNTR
decfsz BITCNTR, F
goto MAIN
movlw D’4’ ; Starting here and including RECORD1
movwf COUNTR ; a check is made to make sure that
movlw DATA0 ; the data is not composed entirely
movwf FSR ; of 1s.

RECORD1
movlw 0xFF
xorwf INDF, W ; Use indirect referencing (see the
btfss STATUS, Z ; 12CE518 data sheet) to point to
goto RECORD2 ; DATA0 -- DATA3 on subsequent loops
incf FSR, F ; in RECORD1.
decfsz COUNTR, F
goto RECORD1
goto RESTART

RECORD2
movlw WAIT
movwf STATECNTR ; Make state WAIT4END
goto MAIN

;***
; WAIT4END
; Wait for the guard time at the end of the code word before
; attempting to receive another code word.
;
; Input Variables:
; STREAM
; Output Variables:
; none
;***
DS00740A-page 14 Preliminary  2001 Microchip Technology Inc.

AN740
WAIT4END
btfsc HIGHLOW ; HIGHLOW is set to indicate that the
goto WAIT1 ; data has transitioned from a high
btfsc STREAM ; to a low.
goto MAIN
call SETWATCH
bsf HIGHLOW

WAIT1
btfss STREAM
goto WAIT2
bcf HIGHLOW
goto MAIN

WAIT2
btfss TMRHIGH, 3 ; If the low period is greater than
goto MAIN ; 8ms (2^3*1ms) then the guard time
bcf HIGHLOW ; has been reached.
incf STATECNTR, F ; Make state VALIDATE
goto MAIN

;***
; VALIDATE
; Checks that the transmission received is from the valid
; transmitter.
;
; Input Variables:
; DATA0
; DATA1 (only the first two bits)
; Output Variables:
; none
;***

VALIDATE
movlw 0x00
movwf EEADDR
movlw DATA0 ; Use indirect addressing to check the
movwf FSR ; stored SN against the received.

VAL1 call READ_RANDOM ; Read first stored byte
btfss PC_OFFSET, 7
goto VAL1 ; Repeat read if it fails
movf INDF, W
xorwf EEDATA, W
btfss STATUS, Z ; If first byte checks out then
goto RESTART ; continue, else restart
incf FSR, F
incf EEADDR, F

VAL2 call READ_RANDOM ; Read second stored byte
btfss PC_OFFSET, 7
goto VAL2 ; Repeat read if it fails
movf INDF, W
xorwf EEDATA, F
btfsc EEDATA, 0 ; Check that the 2 least significant
goto RESTART ; bits check out
btfsc EEDATA, 1
goto RESTART
incf STATECNTR, F ; Make state IMPLEMENT
goto MAIN
 2001 Microchip Technology Inc. Preliminary DS00740A-page 15

AN740
;***
; IMPLEMNT
; Implements the outputs specified by the received code word.
;
; Input Variables:
; DATA1
; Output Variables:
; S0
; S1
; S2
;***

IMPLEMNT
btfsc DATA1, 7 ; set outputs in accordance with code
bsf S2 ; word
btfss DATA1, 7
bcf S2
btfsc DATA1, 6
bsf S1
btfss DATA1, 6
bcf S1
btfsc DATA1, 5
bsf S0
btfss DATA1, 5
bcf S0
clrf SX1TMR ; initialize the timers for the
clrf SX2TMR ; outputs
goto RESTART

;***
; RESTART
; Sets the State Counter to BEGIN so that the receive sequence
; is restarted.
;
; Input Variables:
; none
; Output Variables:
; none
;***

RESTART
movlw BEGN ; restart receive sequence and return
movwf STATECNTR ; to MAIN
goto MAIN

;***

end ; directive ’end of program’
DS00740A-page 16 Preliminary  2001 Microchip Technology Inc.

“All rights reserved. Copyright © 2001, Microchip Technology
Incorporated, USA. Information contained in this publication
regarding device applications and the like is intended through
suggestion only and may be superseded by updates. No rep-
resentation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accu-
racy or use of such information, or infringement of patents or
other intellectual property rights arising from such use or oth-
erwise. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any intellectual property rights.
The Microchip logo and name are registered trademarks of
Microchip Technology Inc. in the U.S.A. and other countries.
All rights reserved. All other trademarks mentioned herein are
the property of their respective companies. No licenses are
conveyed, implicitly or otherwise, under any intellectual prop-
erty rights.”
 2001 Microchip Technology Inc. Prelimin
Trademarks

The Microchip name, logo, PIC, PICmicro, PICMASTER, PIC-
START, PRO MATE, KEELOQ, SEEVAL, MPLAB and The
Embedded Control Solutions Company are registered trade-
marks of Microchip Technology Incorporated in the U.S.A. and
other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, Filter-
Lab, MXDEV, microID, FlexROM, fuzzyLAB, MPASM,
MPLINK, MPLIB, PICDEM, ICEPIC, Migratable Memory,
FanSense, ECONOMONITOR, SelectMode and microPort
are trademarks of Microchip Technology Incorporated in the
U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2001, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
ary DS00740A - page 17

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by
updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual
property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with
express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, except as maybe explicitly expressed herein, under any intellec-
tual property rights. The Microchip logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights
reserved. All other trademarks mentioned herein are the property of their respective companies.

DS00740A-page 18 Preliminary  2001 Microchip Technology Inc.

All rights reserved. © 2001 Microchip Technology Incorporated. Printed in the USA. 2/01 Printed on recycled paper.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Austin
Analog Product Sales
8303 MoPac Expressway North
Suite A-201
Austin, TX 78759
Tel: 512-345-2030 Fax: 512-345-6085
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Boston
Analog Product Sales
Unit A-8-1 Millbrook Tarry Condominium
97 Lowell Road
Concord, MA 01742
Tel: 978-371-6400 Fax: 978-371-0050
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Two Prestige Place, Suite 130
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
Mountain View
Analog Product Sales
1300 Terra Bella Avenue
Mountain View, CA 94043-1836
Tel: 650-968-9241 Fax: 650-967-1590

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Beijing Office
Unit 915
New China Hong Kong Manhattan Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Shanghai
Microchip Technology Shanghai Office
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
Hong Kong
Microchip Asia Pacific
RM 2101, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

ASIA/PACIFIC (continued)
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Germany
Analog Product Sales
Lochhamer Strasse 13
D-82152 Martinsried, Germany
Tel: 49-89-895650-0 Fax: 49-89-895650-22
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/30/01

WORLDWIDE SALES AND SERVICE

	OVERVIEW
	KEY FEATURES
	INTRODUCTION to the HCS101
	Code Word Transmission Format
	Code Word Organization
	HCS101 Baud Rates

	HARDWARE IMPLEMENTATION
	SOFTWARE IMPLEMENTATION
	MAIN Loop
	RECEIVE Routine
	LEARN Routine

	PROGRAM DEVELOPMENT
	Helpful Files
	Indirect Referencing
	Simulating a Code Word

	CONCLUSION
	MEMORY USAGE
	References
	Appendix A: Source Code
	Worldwide Sales and Service

