
 2000 Microchip Technology Inc. Preliminary DS00736A-page 1

AN736

INTRODUCTION

Communication network systems are rapidly growing
in size and complexity. These systems have many high
speed integrated circuits with critical operating param-
eters and must provide extremely reliable service with
zero down time. To maintain the performance of these
systems, adequate environmental monitoring must be
performed, so a failure or a data trend leading to a
potential failure can be rapidly identified. Furthermore,
this monitoring must be performed cheaply to keep sys-
tem costs low.

To minimize system down time and increase flexibility,
these communication network systems feature modu-
lar, hot-swappable components. Each component in
the system typically contains multiple sub-systems that
require monitoring. These sub-systems might include
DC/DC regulators, high speed microprocessors,
FPGAs, and cooling fans. Some of the monitored sys-
tem parameters include power supply output voltage,
power supply current, device temperature, ambient
temperature, and fan speed.

A network is required so all sensor data is collected and
fed to a central computer for monitoring and analysis.
Because many of the sensors are located in close prox-
imity to each other, the I2C bus offers a solution that
can be implemented with minimal hardware cost. Fur-
thermore, low cost microcontrollers (MCUs) with a wide
range of peripherals and an I2C interface are widely
available.

For the I2C bus to be an effective solution for networked
environmental sensors, a suitable bus protocol is
required that prevents system bus errors from affecting
sensor data. The purpose of this application note is to
define such a network protocol, which may be easily
adapted to most any networked application. The bus
protocol must be immune to adverse network condi-
tions, such as hot-swapping, or a malfunctioning net-
work node.

THE I2C BUS SPECIFICATION

Although a complete discussion of the I2C bus specifi-
cation is outside the scope of this application note,
some of the basics will be covered here. For more infor-
mation on the I2C bus specification, refer to sources
indicated in the References section on page 15. A
Glossary of Terms is also located on page 15.

The Inter-Integrated Circuit, or I2C bus specification,
was originally developed by Philips Semiconductors for
the transfer of data between ICs at the PCB level. The
physical interface for the bus consists of two open drain
lines; one for the clock (SCL) and one for data (SDA).
The SDA and SCL lines are pulled high by resistors con-
nected to the VDD rail. The bus may have a one mas-
ter/many slave configuration or may have multiple
master devices. The master device is responsible for
generating the clock source for the linked slave devices.

The I2C protocol supports either a 7-bit addressing
mode, or a 10-bit addressing mode, permitting 128 or
1024 physical devices to be on the bus, respectively. In
practice, the bus specification reserves certain
addresses so slightly fewer usable addresses are avail-
able. For example, the 7-bit addressing mode allows
112 usable addresses.

All data transfers on the bus are initiated by the master
device and are done eight bits at a time, MSb first.
There is no limit to the amount of data that can be sent
in one transfer.

The I2C protocol includes a handshaking mechanism.
After each 8-bit transfer, a 9th clock pulse is sent by the
master. At this time, the transmitting device on the bus
releases the SDA line and the receiving device on the
bus acknowledges the data sent by the transmitting
device. An ACK (SDA held low) is sent if the data was
received successfully, or a NACK (SDA left high) is sent
if it was not received successfully. A NACK is also used
to terminate a data transfer after the last byte is received.

According to the I2C specification, all changes on the
SDA line must occur while the SCL line is low. This
restriction allows two unique conditions to be detected
on the bus; a START sequence (S) and a STOP
sequence (P). A START sequence occurs when the
master device pulls the SDA line low, while the SCL line
is high. The START sequence tells all slave devices on
the bus that address bytes are about to be sent. The
STOP sequence occurs when the SDA line goes high,
while the SCL line is high and it terminates the transmis-
sion. Slave devices on the bus should reset their receive
logic after the STOP sequence has been detected.

Authors: Stephen Bowling, Richard L. Fischer
Microchip Technology Incorporated

An I2CTM Network Protocol for Environmental Monitoring

AN736

DS00736A-page 2 Preliminary  2000 Microchip Technology Inc.

The I2C protocol also permits a Repeated START con-
dition (Rs), which allows the master device to execute
a START sequence without preceding it with a STOP
sequence. Repeated START is useful, for example,
when the master device changes from a write operation
to a read operation and does not release control of the
bus.

A typical I2C write transmission would proceed as
shown in Figure 1. In this example, the master device
will write two bytes to a slave device. The transmission
is started when the master initiates a START condition
on the bus. Next, the master sends an address byte to
the slave. The upper seven bits of the address byte
contain the slave address. The LSb of the address byte
specifies whether the I2C operation will be a read
(LSb = 1), or a write (LSb = 0). On the ninth clock
pulse, the master releases the SDA line so the slave
can acknowledge the reception. If the address byte
was received by the slave and was the correct address,
the slave responds with an ACK by holding the SDA
line low. Assuming an ACK was received, the master
sends out the data bytes. On the ninth clock pulse after
each data byte, the slave responds with an ACK. After
the last data byte, a NACK is sent by the slave to the
master to indicate that no more bytes should be sent.
After the NACK pulse, the master initiates the STOP
condition to free the bus.

A read operation is performed similar to the write oper-
ation and is shown in Figure 2. In this case, the R/W bit
in the address byte is set to indicate a read operation.
After the address byte is received, the slave device
sends an ACK pulse and holds the SCL line low. By
holding the SCL line, the slave can take as much time
as needed to prepare the data to be sent back to the
master. When the slave is ready, it releases SCL and
the master device clocks the data from the slave buffer.
On the ninth clock pulse, the slave releases the SDA
line and latches the value of the ACK bit received from
the master. If an ACK pulse was received, the slave
must prepare the next byte of data to be transmitted. If

a NACK was received, the data transmission is com-
plete. In this case, the slave resets its I2C receive logic
and waits for the next START condition.

For many I2C peripherals, such as non-volatile
EEPROM memory, an I2C write operation and a read
operation are done in succession. For example, the
write operation specifies the address to be read and the
read operation gets the byte of data. Since the master
device does not release the bus after the memory
address is written to the device, a Repeated START
sequence is performed to read the contents of the
memory address.

DEFINING NETWORK PROTOCOL

Now that the basics of the I2C bus have been covered,
let’s examine the needs of the sensor network. In this
system, a single master device is on the bus and will
periodically initiate communications with slave devices.
The protocol must allow the master device to read or
write data from a particular slave device. The type and
length of data read from, or written to, the slave will
depend, of course, on the specific function of the slave.
For this reason, it would be efficient for the network pro-
tocol to support a variable data length dependent on
the sensor node. The protocol should also allow a data
address to be specified. Using a data address and data
length, the master node can request any or all of the
data available from the slave node.

There must be a method in the network protocol to
ensure that data was transmitted or received success-
fully. Using checksums, the master and slave devices
in the system verify that the data received was valid. If
the data is not valid, the data should be retransmitted.
Furthermore, the network protocol must handle bus
errors gracefully. The sources of error include glitches
due to hot-swapping, multiple devices responding to
the same address (bus collisions), and no-response
conditions from devices on the bus.

FIGURE 1: TYPICAL I2C WRITE TRANSMISSION (7-BIT ADDRESS)

FIGURE 2: TYPICAL I2C READ TRANSMISSION (7-BIT ADDRESS)

P98765

D0D1D2D3D4D5D6D7

S

A7 A6 A5 A4 A3 A2 A1SDA

SCL 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4

ACK Receiving DataReceiving Data

D0D1D2D3D4D5D6D7
ACK

R/W = 0Receiving Address

START

NACK

STOP
Acknowledge

Clock
Acknowledge

Clock
Acknowledge

Clock

SDA

SCL

A7 A6 A5 A4 A3 A2 A1
ACK

D7 D6 D5 D4 D3 D2 D1 D0

NACKTransmitting DataR/W = 1Receiving Address

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
PS

START STOP
Acknowledge

Clock
Acknowledge

Clock

 2000 Microchip Technology Inc. Preliminary DS00736A-page 3

AN736

Master Device Message Formats

Since all communication on the I2C bus is initiated by
the master device, a description of the protocol imple-
mented by the master is required. In this application,
the master device may initiate one of two message
types; a data write message, or a data request
message.

Data Write Message Format

The format for a data write message is shown in
Figure 3. The data write message begins with the mas-
ter initiating a START condition. When the START con-
dition completes, the master device sends the I2C
address of the slave node with the R/W bit cleared to
indicate data will be written to the slave device.

The next byte sent provides the byte count information.
For this discussion, this byte will be referred to as the
DATA_LEN byte. The DATA_LEN byte serves two pur-
poses. First, the lower seven LSb’s indicate the number
of data bytes to be written to the slave device. Second,
the MSb indicates whether data will be written to, or
read from the slave. In this case, the MSb is cleared to
indicate that a data write will be performed. The MSb of
the DATA_LEN byte performs a similar function for the
network protocol as the R/W bit in the I2C address byte,
but the two should not be confused.

The next byte sent by the master indicates the starting
address in the slave node data buffer that will be written
to, or read from. This byte will be referred to as the
DATA_OFFS byte. Each slave device on the network
maintains a range of data memory for received data
and data to be transmitted.

In a data write message, the number of data bytes
specified by the DATA_LEN byte will follow the
DATA_OFFS byte. When the last byte of data has been
sent, the master sends an 8-bit, two’s complement
checksum of all data previously sent, including the I2C
slave node address byte. Finally, the master device ter-
minates the data write message by initiating a STOP
condition.

Data Request Message Format

The format for a data request message is shown in
Figure 4. Following the START condition, the master
device sends the address of the slave node with the
R/W bit cleared to indicate a data write to the I2C slave
device. Next, the DATA_LEN byte is sent. The seven
LSb’s of this byte indicate the number of data bytes to
be read from the slave. Because a data read from the
slave should be performed, the MSb is set. The
DATA_OFFS byte follows the data length byte and indi-
cates the starting address in the slave node data mem-
ory from which data will be read. Next, the master
device sends an 8-bit, two’s complement checksum of
the slave address, data length byte, and data offset
byte that were sent in the data request message.

 2000 Microchip Technology Inc. Preliminary DS00736A-page 4

AN736

F
IG

U
R

E
 3

:
D

A
T

A
 W

R
IT

E
 M

E
S

S
A

G
E

 F
O

R
M

A
T

F
IG

U
R

E
 4

:
D

A
T

A
 R

E
Q

U
E

S
T

 M
E

S
S

A
G

E
 F

O
R

M
A

T

S
LV

 A
D

D
R

D
A

TA
_L

E
N

D
A

TA
_O

F
F

S
D

A
TA

D
A

TA
D

A
TA

C
H

E
C

K
S

U
M

0
0

P
S

S
TA

R
T

C
O

N
D

IT
IO

N
I2 C

 S
LA

V
E

A
D

D
R

E
S

S
D

A
TA

 L
E

N
G

T
H

B
Y

T
E

A
D

D
R

E
S

S
 O

F
F

S
E

T
B

Y
T

E

N
U

M
B

E
R

 O
F

 D
A

TA
 B

Y
T

E
S

S
P

E
C

IF
IE

D
 B

Y

8-
B

IT
 C

H
E

C
K

S
U

M
S

T
O

P
C

O
N

D
IT

IO
N

D
A

TA
_L

E
N

 B
Y

T
E

M
S

b
C

LE
A

R
 F

O
R

 D
A

TA
 W

R
IT

E
 M

E
S

S
A

G
E

R
/W

 =
 0

(1
 to

 1
27

)

S
LV

 A
D

D
R

D
A

TA
_L

E
N

D
A

TA
_O

F
F

S
C

H
E

C
K

S
U

M
D

A
TA

D
A

TA
C

H
E

C
K

S
U

M
0

1
R

S
S

S
LV

 A
D

D
R

1
C

O
M

M
_S

TA
T

C
H

E
C

K
S

U
M

S
TA

R
T

C
O

N
D

IT
IO

N
I2 C

 S
LA

V
E

A
D

D
R

E
S

S
D

A
TA

B
Y

T
E

A
D

D
R

E
S

S

B
Y

T
E

8-
B

IT
R

E
S

TA
R

T
I2 C

 S
LA

V
E

A
D

D
R

E
S

S
C

O
M

M
U

N
IC

A
T

IO
N

S
TA

T
U

S
 B

Y
T

E

N
U

M
B

E
R

 O
F

 D
A

TA
 B

Y
T

E
S

S
P

E
C

IF
IE

D
 B

Y

D
A

TA
_L

E
N

 B
Y

T
E

16
-B

IT
 C

H
E

C
K

S
U

M

O
F

F
S

E
T

LE
N

G
T

H
C

H
E

C
K

S
U

M

R
/W

 =
 1

M
A

S
T

E
R

 N
A

C
K

R
/W

 =
 0

M
S

b
S

E
T

 F
O

R
 D

A
TA

 R
E

Q
U

E
S

T
 M

E
S

S
A

G
E

(1
 to

 1
27

)

 2000 Microchip Technology Inc. Preliminary DS00736A-page 5

AN736

Slave Node Message Processing

In general, the master device may read data from the
slave after a data write or data request message, by ini-
tiating a Restart condition on the I2C bus and sending
the slave address with the R/W bit set. The type of mes-
sage that was previously sent by the master and its
validity determines what data will be returned by the
slave.

Each slave node maintains several status bits to indi-
cate the validity of messages sent by the master
device. These status bits are stored in the communica-
tion status (COMM_STAT) byte and Table 1 indicates
the significance of each bit.

The COMM_STAT byte is always the first data byte to
be returned in any data transfer from the slave node to
the master node. This allows the master to verify that
the previously sent message was processed correctly
by the slave node. If, for example, the master sent a
data write message, the value of the COMM_STAT
byte would be 00h, if the data was successfully
received by the slave. If a data request message was
previously sent by the master, the value of the
COMM_STAT byte would be 80h. If the master
receives any other values for the COMM_STAT byte,
some type of error has occurred and the master should
send the data write or data request message again.

If a data write message was previously sent to the
slave node, the master does not need to receive any
more bytes from the slave node, after the
COMM_STAT byte is read. For a data request mes-
sage, the master should read number of data bytes
specified by DATA_LEN.

A two’s complement, 16-bit checksum is calculated for
the data returned to the master. The checksum value
includes the COMM_STAT byte, plus all data bytes that
were returned. The master device should receive the
two checksum bytes after the data bytes. If the master
determines that a checksum error occurred while
receiving the data bytes, it should try to read the data
from the slave again.

TABLE 1: COMM_STAT BIT DEFINITIONS

Bit Bit Name Description

Bit 0 comm_stat.chkfail Indicates a checksum
failure occurred for the last
message sent.

Bit 1 comm_stat.rxerror Indicates the slave node
did not interpret the last
master message correctly.

Bit 2 comm_stat.ovflw Indicates the master
device has requested to
read/write one or more
bytes of data from the
slave node, outside the
valid range of addresses
for that particular slave.

Bit 3 comm_stat.sspov Indicates an overflow has
occurred in the SSP
module for a given slave
address, because the
slave device was not able
to process incoming I2C
data quickly enough.

Bit 4 Unused

Bit 5 Unused

Bit 6 Unused

Bit 7 comm_stat.r_w Indicates whether the last
message from the master
was a data request mes-
sage (R/W = 1), or a data
write message (R/W = 0).

Note: The bit structure ‘comm_stat’ is used in the
C source code to access bits in the
COMM_STAT byte.

AN736

DS00736A-page 6 Preliminary  2000 Microchip Technology Inc.

PUTTING IT ALL TOGETHER

Now that the basic implementation of the network pro-
tocol is defined, the functional operation of the master
and slave controllers is presented.

The Master Node

General Overview

For this application, a PICmicro® PIC16F873 is imple-
mented as the Master I2C bus controller. This 28-pin
FLASH based PICmicro device provides both the
MSSP and USART modules for I2C and USART com-
munications, respectively.

The firmware code for this application is written in C,
using the Hi-Tech PIC C Compiler™ and is included in
Appendix B. Table 2 provides a brief description of the
system files.

In addition to these C source files, some generic
assembly I2C master read and write routines were
developed and are included in Appendix E. Table 3
provides a brief description of these files.

In this application, the master performs three basic
tasks:

1. I2C slave reads.
2. I2C slave writes.

3. Transmission of received I2C slave data and bus
status to the PC.

For the most part, these tasks occur on an interrupt
basis.

There are four types of interrupts that are implemented:

1. I2C Event Completion Interrupt. This I2C event
interrupt indicates that an I2C event has com-
pleted. I2C events include START, STOP,
Restart, Acknowledge, Read and Write. The
hardware peripheral SSPIF bit (PIR1<6>) is
asserted upon an event completion.

2. Bus Collision Interrupt. This interrupt is used for
handling the detection of a bus collision. Typi-
cally, in a single master system (as described in
this application), a bus collision is unlikely.

3. Timer1 Overflow Interrupt. This interrupt is used
to generate a 100 ms time tick for initiating I2C
communications. When the master completes a
current round of I2C communications, Timer1 is
restarted. When Timer1 overflows (100 ms later),
the next round of I2C communications begins.

4. USART Transmission Interrupt. This interrupt is
used to send out 10 data bytes to the PC. After
the master communicates with each slave
device, a data packet is composed. The packet
consists of the data read from the slave and the
I2C bus status. Each byte is transmitted to the
PC on an interrupt basis at 19200 baud.

For the Master I2C implementation, the MSSP module
on the PICmicro MCU is used. The functional operation
of this module is not covered within this document. For
more information, consult AN735, “Using the
PICmicro® MSSP Module for Master I2CTM Communi-
cations”, or refer to the specific PICmicro data sheet.

TABLE 2: MASTER I2C ‘C’ SOURCE CODE FILES

TABLE 3: MASTER I2C ‘ASM’ SOURCE CODE FILES

File Name Description

mstri2c.c Main code loop and interrupt control functions.

mstri2c.h Variable declarations & definitions.

i2c_comm.c Routines for communicating with the I2C slave device(s).

i2c_comm.h Variable declarations & definitions.

init.c Routines for initializing the PICmicro peripherals and ports.

cnfig87x.h Configuration bit definitions for the PICmicro PIC16F87X.

pic.h Required by compiler for SFR declarations (Hi-Tech file).

delay.h Delay function prototypes (Hi-Tech file).

File Name Description

mastri2c.asm Main code loop and interrupt control functions.

mastri2c.inc Variable declarations & definitions.

i2ccomm1.inc Reference linkage for variables used in i2ccomm.asm file.

i2ccomm.asm Routines for communicating with the I2C slave device.

i2ccomm.inc Variable declarations & definitions.

flags.inc Common flag definitions used within the mastri2c.asm and i2ccomm.asm files.

init.asm Routines for initializing the PICmicro peripherals and ports.

p16f873.inc PICmicro SFR definition file.

16f873.lkr Modified linker script file.

 2000 Microchip Technology Inc. Preliminary DS00736A-page 7

AN736

Master Implementation

The master device, upon completion of the internal
power-up cycle, performs some basic peripheral and
key variable initialization. The functions used for
peripheral initialization are listed:

• Init_Usart()

• Init_Ports()
• Init_Timer1()
• Init_Ssp()

These functions are located within the init.c file.
Within the Init_Ssp() function, the MSSP module is
initialized for Master I2C mode, 400 kHz baud rate and
slew rate is enabled. Once the peripheral initialization
is completed, peripheral and global interrupts are
enabled and the main code execution loop is entered
(see Figure A-1).

In the main loop, the application firmware (F/W) tests
the state of two flags:

• sflag.event.read_i2c
• sflag.event.i2c_event

These flags are initially asserted high in the Timer1
Interrupt Service Routine (ISR). The Timer1 interrupt
starts the I2C communication process and repeats
every 100 ms. In the Timer1 ISR, the timer is shut off,
the respective interrupt is disabled and the referenced
event flags are set (see Figure A-2):

When the main loop program execution resumes, the
F/W tests the state of these two flags. If both are a logic
‘1’, the function Service_I2CSlave() is called. If
one or both of the flags are negated (logic ‘0’), a loop
comprised of a CLRWDT instruction and the flag test
process repeats.

When the Service_I2CSlave()function is called,
several operational code states are tested and exe-
cuted, if true (see Figure A-3 through Figure A-4):

• Test if a new round of slave communications is to
start. If so, initialize key variables and flags. This
test is true every Timer1 rollover event.

• Test if the previous I2C bus state was an I2C write
state. If so, test for Acknowledge error. If error
exists, then issue bus STOP condition.

• Test if there was a I2C bus or Acknowledge error.
If true, compose error status for transmission to
PC. If false, clear same error status.

• Test if the I2C master should communicate with
the next slave device. If true, then perform the fol-
lowing:

- Initialize key variables and flags.

- Call Compose_Buffer() function. In this
function, a test is made to determine if the
data packet read from the slave is valid. If
valid, start transmission of data packet to PC.
If invalid, perform an I2C communication retry
with same slave (see Figure A-5 and
Figure A-6).

- Test if a single data value received from the
slave is out of range. Perform I2C master
write to the slave (see Figure A-7). The range
limit test value is set by the #define limit
0x80 macro (see the i2c_comm.c file).

• Test if the master has communicated with all slave
devices. If true, return to the main code loop and
wait for the next 100 ms time tick to expire. If
false, initiate the next I2C bus state, which may be
a START, STOP, Restart, Read, Write, Send ACK
or Send NACK (see Figure A-8, Figure A-9, and
Figure A-10).

As mentioned, each new round of I2C communications
starts 100 ms from the completion of the previous
round. This cycle is somewhat arbitrary, since the slave
data is not used other than for display on a PC, and a
data collection rate of 100 ms is adequate for this appli-
cation. The I2C communication cycle with each slave
takes approximately 5 ms. Following this, 10 bytes are
transmitted to the PC at 19200 baud, which equates to
approximately 5.3 ms. The data is transmitted to the
PC on an interrupt basis within the interrupt function,
interrupt_piv() located in the mastri2c.c file.

In this application, the master I2C device communi-
cates with twelve slave devices. It is possible to
increase the number of slaves, but PICmicro resources
must be considered. For example, a slave device, upon
request, may transmit up to 127 data bytes to the mas-
ter. The data read from the slave must fit into contigu-
ous memory, since an array variable is used to hold the
data. This may, or may not be possible, based on the
total master I2C device resource requirements. In addi-
tion, a RAM array variable is defined and initialized with
a data length byte, address offset byte, and 8-bit check-
sum for each slave (see Figure 4 for the message for-
mat). For twelve slaves, the array size totals 36 bytes.
One can see that the size of the array depends on the
number of slaves. Although this array is placed in RAM,
it could have been placed in program memory, but then
a dynamic update to the array would not be possible.

In short, this application may be modified to allow for
more slave I2C devices with minor code changes, but
additional PICmicro resources may be required.

AN736

DS00736A-page 8 Preliminary  2000 Microchip Technology Inc.

During each slave communication cycle, the master
reads slave data and status while monitoring and
recording errors, such as bus collision and Acknowl-
edge errors (NACK). While bus collisions are more typ-
ical in a ‘multi-master’ environment, a bus collision may
still occur in a single master system. For example, a
slave device may experience a malfunction (firmware
and/or hardware), and as a result, the SDA and SCL
bus levels are driven low during a transmission. The
later error condition may result in a permanent bus fault
until corrective action is taken. In any case, the master
I2C device should monitor for this condition and take
the appropriate action. When a bus collision is
detected, a status bit will be set to a logic ‘1’ for that par-
ticular slave. When the bus collision error is corrected,
the same status bit will be set to a logic zero. This sta-
tus information is part of the data packet sent to the PC.
In addition, the master will attempt at least one I2C
communication retry. Additional retries are attempted
by changing the substitution text in the macro defined
in file i2c_comm.h. For example, one communication
retry is implemented for:

#define MaxSlaveRetry 1

Two communication retries are made for:

#define MaxSlaveRetry 2

Another error condition the master I2C device should
monitor for is the Not Acknowledge (NACK) condition.
If, for any reason, the slave issues a Not Acknowledge
(does not drive SDA low during the ninth clock pulse of
a write), the master should detect this and take the
appropriate action. As with the bus collision error, a sta-
tus bit will be asserted according to the error state. For
this condition, the master issues a STOP condition
after detecting a NACK. This action differs from the bus
collision, in that as a result of a bus collision, the MSSP
module goes into an IDLE state. The next valid I2C
state should be a START condition. As a result of a
NACK condition, the module does not go into an IDLE
state. An I2C bus Restart or STOP/START combination
should be executed, depending on the desired action.

For this application, (see Figure 4) the master reads
five bytes of information from each slave, three bytes of
data, and two bytes for the checksum. The data, along
with the slave ID, bus and communication error status
is transmitted to the PC for display. While the USART
transmission is in progress, the master may also exe-
cute an I2C write sequence to the slave. The write
sequence is automatic per each slave, but the data
written depends on the value of the second byte read
from the slave. The Write_I2CSlave() function per-
forms this write sequence and is called from within the
Compose_Buffer() function. This write sequence is
concurrent with the USART communications. For this
application, the Write_I2CSlave() function pro-
vides the slave I2C device with a response from the
master, based upon the limit evaluation of this second
byte (see Figure A-7). This function executes as a con-
trol loop using the I2C event completion interrupt.

Finally, for each I2C communication state with a slave,
excluding the Write_I2CSlave() function, the mas-
ter generates each I2C bus state within the
I2CBusState() function. This function is based
upon switch/case control statements. Upon entering
this function, the F/W performs a table lookup for the
next I2C state. The states for each sequence are pre-
defined in the const unsigned char array,
ReadFSlaveI2CStates declared in the file
i2c_comm.h. This implementation allows simple addi-
tion or deletion of I2C bus states. When the next I2C
state has been obtained, a switch statement evaluates
the state variable i2cstate and the correct case
statement initiates the next bus state. The F/W then
returns to the main code loop and waits for the next I2C
event completion interrupt.

The Slave Node

The slave node firmware is provided in Appendix D and
was written for a PIC16C72A device using the Hi-Tech
PICC compiler. The PIC16C72A device was chosen for
the sensor node, because it is a low cost device that
has the SSP module required for I2C communications.
The slave firmware contains the following primary C
functions:

• Setup()

• ISR_Handler()

• SSP_Handler()

• AD_Handler()

• CCP2_Handler()

The Setup() function initializes all of the Special
Function Registers (SFR) in the PIC16C72A and all of
the program variables.

Interrupts

The slave node firmware is primarily interrupt-driven.
The SSP module, CCP2 module, and A/D module are
the sources of interrupts. The ISR_Handler() func-
tion polls the interrupt flag bits and calls the appropriate
module handler function.

Event Timing

The CCP2 module is used in the Compare mode as an
event timer for the firmware and provides an interrupt
every 1 msec. The CCP2_Handler() function is
called when a CCP2 interrupt occurs. In addition to the
1 msec interrupt, CCP2_Handler() also maintains
10 msec, 100 msec, and 1000 msec timing flags for
scheduling other events.

 2000 Microchip Technology Inc. Preliminary DS00736A-page 9

AN736

Slave Node Data Buffers

Three data buffers are used in the slave node applica-
tion. The first of these data buffers is SensorBuf,
which is 12 bytes in length and holds all sensor data to
be sent to the master node. The SensorBuf buffer is
implemented as a union that allows this data space to
be addressed, both as bit fields and as bytes. The first
byte of SensorBuf holds the communication status
(COMM_STAT) byte, which has status bits indicating
the success or failure of an operation by the master
device. The next two bytes in SensorBuf hold status
bits reserved for indicating out-of-range conditions for
each sensor channel in the slave node. These bits
could be read by the master device to get a quick
‘go/no-go’ response for all of the parameters the slave
node is monitoring. The remaining nine bytes in
SensorBuf hold 8-bit data values for each of the slave
node sensor measurements. Constants are defined at
the beginning of the source code for the index values to
SensorBuf.

The next buffer is RXBuffer, which holds bytes sent
by the master device during data request and data
write messages. The length of this buffer is defined to
be eight bytes in the firmware. This buffer has to be
large enough to hold the slave address byte
(SLAVE_ADDR), the data length byte (DATA_LEN),
the data offset byte (DATA_OFFS), the transmit check-
sum, plus the total number of data bytes the master
may write to the slave.

The third buffer used in the firmware is CmdBuf, which
holds data bytes written to the slave device. For this
application, up to four bytes may be written to a partic-
ular slave node. The four data bytes are copied from
RXBuffer to CmdBuf, when a valid data write mes-
sage from the master has been received. If the data
write message is invalid, the data bytes in RXBuffer
are discarded.

Sensor Data

The firmware for the PIC16C72A performs the follow-
ing measurements as a remote sensor node:

• Analog Voltage/Current, 4 channels
• Fan Tachometer, 4 channels
• Temperature, 1 channel

This particular combination of sensor inputs was arbi-
trarily chosen, based on parameters commonly mea-
sured in an environmental monitoring application. In
fact, the master firmware in this application only
requests three of the nine available sensor data values.
In practice, you may want to modify the firmware to
accommodate a different combination of input chan-
nels. Furthermore, the firmware will operate on most
any PICmicro device that has a SSP or MSSP module,
with minor modifications. For example, you may want
to select another device if you need more I/O pins,
more A/D channels, non-volatile EEPROM data mem-
ory, or a higher resolution A/D converter.

A/D Conversions

A new A/D conversion is started in main() each time
the 10 msec timing flag is detected. The
AD_Handler() function is called from the Interrupt
Service Routine each time an A/D interrupt occurs. The
AD_Handler() function determines the presently
selected A/D channel and stores the result in the cor-
rect location in SensorBuf. The A/D input multiplexer
is then set to the next channel to be read. Each A/D
input channel is sampled every 50 msec, which is ade-
quate for most applications.

A thermistor is connected to CH4, which requires lin-
earization to provide correct temperature readings. The
A/D result from CH4 is used as an index to a tempera-
ture lookup table that provides the correct temperature
in degrees Fahrenheit. The values in the temperature
lookup table will depend on the thermistor and external
circuit chosen for your design.

Fan Tachometer Data

I/O pins RB7:RB4 are used for fan tachometer inputs.
These four pins have the weak pull-up feature and mini-
mize the amount of hardware required in the design.
Every 1 msec, the tachometer inputs are sampled and
compared with their values from the previous sample. A
count variable is maintained for each tachometer input.
If a change has occurred on an input pin since the last
sample, the count variable for that input is incremented.
Each time a 1000 msec timing flag is detected in
main(), the number of counts accumulated in the count
variables are stored in the appropriate locations of Sen-
sorBuf and the count variables are cleared so that a
new speed sample can be acquired.

The characteristics of the tachometer output depends
on the particular fan that is used. Some brushless DC
cooling fans, for example, have an open collector
tachometer option that provides between 1 and 4
pulses per revolution. A small DC cooling fan with the
following specifications was selected to provide design
data for calculations:

• Voltage: 12 VDC

• Speed: 3000 RPM
• Tach: open collector square wave output,

2 pulses per revolution, 50% duty cycle

Based on these specifications, the fan will provide a
tachometer output frequency of 100 Hz at its rated
speed and the tachometer count variable will advance
at the rate of 200 counts per second at the maximum
fan speed. The I/O pin must be sampled at a frequency
greater than 200 Hz to avoid signal aliasing and the
accumulation time must be adjusted to scale the maxi-
mum fan speed data value. In this case, unsigned inte-
gers are used to hold the tachometer values, which
allows a maximum data value of 255. If a 1000 msec
accumulation time is used, the tachometer reading will
be 200 at the rated fan speed. This choice of accumu-
lation time allows some overhead to prevent overflow
of the accumulated tachometer data.

AN736

DS00736A-page 10 Preliminary  2000 Microchip Technology Inc.

SSP Event Handling

I2C bus events are processed in the SSP_Handler()
function, which is the heart of the I2C network protocol.
If you need more general information on using the SSP
module as an I2C slave device, please refer to AN734,
“Using the PICmicro® SSP for Slave I2CTM Communica-
tion”.

The SSP module is configured for I2C Slave mode,
7-bit addressing. When a SSP interrupt occurs, the
SSP_Handler() function must identify the I2C event
that just occurred on the bus and take the appropriate
action. For the purposes of explanation, it is helpful to
identify all possible states of SSP module after an I2C
event and discuss each one individually.

The following five states are recognized and handled in
the SSP_Handler() function by testing bits in the
SSPSTAT register:

• State 1: I2C write operation, last byte received
was an address, buffer is full

• State 2: I2C write operation, last byte received
was data, buffer is full

• State 3: I2C read operation, last byte received
was an address, buffer is empty

• State 4: I2C read operation, last byte received
was data, buffer is empty

• State 5: I2C logic reset by NACK from master
device

Flow charts for the SSP_Handler() function are given
in Appendix C.

State 1

State 1 occurs after a valid START condition has
occurred on the bus and an address was transmitted
that caused an address match in the SSP module of
the slave device. The LSb of the address byte is ‘0’,
which indicates a I2C write operation. This condition
indicates that the master device is about to send the
bytes for a new data write, or data request message.
Since this is the beginning of a new transaction on the
bus, a status flag is set in software to disable clearing
of the Watchdog Timer in the main program loop. If the
transaction takes longer than expected, due to a prob-
lem with the slave device, or an error on the bus, then
the Watchdog Timer will reset the slave device and
SSP module. In addition, the COMM_STAT byte is ini-
tialized with the comm_stat.rxerror bit set. This bit
will not be cleared until all bytes in the data write or data
request message have been received and a valid
transmission has been verified. The RXBufferIndex
variable is set to ‘0’ and RXBuffer is cleared. The
address byte that is currently in SSPBUF is stored in
RXBuffer and is also used to initialize the value of
RXChecksum.

State 2

In the second state recognized by SSP_Handler(),
the bytes for a data write or data request message are
stored in RXBuffer and RXBufferIndex is incre-
mented after each byte received, to point to the next
empty buffer location. The value of RXBufferIndex is
checked against the length of RXBuffer to ensure that
a buffer overflow does not occur. If a RXBuffer over-
flow occurs, the value of RXBufferIndex is set to the
last location in the buffer and the comm_stat.ovflw
bit is set in the COMM_STAT byte to indicate that the
overflow occurred. If a SSP module overflow has
occurred, the comm_stat.sspov bit is set in
COMM_STAT. After each data byte is received, its
value is added to RXChecksum and RXBufferIndex
is compared against constant index values to deter-
mine the significance of the present byte in SSPBUF.

If the byte just received is the DATA_LEN byte (byte
#1), the MSb is checked to see if a data write or a data
request is to be performed and the comm_stat.r_w
bit in the COMM_STAT byte is set to indicate the status
of the message. If the MSb of the DATA_LEN byte is
set, indicating a data request message, this bit is
masked to ‘0’ so that it will not affect future calculations
using the data length value stored in the 7 LSbs. The
DATA_LEN value is used to determine the value of
RXByteCount, which holds the expected number of
bytes to be received for the message. For a data
request message, RXByteCount is always set to ‘3’,
because the number of expected bytes is fixed. For a
data write message, RXByteCount is set to ‘3’, plus
the number of bytes indicated by the DATA_LEN byte.

If the byte just received is the DATA_OFFS byte (byte
#2), a check is performed to see if the data request mes-
sage or data write message will exceed the size of Sen-
sorBuf or CmdBuf. If the message exceeds the size of
the buffer, the comm_stat.ovflw status bit is set.

If the number of bytes received is equal to RXByte-
Count, the end of the message has been reached. If
the value of RXChecksum is not ‘0’, the
comm_stat.chkfail status bit in the COMM_STAT
byte is set. If a data write message was sent and
RXChecksum is ‘0’, then the data contained in the mes-
sage is considered valid and is transferred from
RXBuffer into CmdBuf.

State 3

State 3 occurs after a valid START condition has
occurred on the bus and an address was transmitted
that caused an address match in the SSP module of
the slave device. The LSb of the address byte is ‘1’,
which indicates a I2C read operation. This condition
indicates that the master device wishes to read bytes
from the slave device.

As mentioned, the COMM_STAT byte will always be
the first byte returned during a read from the slave. This
byte is written to SSPBUF and the value of
TXChecksum is initialized. The value of
SensBufIndex is set to ‘0’ for future read operations.

 2000 Microchip Technology Inc. Preliminary DS00736A-page 11

AN736

State 4

In State 4, the slave node will send data bytes in
SensorBuf to the master based on the values of the
DATA_LEN and DATA_OFFS bytes. Each byte that is
sent is added to the value of TXChecksum. If the num-
ber of bytes specified in the DATA_LEN byte have been
sent, then the 16-bit value of TXChecksum is returned.
If there are no more bytes to be returned to the master,
then the slave simply returns dummy data.

State 5

The final state detected in SSP_Handler() is caused
by a NACK from the master device. This action indi-
cates to the slave device that the master does not wish
to receive any more data. The NACK event is used as
a signal in this protocol to indicate the completion of a
transaction on the I2C bus. Consequently, the
stat.wdtdis flag is cleared in the slave firmware to
re-enable clearing of the Watchdog Timer.

Design Calculations for the I2C Bus

When designing an I2C network, the number of devices
on the bus, physical characteristics of the bus wiring,
and the length of the bus must be considered. These
variables determine the total amount of capacitive load
on the bus, which the I2C specification limits to 400pF.
The value of the bus pull-up resistors are chosen based
on the bus capacitance.

If the electrical characteristics of the wiring used for the
I2C bus are known, then it is easy to determine the total
bus capacitance. All that is required is to figure out the
capacitance contribution of each device on the bus. If
the capacitance of each device is not known, then 10pF
per device is a good estimate.

Another way to find the total bus capacitance is to pick
preliminary values for the pull-up resistors and analyze
the rise time on the bus, using a digital storage oscillo-
cope. For most applications, 2000Ω would be a good
starting value for the pull-up resistors. The rise time is
the time that the signal takes to go from 10% to 90% of
the final value. Then, the total bus capacitance can be
determined using Equation 1.

EQUATION 1: BUS CAPACITANCE
CALCULATION

Next, the rise time specification for the I2C bus must be
known, which is dependent on the bus frequency. For
high speed mode (400kHz), the maximum rise time is
300nS. For standard mode (100kHz), the maximum
rise time is 1µs. Equation 1 can be rearranged to find
the required value of the pull-up resistors as shown in
Equation 2.

EQUATION 2: PULL-UP RESISTANCE
CALCULATION

The I2C specification limits the amount of current on the
bus to 3mA, which indirectly places a limit on the value
of the pull-up resistors. So for a 5V bus, the minimum
pull-up resistance that could be used is 5V/3mA, or
approximately 1600Ω.

Driving Longer Distances

If the bus length in the application exceeds a few feet,
selection of pull-up resistor values that satisfy the I2C
specifications is a bit harder. In this case, bus extender
IC’s are available that allow you to use a longer bus in
your design. One such IC, the Philips 82B715, provides
a 10x current gain. This IC allows the total bus capaci-
tance to increase to 4000pF and the maximum current
on the bus to 30mA. Figure 4 shows how the bus
extender IC’s are connected. It may be possible to elim-
inate the need for the bus extenders since PICmicro I/O
pins can sink or source greater than 3mA. Refer to the
appropriate device data sheet for further details.

FIGURE 5: I2C BUS EXTENSION BLOCK DIAGRAM

CBUS =
tR

2.2 • R

RPULLUP =
tR

2.2 • CBUS

SDA

SCL

SDA

SCL

I2C
DEVICE

I2C
DEVICE82B715 82B715

LONG BUS

VDD

AN736

DS00736A-page 12 Preliminary  2000 Microchip Technology Inc.

Example Design Calculations

As a design example, the characteristics of the wire
that was used to test the application firmware provided
in this application note, will be used in the calculations
that follow. A 24 ft. length of wire was used to connect
two PIC16F873 devices with 200Ω pull-up resistors on
the SDA and SCL lines. The SCL line was observed on
an oscilloscope and the rise time was determined to be
464ns. The wiring capacitance, per foot, is calculated in
Example 1.

EXAMPLE 1: WIRING CAPACITANCE
CALCULATION

The maximum bus length that could be used with this
wire, without bus extenders, is calculated in Example 2.

EXAMPLE 2: MAXIMUM BUS LENGTH
CALCULATION

Note that this length calculation also excludes the
effects of device capacitance and would be reduced
slightly in practice. Using the bus extenders, a theoret-
ical bus length of 90 feet can be realized, using this
wire.

For further calculations, assume that the bus length is
specified to be 3 feet. Using the wire chosen for this
design example, would set the bus capacitance to
3 x 44pF/ft. or 132pF. Now, we need to choose the bus
frequency, which is arbitrarily selected to be 100kHz.
Using the maximum rise time specification for a
100kHz bus frequency, the value of the pull-up resis-
tors is calculated in Example 3.

EXAMPLE 3: PULL-UP RESISTOR
CALCULATION

A pull-up resistor value of 3400Ω will provide approxi-
mately 1.5mA on the bus, which does not violate the
maximum current limit.

Table 4 shows the maximum bus length based on the
bus frequency, bus current limits, use of bus extenders,
and the characteristics of our wire. Although you will
need to calculate the maximum bus length for your spe-
cific application, this data table will give an approximate
idea of what can be achieved.

Slew Rate Control

PICmicro devices with the MSSP module have a slew
rate control feature. The slew rate control limits the
slope of the falling edge of the SCL and SDA lines to
lower EMI. Slew rate control is enabled in the MSSP
module by clearing the SSPSTAT <7> bit (SMP). If a
clock frequency greater than 400kHz is used, then the
slew rate control should be disabled. Otherwise, the
maximum fall-time specifications may be violated.

Additional SCL and SDA pin characteristics for the
MSSP module are listed in Table 5.

CWIRE =
464 ns

(2.2)(200 Ω)(24 ft)
44 pF

ft
=

LMAX = = 9.1 ft
400 pF

44 pF
ft

RPULLUP =
1 µs

(2.2)(132 pF)
≈ 3400 Ω

 2000 Microchip Technology Inc. Preliminary DS00736A-page 13

AN736

TABLE 4: MAXIMUM BUS LENGTHS FOR EXAMPLE DATA

TABLE 5: PICMICRO DEVICES WITH MSSP MODULE

Bus Capacitance = 44 pF/ft Pull-up Resistance
Bus Frequency = 100kHz Bus Frequency = 400kHz

Maximum Bus Length Maximum Bus Length

No bus extender 1600Ω 6 feet 1.8 feet

82B715 extender IC 160Ω 60 feet 18 feet

Note: Bus length is limited by the choice of pull-up resistor values that do not exceed the maximum bus current in

the I2C specification.

Device

I2C Pin Characteristics

Slew Rate

Control(1)
Glitch Filter(1)

on Inputs

Open Drain Pin

Driver(2,3)

SMbus
Compatible Input

Levels(4)

PIC16C717 Yes Yes No No
PIC16C770 Yes Yes No No
PIC16C771 Yes Yes No No

PIC16C773 Yes Yes No No
PIC16C774 Yes Yes No No
PIC16F872 Yes Yes No Yes

PIC16F873 Yes Yes No Yes
PIC16F874 Yes Yes No Yes
PIC16F876 Yes Yes No Yes

PIC16F877 Yes Yes No Yes

PIC17C752 Yes Yes Yes No

PIC17C756A Yes Yes Yes No
PIC17C762 Yes Yes Yes No
PIC17C766 Yes Yes Yes No

PIC18C242 Yes Yes No No
PIC18C252 Yes Yes No No

PIC18C442 Yes Yes No No
PIC18C452 Yes Yes No No

Note 1: A “glitch” filter is on the SCL and SDA pins when the pin is an input. The filter operates in both the 100 kHz
and 400 kHz modes. In the 100 kHz mode, when these pins are an output, there is a slew rate control of
the pin that is independent of device frequency

2: P-Channel driver disabled for PIC16C/FXXX and PIC18CXXX devices.

3: ESD/EOS protection diode to VDD rail on PIC16C/FXXX and PIC18CXXX devices.

4: SMbus input levels are not available on all PICmicro devices. Consult the respective data sheet for electrical
specifications.

AN736

DS00736A-page 14 Preliminary  2000 Microchip Technology Inc.

Hardware Faults

In a distributed environmental monitoring system, slave
devices may be ‘hot-swapped’ on the bus to replace
faulty systems, or for regular maintenance and testing.
The application hardware will vary depending on the
system requirements, but certain hardware features
can be implemented in every system to ensure that
minimal errors are introduced on the I2C bus, when a
new device is inserted or removed. The connector
hardware chosen must properly sequence the power
supply and data signal connections to the host system.
As a slave node is connected to the I2C bus, the first
physical connection made should be the ground lead,
so any residual potential is discharged into the system
ground. The second connection should be the power to
the slave node.

To avoid brown-out conditions on the system bus, the
total amount of capacitance on the power supply rails
should be considered and series current limiting resis-
tors should be installed to limit the amount of inrush
current. The SDA and SCL lines should be the last con-
nection made through the connector. It is a good idea
to install small resistors in series with the SDA and SCL
lines. These resistors limit the amount of current that
may flow through the I/O pins of the MCU during
power-up. Figure 6 shows a sample block diagram of
the physical bus connection.

FIGURE 6: PHYSICAL I2C BUS CONNECTION DETAILS

G
N

D

S
D

A

S
C

L

V
+

1

2

3

4
MCUR2

V+

R1

RIN

CONTACT SEQUENCE:
1, 2, 3, & 4

PHYSICAL BUS CONNECTOR

I2C SLAVE DEVICE

Note 1: RIN limits inrush current at
power-up.

2: R1 and R2 provide I/O
isolation for SDA and SCL.

3: D1 for reverse bias
protection.

I2C BUS

D1

 2000 Microchip Technology Inc. Preliminary DS00736A-page 15

AN736

CONCLUSION

There are several established synchronous protocols
available for implementation into any design requiring
such. Each protocol will have its pros and cons and
should be weighed accordingly, relative to the applica-
tion requirements.

For this application note, the communications network
is based on the I2C protocol. Some features of the I2C
bus include:

• Only two bus lines are required: a serial data line
(SDA) and a serial clock line (SCL).

• Minimal physical bus requirements; only two
pull-up resistors required.

• Each device connected to the bus is software
addressable by a unique address and simple
master/slave relationships exist at all times;
masters can operate as master-transmitters or as
master-receivers.

• It is a true multi-master bus including collision
detection and arbitration to prevent data corrup-
tion, if two or more masters simultaneously initiate
data transfer.

• On-chip filtering spikes on the bus data line to
preserve data integrity.

From the Slave I2C device to the Master I2C device,
Microchip Technology offers several PICmicro devices
which support these functional features. I2C based
communication network systems implementing the
PICmicro device are cost effective and easy to imple-
ment.

WHAT’S IN THE APPENDIX

Flow charts and C source code for the master node
application have been included in Appendix A and
Appendix B, respectively. Flow charts and C source
code for the slave node application have been included
in Appendix C and Appendix D.

Appendix E and Appendix F contain generic I2C code
written in assembly language. The assembly code
does not implement the network protocol described in
this application note, but you can use the routines as a
starting point for your own application. The source code
for the master device transmits a string of characters to
the slave device and then reads the string back. The
slave device stores the character string in a data mem-
ory buffer until a new string is written.

GLOSSARY OF TERMS

ACK - Acknowledge

BRG - Baud Rate Generator

BSSP - Basic Synchronous Serial Port

EEPROM - Electrically Erasable Programmable Read
 Only Memory

F/W - Firmware

I2C - Inter-Integrated Circuit

ISR - Interrupt Service Routine

MCU - Microcontroller Unit

MSSP - Master Synchronous Serial Port

NACK - Not Acknowledge

SDA - Serial Data Line

SCL - Serial Clock Line

SSP - Synchronous Serial Port

REFERENCES

The I2C-Bus Specification, Philips Semiconductor, Ver-
sion 2.1, 2000,
http://www-us.semiconductors.com/i2c/

PICmicroTM Mid-Range MCU Reference Manual,
Microchip Technology Inc., Document Number
DS33023

PIC16F87X Data Sheet, Microchip Technology Inc.,
Document Number DS30292

AN735, “Using the PICmicro® MSSP Module for Master
I2CTM Communications”, Microchip Technology Inc.,
Document Number DS00735

AN734, “Using the PICmicro® SSP for Slave I2CTM

Communication”, Microchip Technology Inc., Docu-
ment Number DS00734

Note: Information contained in the application
note regarding device applications and the
like, is intended through suggestion only
and may be superseded by updates. No
representation or warranty is given and no
liability is assumed by Microchip Technol-
ogy Incorporated, with respect to the accu-
racy or use of such information, or
infringement of patents, or other intellec-
tual property rights arising from such use
or otherwise.

AN736

DS00736A-page 16 Preliminary  2000 Microchip Technology Inc.

APPENDIX A: MASTER I2C CODE FLOW CHARTS

FIGURE A-1: INITIALIZATION AND MAIN CODE LOOP FLOW

START

POWER-UP
INITIALIZATION

MSSP
INITIALIZATION

USART
INITIALIZATION

PORTS
INITIALIZATION

TIMER
INITIALIZATION

ENABLE
INTERRUPTS

I2C
EVENT FLAG

SERVICE I2C
COMMUNICATIONS A

E

ALL DONE?RESET FLAGS

RESTART TIMER1

YES

NO

YES

NO

SET IN ISR?

CLRWDT
INSTRUCTION

SHORT DELAY(1)

Note 1: Delay function required when Slave FOSC < 8 MHz.

 2000 Microchip Technology Inc. Preliminary DS00736A-page 17

AN736

FIGURE A-2: INTERRUPT SERVICE ROUTINE CODE FLOW

START

ISR ENTRY(1)

SSP

BUS

USART TX

TIMER1

ALL
BYTES SENT?

RESET
USART TX

EVENT FLAG

SEND
ANOTHER BYTE

UPDATE
ARRAY INDICES

YES

NO

SET I2C EVENT
FLAG

TURN OFF TIMER1

DISABLE TIMER1
INTERRUPT

DISABLE USART
TX INTERRUPT

REENABLE SSP
INTERRUPT

ISR EXIT(1)

CLEAR SSP H/W
INTERRUPT

FLAG

SET I2C EVENT

SET
BUS COLLISION
SERVICE FLAG

AND I2C EVENT
SERVICE FLAG

SERVICE FLAG

CLEAR
BUS COLLISION
H/W INTERRUPT

FLAG

YES

YES

NO

NO

NO

NO

YES

YES

AND

Note 1: Context Save/Restore code generated by compiler.

INTERRUPT?

COLLISION
INTERRUPT?

INTERRUPT?

INTERRUPT?

AN736

DS00736A-page 18 Preliminary  2000 Microchip Technology Inc.

FIGURE A-3: SERVICE I2C SUBROUTINE CODE FLOW (1 OF 2)

START

SERVICE I2C
A

INITIALIZE KEY
FLAGS AND
VARIABLES

YES

NO

YES YES

YES YES

YES

NO

NO

NO

NO

NO

NEW ROUND
OF SLAVE

READS?

LAST
EVENT

= WRITE?
ACK ERROR?

OR ACK

ACK ERROR?

BUS

BUS COLLISION?
ERROR?

COLLISION

ISSUE BUS STOP
AND SET ACK
ERROR FLAG

RESET
WRITE STATE
EVENT FLAG

RESET BUS
ERROR STATUS

AND COMM ERROR
STATUS WORDS

RESET BUS
COLLISION FLAG,
COMPOSE ERROR

STATUS WORD,
AND SET SSP H/W
INTERRUPT FLAG

STATUS WORD
COMPOSE ERROR

RESET
ACK ERROR FLAG

AND

A1

 2000 Microchip Technology Inc. Preliminary DS00736A-page 19

AN736

FIGURE A-4: SERVICE I2C SUBROUTINE CODE FLOW (2 OF 2)

A1

SET
DONE FLAG

C

D

SLAVE
ROUNDS

EXECUTE NEXT

I2C BUS STATE

RESET I2C
EVENT FLAG

NEXT SLAVE?
YES

NO

YES

NO

UPDATE
KEY VARIABLES

COMPOSE
BUFFER FOR

USART TX

RESET NEXT

F I

SLAVE FLAG

E

DONE?

UPDATE
SLAVE COUNT

AN736

DS00736A-page 20 Preliminary  2000 Microchip Technology Inc.

FIGURE A-5: COMPOSE BUFFER CODE FLOW (1 OF 2)

F

J

YES

NO

YES

NO

COMPOSE DATA
PACKET FOR PC

ENABLE USART
TRANSMIT

INTERRUPT(1)

G

START
COMPOSE

BUFFER

RESET KEY
FLAGS AND
VARIABLE

CLEAR
ERROR CODE

WRITE DATA

TO SLAVE I2C

SET RETRY
ATTEMPT FLAG

SLAVE

OR
SLAVE OVERRIDE

FLAG SET?

STATUS OK

SLAVE OVERRIDE
FLAG SET?

CHKSM SENT

 CURRENT

CALCULATE
CHECKSUM FOR
RECEIVED DATA

NO

YES

H

NO

YES

= CHKSM CALC OR

Note 1: Data transmission to PC begins.

SET
ERROR CODE

DATA IN LIMITS?OUT OF LIMITS?

CURRENT
DATA FROM SLAVE

ANY SLAVE
ON BUS?

 2000 Microchip Technology Inc. Preliminary DS00736A-page 21

AN736

FIGURE A-6: COMPOSE BUFFER CODE FLOW (2 OF 2)

H

YES

NO

YES

NOIS

I

UPDATE

POINTER FOR

RETRY

SLAVE COUNT
= 0?

UPDATE
RETRY COUNT

VARIABLE

NO

YES

SET

FLAG
SLAVE_OVERRIDE

RETRY
ATTEMPT FLAG

SET?

COUNT > MAX

SLAVE BUFFER

DESIRED?

UPDATE

POINTER FOR
SLAVE BUFFER

SLAVE 0 SLAVE 1 THRU 11

AN736

DS00736A-page 22 Preliminary  2000 Microchip Technology Inc.

FIGURE A-7: I2C WRITE TO SLAVE CODE FLOW

G

YES

NO
I2C

INITIATE I2C
BUS STATE

SET WRITE
DONE FLAG

J

INITIATE I2C

RESET WRITE
STATE FLAG

EVENT
COMPLETE?

INITIALIZE KEY
FLAGS AND
VARIABLES

RESET POINTER

BUS STOP

START
WRITE I2C

SLAVE CODE

RESET

I2C EVENT FLAG

WRITE STATE
FLAG SET?

ACK ERROR?

NO

YES

NO

YES

I2C
WRITES

COMPLETE?

YES

NO

SHORT DELAY(1)

Note 1: Delay function required when Slave FOSC < 8 MHz.

 2000 Microchip Technology Inc. Preliminary DS00736A-page 23

AN736

FIGURE A-8: I2C BUS STATE EXECUTION CODE FLOW (1 OF 3)

C

READ STATE?
INITIATE

READ SEQUENCE

INITIATE
WRITE SEQUENCE

AND SET WRITE
EVENT FLAG

INITIATE
WRITE SEQUENCE

AND SET WRITE
EVENT FLAG

WRITE DATA?

WRITE
ADDRESS
R/W = 1?

START
CONDITION?

INITIATE START
CONDITION

YES

NO

YES

NO

YES

YES

NO

NO

C3C1

STATE VARIABLE
UPDATE I2C

AN736

DS00736A-page 24 Preliminary  2000 Microchip Technology Inc.

FIGURE A-9: I2C BUS STATE EXECUTION CODE FLOW (2 OF 3)

C2

C1

READ_COUNT
> 0 ?

SEND

SEND ACK?

NOT_ACK?

STORE
BYTE READ
FROM BUS

INITIATE BUS
NOT_ACK

SEQUENCE

INITIATE BUS
ACKNOWLEDGE

SEQUENCE

DECREMENT
READ_COUNT

AND UPDATE I2C
STATE POINTER

WRITE
ADDRESS
R/W = 0?

YES

NO

YES

YES

YES

NO

NO

NO

INITIATE
WRITE SEQUENCE

AND SET WRITE
EVENT FLAG

STORE
BYTE READ
FROM BUS

C3

 2000 Microchip Technology Inc. Preliminary DS00736A-page 25

AN736

FIGURE A-10: I2C BUS STATE EXECUTION CODE FLOW (3 OF 3)

C2 C3

YES

NO

YES

NO

STOP
CONDITION?

CONDITION?
RESTART

INITIATE
BUS RESTART

SEQUENCE

INITIATE
BUS STOP

SEQUENCE

SET NEXT_SLAVE
FLAG AND RESET

WRITES_DONE
FLAG

D

 2000 Microchip Technology Inc. Preliminary DS00736A-page 26

AN736

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX B: MASTER I2C SOURCE CODE (C LANGUAGE)

/***
* *
* I2C Master and Slave Network using the PICmicro *
* *
**
* *
* Filename: mstri2c.c *
* Date: 06/09/2000 *
* Revision: 1.00 *
* *
* Tools: MPLAB 5.00.00 *
* Hi-Tech PIC C Compiler V7.85 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* System files required: *
* *
* mstri2c.c *
* i2c_comm.c *
* init.c *
* delay.c (Hi-Tech file) *
* *
* pic.h (Hi-Tech file) *
* delay.h (Hi-Tech file) *
* mstri2c.h *
* i2c_comm.h *
* cnfig87x.h *
* *
**
* *
* Notes: *
* *
* Device Fosc -> 16.00MHz *
* WDT -> on *
* Brownout -> on *
* Powerup timer -> on *
* Code Protect -> off *
* *
* Interrupt sources - *
* 1. USART based transmissions *
* 2. I2C events (valid events) *
* 3. I2C Bus Collision *
* 4. Timer1 - 100mS intervals *

 2000 Microchip Technology Inc. Preliminary DS00736A-page 27

AN736

* *
* *
* Memory Usage Map: *
* *
* Program ROM $0000 - $00BC $00BD (189) words *
* Program ROM $0587 - $07FF $0279 (633) words *
* Program ROM $2007 - $2007 $0001 (1) words *
* $0337 (823) words total Program ROM*
* *
* Bank 0 RAM $0020 - $0075 $0056 (86) bytes *
* Bank 0 RAM $007F - $007F $0001 (1) bytes *
* $0057 (87) bytes total Bank 0 RAM *
* *
* Bank 1 RAM $00A0 - $00AA $000B (11) bytes *
* Bank 1 RAM $00FF - $00FF $0001 (1) bytes *
* $000C (12) bytes total Bank 1 RAM *
* *
***/

 #include <pic.h> // processor if/def file
 #include "cnfig87x.h" // configuration word definitions
 #include "mstri2c.h"
 #include "c:\ht-pic\samples\delay.h"

 __CONFIG (CONBLANK & CP_OFF & DEBUG_OFF & WRT_ENABLE_OFF & CPD_OFF &
 LVP_OFF & BODEN_ON & PWRTE_ON & WDT_ON & HS_OSC);

AN736

DS00736A-page 28 Preliminary  2000 Microchip Technology Inc.

/***
 MAIN PROGRAM BEGINS HERE
**/

void main(void)
{
/* Initialization is done here */
 Init_Usart(); // initialize USART peripheral
 Init_Ports(); // initialize Ports
 Init_Ssp(); // initialize SSP module
 Init_Timer1(); // initialize TMR1 peripheral

/* Interrupts are enabled here */
 TMR1IE = 1; // enable TMR1 Overflow interrupt
 BCLIE = 1; // enable bus collision interrupt
 SSPIE = 1; // enable I2C based interrupts

 sflag.status = 0x0000; // ensure all event flags are reset
 eflag.status = 0x00; // ensure all event flags are reset

 PEIE = 1; // enable peripheral interrupts
 ei(); // enable global interrupts

 for (;;) // infinite loop
 {
 CLRWDT(); // reset WDT

//--
// Will execute these statements if Master wants to read from Slave I2C
//--
 if (sflag.event.read_i2c && sflag.event.i2c) // test if read I2C is active
 {
 if (!sflag.event.reads_done) // test if more reads are needed
 {
 DelayUs(400); // short delay between events
 // to allow for slow FOSC on Slave
 Service_I2CSlave(); // Service I2C slave device(s)
 }

 if (sflag.event.reads_done) // test if that was last read
 {
 sflag.status &= 0x00F0; // reset all I2C event flags
 eflag.status = 0x00; // reset all error event flags
 TMR1ON = 1; // turn on Timer1 module
 TMR1IE = 1; // re-enable Timer1 interrupt
 }
 }
 }
}

//--
// Will evaluate these conditional statements on an interrupt basis
//--
void interrupt piv(void)
{
 if (SSPIE && SSPIF) // test for I2C event completion
 {
 SSPIF = 0; // reset I2C based interrupt flag
 sflag.event.i2c = 1; // set I2C event service flag
 PORTB ^= 0b00000001; // ***** test purposes only *****

 2000 Microchip Technology Inc. Preliminary DS00736A-page 29

AN736

 }

 else if (BCLIE && BCLIF) // test for bus collision
 {
 eflag.i2c.bus_coll_error = 1; // set bus collision flag error
 sflag.event.i2c = 1; // set I2C event service flag
 BCLIF = 0; // reset bus collision interrupt flag
 PORTB ^= 0b00000010; // ***** test purposes only *****
 }

 else if (TXIE && TXIF) // test if USART based transmit interrupt
 {
 if (index < MaxLength2PC) // is all data sent ?
 {
 TXREG = ReadStatBufFromSlave[index]; // send another byte out
 index++; // increment array index
 }
 else
 {
 sflag.event.usart_tx = 0; // reset USART TX in progress flag
 TXIE = 0; // disable transmit interrupt
 SSPIE = 1; // enable I2C based interrupts
 index = 0x00; // reset array index
 }
 }

 else if (TMR1IE && TMR1IF) // test for valid TMR1 interrupt
 {
 sflag.event.read_i2c = 1; // set 100mS event service flag
 sflag.event.i2c = 1; // set I2C event service flag
 PORTB &= 0b00001110; // ***** test purposes only *****
 PORTB ^= 0b00001000; // ***** test purposes only *****
 TMR1ON = 0; // turn off Timer1 module
 TMR1IF = 0; // reset TMR1 rollover interrupt flag
 TMR1IE = 0; // disable TMR1 based interrupt
 TMR1L += 0x60; // re-initialize TMR1 for
 TMR1H = 0x3C; // 100mS intervals
 }
}

AN736

DS00736A-page 30 Preliminary  2000 Microchip Technology Inc.

/***
* *
* I2C Master and Slave Network using the PICmicro *
* *
**
* *
* Filename: i2c_comm.c *
* Date: 06/09/2000 *
* Revision: 1.00 *
* *
* Tools: MPLAB 5.00.00 *
* Hi-Tech PIC C Compiler V7.85 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h (Hi-Tech file) *
* delay.h (Hi-Tech file) *
* i2c_comm.h *
* *
**
* *
* Notes: The routines within this file are for communicating *
* with the I2C Slave device(s). *
* *
***/

 #include <pic.h> // processor if/def file
 #include "i2c_comm.h"
 #include "c:\ht-pic\samples\delay.h"

#define LIMIT 0x80 // limit value for slave data compare

 2000 Microchip Technology Inc. Preliminary DS00736A-page 31

AN736

/***
 MAIN PROGRAM BEGINS HERE
**/
void Service_I2CSlave(void)
{
//--
// Will execute these statements once per each round of slave reads.
//--
 if (!sflag.event.read_start) // execute once per entire rounds of
 // slave reads
 {
 sflag.event.read_start = 1; // set reads start flag
 index = 0x00;
 slave_count = 0x00; // reset running slave counter
 address_hold = SlaveAddress[slave_count]; // initialize address hold buffer
 // (1st slave)
 Write2Slave_Ptr = &WriteStatBuf2Slave[0]; // (bytecount, functional, checksum)
 read_count = OperChannelsPerSlave + 1; // set byte read count
 // (bytes + 1/2checksum)
 ReadFSlave_Ptr = &ReadStatBufFromSlave[0]; // set up pointer for data read from
 // Slave
 I2CState_Ptr = &ReadFSlaveI2CStates[0]; // initialize I2C state pointer
 }

//--
// Will execute these statements if last I2C bus state was a WRITE
//--
 if (sflag.event.write_state) // test if previous I2C state was a write
 {
 if (ACKSTAT) // was NOT ACK received?
 {
 PEN = 1; // generate bus stop condition
 eflag.i2c.ack_error = 1; // set acknowledge error flag
 }
 sflag.event.write_state = 0; // reset write state flag
 }

//--
// Will execute these statements if a bus collision or an acknowledge error
//--
 if (eflag.i2c.bus_coll_error || eflag.i2c.ack_error)
 {
 sflag.event.read_loop = 0; // reset read loop flag for any error
 sflag.event.next_i2cslave = 1; // set flag indicating next slave

 temp.error = error_mask << slave_count; // compose error status word

 if (eflag.i2c.bus_coll_error) // test for bus collision error
 {
 eflag.i2c.bus_coll_error = 0; // reset bus collision error flag
 bus.error_word |= temp.error; // compose bus error status word
 SSPIF = 1; // set false interrupt to restart comm
 }
 if (eflag.i2c.ack_error) // test for acknowledge error
 {
 eflag.i2c.ack_error = 0; // reset acknowledge error flag
 comm.error_word |= temp.error; // compose communication error status word
 }
 }

AN736

DS00736A-page 32 Preliminary  2000 Microchip Technology Inc.

 else // else no error for this slave
 {
 temp.error = error_mask << slave_count; // compose error status word
 bus.error_word &= ~temp.error; // reset bus error bit for this slave
 comm.error_word &= ~temp.error; // reset comm error bit for this slave
 }

//--
// Will execute these statements for each new slave device after the first
//--
 if (sflag.event.next_i2cslave) // if next slave is being requested
 {
 ComposeBuffer(); // compose buffer for sending to PC
 sflag.event.next_i2cslave = 0; // reset next slave status flag

 if (sflag.event.usart_tx) // test if USART TX still in progress
 {
 slave_count ++; // increment slave counter
 SSPIE = 0; // disable SSP based interrupt
 if (!sflag.event.usart_tx) // test if interrupt occurred while here
 {
 SSPIE = 1; // re-enable SSP based interrupt
 }
 }

 address_hold = SlaveAddress[slave_count]; // obtain slave address (repeat or next)
 read_count = OperChannelsPerSlave + 1; // set byte read count (bytes, 1/2checksum)
 ReadFSlave_Ptr = &ReadStatBufFromSlave[0];// set up pointer for data read from Slave
 I2CState_Ptr = &ReadFSlaveI2CStates[0]; // re-initialize I2C state pointer
}

//---
// Test if all slaves have been communicated with or continue with next bus state
//---
 if (slave_count < OperNumberI2CSlaves) // test if all slaves have not been accessed
 {
 sflag.event.i2c = 0; // reset I2C state event flag
 I2CBusState(); // execute next I2C state
 }

 else // else
 {
 sflag.event.reads_done = 1; // set flag indicating all slaves are read
 }
}

//--
// Will execute this switch/case evaluation for next I2C bus state
//--
void I2CBusState (void)
{
 i2cstate = *I2CState_Ptr++; // retrieve next I2C state
 switch (i2cstate) // evaluate which I2C state to execute
 {
 case (READ): // test for I2C read
 RCEN = 1; // initiate i2C read state
 break;

 2000 Microchip Technology Inc. Preliminary DS00736A-page 33

AN736

 case (WRITE_DATA): // test for I2C write (DATA)
 SSPBUF = *Write2Slave_Ptr++; // initiate I2C write state
 sflag.event.write_state = 1; // set flag indicating write event in action
 break;

 case (WRITE_ADDRESS1): // test for I2C address (R/W=1)
 SSPBUF = address_hold + 1; // initiate I2C address write state
 sflag.event.write_state = 1; // set flag indicating write event in action
 break;

 case (START): // test for I2C start state
 SEN = 1; // initiate I2C bus start state
 break;

 case (WRITE_ADDRESS0): // test for I2C address (R/W=0)
 SSPBUF = address_hold; // initiate I2C address write state
 sflag.event.write_state = 1; // set flag indicating write event in action
 break;

 case (SEND_ACK): // test for send acknowledge state
 *ReadFSlave_Ptr++ = SSPBUF; // save off byte
 if (read_count > 0) // test if still in read loop
 {
 read_count -= 1; // reduce read count
 I2CState_Ptr -= 2; // update state pointer
 }
 ACKDT = 0; // set acknowledge data state (true)
 ACKEN = 1; // initiate acknowledge state
 break;

 case (SEND_NACK): // test if sending NOT acknowledge state
 *ReadFSlave_Ptr = SSPBUF; // save off byte
 ACKDT = 1; // set acknowledge data state (false)
 ACKEN = 1; // initiate acknowledge sequence
 break;

 case (STOP): // test for stop state
 PEN = 1; // initiate I2C bus stop state
 sflag.event.next_i2cslave = 1; // set flag indicating next slave
 sflag.event.writes_done = 1; // reset flag, write is done
 break;

 case (RESTART): // test for restart state
 RSEN = 1; // initiate I2C bus restart state
 break;

 default: //
 break;
 }
}

//--
// Compose Buffer to transmit to PC and Slave I2C (slave I2C if overlimit)
//--
void ComposeBuffer(void)
{
 if ((ReadStatBufFromSlave[0] & 0x80) || (eflag.i2c.slave_override))
 {
 checksum.word = Calc_Checksum(&ReadStatBufFromSlave[0], 4);

AN736

DS00736A-page 34 Preliminary  2000 Microchip Technology Inc.

 temp.hold.lobyte = ReadStatBufFromSlave[4];
 temp.hold.hibyte = ReadStatBufFromSlave[5];

 if (((checksum.word + temp.checksum) == 0) || (eflag.i2c.slave_override))
 {
 ReadStatBufFromSlave[6] = bus.error.hibyte; //
 ReadStatBufFromSlave[7] = bus.error.lobyte; //
 ReadStatBufFromSlave[8] = comm.error.hibyte; //
 ReadStatBufFromSlave[9] = comm.error.lobyte; //

 if (eflag.i2c.slave_override) // test if comm failed with Slave
 {
 ReadStatBufFromSlave[5] = 0x00; // null out voltage data
 ReadStatBufFromSlave[4] = 0x00; // null out rpm data
 ReadStatBufFromSlave[3] = 0x00; // null out temperature data
 }
 else // else comm with Slave OK
 {
 ReadStatBufFromSlave[5] = ReadStatBufFromSlave[3]; // voltage data
 ReadStatBufFromSlave[4] = ReadStatBufFromSlave[2]; // rpm data
 ReadStatBufFromSlave[3] = ReadStatBufFromSlave[1]; // temperature data
 }

 ReadStatBufFromSlave[2] = (slave_count + 1); // slave ID
 ReadStatBufFromSlave[1] = 0x55; // start sync character 2
 ReadStatBufFromSlave[0] = 0xAA; // start sync character 1

 sflag.event.usart_tx = 1; // set flag indicating USART TX in progress
 TXIE = 1; // enable USART TX interrupts

 if (comm.error_word & 0x0FFF) // test if any slave is on the bus
 {
 if ((ReadStatBufFromSlave[5] >= LIMIT) && (!eflag.i2c.slave_override))
 {
 WriteData2Slave[3] = 0x01; // out of limits indicator to slave
 Write_I2CSlave(); // write "error" code to slave
 }
 else if ((ReadStatBufFromSlave[5] < LIMIT) && (!eflag.i2c.slave_override))
 {
 WriteData2Slave[3] = 0x00; // in limits indicator to slave
 Write_I2CSlave(); // write "valid" code to slave
 }
 }

 eflag.i2c.slave_override = 0; // reset slave override flag
 read_retry = 0x00; // reset retry count
 eflag.i2c.retry_attempt = 0; // reset retry communication flag
 }
 else
 {
 eflag.i2c.retry_attempt = 1; // set retry communications flag
 }
 }
 else
 {
 eflag.i2c.retry_attempt = 1; // set retry communications flag
 }

 if (eflag.i2c.retry_attempt) // test if there was a retry request
 {

 2000 Microchip Technology Inc. Preliminary DS00736A-page 35

AN736

 read_retry ++; // update retry counter
 if (read_retry > MaxSlaveRetry -1) // test if all retries have been attempted
 {
 eflag.i2c.slave_override = 1; // set flag to process next packet no matter
 // what
 }
 if (slave_count == 0) // test for first slave
 {
 Write2Slave_Ptr = &WriteStatBuf2Slave[0]; // reinitialize pointer
 }
 else // else slave 1 -> X
 {
 Write2Slave_Ptr = &WriteStatBuf2Slave[slave_count * 3]; // reinitialize pointer
 }
 }
}

//--
// Will execute these statements when requiring to write to a Slave I2C device
//--
void Write_I2CSlave(void)
{
 unsigned char temp_ptr; // define auto variable
 sflag.event.writes_done = 0; // ensure flag is reset
 temp_ptr = Write2Slave_Ptr; // save off current write pointer
 I2CState_Ptr = Write2SlaveStates; // initialize I2C state pointer for writes
 ReadFSlave_Ptr = &ReadStatBufFromSlave[0];

 WriteData2Slave[0] = address_hold; // obtain slave address
 WriteData2Slave[1] = 0x01; // byte number request
 WriteData2Slave[2] = 0x00; // functional offset
 checksum.word = Calc_Checksum(&WriteData2Slave[0], 4);
 checksum.word = ~checksum.word + 1;
 WriteData2Slave[4] = (unsigned char)checksum.word; // save off checksum to array
 Write2Slave_Ptr = &WriteData2Slave[1]; // initialize pointer

 do
 {
 DelayUs(400); // delay between events
 sflag.event.i2c = 0; // reset I2C state event flag
 I2CBusState(); // execute next I2C state
 while (!sflag.event.i2c); // wait here until event completes
 if (sflag.event.write_state) // test if previous I2C state was a write
 {
 if (ACKSTAT) // was NOT ACK received?
 {
 PEN = 1; // generate bus stop condition
 sflag.event.writes_done = 1; // set write done flag do to error
 }
 sflag.event.write_state = 0; // reset write state flag
 }
 } while(!sflag.event.writes_done); // stay in loop until error or done

 PORTB ^= 0b00000100; // ***** test purposes only *****
 Write2Slave_Ptr = temp_ptr ; // restore pointer contents
}

AN736

DS00736A-page 36 Preliminary  2000 Microchip Technology Inc.

//--
// Generic checksum calculation routine
//--
unsigned int Calc_Checksum(unsigned char *ptr, unsigned char length)
{
 unsigned int checksum; // define auto type variable
 checksum = 0x0000; // reset checksum word
 while (length) // while data string length != 0
 {
 checksum += *ptr++; // generate checksum
 length --; // decrement data string length
 }
 return (checksum); // return additive checksum
}

 2000 Microchip Technology Inc. Preliminary DS00736A-page 37

AN736

/***
* *
* I2C Master and Slave Network using the PICmicro *
* *
**
* *
* Filename: init.c *
* Date: 06/09/2000 *
* Revision: 1.00 *
* *
* Tools: MPLAB 5.00.00 *
* Hi-Tech PIC C Compiler V7.85 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* *
**
* *
* Notes: The routines within this file are required for *
* initializing the PICmicro peripherals and Ports. *
* *
* *
***/

 #include <pic.h> // processor if/def file

 #define FOSC (16000000L) // define external clock frequency
 #define baud 19200 // define USART baud rate
 #define i2c_bus_rate (400000L) // define I2C bus rate

/***
**/
void Init_Ports(void)
{
 OPTION &= 0b01111110; //
 PORTA = 0b000000; // set default pin drive states
 PORTB = 0b00000000; // set default pin drive states
 PORTC = 0b00000000; // set default pin drive states

 ADCON1 = 0b00000110; // ensure PortA is digital
 TRISA = 0b000000; // set PORTA as outputs
 TRISB = 0b11110000; // RB0-RB3 outputs, RB4-RB7 inputs
 TRISC = 0b11011000; //
}

void Init_Usart(void)
{
 unsigned long temp; // define auto type long variable
/* calculate and set baud rate register for asynchronous mode */
 temp = 16UL * baud;

AN736

DS00736A-page 38 Preliminary  2000 Microchip Technology Inc.

 TRISC |= 0b11000000; // ensure Rx and Tx are inputs (default)
 SPBRG = (int)(FOSC/temp) - 1; // 9600 baud @ 16MHz
 TXSTA = 0b00100100; // enable Transmitter, BRGH = 1
 RCREG; // dummy read
 RCSTA = 0b10010000; // continuous receive, serial port enabled
}

void Init_Ssp(void)
{
 TRISC |= 0b00011000; // ensure SDI and SD0 are inputs
 SSPIF = 0; // reset I2C based interrupt flag
 SSPCON2 = 0b00000000; // ensure all state bits are reset
 SSPSTAT = 0b00000000; //
 SSPADD = ((FOSC / (4 * i2c_bus_rate))) - 1; // initialize i2c bus rate
 SSPCON = 0b00111000; // Master I2C mode
}

void Init_Timer1(void) // set for 100mS intervals
{
 T1CON = 0b00110000; // 1:8 Prescale, T1OSCEN shut-off
 TMR1L = 0x60; // initialize TMR1 for
 TMR1H = 0x3C; // 100 mS intervals
 TMR1IF = 0; // reset Timer1 overflow flag
 TMR1ON = 1; // turn on Timer1 module
}

 2000 Microchip Technology Inc. Preliminary DS00736A-page 39

AN736

/***
* *
* Filename: mstri2c.h *
* Date: 06/09/2000 *
* Revision: 1.00 *
* *
* Tools: MPLAB 5.00.00 *
* Hi-Tech PIC C Compiler V7.85 *
* *
***/

 #define MaxNumberI2CSlaves 12 // maximum number of I2C slave devices
 #define OperNumberI2CSlaves 12 // operational number of I2C slaves

 #define MaxChannelsPerSlave 12 // maximum channels of data per slave
 #define OperChannelsPerSlave 3 // operational number of channels of data

 #define MaxLength2PC 10

// FUNCTION PROTOTYPES

/* Functions defined in init.c file */
extern void Init_Ports(void);
extern void Init_Ssp(void);
extern void Init_Usart(void);
extern void Init_Timer1(void);

/* Functions defined in i2c_comm.c file */
extern void Service_I2CSlave(void);

// VARIABLES (DECLARED HERE)

/* Variables defined in i2c_comm.c file */
extern unsigned char read_count;
extern unsigned char index;

extern bank1 unsigned char ReadStatBufFromSlave[OperChannelsPerSlave+8];
extern const unsigned char *I2CState_Ptr;

/* Variables defined in i2c_comm.c file */
extern unsigned char slave_count;

// VARIABLES (DEFINED HERE)

union events {
unsigned int status; // entire status word
struct bit_events { // structure with 8 bits
 unsigned int usart_tx :1; // flag indicating USART transmit event
 unsigned int :1; //
 unsigned int i2c :1; // flag indicating I2C event
 unsigned int :1; //
 unsigned int :1; //
 unsigned int write_state :1; // flag indicating write state entered

AN736

DS00736A-page 40 Preliminary  2000 Microchip Technology Inc.

 unsigned int writes_done :1; // flag indicating that write state done
 unsigned int :1; //
 unsigned int :1; //
 unsigned int :1; //
 unsigned int next_i2cslave :1; // flag indicating service next slave
 unsigned int read_loop :1; // flag indicating read loop in progress
 unsigned int read_start :1; // flag indicating read state entered
 unsigned int reads_done :1; // flag indicating that read state is done
 unsigned int read_i2c :1; // flag indicating I2C read state
 unsigned int :1; //
 } event;
} sflag;

union i2c_error_events {
 unsigned char status;
 struct error_events { // structure with 16 bits
 unsigned int slave_override :1; // flag indicating
 unsigned int retry_attempt :1; // flag indicating to retry I2C comm
 unsigned int :1; //
 unsigned int :1; //
 unsigned int :1; //
 unsigned int overlimit :1; // flag indicating byte is out-of-range
 unsigned int ack_error :1; // flag indicating acknowledge error
 unsigned int bus_coll_error :1; // flag indicating bus collision error
 } i2c;
} eflag;

 2000 Microchip Technology Inc. Preliminary DS00736A-page 41

AN736

/***
* *
* Filename: i2c_comm.h *
* Date: 06/09/2000 *
* Revision: 1.00 *
* *
* Tools: MPLAB 5.00.00 *
* Hi-Tech PIC C Compiler V7.85 *
* *
***/

 #define MaxNumberI2CSlaves 12 // maximum number of I2C slave devices
 #define OperNumberI2CSlaves 12 // operational number of I2C slaves

 #define MaxChannelsPerSlave 10 // maximum channels of data per slave
 #define OperChannelsPerSlave 3 // operational number of channels of data

 #define MaxSlaveRetry 1 // default is one retry

#define error_mask 0b0000000000000001

#define COMM_STAT 0
#define STATUS0 1
#define STATUS1 2

#define TEMP0 3
#define ADRES0 4
#define ADRES1 5
#define ADRES2 6
#define ADRES3 7

#define TACH0 8
#define TACH1 9
#define TACH2 10
#define TACH3 11
#define MAX_CHNNL TACH3

// FUNCTION PROTOTYPES

unsigned int Calc_Checksum(unsigned char *ptr, unsigned char length);
void I2CBusState(void);
void Write_I2CSlave(void);
void ComposeBuffer(void);
void I2CBusState (void);

// VARIABLES (DEFINED HERE)

unsigned char slave_count, read_count;
unsigned char address_hold, address_offset;
unsigned char read_retry;
unsigned char write_count;

unsigned char I2CWriteState;
unsigned char index;

AN736

DS00736A-page 42 Preliminary  2000 Microchip Technology Inc.

unsigned char i2cstate;
unsigned char *Write2Slave_Ptr;

bank1 unsigned char ReadStatBufFromSlave[OperChannelsPerSlave+8];
bank1 unsigned char *ReadFSlave_Ptr;

unsigned char WriteData2Slave[MaxChannelsPerSlave];

// FORMAT -> byte request count, functional code, checksum (repeats per each slave)
unsigned char WriteStatBuf2Slave[MaxNumberI2CSlaves * 3] =
 { 0x83,TEMP0,0x78, 0x83,TEMP0,0x76, 0x83,TEMP0,0x74,
 0x83,TEMP0,0x72, 0x83,TEMP0,0x70, 0x83,TEMP0,0x6E,
 0x83,TEMP0,0x6C, 0x83,TEMP0,0x6A, 0x83,TEMP0,0x68,
 0x83,TEMP0,0x66, 0x83,TEMP0,0x64, 0x83,TEMP0,0x62 };

union {
 unsigned int error;
 unsigned int checksum;
 struct {
 unsigned char lobyte;
 unsigned char hibyte;
 } hold;
} temp;

union {
 unsigned int error_word;
 struct {
 unsigned char lobyte;
 unsigned char hibyte;
 } error;
} bus;

union {
 unsigned int error_word;
 struct {
 unsigned char lobyte;
 unsigned char hibyte;
 } error;
} comm;

union {
 unsigned int word;
 struct {
 unsigned char low;
 unsigned char high;
 } byte;
} checksum;

// VARIABLES (DECLARED HERE / REFERENCE LINKAGE)

extern union events {
 unsigned int status; // entire status word
 struct bit_events { // structure with 8 bits
 unsigned int usart_tx :1; // flag indicating USART transmit event
 unsigned int :1; //

 2000 Microchip Technology Inc. Preliminary DS00736A-page 43

AN736

 unsigned int i2c :1; // flag indicating I2C event
 unsigned int :1; //
 unsigned int :1; //
 unsigned int write_state :1; // flag indicating write state entered
 unsigned int writes_done :1; // flag indicating that write state done
 unsigned int :1; //
 unsigned int :1; //
 unsigned int :1; //
 unsigned int next_i2cslave :1; // flag indicating service next slave
 unsigned int read_loop :1; // flag indicating read loop in progress
 unsigned int read_start :1; // flag indicating read state entered
 unsigned int reads_done :1; // flag indicating that read state is done
 unsigned int read_i2c :1; // flag indicating I2C read state
 unsigned int :1; //
 } event;
} sflag;

extern union i2c_error_events {
 unsigned char status;
 struct error_events { // structure with 16 bits
 unsigned int slave_override :1; // flag indicating
 unsigned int retry_attempt :1; // flag indicating to retry I2C comm
 unsigned int :1; //
 unsigned int :1; //
 unsigned int :1; //
 unsigned int overlimit :1; // flag indicating byte is out-of-range
 unsigned int ack_error :1; // flag indicating acknowledge error
 unsigned int bus_coll_error :1; // flag indicating bus collision error
 } i2c;
} eflag;

// define I2C bus states
enum i2c_bus_states{ START =1, RESTART =2, STOP =3, SEND_ACK =4, SEND_NACK =5,
 GEN_CALL =6, READ =7, WRITE_DATA =8, WRITE_ADDRESS1 =9,
 WRITE_ADDRESS0 =10 };

const unsigned char ReadFSlaveI2CStates[] = {1,10,8,8,8,2,9,7,4,7,5,3,0};
 //Pad with null state
const unsigned char Write2SlaveStates[] = {1,10,8,8,8,8,2,9,7,5,3,0};
 //Pad with null state

const unsigned char *I2CState_Ptr; // define pointer for accessing I2C states

// Slave Address defined here (base > 1,2,3,4, 5, 6, 7, 8, 9,10,11,12
const unsigned char SlaveAddress[MaxNumberI2CSlaves+1] =
 {2,4,6,8,10,12,14,16,18,20,22,24,0};

AN736

DS00736A-page 44 Preliminary  2000 Microchip Technology Inc.

/***
* *
* Filename: cnfig87x.h *
* Date: 06/09/2000 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.85 *
* *
***/

/*****CONFIGURATION BIT DEFINITIONS FOR PIC16F87X PICmicro *****/

 #define CONBLANK 0x3FFF

#define CP_ALL 0x0FCF
#define CP_HALF 0x1FDF
#define CP_UPPER_256 0x2FEF
#define CP_OFF 0x3FFF
#define DEBUG_ON 0x37FF
#define DEBUG_OFF 0x3FFF
#define WRT_ENABLE_ON 0x3FFF
#define WRT_ENABLE_OFF 0x3DFF
#define CPD_ON 0x3EFF
#define CPD_OFF 0x3FFF
#define LVP_ON 0x3FFF
#define LVP_OFF 0x3F7F
#define BODEN_ON 0x3FFF
#define BODEN_OFF 0x3FBF
#define PWRTE_OFF 0x3FFF
#define PWRTE_ON 0x3FF7
#define WDT_ON 0x3FFF
#define WDT_OFF 0x3FFB
#define LP_OSC 0x3FFC
#define XT_OSC 0x3FFD
#define HS_OSC 0x3FFE
#define RC_OSC 0x3FFF

 2000 Microchip Technology Inc. Preliminary DS00736A-page 45

AN736

APPENDIX C: SLAVE I2C FLOW CHARTS

FIGURE C-1: SSP_HANDLER() FLOW CHART, CASE DETECTION

START

PROCESS
CASE 1

YES

NO
D/A = 0?
R/W = 0?
BF = 1?
S = 1?

RETURN

PROCESS
CASE 3

YES

NO
D/A = 0?
R/W = 1?
BF = 0?
S = 1?

RETURN

PROCESS
CASE 5

YES

NO
D/A = 1?
R/W = 0?
BF = 0?

RETURN

PROCESS
CASE 2

YES

NO
D/A = 1?
R/W = 0?
BF = 1?
S = 1?

RETURN

PROCESS
CASE 4

YES

NO
D/A = 1?
R/W = 1?
BF = 0?
S = 1?

RETURN

TRAP

AN736

DS00736A-page 46 Preliminary  2000 Microchip Technology Inc.

FIGURE C-2: SSP_HANDLER() – CASE 1

CASE 1 START

CLEAR RECEIVE
BUFFER INDEX

END

SET FLAG TO
DISABLE WDT

STORE SSPBUF IN
RECEIVE BUFFER

INITIALIZE RECEIVE
CHECKSUM

INITIALIZE
COMMUNICATION

CLEARING

AND BYTE COUNT

STATUS BYTE

CHECK FOR SSP
OVERFLOW

WITH RX ERROR
BIT SET

 2000 Microchip Technology Inc. Preliminary DS00736A-page 47

AN736

FIGURE C-3: SSP_HANDLER() – CASE 2 (SHEET 1 OF 2)

CASE 2 START

CHECK FOR SSP
MODULE

CHECK INDEX
VARIABLE FOR

GET DATA FROM
SSPBUF AND STORE

RECEIVE BUFFER

OVERFLOW

END

YES

NOIS THIS THE
DATA LENGTH

BYTE?

ADD DATA BYTE
TO CHECKSUM

YES

NOIS THE
MSB SET?

SET STATUS BIT
TO INDICATE A

SET BYTE COUNT
VARIABLE

DATA REQUEST
OPERATION INCREMENT

SET OVERFLOW
ERROR FLAG

SET OVERFLOW
ERROR FLAG

YES

NOIS THIS THE
DATA OFFSET

BYTE?

YES

NO

YES

NO
DOES

RANGE EXCEED
RECEIVE BUFFER

YES

NO
DOES NUMBER

OF BYTES EXCEED
COMMAND

BUFFER SIZE?

IS THIS A
DATA REQUEST

MESSAGE?

SIZE?

OVERFLOW

IN THE BUFFER

RECEIVE BUFFER
INDEX

REQUESTED

A

A

AN736

DS00736A-page 48 Preliminary  2000 Microchip Technology Inc.

FIGURE C-4: SSP_HANDLER() – CASE 2 (SHEET 2 OF 2)

COPY RECEIVED
DATA INTO

COMMAND BUFFER

YES

NO
HAVE THE

EXPECTED NUMER
OF BYTES BEEN

YES

NOIS THIS A
DATA REQUEST

YES NO

YES

NOCHECKSUM
PASS?

CHECKSUM
PASS?

RECEIVED?

SET CHECKSUM
FAIL BIT

SET CHECKSUM
FAIL BIT

RETURN TO ‘A’
ON SHEET 1 OF

CASE 2

A

END

END

MESSAGE?

CLEAR
RXERROR BIT

CLEAR
RXERROR BIT

 2000 Microchip Technology Inc. Preliminary DS00736A-page 49

AN736

FIGURE C-5: SSP_HANDLER() – CASE 3

CASE 3 START

INITIALIZE
TRANSMIT

CLEAR SENSOR
BUFFER INDEX

COMMUNICATION
STATUS BYTE TO

CHECKSUM

END

WRITE

SSPBUF

AN736

DS00736A-page 50 Preliminary  2000 Microchip Technology Inc.

FIGURE C-6: SSP_HANDLER() – CASE 4

CASE 4 START

ADD BYTE TO

LOAD NEXT DATA
BYTE INTO SSPBUF

CHECKSUM VALUE

END

YES

NO

IS THE SENSOR
BUFFER INDEX
LESS THAN THE

NUMBER OF BYTES

YES

NO

IS THE SENSOR
BUFFER INDEX

YES

NO

TO BE SENT?

FIRST BYTE OF

SENSOR BUFFER
INDEX

CHECKSUM VALUE

INCREMENT THE

SEND

EQUAL TO THE
NUMBER OF
BYTES TO BE

SENT? IS THE SENSOR
BUFFER INDEX

ONE GREATER THAN
THE NUMBER OF

BYTES TO BE
SENT?

SECOND BYTE OF
CHECKSUM VALUE

SEND

DUMMY DATA
SEND

 2000 Microchip Technology Inc. Preliminary DS00736A-page 51

AN736

FIGURE C-7: SSP_HANDLER() – CASE 5

CASE 5 START

END

WATCHDOG TIMER
CLEAR

ENABLE WDT
CLEARING

CLEAR FLAG TO

AN736

DS00736A-page 52 Preliminary  2000 Microchip Technology Inc.

APPENDIX D: SLAVE I2C SOURCE CODE
//
//---
// File: slavnode.c
//
// Written By: Stephen Bowling, Microchip Technology
//
// Version: 1.00
//
// Compiled using HiTech PICC Compiler, V. 7.85
//
// This code implements the slave node network protocol for an I2C slave
// device with the SSP module.
//
// The following files should be included in the MPLAB project:
//
// slavnode.c -- Main source code file
//
//---

//---
//Constant Definitions
//---

#define CCP_HBYTE 0x03 // Set Compare timeout to 1msec
#define CCP_LBYTE 0xe8
#define COUNT_10MSEC 10 // Number of Compare timeouts for 10ms
#define COUNT_100MSEC 10 // Number of Compare timeouts for 100ms
#define COUNT_1000MSEC10 // Number of Compare timeouts for 1000ms

#define TEMP_OFFSET 58 // Offset value for temperature table

#define NODE_ADDR 0x18 // I2C address of this node

#define ADRES ADRESH // Redefine for 10-bit A/D

#define ON 1
#define TRUE 1
#define OFF 0
#define FALSE 0

//---
// Buffer Length Definitions
//---

#define RX_BUF_LEN 8 // Length of receive buffer
#define SENS_BUF_LEN 12 // Length of buffer for sensor data.
#define CMD_BUF_LEN 4 // Length of buffer for command data.

//---
// Receive Buffer Index Values
//---

#define SLAVE_ADDR 0 //
#define DATA_OFFS 2 //
#define DATA_LEN 1 //
#define RX_DATA 3 //

//---
// Sensor Buffer Index Values

 2000 Microchip Technology Inc. Preliminary DS00736A-page 53

AN736

//---

#define COMM_STAT 0 // Communication status byte
#define SENSOR_DATA 3 // Start index for sensor data

#define STATUS0 1 // Sensor out-of-range status bits
#define STATUS1 2 // "
#define TEMP0 3 // Temperature (A/D CH4)
#define TACH0 4 // Fan tachometer #1
#define ADRES0 5 // A/D CH0
#define ADRES1 6 // A/D CH1
#define ADRES2 7 // A/D CH2
#define ADRES3 8 // A/D CH3
#define TACH1 9 // Fan tachometer #2
#define TACH2 10 // Fan tachometer #3
#define TACH3 11 // Fan tachometer #4

//---
// Command Buffer Index Values
//---

#define CMD_BYTE0 0
#define CMD_BYTE1 1
#define CMD_BYTE2 2
#define CMD_BYTE3 3

//---
// Pin Definitions
//---

#define TACH_IN0 0x10 // Mask values for fan tach
#define TACH_IN1 0x20 // input pins
#define TACH_IN2 0x40
#define TACH_IN3 0x80

#define LED_0 RB0 // Pin definitions for general
#define LED_1 RB1 // purpose I/O pins
#define FAN_CNTRL RC2

AN736

DS00736A-page 54 Preliminary  2000 Microchip Technology Inc.

//---
// Include Files
//---

#include <pic.h>
#include <string.h>
#include <ctype.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

//---
// Function Prototypes
//---
void Setup(void);
interrupt void ISR_Handler(void);
void WriteI2C(char data);
char ReadI2C(void);
void SSP_Handler(void);
void AD_Handler(void);
void CCP2_Handler(void);

//---
// Variable declarations
//---

unsigned char Count_10m, // Holds number of compare timeouts
Count_100m, // Holds number of compare timeouts
Count_1000m, // "
Count_Tach0, // Holds number of accumulated pulses
Count_Tach1, // for fan speed measurements.
Count_Tach2, //
Count_Tach3; // "

char RXBuffer[RX_BUF_LEN]; // Holds incoming bytes from master
// device.

char CmdBuf[CMD_BUF_LEN]; //

char RXChecksum; //

unsigned char
RXBufferIndex, // Index to received bytes.
RXByteCount, // Number of bytes received
SensBufIndex, // Index to sensor data table
CmdBufIndex, //
PORTBold, // Holds previous value of PORTB
temp;

union INTVAL
{
char b[2];
int i;
}

union INTVAL TXChecksum; // Holds checksum of bytes sent to
// master

union SENSORBUF // Holds sensor data and other bytes
{ // to be sent to master.
struct{

unsigned chkfail:1;

 2000 Microchip Technology Inc. Preliminary DS00736A-page 55

AN736

unsigned rxerror:1;
unsigned ovflw:1;
unsigned sspov:1;
unsigned bit4:1;
unsigned bit5:1;
unsigned bit6:1;
unsigned r_w:1;

 } comm_stat ;

unsigned charb[SENS_BUF_LEN];
} SensorBuf ;

struct{ // Flags for program
unsigned msec10:1; // 10msec time flag
unsigned msec100:1; // 100msec time flag
unsigned msec1000:1; // 1000msec time flag
unsigned bit3:1;
unsigned wdtdis:1; // Watchdog Timer disable flag
unsigned bit5:1;
unsigned bit6:1;
unsigned bit7:1;
 } stat ;

const char temperature[] = {32,32,32,32,33,33,34,34,35,35,35,36,
36,37,37,37,38,38,39,39,40,41,41,42,
43,43,44,44,45,45,46,46,47,48,49,50,
51,52,53,54,55,55,56,57,58,59,59,60,
61,61,62,63,63,63,64,65,66,67,68,68,
69,70,71,71,72,72,73,73,74,75,76,77,
78,79,80,81,81,82,82,83,84,84,85,86,
87,88,89,90,91,91,92,93,94,95,96,97,
98,99,99,99 };

AN736

DS00736A-page 56 Preliminary  2000 Microchip Technology Inc.

//---
// Interrupt Code
//---

interrupt void ISR_Handler(void)
{
if(SSPIF)

{
LED_0 = ON; // Turn on LED to indicate I2C activity.
SSPIF = 0; // Clear the interrupt flag.
SSP_Handler(); // Do I2C communication
}

if(CCP2IF)
{
CCP2IF = 0; // Clear the interrupt flag.
CCP2_Handler(); // Do timekeeping and sample tach inputs.
}

if(ADIF)
{
ADIF = 0; // Clear the interrupt flag.
AD_Handler(); // Get A/D data ready and change channel.
}

}

//---
// void SSP_Handler(void)
//---

void SSP_Handler(void)
{
unsigned char i,j;

//---
// STATE 1: If this is a WRITE operation and last byte was an ADDRESS
//---

if(!STAT_DA && !STAT_RW && STAT_BF && STAT_S)
{
// Clear WDT and disable clearing in the main program loop. The
// WDT will be used to reset the device if an I2C message exceeds
// the expected amount of time.

CLRWDT();
stat.wdtdis = 1;

// Since the address byte was the last byte received, clear
// the receive buffer and the index. Put the received data
// in the first buffer location.

RXBufferIndex = SLAVE_ADDR;
RXByteCount = 0;

RXBuffer[RXBufferIndex] = ReadI2C();

// Initialize the receive checksum.
RXChecksum = RXBuffer[RXBufferIndex];

// Increment the buffer index
RXBufferIndex++;

 2000 Microchip Technology Inc. Preliminary DS00736A-page 57

AN736

// Reset the communication status byte. The rxerror bit remains
// set until a valid data request has taken place.

SensorBuf.b[COMM_STAT] = 0x02;

// Check to make sure an SSP overflow has not occurred.
if(SSPOV)

{
SensorBuf.comm_stat.sspov = 1;
SSPOV = 0;
}

}

//---
// STATE 2: If this is a WRITE operation and the last byte was DATA
//---

else if(STAT_DA && !STAT_RW && STAT_BF)
{
// Check the number of data bytes received.

if(RXBufferIndex == RX_BUF_LEN)
{
SensorBuf.comm_stat.ovflw = 1;
RXBufferIndex = RX_BUF_LEN - 1;
}

// Check to see if SSP overflow occurred.

if(SSPOV)
{
SensorBuf.comm_stat.sspov = 1;
SSPOV = 0;
}

// Get the incoming byte of data.

RXBuffer[RXBufferIndex] = ReadI2C();

// Add the received value to the checksum.

RXChecksum += RXBuffer[RXBufferIndex];

// Check to see if the current byte is the DATA_LEN byte. If it is,
// check the MSb to see if this is a data write or data request.

if(RXBufferIndex == DATA_LEN)
{
if(RXBuffer[DATA_LEN] & 0x80)

{
// This will be a data request, so the master should send
// a total of 4 bytes: SLAVE_ADDR, DATA_LEN, DATA_OFFS,
// and an 8 bit checksum value.

// Mask out the R/W bit in the DATA_LEN byte to simplify
// further calculations.

RXBuffer[DATA_LEN] &= 0x7f;

AN736

DS00736A-page 58 Preliminary  2000 Microchip Technology Inc.

// Set the R/W bit in COMM_STAT byte to indicate a data
// request.

SensorBuf.comm_stat.r_w = 1;
RXByteCount = 3;
}

else
{
// This will be a data write, so the master should send the
// four bytes used for a data request, plus the number of
// bytes specified by the DATA_LEN byte. If the total
// number of bytes to be written exceeds the slave receive
// buffer, the error flag needs to be set.

SensorBuf.comm_stat.r_w = 0;
RXByteCount = RXBuffer[DATA_LEN] + 3;

if(RXByteCount > RX_BUF_LEN)
{
SensorBuf.comm_stat.rxerror = 1;
SensorBuf.comm_stat.ovflw = 1;
}

}
}

// If not the DATA_LEN byte, check to see if the current byte
// is the DATA_OFFS byte.

else if(RXBufferIndex == DATA_OFFS)
{

// If this is a data request command.

if(SensorBuf.comm_stat.r_w)
{
// Is the range of sensor data requested within the limits of the
// sensor data buffer? If so, set the appropriate flags.

if
(RXBuffer[DATA_LEN] + RXBuffer[DATA_OFFS] > SENS_BUF_LEN - 1)

{
SensorBuf.comm_stat.rxerror = 1;
SensorBuf.comm_stat.ovflw = 1;
}

else
{

SensorBuf.comm_stat.rxerror = 0;
SensorBuf.comm_stat.ovflw = 0;
}

}

// Otherwise, this is a data write command.

else
{

// Is the master requesting to write more bytes than are available
// in the command buffer?

 2000 Microchip Technology Inc. Preliminary DS00736A-page 59

AN736

if(RXBuffer[DATA_LEN] + RXBuffer[DATA_OFFS] > CMD_BUF_LEN - 1)
{
SensorBuf.comm_stat.rxerror = 1;
SensorBuf.comm_stat.ovflw = 1;
}

else
{
SensorBuf.comm_stat.rxerror = 0;
SensorBuf.comm_stat.ovflw = 0;
}

}
}

// If the master is doing a data write to the slave, we must check
// for the end of the data string so we can do the checksum.

else if(RXBufferIndex == RXByteCount)
{

// Is this a data request?

if(SensorBuf.comm_stat.r_w)
{
if(RXChecksum)

SensorBuf.comm_stat.chkfail = 1;

else
SensorBuf.comm_stat.chkfail = 0;

}

// Was this a data write?

else
{
if(RXChecksum)

SensorBuf.comm_stat.chkfail = 1;

else
{
// Checksum was OK, so copy the data in receive buffer
// into the command buffer.

for(i=RXBuffer[DATA_OFFS]+3, j = 0;
 i < (RXBuffer[DATA_LEN] + RXBuffer[DATA_OFFS] + 3);
 i++,j++)

{
if(j == CMD_BUF_LEN) j--;
CmdBuf[j] = RXBuffer[i];
}

SensorBuf.comm_stat.chkfail = 0;
}

}
}

else;

AN736

DS00736A-page 60 Preliminary  2000 Microchip Technology Inc.

// Increment the receive buffer index.
RXBufferIndex++;
}

//---
// STATE 3: If this is a READ operation and last byte was an ADDRESS
//---

else if(!STAT_DA && STAT_RW && !STAT_BF && STAT_S)
{
// Clear the buffer index to the sensor data.
SensBufIndex = 0;

// Initialize the transmit checksum

TXChecksum.i = (int)SensorBuf.b[COMM_STAT];

// Send the communication status byte.

WriteI2C(SensorBuf.b[COMM_STAT]);
}

//---
// STATE 4: If this is a READ operation and the last byte was DATA
//---

else if(STAT_DA && STAT_RW && !STAT_BF)
{
// If we haven’t transmitted all the required data yet,
// get the next byte out of the TXBuffer and increment
// the buffer index. Also, add the transmitted byte to
// the checksum

if(SensBufIndex < RXBuffer[DATA_LEN])
{
WriteI2C(SensorBuf.b[SensBufIndex + RXBuffer[DATA_OFFS]]);
TXChecksum.i += (int)ReadI2C();
SensBufIndex++;
}

// If all the data bytes have been sent, invert the checksum
// value and send the first byte.

else
if(SensBufIndex == RXBuffer[DATA_LEN])

{
TXChecksum.i = ~TXChecksum.i;
TXChecksum.i++;
WriteI2C(TXChecksum.b[0]);
SensBufIndex++;
}

 2000 Microchip Technology Inc. Preliminary DS00736A-page 61

AN736

// Send the second byte of the checksum value.

else
if(SensBufIndex == (RXBuffer[DATA_LEN] + 1))

{
WriteI2C(TXChecksum.b[1]);
SensBufIndex++;
}

// Otherwise, just send dummy data back to the master.

else
{
WriteI2C(0x55);
}

}

//---
// STATE 5: A NACK from the master device is used to indicate that a
// complete transmission has occurred. The clearing of the
// WDT is reenabled in the main loop at this time.
//---

else if(STAT_DA && !STAT_RW && !STAT_BF)
{
stat.wdtdis = 0;
CLRWDT();
}

else;
}

//---
// void CCP2_Handler(void)
//
// At each CCP2 interrupt, the tachometer inputs are sampled to see
// if a pin change occurred since the last interrupt. If so, the count
// value for that tach input is incremented. Count values are also
// maintained to determine when 10ms, 100msec, and 1000msec have
// elapsed.
//---

void CCP2_Handler(void)
{
TMR1L = 0; // Clear Timer1
TMR1H = 0;

temp = PORTB; // Get present PORTB value
PORTBold ^= temp; // XOR to get pin changes

if(PORTBold & TACH_IN3) Count_Tach3++; // Test each input to see if pin
if(PORTBold & TACH_IN2) Count_Tach2++; // changed.
if(PORTBold & TACH_IN1) Count_Tach1++;
if(PORTBold & TACH_IN0) Count_Tach0++;

PORTBold = temp; // Store present PORTB value for
// next sample time.
Count_10m++; // Increment 10msec count.

AN736

DS00736A-page 62 Preliminary  2000 Microchip Technology Inc.

if(Count_10m == COUNT_10MSEC) // Set flag and zero count if
{ // 10msec have elapsed.
Count_10m = 0;
Count_100m++;
stat.msec10 = 1;
}

if(Count_100m == COUNT_100MSEC) // Set flag and zero count if
{ // 100msec have elapsed.
Count_100m = 0;
Count_1000m++;
stat.msec100 = 1;
}

if(Count_1000m == COUNT_1000MSEC) // Set flag and zero count if
{ // 1000msec have elapsed.
Count_1000m = 0;
stat.msec1000 = 1;
}

}

//---
// void AD_Handler(void)
//
// This routine gets the data that is ready in the ADRES register and
// changes the A/D channel to the next source.
//---

void AD_Handler(void)
{
switch(ADCON0 & 0x38) // Get current A/D channel

{
case 0x00: SensorBuf.b[ADRES0] = ADRES;

CHS0 = 1; // Change to CH1
CHS1 = 0;
CHS2 = 0;
break;

case 0x08: SensorBuf.b[ADRES1] = ADRES;
CHS0 = 0; // Change to CH2
CHS1 = 1;
CHS2 = 0;
break;

case 0x10: SensorBuf.b[ADRES2] = ADRES;
CHS0 = 1; // Change to CH3
CHS1 = 1;
CHS2 = 0;
break;

case 0x18: SensorBuf.b[ADRES3] = ADRES;
CHS0 = 0; // Change to CH4
CHS1 = 0;
CHS2 = 1;
break;

case 0x20: if(ADRES < TEMP_OFFSET || ADRES > (100 + TEMP_OFFSET))
SensorBuf.b[TEMP0] = 0;

else
SensorBuf.b[TEMP0] = temperature[ADRES - TEMP_OFFSET];

 2000 Microchip Technology Inc. Preliminary DS00736A-page 63

AN736

CHS0 = 0; // Change to CH0
CHS1 = 0;
CHS2 = 0;
break;

default: CHS0 = 0; // Change to CH0
CHS1 = 0;
CHS2 = 0;
break;

}
}

//---
// void WriteI2C(char data)
//---

void WriteI2C(char data)
{
do

{
WCOL = 0;
SSPBUF = data;
} while(WCOL);

// Release the clock.

CKP = 1;
}

//---
// char ReadI2C(void)
//---

char ReadI2C(void)
{
return(SSPBUF);
}

//---
// void main(void)
//---

void main(void)
{
Setup();

while(1)
{
// Check WDT software flag to see if we need to clear the WDT. The
// clearing of the WDT is disabled by this flag during I2C events to
// increase reliablility of the slave I2C function. In the event that
// a sequence on the I2C bus takes longer than expected, the WDT will
// reset the device (and SSP module).

if(!stat.wdtdis)
CLRWDT();

AN736

DS00736A-page 64 Preliminary  2000 Microchip Technology Inc.

// The 10msec flag is used to start a new A/D conversion. When the
// conversion is complete, the AD_Handler() function called from the
// ISR will get the conversion results and select the next A/D channel.
// Therefore, each A/D result will get updated every 10msec x (number of
// channels used).

if(stat.msec10)
{
// Start the next A/D conversion.
ADGO = 1;

// Clear the 10 msec time flag
stat.msec10 = 0;
}

// The 100msec time flag is used to update new values that have been
// written to the command buffer.

if(stat.msec100)
{
if(CmdBuf[0]) FAN_CNTRL = ON;

else FAN_CNTRL = OFF;

// Clear the activity LEDs
LED_0 = OFF;
LED_1 = OFF;

// Clear the 100msec time flag
stat.msec100 = 0;
}

// The 1000msec time flag is used to update the tachometer values in the
// SensorBuf array.

if(stat.msec1000)
{
SensorBuf.b[TACH0] = Count_Tach0;
Count_Tach0 = 0;
SensorBuf.b[TACH1] = Count_Tach1;
Count_Tach1 = 0;
SensorBuf.b[TACH2] = Count_Tach2;
Count_Tach2 = 0;
SensorBuf.b[TACH3] = Count_Tach3;
Count_Tach3 = 0;

// Clear the 1000msec time flag
stat.msec1000 = 0;
}

} // end while(1);
}

 2000 Microchip Technology Inc. Preliminary DS00736A-page 65

AN736

//---
// void Setup(void)
//
// Initializes program variables and peripheral registers.
//---

void Setup(void)
{
stat.msec10 = 0; // Clear the software status bits.
stat.msec100 = 0;
stat.msec1000 = 0;
stat.wdtdis = 0;
stat.button = 0;
stat.b_latch = 0;

RXBufferIndex = 0; // Clear software variables
SensBufIndex = 0;
CmdBufIndex = 0;
TXChecksum.i = 0;
RXChecksum = 0;

Count_10m = 0;
Count_100m = 0;
Count_Tach0 = 0;
Count_Tach1 = 0;
Count_Tach2 = 0;
Count_Tach3 = 0;

CmdBuf[0] = 0;

PORTA = 0xff;
TRISA = 0xff;
TRISB = 0xf0;
TRISC = 0x18;

OPTION = 0x78; // Weak pullups on, WDT prescaler 2:1

SSPADD = NODE_ADDR; // Configure SSP module
SSPSTAT = 0;
SSPCON = 0;
SSPCON = 0x36;

CCPR2L = CCP_LBYTE; // Setup CCP2 for event timing
CCPR2H = CCP_HBYTE;
CCP2CON = 0x0a; // Compare mode, no output

TMR1L = 0; // Timer1 is CCP1 timebase
TMR1H = 0;
T1CON = 0x01;

ADCON1 = 0x02; // Setup A/D converter
ADCON0 = 0x81;

if(!TO) LED_1 = 1; // Set status LED to indicate WDT
// timeout has occured.

else
{
PORTB = 0; // Don’t clear port values on WDT
PORTC = 0; //
}

AN736

DS00736A-page 66 Preliminary  2000 Microchip Technology Inc.

CLRWDT();

CCP2IF = 0;
CCP2IE = 1;
ADIF = 0;
ADIE = 1;
SSPIF = 0;
SSPIE = 1;
PEIE = 1;
GIE = 1;
}

 2000 Microchip Technology Inc. Preliminary DS00736A-page 67

AN736

APPENDIX E: GENERIC I2C MASTER READ AND WRITE ROUTINES (ASSEMBLY)
;***

; Implementing Master I2C with the MSSP module on a PICmicro *

; *

;***

; *

; Filename: mastri2c.asm *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

; Author: Richard L. Fischer *

; *

; Company: Microchip Technology Incorporated *

; *

;***

; *

; System files required: *

; *

; mastri2c.asm *

; i2ccomm.asm *

; init.asm *

; *

; mastri2c.inc *

; i2ccomm.inc *

; i2ccomm1.inc *

; flags.inc *

; *

; p16f873.inc *

; 16f873.lkr (modified for interrupts) *

; *

;***

; *

; Notes: *

; *

; Device Fosc -> 8.00MHz *

; WDT -> on *

; Brownout -> on *

; Powerup timer -> on *

; Code Protect -> off *

; *

AN736

DS00736A-page 68 Preliminary  2000 Microchip Technology Inc.

; Interrupt sources - *

; 1. I2C events (valid events) *

; 2. I2C Bus Collision *

; 3. Timer1 - 100mS intervals *

; *

; *

***/

 list p=16f873 ; list directive to define processor

 #include <p16f873.inc> ; processor specific variable definitions

 __CONFIG (_CP_OFF & _WDT_ON & _BODEN_ON & _PWRTE_ON & _HS_OSC & _WRT_ENABLE_ON

 & _LVP_OFF & _CPD_OFF)

 #include "mastri2c.inc" ;

 #include "i2ccomm1.inc" ; required include file

 errorlevel -302

 #define ADDRESS 0x01 ; Slave I2C address

;--

; ********************* RESET VECTOR LOCATION ********************

;--

RESET_VECTOR CODE 0x000 ; processor reset vector

 movlw high start ; load upper byte of ’start’ label

 movwf PCLATH ; initialize PCLATH

 goto start ; go to beginning of program

;--

; ******************* INTERRUPT VECTOR LOCATION *******************

;--

INT_VECTOR CODE 0x004 ; interrupt vector location

 movwf w_temp ; save off current W register contents

 movf STATUS,w ; move status register into W register

 clrf STATUS ; ensure file register bank set to 0

 movwf status_temp ; save off contents of STATUS register

 movf PCLATH,w

 movwf pclath_temp ; save off current copy of PCLATH

 clrf PCLATH ; reset PCLATH to page 0

; TEST FOR COMPLETION OF VALID I2C EVENT

 bsf STATUS,RP0 ; select SFR bank

 btfss PIE1,SSPIE ; test is interrupt is enabled

 goto test_buscoll ; no, so test for Bus Collision Int

 2000 Microchip Technology Inc. Preliminary DS00736A-page 69

AN736

 bcf STATUS,RP0 ; select SFR bank

 btfss PIR1,SSPIF ; test for SSP H/W flag

 goto test_buscoll ; no, so test for Bus Collision Int

 bcf PIR1,SSPIF ; clear SSP H/W flag

 pagesel service_i2c ; select page bits for function

 call service_i2c ; service valid I2C event

; TEST FOR I2C BUS COLLISION EVENT

test_buscoll

 banksel PIE2 ; select SFR bank

 btfss PIE2,BCLIE ; test if interrupt is enabled

 goto test_timer1 ; no, so test for Timer1 interrupt

 bcf STATUS,RP0 ; select SFR bank

 btfss PIR2,BCLIF ; test if Bus Collision occured

 goto test_timer1 ; no, so test for Timer1 interrupt

 bcf PIR2,BCLIF ; clear Bus Collision H/W flag

 call service_buscoll ; service bus collision error

; TEST FOR TIMER1 ROLLOVER EVENT

test_timer1

 banksel PIE1 ; select SFR bank

 btfss PIE1,TMR1IE ; test if interrupt is enabled

 goto exit_isr ; no, so exit ISR

 bcf STATUS,RP0 ; select SFR bank

 btfss PIR1,TMR1IF ; test if Timer1 rollover occured

 goto exit_isr ; no so exit isr

 bcf PIR1,TMR1IF ; clear Timer1 H/W flag

 pagesel service_i2c ; select page bits for function

 call service_i2c ; service valid I2C event

 banksel T1CON ; select SFR bank

 bcf T1CON,TMR1ON ; turn off Timer1 module

 movlw 0x58 ;

 addwf TMR1L,f ; reload Timer1 low

 movlw 0x9E ;

 movwf TMR1H ; reload Timer1 high

 banksel PIE1 ; select SFR bank

 bcf PIE1,TMR1IE ; disable Timer1 interrupt

 bsf PIE1,SSPIE ; enable SSP H/W interrupt

exit_isr

 clrf STATUS ; ensure file register bank set to 0

 movf pclath_temp,w

AN736

DS00736A-page 70 Preliminary  2000 Microchip Technology Inc.

 movwf PCLATH ; restore PCLATH

 movf status_temp,w ; retrieve copy of STATUS register

 movwf STATUS ; restore pre-isr STATUS register contents

 swapf w_temp,f ;

 swapf w_temp,w ; restore pre-isr W register contents

 retfie ; return from interrupt

 2000 Microchip Technology Inc. Preliminary DS00736A-page 71

AN736

;--

; ******************* MAIN CODE START LOCATION ******************

;--

MAIN CODE

start

 pagesel init_ports ;

 call init_ports ; initialize Ports

 call init_timer1 ; initialize Timer1

 pagesel init_i2c

 call init_i2c ; initialize I2C module

 banksel eflag_event ; select GPR bank

 clrf eflag_event ; initialize event flag variable

 clrf sflag_event ; initialize event flag variable

 clrf i2cState ;

 call CopyRom2Ram ; copy ROM string to RAM

 call init_vars ; initialize variables

 banksel PIE2 ; select SFR bank

 bsf PIE2,BCLIE ; enable interrupt

 banksel PIE1 ; select SFR bank

 bsf PIE1,TMR1IE ; enable Timer1 interrupt

 bsf INTCON,PEIE ; enable peripheral interrupt

 bsf INTCON,GIE ; enable global interrupt

;***

; MAIN LOOP BEGINS HERE

;***

main_loop

 clrwdt ; reset WDT

 banksel eflag_event ; select SFR bank

 btfsc eflag_event,ack_error ; test for ack error event flag

 call service_ackerror ; service ack error

 banksel sflag_event ; select SFR bank

 btfss sflag_event,rw_done ; test if read/write cycle complete

 goto main_loop ; goto main loop

 call string_compare ; else, go compare strings

 banksel T1CON ; select SFR bank

 bsf T1CON,TMR1ON ; turn on Timer1 module

AN736

DS00736A-page 72 Preliminary  2000 Microchip Technology Inc.

 banksel PIE1 ; select SFR bank

 bsf PIE1,TMR1IE ; re-enable Timer1 interrupts

 call init_vars ; re-initialize variables

 goto main_loop ; goto main loop

;--

; *************** Bus Collision Service Routine ******************

;--

service_buscoll

 banksel i2cState ; select GPR bank

 clrf i2cState ; reset I2C bus state variable

 call init_vars ; re-initialize variables

 bsf T1CON,TMR1ON ; turn on Timer1 module

 banksel PIE1 ; select SFR bank

 bsf PIE1,TMR1IE ; enable Timer1 interrupt

 return ;

;--

; ************* Acknowledge Error Service Routine ***************

;--

service_ackerror

 banksel eflag_event ; select SFR bank

 bcf eflag_event,ack_error ; reset acknowledge error event flag

 clrf i2cState ; reset bus state variable

 call init_vars ; re-initialize variables

 bsf T1CON,TMR1ON ; turn on Timer1 module

 banksel PIE1 ; select SFR bank

 bsf PIE1,TMR1IE ; enable Timer1 interrupt

 return ;

;--

; ***** INITIALIZE VARIABLES USED IN SERVICE_I2C FUNCTION ******

;--

init_vars

 movlw D’21’ ; byte count for this example

 banksel write_count ; select GPR bank

 movwf write_count ; initialize write count

 movwf read_count ; initialize read count

 movlw write_string ; get write string array address

 2000 Microchip Technology Inc. Preliminary DS00736A-page 73

AN736

 movwf write_ptr ; initialize write pointer

 movlw read_string ; get read string placement address

 movwf read_ptr ; initialize read pointer

 movlw ADDRESS ; get address of slave

 movwf temp_address ; initialize temporary address hold reg

 return ;

;--

; ******************* Compare Strings ************************

;--

;Compare the string written to and read back from the Slave

string_compare

 movlw read_string ;

 banksel ptr1 ; select GPR bank

 movwf ptr1 ; initialize first pointer

 movlw write_string

 movwf ptr2 ; initialize second pointer

loop

 movf ptr1,w ; get address of first pointer

 movwf FSR ; init FSR

 movf INDF,w ; retrieve one byte

 banksel temp_hold ; select GPR bank

 movwf temp_hold ; save off byte 1

 movf ptr2,w ;

 movwf FSR ; init FSR

 movf INDF,w ; retrieve second byte

 subwf temp_hold,f ; do comparison

 btfss STATUS,Z ; test for valid compare

 goto not_equal ; bytes not equal

 iorlw 0x00 ; test for null character

 btfsc STATUS,Z ;

 goto end_string ; end of string has been reached

 incf ptr1,f ; update first pointer

 incf ptr2,f ; update second pointer

 goto loop ; do more comparisons

not_equal

 banksel PORTB ; select GPR bank

 movlw b’00000001’

 xorwf PORTB,f

 goto exit

AN736

DS00736A-page 74 Preliminary  2000 Microchip Technology Inc.

end_string

 banksel PORTB ; select GPR bank

 movlw b’00000010’ ; no error

 xorwf PORTB,f

exit

 banksel sflag_event ; select SFR bank

 bcf sflag_event,rw_done ; reset flag

 return

;--

; ******************* Program Memory Read *******************

;--

;Read the message from location MessageTable

CopyRom2Ram

 movlw write_string ;

 movwf FSR ; initialize FSR

 banksel EEADRH ; select SFR bank

 movlw High (Message1) ; point to the Message Table

 movwf EEADRH ; init SFR EEADRH

 movlw Low (Message1) ;

 movwf EEADR ; init SFR EEADR

next1

 banksel EECON1 ; select SFR bank

 bsf EECON1,EEPGD ; select the program memory

 bsf EECON1,RD ; read word

 nop ;

 nop ;

 banksel EEDATA ;

 rlf EEDATA,w ; get bit 7 in carry

 rlf EEDATH,w ; get high byte in w

 movwf INDF ; save it

 incf FSR,f ;

 banksel EEDATA ; select SFR bank

 bcf EEDATA,7 ; clr bit 7

 movf EEDATA,w ; get low byte and see = 0?

 btfsc STATUS,Z ; end?

 return ;

 movwf INDF ; save it

 incf FSR,f ; update FSR pointer

 2000 Microchip Technology Inc. Preliminary DS00736A-page 75

AN736

 banksel EEADR ; point to address

 incf EEADR,f ; inc to next location

 btfsc STATUS,Z ; cross over 0xff

 incf EEADRH,f ; yes then inc high

 goto next1 ; read next byte

;--

;--

Message1 DA "Master and Slave I2C",0x00,0x00

 END ; required directive

AN736

DS00736A-page 76 Preliminary  2000 Microchip Technology Inc.

;***

; *

; Implementing Master I2C with the MSSP module on a PICmicro *

; *

;***

; *

; Filename: i2ccomm.asm *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

; Author: Richard L. Fischer *

; John E. Andrews *

; *

; Company: Microchip Technology Incorporated *

; *

;***

; *

; Files required: *

; *

; i2ccomm.asm *

; i2ccomm.inc *

; flags.inc (referenced in i2ccomm.inc file) *

; i2ccomm1.inc (must be included in main file) *

; p16f873.inc *

; *

;***

; *

; Notes: The routines within this file are used to read from *

; and write to a Slave I2C device. The MSSP initialization *

; function is also contained within this file. *

; *

;**/

 #include <p16f873.inc> ; processor specific definitions

 #include "i2ccomm.inc" ; required include file

 errorlevel -302

 #define FOSC D’8000000’ ; define FOSC to PICmicro

 #define I2CClock D’400000’ ; define I2C bite rate

 #define ClockValue (((FOSC/I2CClock)/4) -1) ;

 2000 Microchip Technology Inc. Preliminary DS00736A-page 77

AN736

;--

; *********************** I2C Service *************************

;--

I2C_COMM CODE

service_i2c

 movlw high I2CJump ; fetch upper byte of jump table address

 movwf PCLATH ; load into upper PC latch

 movlw i2cSizeMask

 banksel i2cState ; select GPR bank

 andwf i2cState,w ; retrieve current I2C state

 addlw low (I2CJump + 1) ; calc state machine jump addr into W

 btfsc STATUS,C ; skip if carry occured

 incf PCLATH,f ; otherwise add carry

I2CJump ; address were jump table branch occurs, this addr also used in fill

 movwf PCL ; index into state machine jump table

; jump to processing for each state = i2cState value for each state

 goto WrtStart ; write start sequence = 0

 goto SendWrtAddr ; write address, R/W=1 = 1

 goto WrtAckTest ; test ack,write data = 2

 goto WrtStop ; do stop if done = 3

 goto ReadStart ; write start sequence = 4

 goto SendReadAddr ; write address, R/W=0 = 5

 goto ReadAckTest ; test acknowledge after address = 6

 goto ReadData ; read more data = 7

 goto ReadStop ; generate stop sequence = 8

I2CJumpEnd

 Fill (return), (I2CJump-I2CJumpEnd) + i2cSizeMask

;--

; ********************* Write data to Slave *********************

;--

; Generate I2C bus start condition [I2C STATE -> 0]

WrtStart

 banksel write_ptr ; select GPR bank

 movf write_ptr,w ; retrieve ptr address

 movwf FSR ; initialize FSR for indirect access

 incf i2cState,f ; update I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,SEN ; initiate I2C bus start condition

 return ;

AN736

DS00736A-page 78 Preliminary  2000 Microchip Technology Inc.

; Generate I2C address write (R/W=0) [I2C STATE -> 1]

SendWrtAddr

 banksel temp_address ; select GPR bank

 bcf STATUS,C ; ensure carry bit is clear

 rlf temp_address,w ; compose 7-bit address

 incf i2cState,f ; update I2C state variable

 banksel SSPBUF ; select SFR bank

 movwf SSPBUF ; initiate I2C bus write condition

 return ;

; Test acknowledge after address and data write [I2C STATE -> 2]

WrtAckTest

 banksel SSPCON2 ; select SFR bank

 btfss SSPCON2,ACKSTAT ; test for acknowledge from slave

 goto WrtData ; go to write data module

 banksel eflag_event ; select GPR bank

 bsf eflag_event,ack_error ; set acknowledge error

 clrf i2cState ; reset I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,PEN ; initiate I2C bus stop condition

 return ;

; Generate I2C write data condition

WrtData

 movf INDF,w ; retrieve byte into w

 banksel write_count ; select GPR bank

 decfsz write_count,f ; test if all done with writes

 goto send_byte ; not end of string

 incf i2cState,f ; update I2C state variable

send_byte

 banksel SSPBUF ; select SFR bank

 movwf SSPBUF ; initiate I2C bus write condition

 incf FSR,f ; increment pointer

 return ;

; Generate I2C bus stop condition [I2C STATE -> 3]

WrtStop

 banksel SSPCON2 ; select SFR bank

 btfss SSPCON2,ACKSTAT ; test for acknowledge from slave

 goto no_error ; bypass setting error flag

 banksel eflag_event ; select GPR bank

 bsf eflag_event,ack_error ; set acknowledge error

 clrf i2cState ; reset I2C state variable

 2000 Microchip Technology Inc. Preliminary DS00736A-page 79

AN736

 goto stop

no_error

 banksel i2cState ; select GPR bank

 incf i2cState,f ; update I2C state variable for read

stop

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,PEN ; initiate I2C bus stop condition

 return ;

;--

; ********************* Read data from Slave *********************

;--

; Generate I2C start condition [I2C STATE -> 4]

ReadStart

 banksel read_ptr ; select GPR bank

 movf read_ptr,W ; retrieve ptr address

 movwf FSR ; initialize FSR for indirect access

 incf i2cState,f ; update I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,SEN ; initiate I2C bus start condition

 return ;

; Generate I2C address write (R/W=1) [I2C STATE -> 5]

SendReadAddr

 banksel temp_address ; select GPR bank

 bsf STATUS,C ; ensure cary bit is clear

 rlf temp_address,w ; compose 7 bit address

 incf i2cState,f ; update I2C state variable

 banksel SSPBUF ; select SFR bank

 movwf SSPBUF ; initiate I2C bus write condition

 return ;

; Test acknowledge after address write [I2C STATE -> 6]

ReadAckTest

 banksel SSPCON2 ; select SFR bank

 btfss SSPCON2,ACKSTAT ; test for not acknowledge from slave

 goto StartReadData ; good ack, go issue bus read

 banksel eflag_event ; ack error, so select GPR bank

 bsf eflag_event,ack_error ; set ack error flag

 clrf i2cState ; reset I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,PEN ; initiate I2C bus stop condition

 return

AN736

DS00736A-page 80 Preliminary  2000 Microchip Technology Inc.

StartReadData

 bsf SSPCON2,RCEN ; generate receive condition

 banksel i2cState ; select GPR bank

 incf i2cState,f ; update I2C state variable

 return

; Read slave I2C [I2C STATE -> 7]

ReadData

 banksel SSPBUF ; select SFR bank

 movf SSPBUF,w ; save off byte into W

 banksel read_count ; select GPR bank

 decfsz read_count,f ; test if all done with reads

 goto SendReadAck ; not end of string so send ACK

; Send Not Acknowledge

SendReadNack

 movwf INDF ; save off null character

 incf i2cState,f ; update I2C state variable

 banksel SSPCON2 ; select SFR bank

 bsf SSPCON2,ACKDT ; acknowledge bit state to send (not ack)

 bsf SSPCON2,ACKEN ; initiate acknowledge sequence

 return

; Send Acknowledge

SendReadAck

 movwf INDF ; no, save off byte

 incf FSR,f ; update receive pointer

 banksel SSPCON2 ; select SFR bank

 bcf SSPCON2,ACKDT ; acknowledge bit state to send

 bsf SSPCON2,ACKEN ; initiate acknowledge sequence

 btfsc SSPCON2,ACKEN ; ack cycle complete?

 goto $-1 ; no, so loop again

 bsf SSPCON2,RCEN ; generate receive condition

 return ;

; Generate I2C stop condition [I2C STATE -> 8]

ReadStop

 banksel SSPCON2 ; select SFR bank

 bcf PIE1,SSPIE ; disable SSP interrupt

 bsf SSPCON2,PEN ; initiate I2C bus stop condition

 banksel i2cState ; select GPR bank

 clrf i2cState ; reset I2C state variable

 bsf sflag_event,rw_done ; set read/write done flag

 return

 2000 Microchip Technology Inc. Preliminary DS00736A-page 81

AN736

;--

; ******************* Generic bus idle check ***********************

;--

; test for i2c bus idle state; not implemented in this code (example only)

i2c_idle

 banksel SSPSTAT ; select SFR bank

 btfsc SSPSTAT,R_W ; test if transmit is progress

 goto $-1 ; module busy so wait

 banksel SSPCON2 ; select SFR bank

 movf SSPCON2,w ; get copy of SSPCON2 for status bits

 andlw 0x1F ; mask out non-status bits

 btfss STATUS,Z ; test for zero state, if Z set, bus is idle

 goto $-3 ; bus is busy so test again

 return ; return to calling routine

;--

; ******************* INITIALIZE MSSP MODULE *******************

;--

init_i2c

 banksel SSPADD ; select SFR bank

 movlw ClockValue ; read selected baud rate

 movwf SSPADD ; initialize I2C baud rate

 bcf SSPSTAT,6 ; select I2C input levels

 bcf SSPSTAT,7 ; enable slew rate

 movlw b’00011000’ ;

 iorwf TRISC,f ; ensure SDA and SCL are inputs

 bcf STATUS,RP0 ; select SFR bank

 movlw b’00111000’ ;

 movwf SSPCON ; Master mode, SSP enable

 return ; return from subroutine

 END ; required directive

AN736

DS00736A-page 82 Preliminary  2000 Microchip Technology Inc.

;***

; *

; Implementing Master I2C with the MSSP module on a PICmicro *

; *

;***

; *

; Filename: init.asm *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

; Author: Richard L. Fischer *

; *

; Company: Microchip Technology Incorporated *

; *

;***

; *

; Files required: *

; *

; init.asm *

; *

; p16f873.inc *

; *

; *

;***

; *

; Notes: *

; *

; *

;**/

 #include <p16f873.inc> ; processor specific variable definitions

 errorlevel -302

 GLOBAL init_timer1 ; make function viewable for other modules

 GLOBAL init_ports ; make function viewable for other modules

 2000 Microchip Technology Inc. Preliminary DS00736A-page 83

AN736

;--

; ******************* INITIALIZE PORTS *************************

;--

INIT_CODE CODE

init_ports

 banksel PORTA ; select SFR bank

 clrf PORTA ; initialize PORTS

 clrf PORTB ;

 clrf PORTC ;

 bsf STATUS,RP0 ; select SFR bank

 movlw b’00000110’ ;

 movwf ADCON1 ; make PORTA digital

 clrf TRISB ;

 movlw b’000000’ ;

 movwf TRISA ;

 movlw b’00011000’ ;

 movwf TRISC ;

 return

;--

; ******************* INITIALIZE TIMER1 MODULE *******************

;--

init_timer1

 banksel T1CON ; select SFR bank

 movlw b’00110000’ ; 1:8 prescale, 100mS rollover

 movwf T1CON ; initialize Timer1

 movlw 0x58 ;

 movwf TMR1L ; initialize Timer1 low

 movlw 0x9E ;

 movwf TMR1H ; initialize Timer1 high

 bcf PIR1,TMR1IF ; ensure flag is reset

 bsf T1CON,TMR1ON ; turn on Timer1 module

 return ; return from subroutine

 END ; required directive

AN736

DS00736A-page 84 Preliminary  2000 Microchip Technology Inc.

;***

; *

; Filename: mastri2c.inc *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

;***

;******* INTERRUPT CONTEXT SAVE/RESTORE VARIABLES

INT_VAR UDATA 0x20 ; create uninitialized data "udata" section

w_temp RES 1 ;

status_temp RES 1 ;

pclath_temp RES 1

INT_VAR1 UDATA 0xA0 ; reserve location 0xA0

w_temp1 RES 1

;******* GENERAL PURPOSE VARIABLES

GPR_DATA UDATA

temp_hold RES 1 ; temp variable for string compare

ptr1 RES 1 ; used as pointer in string compare

ptr2 RES 1 ; used as pointer in string compare

STRING_DATA UDATA

write_string RES D’30’

read_string RES D’30’

 EXTERN init_timer1 ; reference linkage for function

 EXTERN init_ports ; reference linkage for function

 2000 Microchip Technology Inc. Preliminary DS00736A-page 85

AN736

;***

; *

; Filename: i2ccomm1.inc *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

;***

; *

; Notes: *

; *

; This file is to be included in the <main.asm> file. The *

; <main.asm> notation represents the file which has the *

; subroutine calls for the functions ’service_i2c’ and ’init_i2c’. *

; *

; *

;**/

 #include "flags.inc" ; required include file

 GLOBAL write_string ; make variable viewable for other modules

 GLOBAL read_string ; make variable viewable for other modules

 EXTERN sflag_event ; reference linkage for variable

 EXTERN eflag_event ; reference linkage for variable

 EXTERN i2cState ; reference linkage for variable

 EXTERN read_count ; reference linkage for variable

 EXTERN write_count ; reference linkage for variable

 EXTERN write_ptr ; reference linkage for variable

 EXTERN read_ptr ; reference linkage for variable

 EXTERN temp_address ; reference linkage for variable

 EXTERN init_i2c ; reference linkage for function

 EXTERN service_i2c ; reference linkage for function

;***

; *

AN736

DS00736A-page 86 Preliminary  2000 Microchip Technology Inc.

; Additional notes on variable usage: *

; *

; The variables listed below are used within the function *

; service_i2c. These variables must be initialized with the *

; appropriate data from within the calling file. In this *

; application code the main file is ’mastri2c.asm’. This file *

; contains the function calls to service_i2c. It also contains *

; the function for initializing these variables, called ’init_vars’*

; *

; To use the service_i2c function to read from and write to an *

; I2C slave device, information is passed to this function via *

; the following variables. *

; *

; *

; The following variables are used as function parameters: *

; *

; read_count - Initialize this variable for the number of bytes *

; to read from the slave I2C device. *

; write_count - Initialize this variable for the number of bytes *

; to write to the slave I2C device. *

; write_ptr - Initialize this variable with the address of the *

; data string or data byte to write to the slave *

; I2C device. *

; read_ptr - Initialize this variable with the address of the *

; location for storing data read from the slave I2C *

; device. *

; temp_address - Initialize this variable with the address of the *

; slave I2C device to communicate with. *

; *

; *

; The following variables are used as status or error events *

; *

; sflag_event - This variable is implemented for status or *

; event flags. The flags are defined in the file *

; ’flags.inc’. *

; eflag_event - This variable is implemented for error flags. The *

; flags are defined in the file ’flags.inc’. *

; *

; *

; The following variable is used in the state machine jumnp table. *

; *

; i2cState - This variable holds the next I2C state to execute.*

; *

;***

 2000 Microchip Technology Inc. Preliminary DS00736A-page 87

AN736

;***

; *

; Filename: flags.inc *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

;***

; *

; Notes: *

; *

; This file defines the flags used in the i2ccomm.asm file. *

; *

; *

;**/

; bits for variable sflag_event

#define sh1 0 ; place holder

#define sh2 1 ; place holder

#define sh3 2 ; place holder

#define sh4 3 ; place holder

#define sh5 4 ; place holder

#define sh6 5 ; place holder

#define sh7 6 ; place holder

#define rw_done 7 ; flag bit

; bits for variable eflag_event

#define ack_error 0 ; flag bit

#define eh1 1 ; place holder

#define eh2 2 ; place holder

#define eh3 3 ; place holder

#define eh4 4 ; place holder

#define eh5 5 ; place holder

#define eh6 6 ; place holder

#define eh7 7 ; place holder

AN736

DS00736A-page 88 Preliminary  2000 Microchip Technology Inc.

;***

; *

; Filename: i2ccomm.inc *

; Date: 07/18/2000 *

; Revision: 1.00 *

; *

; Tools: MPLAB 5.11.00 *

; MPLINK 2.10.00 *

; MPASM 2.50.00 *

; *

;***

; Notes: *

; *

; This file is to be included in the i2ccomm.asm file *

; *

;**/

 #include "flags.inc" ; required include file

i2cSizeMask EQU 0x0F

 GLOBAL sflag_event ; make variable viewable for other modules

 GLOBAL eflag_event ; make variable viewable for other modules

 GLOBAL i2cState ; make variable viewable for other modules

 GLOBAL read_count ; make variable viewable for other modules

 GLOBAL write_count ; make variable viewable for other modules

 GLOBAL write_ptr ; make variable viewable for other modules

 GLOBAL read_ptr ; make variable viewable for other modules

 GLOBAL temp_address ; make variable viewable for other modules

 GLOBAL init_i2c ; make function viewable for other modules

 GLOBAL service_i2c ; make function viewable for other modules

;******* GENERAL PURPOSE VARIABLES

GPR_DATA UDATA

sflag_event RES 1 ; variable for i2c general status flags

eflag_event RES 1 ; variable for i2c error status flags

i2cState RES 1 ; I2C state machine variable

read_count RES 1 ; variable used for slave read byte count

write_count RES 1 ; variable used for slave write byte count

write_ptr RES 1 ; variable used for pointer (writes to)

read_ptr RES 1 ; variable used for pointer (reads from)

temp_address RES 1 ; variable used for passing address to functions

 2000 Microchip Technology Inc. Preliminary DS00736A-page 89

AN736

;***

; *

; Additional notes on variable usage: *

; *

; The variables listed below are used within the function *

; service_i2c. These variables must be initialized with the *

; appropriate data from within the calling file. In this *

; application code the main file is ’mastri2c.asm’. This file *

; contains the function calls to service_i2c. It also contains *

; the function for initializing these variables, called ’init_vars’*

; *

; To use the service_i2c function to read from and write to an *

; I2C slave device, information is passed to this function via *

; the following variables. *

; *

; The following variables are used as function parameters: *

; *

; read_count - Initialize this variable for the number of bytes *

; to read from the slave I2C device. *

; write_count - Initialize this variable for the number of bytes *

; to write to the slave I2C device. *

; write_ptr - Initialize this variable with the address of the *

; data string or data byte to write to the slave *

; I2C device. *

; read_ptr - Initialize this variable with the address of the *

; location for storing data read from the slave I2C *

; device. *

; temp_address - Initialize this variable with the address of the *

; slave I2C device to communicate with. *

; *

; The following variables are used as status or error events *

; *

; sflag_event - This variable is implemented for status or *

; event flags. The flags are defined in the file *

; ’flags.inc’. *

; eflag_event - This variable is implemented for error flags. The *

; flags are defined in the file ’flags.inc’. *

; *

; The following variable is used in the state machine jumnp table. *

; *

; i2cState - This variable holds the next I2C state to execute.*

; *

;***

AN736

DS00736A-page 90 Preliminary  2000 Microchip Technology Inc.

APPENDIX F: GENERIC I2C SLAVE READ AND WRITE ROUTINES (ASSEMBLY)

;---
; File: i2cslave.asm
;
; Written By: Stephen Bowling, Microchip Technology
;
; Version: 1.00
;
; Assembled using Microchip Assembler
;
; Functionality:
;
; This code implements the basic functions for an I2C slave device
; using the SSP module. All I2C functions are handled in an ISR.
; Bytes written to the slave are stored in a buffer. After a number
; of bytes have been written, the master device can then read the
; bytes back from the buffer.
;
; Variables and Constants used in the program:
;
; The start address for the receive buffer is stored in the variable
; ’RXBuffer’. The length of the buffer is denoted by the constant
; value ’RX_BUF_LEN’. The current buffer index is stored in the
; variable ’Index’.
;
;--
;
; The following files should be included in the MPLAB project:
;
; i2cslave.asm -- Main source code file
;
; 16f872.lkr -- Linker script file
; change this file for the device
; you are using)
;
;---
;---
; Include Files
;---

#include <p16f872.inc> ; Change to device that you are using.

;---
;Constant Definitions
;---

#define NODE_ADDR 0x02 ; I2C address of this node
; Change this value to address that
; you wish to use.

;---
; Buffer Length Definition
;---

#define RX_BUF_LEN 32 ; Length of receive buffer

;---
; Variable declarations
;---

 2000 Microchip Technology Inc. Preliminary DS00736A-page 91

AN736

udata_shr

WREGsave res 1
STATUSsave res 1
FSRsave res 1
PCLATHsave res 1

Index res 1 ; Index to receive buffer
Temp res 1 ;
RXBuffer res RX_BUF_LEN ; Holds rec’d bytes from master

; device.

;---
; Vectors
;---

STARTUP code
nop
goto Startup ;
nop ; 0x0002
nop ; 0x0003
goto ISR ; 0x0004

PROG code

;---
; Macros
;---

memset macro Buf_addr,Value,Length

movlw Length ; This macro loads a range of data memory
movwf Temp ; with a specified value. The starting
movlw Buf_addr ; address and number of bytes are also
movwf FSR ; specified.

SetNext movlw Value
movwf INDF
incf FSR,F
decfsz Temp,F
goto SetNext
endm

LFSR macro Address,Offset ; This macro loads the correct value
movlw Address ; into the FSR given an initial data
movwf FSR ; memory address and offset value.
movf Offset,W
addwf FSR,F
endm

;---
; Main Code
;---

Startup
bcf STATUS,RP1
bsf STATUS,RP0
call Setup

Main clrwdt ; Clear the Watchdog Timer.
goto Main ; Loop forever.

AN736

DS00736A-page 92 Preliminary  2000 Microchip Technology Inc.

;---
; Interrupt Code
;---

ISR
movwf WREGsave ; Save WREG
movf STATUS,W ; Get STATUS register
banksel STATUSsave ; Switch banks, if needed.
movwf STATUSsave ; Save the STATUS register
movf PCLATH,W ;
movwf PCLATHsave ; Save PCLATH
movf FSR,W ;
movwf FSRsave ; Save FSR

banksel PIR1
btfss PIR1,SSPIF ; Is this a SSP interrupt?
goto $; No, just trap here.
bcf PIR1,SSPIF
call SSP_Handler ; Yes, service SSP interrupt.

banksel FSRsave
movf FSRsave,W ;
movwf FSR ; Restore FSR
movf PCLATHsave,W ;
movwf PCLATH ; Restore PCLATH
movf STATUSsave,W ;
movwf STATUS ; Restore STATUS
swapf WREGsave,F ;
swapf WREGsave,W ; Restore WREG
retfie ; Return from interrupt.

;---
Setup
;
; Initializes program variables and peripheral registers.
;---

banksel PCON
bsf PCON,NOT_POR
bsf PCON,NOT_BOR
banksel Index ; Clear various program variables
clrf Index
clrf PORTB
clrf PIR1
banksel TRISB
clrf TRISB

movlw 0x36 ; Setup SSP module for 7-bit
banksel SSPCON
movwf SSPCON ; address, slave mode
movlw NODE_ADDR
banksel SSPADD
movwf SSPADD
clrf SSPSTAT
banksel PIE1 ; Enable interrupts
bsf PIE1,SSPIE
bsf INTCON,PEIE ; Enable all peripheral interrupts
bsf INTCON,GIE ; Enable global interrupts

 2000 Microchip Technology Inc. Preliminary DS00736A-page 93

AN736

bcf STATUS,RP0
return

;---
SSP_Handler
;---
; The I2C code below checks for 5 states:
;---
; State 1: I2C write operation, last byte was an address byte.
;
; SSPSTAT bits: S = 1, D_A = 0, R_W = 0, BF = 1
;
; State 2: I2C write operation, last byte was a data byte.
;
; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 1
;
; State 3: I2C read operation, last byte was an address byte.
;
; SSPSTAT bits: S = 1, D_A = 0, R_W = 1, BF = 0
;
; State 4: I2C read operation, last byte was a data byte.
;
; SSPSTAT bits: S = 1, D_A = 1, R_W = 1, BF = 0
;
; State 5: Slave I2C logic reset by NACK from master.
;
; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 0
;
; For convenience, WriteI2C and ReadI2C functions have been used.
;--

banksel SSPSTAT
movf SSPSTAT,W ; Get the value of SSPSTAT
andlw b’ 00101101 ’ ; Mask out unimportant bits in SSPSTAT.
banksel Temp ; Put masked value in Temp
movwf Temp ; for comparision checking.

State1: ; Write operation, last byte was an
movlw b’00001001 ’ ; address, buffer is full.
xorwf Temp,W ;
btfss STATUS,Z ; Are we in State1?
goto State2 ; No, check for next state.....

memset RXBuffer,0,RX_BUF_LEN ; Clear the receive buffer.
clrf Index ; Clear the buffer index.
call ReadI2C ; Do a dummy read of the SSPBUF.

return

State2: ; Write operation, last byte was data,
movlw b’00101001 ’ ; buffer is full.
xorwf Temp,W
btfss STATUS,Z ; Are we in State2?
goto State3 ; No, check for next state.....

LFSR RXBuffer,Index ; Point to the buffer.
call ReadI2C ; Get the byte from the SSP.
movwf INDF ; Put it in the buffer.
incf Index,F ; Increment the buffer pointer.
movf Index,W ; Get the current buffer index.

AN736

DS00736A-page 94 Preliminary  2000 Microchip Technology Inc.

sublw RX_BUF_LEN ; Subtract the buffer length.
btfsc STATUS,Z ; Has the index exceeded the buffer length?
clrf Index ; Yes, clear the buffer index.
return

State3: ; Read operation, last byte was an
movlw b’00001100 ’ ; address, buffer is empty.
xorwf Temp,W
btfss STATUS,Z ; Are we in State3?
goto State4 ; No, check for next state.....

clrf Index ; Clear the buffer index.
LFSR RXBuffer,Index ; Point to the buffer
movf INDF,W ; Get the byte from buffer.
call WriteI2C ; Write the byte to SSPBUF
incf Index,F ; Increment the buffer index.
return

State4: ; Read operation, last byte was data,
movlw b’00101100 ’ ; buffer is empty.
xorwf Temp,W
btfss STATUS,Z ; Are we in State4?
goto State5 ; No, check for next state....

movf Index,W ; Get the current buffer index.
sublw RX_BUF_LEN ; Subtract the buffer length.
btfsc STATUS,Z ; Has the index exceeded the buffer length?
clrf Index ; Yes, clear the buffer index.
LFSR RXBuffer,Index ; Point to the buffer
movf INDF,W ; Get the byte
call WriteI2C ; Write to SSPBUF
incf Index,F ; Increment the buffer index.
return

State5:
movlw b’00101000 ’ ; A NACK was received when transmitting
xorwf Temp,W ; data back from the master. Slave logic
btfss STATUS,Z ; is reset in this case. R_W = 0, D_A = 1
goto I2CErr ; and BF = 0
return ; If we aren’t in State5, then something is

; wrong.

I2CErr nop
banksel PORTB ; Something went wrong! Set LED
bsf PORTB,7 ; and loop forever. WDT will reset
goto $; device, if enabled.
return

;---
; WriteI2C
;---

WriteI2C
banksel SSPSTAT
btfsc SSPSTAT,BF ; Is the buffer full?
goto WriteI2C ; Yes, keep waiting.
banksel SSPCON ; No, continue.

DoI2CWrite
bcf SSPCON,WCOL ; Clear the WCOL flag.
movwf SSPBUF ; Write the byte in WREG

 2000 Microchip Technology Inc. Preliminary DS00736A-page 95

AN736

btfsc SSPCON,WCOL ; Was there a write collision?
goto DoI2CWrite
bsf SSPCON,CKP ; Release the clock.
return

;---
ReadI2C
;---

banksel SSPBUF
movf SSPBUF,W ; Get the byte and put in WREG
return

end ; End of file

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

