
AN734
Using the PIC® Devices’ SSP and MSSP Modules

for Slave I2CTM Communication
INTRODUCTION
Many of the PIC® microcontroller devices have a
Synchronous Serial Port (SSP) or Master Synchronous
Serial Port (MSSP). These peripherals can be used to
implement the SPI or I2C™ communication protocols.
The purpose of this application note is to provide the
reader with a better understanding of the I2C protocol
and to show how devices with these modules are used
as a slave device on an I2C bus.

For more information on the I2C bus specification or the
SSP and MSSP peripherals, you may refer to sources
indicated in the “References” section.

THE I2C BUS SPECIFICATION
Although a complete discussion of the I2C bus specifi-
cation is outside the scope of this application note,
some of the basics will be covered here. The
Inter-Integrated-Circuit, or I2C bus specification, was
originally developed by Philips Inc. for the transfer of
data between ICs at the PCB level. The physical inter-
face for the bus consists of two open-collector lines;
one for the clock (SCL) and one for data (SDA). The
bus may have a one master/many slave configuration
or may have multiple master devices. The master
device is responsible for generating the clock source
for the linked slave devices.

The I2C protocol supports either a 7-Bit Addressing
mode, or a 10-Bit Addressing mode, permitting up to
128 or 1024 physical devices to be on the bus, respec-
tively. In practice, the bus specification reserves certain
addresses, so slightly fewer usable addresses are
available. For example, the 7-Bit Addressing mode
allows 112 usable addresses.

All data transfers on the bus are initiated by the master
device, which always generates the clock signal on the
bus. Data transfers are performed on the bus, eight bits
at a time, MSb first. There is no limit to the amount of
data that can be sent in one transfer.

The I2C protocol includes a handshaking mechanism.
After each 8-bit transfer, a 9th clock pulse is sent by the
master. At this time, the transmitting device on the bus
releases the SDA line and the receiving device on the
bus Acknowledges the data sent by the transmitting
device. An ACK (SDA held low) is sent if the data was
received successfully, or a NACK (SDA left high) is sent
if it was not received successfully.

All changes on the SDA line must occur while the SCL
line is low. This restriction allows two unique conditions
to be detected on the bus; a Start sequence (S) and a
Stop sequence (P). A Start sequence occurs when the
master pulls the SDA line low, while the SCL line is
high. The Start sequence tells all slaves on the bus that
address bytes are about to be sent. The Stop sequence
occurs when the SDA line goes high while the SCL line
is high, and it terminates the transmission. slave
devices on the bus should reset their receive logic after
the Stop sequence has been detected.

The I2C protocol also permits a Repeated Start condi-
tion (Rs), which allows the master device on the bus to
perform a Start sequence, without a Stop sequence
preceding it. The Repeated Start allows the master
device to start a new data transfer without releasing
control of the bus.

A typical I2C write transmission would proceed as
shown in Figure 1. In this example, the master device
will write two bytes to a slave device. The transmission
is started when the master initiates a Start condition on
the bus. Next, the master sends an address byte to the
slave. The upper seven bits of the address byte contain
the slave address. The LSb of the address byte speci-
fies whether the I2C operation will be a read (LSb = 1)
or a write (LSb = 0). On the ninth clock pulse, the mas-
ter releases the SDA line so the slave can Acknowl-
edge the reception. If the address byte was received by
the slave and was the correct address, the slave
responds with an ACK by holding the SDA line low.
Assuming an ACK was received, the master sends out
the data bytes. On the ninth clock pulse, after each data
byte, the slave responds with an ACK. After the last
data byte, the master initiates the Stop condition to free
the bus.

Author: Stephen Bowling and Naveen Raj
Microchip Technology Inc.
© 2008 Microchip Technology Inc. DS00734B-page 1

AN734

A read operation is performed similar to the write oper-
ation and is shown in Figure 2. In this case, the R/W bit
in the address byte is set to indicate a read operation.
After the address byte is received, the slave device
sends an ACK pulse and holds the SCL line low (clock
stretching). By holding the SCL line, the slave can take
as much time as needed to prepare the data to be sent
back to the master. When the slave is ready, it releases
SCL and the master device clocks the data from the
slave buffer. On the ninth clock pulse, the slave latches
the value of the ACK bit received from the master. If an
ACK pulse was received, the slave must prepare the
next byte of data to be transmitted. If a NACK was
received, the data transmission is complete. In this
case, the slave device should wait for the next Start
condition.

For many I2C peripherals, such as nonvolatile
EEPROM memory, an I2C write operation and a read
operation are done in succession. For example, the
write operation specifies the address to be read and the
read operation gets the byte of data. Since the master
device does not release the bus after the memory
address is written to the device, a Repeated Start
sequence is performed to read the contents of the
memory address.

THE SSP MODULE
A block diagram of the SSP module for I2C Slave mode
is shown in Figure 3. Key control and status bits
required for I2C slave communication are provided in
the following Special Function Registers:

• SSPSTAT
• SSPCON
• PIR1 (interrupt flag bits)
• PIE1 (interrupt enable bits)

Some of the bit functions in these registers vary,
depending on whether the SSP module is used for I2C
or SPI communications. The functionality of each for
I2C mode is described here. For a complete description
of each bit function, refer to the appropriate device data
sheet.

FIGURE 1: TYPICAL I2C™ WRITE TRANSMISSION (7-BIT ADDRESS)

FIGURE 2: TYPICAL I2C™ READ TRANSMISSION (7-BIT ADDRESS)

P98765

D0D1D2D3D4D5D6D7

S

A7 A6 A5 A4 A3 A2 A1SDA

SCL 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4

ACK Receiving DataReceiving Data
D0D1D2D3D4D5D6D7

ACK
R/W = 0

Receiving Address

Start

ACK

Stop
Acknowledge

Clock
Acknowledge

Clock
Acknowledge

Clock

SDA

SCL

A7 A6 A5 A4 A3 A2 A1
ACK

D7 D6 D5 D4 D3 D2 D1 D0
NACKTransmitting Data

R/W = 1
Receiving Address

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 PS

Start Stop
Acknowledge

Clock
Acknowledge

Clock
DS00734B-page 2 © 2008 Microchip Technology Inc.

AN734

FIGURE 3: PIC® DEVICES’ SSP MODULE BLOCK DIAGRAM (I2C™ SLAVE MODE)

SSP Bits that Indicate Module Status

BF (SSPSTAT<0>)
The BF (Buffer Full) bit tells the user whether a byte of
data is currently in the SSP Buffer register, SSPBUF.
This bit is cleared automatically when the SSPBUF
register is read, or when a byte to be transmitted is
completely shifted out of the register. The BF bit will
become set under the following circumstances:

• When an address byte is received with the LSb
cleared. This will be the first byte sent by the
master device during an I2C write operation.

• Each time a data byte is received during an I2C
write to the slave device.

• Each time a byte of data is written to SSPBUF to
be transmitted to the master device. The BF bit
will be cleared automatically when all bits have
been shifted from SSPBUF to the master device.

There are certain cases where the BF flag will set when
an address is received with the LSB set (read opera-
tion). Refer to Appendix C: “Differences Between
the I2C States in PIC16 and PIC18 Devices”.

UA (SSPSTAT<1>)
The UA (Update Address) bit is used only in the 10-Bit
Addressing modes. In the 10-Bit Addressing mode, an
I2C slave address must be sent in two bytes. The upper
half of the 10-bit address (1111 0 A9 A8 0) is first
loaded into SSPADD for initial match detection. This
particular address code is reserved in the I2C protocol
for designating the upper half of a 10-bit address.
When an address match occurs, the SSP module will

set the UA bit to indicate that the lower half of the
address should be loaded into SSPADD for match
detection.

R/W (SSPSTAT<2>)
The R/W (Read/Write) bit tells the user whether the
master device is reading from, or writing to, the slave
device. This bit reflects the state of the LSb in the
address byte that is sent by the master. The state of the
R/W bit is only valid for the duration of a particular I2C
message and will be reset by a Stop condition, Start
condition or a NACK from the master device.

S (SSPSTAT<3>)
The S (Start) bit is set if a Start condition occurred last
on the bus. The state of this bit will be the inverse of the
P (Stop) bit, except when the module is first initialized
and both bits are cleared.

P (SSPSTAT<4>)
The P (Stop) bit is set if a Stop condition occurred last
on the bus. The state of this bit will be the inverse of
the S (Start) bit, except when the module is first initial-
ized and both bits are cleared. The P bit can be used to
determine when the bus is Idle.

D/A (SSPSTAT<5>)
The D/A (Data/Address) bit indicates whether the last
byte of data received by the SSP module was a data
byte or an address byte. For read operations, the last
byte sent to the master device was a data byte when
the D/A bit is set.

Read Write

SSPSR Register

Match Detect

SSPADD Register

Start and
Stop bit Detect

SSPBUF Register

Internal
Data Bus

Address Match or

Set, Reset
S, P bits (SSPSTAT register)

SCL

Shift
Clock

MSb LSbSDA

General Call Detected
© 2008 Microchip Technology Inc. DS00734B-page 3

AN734

WCOL (SSPCON<7>)
The WCOL (Write Collision) bit indicates that SSPBUF
was written while the previously written word is still
transmitting. The previous contents of SSPBUF are not
changed when the write collision occurs. The WCOL bit
must be cleared in software.

SSPOV (SSPCON<6>)
The SSPOV (SSP Overflow) bit indicates that a new
byte was received while SSPBUF was still holding the
previous data. In this case, the SSP module will not
generate an ACK pulse and SSPBUF will not be
updated with the new data. Regardless of whether the
data is to be used, the user must read SSPBUF when-
ever the BF bit becomes set, to avoid an SSP overflow
condition. The user must read SSPBUF and clear the
SSPOV bit to properly clear an overflow condition. If
the user reads SSPBUF to clear the BF bit, but does
not clear the SSPOV bit, the next byte of data received
will be loaded into SSPBUF but the module will not
generate an ACK pulse.

SSPIF (PIR1<3>)
The SSPIF (SSP Interrupt Flag) bit indicates that an
I2C event has completed. The user must poll the status
bits described here to determine what event occurred
and the next action to be taken. The SSPIF bit must be
cleared by the user.

SSP Bits for Module Control

SSPEN (SSPCON<5>)
The SSPEN (SSP Enable) bit enables the SSP module
and configures the appropriate I/O pins as serial port
pins.

CKE (SSPSTAT<6>)
The CKE (Clock Edge) bit has no function when the
SSP module is configured for I2C mode and should be
cleared.

SMP (SSPSTAT<7>)
The SMP (Sample Phase) bit has no function when the
SSP module is configured for I2C mode and should be
cleared.

CKP (SSPCON<4>)
The CKP (Clock Polarity) bit is used for clock stretching
in the I2C protocol. When the CKP bit is cleared, the
slave device holds the SCL pin low so that the master
device on the bus is unable to send clock pulses.
During clock stretching, the master device will attempt
to send clock pulses until the clock line is released by
the slave device.
Clock stretching is useful when the slave device can
not process incoming bytes quickly enough, or when
SSPBUF needs to be loaded with data to be transmit-
ted to the master device. The SSP module performs

clock stretching automatically when data is read by the
master device. The CKP bit will be cleared by the
module after the address byte and each subsequent
data byte is read. After SSPBUF is loaded, the CKP bit
must be set in software to release the clock and allow
the next byte to be transferred.

SSPM3:SSPM0 (SSPCON<3:0>)
The SSPM3:SSPM0 (SSP mode) bits are used to con-
figure the SSP module for the SPI or I2C protocols. For
specific values, refer to the appropriate device data
sheet.

SSPIE (PIE1<3>)
The SSPIE (SSP Interrupt Enable) bit enables SSP
interrupts. The appropriate global and peripheral inter-
rupt enable bits must be set in conjunction with this bit
to allow interrupts to occur.

Configuring the SSP for I2C Slave Mode
Before enabling the module, ensure that the pins used
for SCL and SDA are configured as inputs by setting
the appropriate TRIS bits. This allows the module to
configure and drive the I/O pins as required by the I2C
protocol.
The SSP module is configured and enabled using the
SSPCON register. The SSP module can be configured
for the following I2C Slave modes:
• I2C Slave mode, 7-bit address
• I2C Slave mode, 10-bit address
• I2C Slave mode, 7-bit address, Start and Stop

interrupts enabled
• I2C Slave mode, 10-bit address, Start and Stop

interrupts enabled

Of these four modes of operation, the first two are most
commonly used in a slave device application. The
second two modes provide interrupts when Start and
Stop conditions are detected on the bus and are useful
for detecting when the I2C bus is Idle. After the bus is
detected Idle, the slave device could become a master
device on the bus. Since there is no hardware support
for master I2C communications in the SSP module, the
master communication would need to be implemented
in firmware.

SETTING THE SLAVE ADDRESS
The address of the slave node must be written to the
SSPADD register (see Figure 3). For 7-Bit Addressing
mode, bits<7:1> determine the slave address value.
The LSb of the address byte is not used for address
matching; this bit determines whether the transaction
on the bus will be a read or write. Therefore, the value
written to SSPADD will always have an even value
(LSb = 0). Effectively, each slave node uses two
addresses; one for write operations and another for
read operations.
DS00734B-page 4 © 2008 Microchip Technology Inc.

AN734

Handling SSP Events in Software
Using the SSP module for slave I2C communication is,
in general, a sequential process that requires the
firmware to perform some action after each I2C event.
The SSPIF bit indicates an I2C event on the bus has
completed. The SSPIF bit may be polled in software or
can be configured as an interrupt source. Each time the
SSPIF bit is set, the I2C event must be identified by
testing various bits in the SSPSTAT register.

For the purposes of explanation, it is helpful to identify
all the possible states and discuss each one individu-
ally. There are a total of five valid states for the SSP
module after an I2C event; these are described below.

The SSP module does not buffer events, so the cause
of each I2C event must be determined as each new
SSPIF interrupt occurs. As each event causes an inter-
rupt, the code examines the various important I2C bits
in the SSPSTAT register to determine what has just
happened on the I2C bus, and determine which state
the module is in. The code examples in Appendix A:
“Example Slave I2C Source Code” and Appendix B:
“Example Slave I2C Source Code (Modified for
Newer PIC18 Devices)” show how this is done.

STATE 1: MASTER WRITE, LAST BYTE WAS
AN ADDRESS
The master device on the bus has begun a new write
operation by initiating a Start or Restart condition on the
bus, then sending the slave I2C address byte. The LSb
of the address byte is ‘0’ to indicate that the master
wishes to write data to the slave. The bits in the
SSPSTAT register will have the following values:

• S = 1 (Start condition occurred last)
• R/W = 0 (Master writing data to the slave)
• D/A = 0 (Last byte was an address)
• BF = 1 (The buffer is full)

At this time, the SSP buffer is full and holds the previ-
ously sent address byte. The SSPBUF register must be
read at this time to clear the BF bit, even if the address
byte is to be discarded. If the SSPBUF is not read, the
subsequent byte sent by the master will cause an SSP
overflow to occur and the SSP module will NACK the
byte.

STATE 2: MASTER WRITE, LAST BYTE WAS
DATA
After the address byte is sent for an I2C write operation
(State 1), the master may write one or more data bytes
to the slave device. If SSPBUF was not full prior to the
write, the slave node SSP module will generate an ACK
pulse on the 9th clock edge. Otherwise, the SSPOV bit
will be set and the SSP module will NACK the byte. The
bits in the SSPSTAT register will have the following
values after the master writes a byte of data to the
slave:

• S = 1 (Start condition occurred last)
• R/W = 0 (Master writing data to the slave)
• D/A = 1 (Last byte was a data byte)
• BF = 1 (The buffer is full)

STATE 3: MASTER READ, LAST BYTE WAS
AN ADDRESS
The master device on the bus has begun a new read
operation by initiating a Start or a Restart condition on
the bus, then sending the slave I2C address byte. The
LSb of the address byte is ‘1’ to indicate that the master
wishes to read data from the slave. The bits in the
SSPSTAT register will have the following values:

• S = 1 (Start condition occurred last)
• R/W = 1 (Master reading data from the slave)
• D/A = 0 (Last byte was an address)

At this time, the SSP buffer is ready to be loaded with
data to be sent to the master. The CKP bit is also
cleared to hold the SCL line low. The slave data is sent
to the master by loading SSPBUF and then setting the
CKP bit to release the SCL line.

STATE 4: MASTER READ, LAST BYTE WAS
DATA
State 4 occurs each time the master has previously
read a byte of data from the slave and wishes to read
another data byte. The bits in the SSPSTAT register will
have the following values:

• S = 1 (Start condition occurred last)
• R/W = 1 (Master reading data from the slave)
• D/A = 1 (Last byte sent was a data byte)
• BF = 0 (The buffer is empty)

At this time, the SSP buffer is ready to be loaded with
data to be sent to the master. The CKP bit is also
cleared to hold the SCL line low. The slave data is sent
to the master by loading SSPBUF and then setting the
CKP bit to release the SCL line.

STATE 5: MASTER NACK
State 5 occurs when the master has sent a NACK in
response to data that has been received from the slave
device. This action indicates that the master does not
wish to read further bytes from the slave. The NACK
signals the end of the I2C message and has the effect
of resetting the slave I2C logic. The bits in the
SSPSTAT register will have the following values:

• S = 1 (Start condition occurred last)
• D/A = 1 (Last byte sent was a data byte)
• BF = 0 (The buffer is empty)
• CKP = 1 (Clock is released)

The NACK event is identified because the CKP bit
remains set. Specifically, the status bits indicate that a
data byte has been received from the master and the
buffer is empty.
© 2008 Microchip Technology Inc. DS00734B-page 5

AN734

SSP Error Handling
Each time SSPBUF is read in the slave firmware, the
user should check the SSPOV bit to ensure that no
reception overflows have occurred. If an overflow
occurred, the SSPOV bit must be cleared in software
and SSPBUF must be read for further byte receptions
to take place.

The action that is performed after a SSP overflow will
depend on the application. The slave logic will NACK
the master device when an overflow occurs. In a typical
application, the master may try to resend the data until
an ACK from the slave is detected.

After writing data to SSPBUF, the user should check
the WCOL bit to ensure that a write collision did not
occur. In practice, there will be no write collisions if the
application firmware only writes to SSPBUF during
states when the BF bit is cleared and the slave device
is transmitting data to the master.

SOURCE CODE EXAMPLE
The current revision of this document includes two sep-
arate source code listings to implement the basic I2C
slave functions described previously. The source code
provided in Appendix A: “Example Slave I2C Source
Code” is written in Microchip assembly language and
will operate on any device in the PIC16 family of
devices that has a SSP or MSSP module. The code in
Appendix B: “Example Slave I2C Source Code
(Modified for Newer PIC18 Devices)” is also written
in assembly, and is designed to run on newer PIC18
family devices with the updated I2C state machine.
Appendix C: “Differences Between the I2C States in
PIC16 and PIC18 Devices” provides more information
on identifying devices with the newer state machine.

The code examples are simple applications that
receive characters transmitted by a master device and
store them in a data buffer. At the beginning of each
new write operation by the master, the buffer contents
are cleared when the master sends the address of the
slave to do the write operation. When the master
device begins a new read, the characters in the buffer
will be returned. With minor modifications, the source
code provided can be adapted to most applications that
require I2C communications.

Each of the five I2C states discussed in this document
are identified by XORing the bits in the SSPSTAT
register with predetermined mask values. Once the
state has been identified, the appropriate action is
taken. All undefined states are handled by branching
execution to a software trap.

I2C ACRONYMS
ACK: Acknowledge

BRG: Baud Rate Generator

BSSP: Basic Synchronous Serial Port

F/W: Firmware

I2C: Inter-Integrated Circuit

ISR: Interrupt Service Routine

MCU: Microcontroller Unit

MSSP: Master Synchronous Serial Port

NACK: Not Acknowledge

SDA: Serial Data Line

SCL: Serial Clock Line

SSP: Synchronous Serial Port

REFERENCES
The I2C™ Bus Specification, Philips Semiconductor,
Version 2.1, 2000,
http://www-us.semiconductors.com/i2c/

PIC® Mid-Range MCU Family Reference Manual,
Microchip Technology Inc., Document Number
DS33023

AN735, “Using the PICmicro® MSSP Module for
Master I2C™ Communications”, Microchip Technology
Inc., Document Number DS00735A

AN578, “Use of the SSP Module in the I2C™
Multi-Master Environment”, Microchip Technology Inc.,
Document Number DS00578B
DS00734B-page 6 © 2008 Microchip Technology Inc.

AN734

Software License Agreement
The software supplied herewith by Microchip Technology Incorporated (the “Company”) is intended and supplied to you, the
Company’s customer, for use solely and exclusively with products manufactured by the Company.
The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.
THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
APPENDIX A: EXAMPLE SLAVE I2C SOURCE CODE
;---
; File: an734.asm
;
; Written By: Stephen Bowling, Microchip Technology
;
; Version: 1.00
;
; Assembled using Microchip Assembler
;
; Functionality:
;
; This code implements the basic functions for an I2C slave device
; using the SSP module. All I2C functions are handled in an ISR.
; Bytes written to the slave are stored in a buffer. After a number
; of bytes have been written, the master device can then read the
; bytes back from the buffer.
;
; Variables and Constants used in the program:
;
; The start address for the receive buffer is stored in the variable
; 'RXBuffer'. The length of the buffer is denoted by the constant
; value 'RX_BUF_LEN'. The current buffer index is stored in the
; variable 'Index'.
;
;--
;
; The following files should be included in the MPLAB project:
;
; an734.asm-- Main source code file
;
; 16f877a.lkr-- Linker script file
; (change this file for the device you are using)
;
;---
;---
; Include Files
;---

#include <p16f877a.inc> ; Change to device that you are using.
© 2008 Microchip Technology Inc. DS00734B-page 7

AN734

;---
;Constant Definitions
;---

#define NODE_ADDR 0x22 ; I2C address of this node
; Change this value to address that
; you wish to use.

;---
; Buffer Length Definition
;---

#define RX_BUF_LEN 32 ; Length of receive buffer

;---
; Variable declarations
;---

udata

WREGsave res 1
STATUSsave res 1
FSRsave res 1
PCLATHsave res 1

Index res 1 ; Index to receive buffer
Temp res 1 ;
RXBuffer res RX_BUF_LEN ; Holds rec'd bytes from master device.

;---
; Vectors
;---

STARTUP code
nop
goto Startup ;
nop ; 0x0002
nop ; 0x0003
goto ISR ; 0x0004

PROG code

;---
; Macros
;---

memset macro Buf_addr,Value,Length

movlw Length ; This macro loads a range of data memory
movwf Temp ; with a specified value. The starting
movlw Buf_addr ; address and number of bytes are also
movwf FSR ; specified.

SetNext movlw Value
movwf INDF
incf FSR,F
decfsz Temp,F
goto SetNext

endm

LFSR macro Address,Offset ; This macro loads the correct value
DS00734B-page 8 © 2008 Microchip Technology Inc.

AN734

movlw Address ; into the FSR given an initial data
movwf FSR ; memory address and offset value.
movf Offset,W
addwf FSR,F

endm

;---
; Main Code
;---

Startup
bcf STATUS,RP1
bsf STATUS,RP0
call Setup
banksel WREGsave

Main clrwdt ; Clear the watchdog timer.
goto Main ; Loop forever.

;---
; Interrupt Code
;---

ISR
movwf WREGsave ; Save WREG
movf STATUS,W ; Get STATUS register
banksel STATUSsave ; Switch banks, if needed.
movwf STATUSsave ; Save the STATUS register
movf PCLATH,W;
movwf PCLATHsave ; Save PCLATH
movf FSR,W ;
movwf FSRsave ; Save FSR

banksel PIR1
btfss PIR1,SSPIF ; Is this a SSP interrupt?
goto $; No, just trap here.
bcf PIR1,SSPIF
call SSP_Handler ; Yes, service SSP interrupt.

banksel FSRsave
movf FSRsave,W ;
movwf FSR ; Restore FSR
movf PCLATHsave,W ;
movwf PCLATH ; Restore PCLATH
movf STATUSsave,W ;
movwf STATUS ; Restore STATUS
swapf WREGsave,F ;
swapf WREGsave,W ; Restore WREG
retfie ; Return from interrupt.
© 2008 Microchip Technology Inc. DS00734B-page 9

AN734

;---
Setup
;
; Initializes program variables and peripheral registers.
;---

banksel PCON
bsf PCON,NOT_POR
bsf PCON,NOT_BOR
banksel Index ; Clear various program variables
clrf Index
clrf PORTB
clrf PIR1
banksel TRISB
clrf TRISB
movlw 0x36 ; Setup SSP module for 7-bit
banksel SSPCON
movwf SSPCON ; address, slave mode
movlw NODE_ADDR
banksel SSPADD
movwf SSPADD
clrf SSPSTAT
banksel PIE1 ; Enable interrupts
bsf PIE1,SSPIE
bsf INTCON,PEIE ; Enable all peripheral interrupts
bsf INTCON,GIE ; Enable global interrupts
bcf STATUS,RP0
return

;---
SSP_Handler
;---
; The I2C code below checks for 5 states:
;---
; State 1: I2C write operation, last byte was an address byte.
; SSPSTAT bits: S = 1, D_A = 0, R_W = 0, BF = 1
;
; State 2: I2C write operation, last byte was a data byte.
; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 1
;
; State 3: I2C read operation, last byte was an address byte.
; SSPSTAT bits: S = 1, D_A = 0, R_W = 1 (see Appendix C for more information)
;
; State 4: I2C read operation, last byte was a data byte.
; SSPSTAT bits: S = 1, D_A = 1, R_W = 1, BF = 0
;
; State 5: Slave I2C logic reset by NACK from master.
; SSPSTAT bits: S = 1, D_A = 1, BF = 0, CKP = 1 (see Appendix C for more information)
;
; For convenience, WriteI2C and ReadI2C functions have been used.
;--

banksel SSPSTAT
movf SSPSTAT,W ; Get the value of SSPSTAT
andlw b' 00101101' ; Mask out unimportant bits in SSPSTAT.
banksel Temp ; Put masked value in Temp
movwf Temp ; for comparision checking.
DS00734B-page 10 © 2008 Microchip Technology Inc.

AN734

State1: ; Write operation, last byte was an

movlw b'00001001' ; address, buffer is full.
xorwf Temp,W ;
btfss STATUS,Z ; Are we in State1?
goto State2 ; No, check for next state.....
memset RXBuffer,0,RX_BUF_LEN ; Clear the receive buffer.
clrf Index ; Clear the buffer index.
banksel SSPBUF ; Do a dummy read of the SSPBUF.
movf SSPBUF,W
return

State2: ; Write operation, last byte was data,
movlw b'00101001' ; buffer is full.
xorwf Temp,W
btfss STATUS,Z ; Are we in State2?
goto State3 ; No, check for next state.....
LFSR RXBuffer,Index ; Point to the buffer.
banksel SSPBUF ; Get the byte from the SSP.
movf SSPBUF,W
movwf INDF ; Put it in the buffer.
incf Index,F ; Increment the buffer pointer.
movf Index,W ; Get the current buffer index.
sublw RX_BUF_LEN ; Subtract the buffer length.
btfsc STATUS,Z ; Has the index exceeded the buffer length?
clrf Index ; Yes, clear the buffer index.
return

State3: ; Read operation, last byte was an address,
movf Temp,W ;
andlw b'00101100' ; Mask BF bit in SSPSTAT
xorlw b'00001100'
btfss STATUS,Z ; Are we in State3?
goto State4 ; No, check for next state.....
clrf Index ; Clear the buffer index.
LFSR RXBuffer,Index ; Point to the buffer
movf INDF,W ; Get the byte from buffer.
call WriteI2C ; Write the byte to SSPBUF
incf Index,F ; Increment the buffer index.
return

State4: ; Read operation, last byte was data,
banksel SSPCON ; buffer is empty.
btfsc SSPCON, CKP
goto State5
movlw b'00101100'
xorwf Temp,W
btfss STATUS,Z ; Are we in State4?
goto State5 ; No, check for next state....
movf Index,W ; Get the current buffer index.
sublw RX_BUF_LEN ; Subtract the buffer length.
btfsc STATUS,Z ; Has the index exceeded the buffer length?
clrf Index ; Yes, clear the buffer index.
LFSR RXBuffer,Index ; Point to the buffer
movf INDF,W ; Get the byte
call WriteI2C ; Write to SSPBUF
incf Index,F ; Increment the buffer index.
return
© 2008 Microchip Technology Inc. DS00734B-page 11

AN734

State5:

movf Temp,W ; NACK received when sending data to the master
andlw b'00101000' ; Mask RW bit in SSPSTAT
xorlw b'00101000' :
btfss STATUS,Z ;
goto I2CErr ;
return ; If we aren’t in State5, then something is

; wrong.

I2CErr nop
banksel PORTB ; Something went wrong! Set LED
bsf PORTB,7 ; and loop forever. WDT will reset
goto $; device, if enabled.
return

;---
; WriteI2C
;---

WriteI2C
banksel SSPSTAT
btfsc SSPSTAT,BF ; Is the buffer full?
goto WriteI2C ; Yes, keep waiting.
banksel SSPCON ; No, continue.

DoI2CWrite
bcf SSPCON,WCOL ; Clear the WCOL flag.
movwf SSPBUF ; Write the byte in WREG
btfsc SSPCON,WCOL ; Was there a write collision?
goto DoI2CWrite
bsf SSPCON,CKP ; Release the clock.
return
end
DS00734B-page 12 © 2008 Microchip Technology Inc.

AN734
APPENDIX B: EXAMPLE SLAVE I2C SOURCE CODE (MODIFIED FOR NEWER
PIC18 DEVICES)

;---
; File: an734_PIC18.asm
;
; The following files should be included in the MPLAB project:
;;
; an734_PIC18.asm-- Main source code file
;;
; 18F8722.lkr-- Linker script file
; (change this file for the device you are using)
;
;---

#define RX_BUF_LEN 32
ADDRESS equ 0x22
udata 0x00
FSRsave res 1
PCLATHsave res 1
Index res 1
Temp res 1
RXBuffer res RX_BUF_LEN
;---
; Include Files
;---
#include<p18F8722.inc>
CONFIG OSC = HS,FCMEN = OFF,IESO = OFF,PWRT = OFF,BOREN = OFF
CONFIG WDT = OFF
CONFIG STVREN = OFF, LVP = OFF,XINST = OFF,DEBUG = OFF
CONFIG CP0 = OFF,CP1 = OFF,CP2 = OFF,CP3 = OFF,CPB = OFF

memset macro Buf_addr,Value,Length
movlw Length ; This macro loads a range of data memory
movwf Temp ; with a specified value. The starting
movlw Buf_addr ; address and number of bytes are also
movwf FSR0L ; specified.

SetNext
movlw Value
movwf INDF0
incf FSR0L,F
decfsz Temp,F
goto SetNext
endm

load macro Address,Offset ; This macro loads the correct value
movlw Address ; into the FSR given an initial data
movwf FSR0L ; memory address and offset value.
movf Offset,W
addwf FSR0L,F
endm
© 2008 Microchip Technology Inc. DS00734B-page 13

AN734

PRG CODE 0x00

goto Start

INT1 CODE 0x08
goto Int

INT2 CODE 0x18
goto Int

MAIN CODE 0x30
;---
; Main Code
;---

Start
clrf Index ;res 1
clrf Temp ;res 1
clrf RXBuffer ;res RX_BUF_LEN
call Setup

Main
goto Main

Setup
bsf TRISC,3
bsf TRISC,4
clrf FSR0L
clrf FSR0H
movlw ADDRESS ;Load Address , Slave node
movwf SSP1ADD
movlw 0x36
movwf SSP1CON1
clrf SSP1STAT
clrf SSP1CON2
bsf SSP1CON2,SEN ;Enable Clock Stretching for both transmit and slave
bcf PIR1,SSPIF ;Clear MSSP interrupt flag
bsf PIE1,SSPIE ;Enable MSSP interrupt enable bit
movlw 0xC0 ;Enable global and peripheral Interrupt
movwf INTCON
return

;---
; Interrupt Code
;---

Int
movf FSR0L,W ;
movwf FSRsave ; Save FSR

btfss PIR1,SSPIF ; Is this a SSP interrupt?
goto $; No, just trap here.
bcf PIR1,SSPIF
call SSP_Handler ; Yes, service SSP interrupt.

movf FSRsave,W ;
movwf FSR0L ; Restore FSR

bsf SSPCON1,CKP ; Release clock(for transmit and receive)
retfie FAST ; Return from interrupt
DS00734B-page 14 © 2008 Microchip Technology Inc.

AN734

;--
; State 1: I2C write operation, last byte was an address byte
; SSPSTAT bits: S = 1, D_A = 0, R_W = 0, BF = 1
;
; State 2: I2C write operation, last byte was a data byte
; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 1
;
; State 3: I2C read operation, last byte was an address byte
; SSPSTAT bits: S = 1, D_A = 0, R_W = 1 (see Appendix C for more information)
;
; State 4: I2C read operation, last byte was a data byte
; SSPSTAT bits: S = 1, D_A = 1, R_W = 1, BF = 0
;
; State 5: Slave I2C logic reset by NACK from master
; SSPSTAT bits: S = 1, D_A = 1, BF = 0, CKP = 1 (see Appendix C for more information)
; For convenience, WriteI2C and ReadI2C functions have been used.
;---
SSP_Handler

movf SSPSTAT,W ; Get the value of SSPSTAT
andlw b'00101101' ; Mask out unimportant bits in SSPSTAT.
movwf Temp ; for comparision checking.

State1: ; Write operation, last byte was an
movlw b'00001001' ; address, buffer is full.
xorwf Temp,W ;
btfss STATUS,Z ; Are we in State1?
goto State2 ; No, check for next state.....
memset RXBuffer,0,RX_BUF_LEN ; Clear the receive buffer.
clrf Index ; Clear the buffer index.
movf SSPBUF,W ; Do a dummy read of the SSPBUF.
return

State2: ; Write operation, last byte was data,
movlw b'00101001' ; buffer is full.
xorwf Temp,W
btfss STATUS,Z ; Are we in State2?
goto State3 ; No, check for next state.....
load RXBuffer,Index ; Point to the buffer.
movf SSPBUF,W ; Get the byte from the SSP.
movwf INDF0 ; Put it in the buffer.
incf Index,F ; Increment the buffer pointer.
movf Index,W ; Get the current buffer index.
sublw RX_BUF_LEN ; Subtract the buffer length.
btfsc STATUS,Z ; Has the index exceeded the buffer length?
clrf Index
return

State3:
movf Temp,W ;
andlw b'00101100' ; Mask BF bit in SSPSTAT
xorlw b'00001100'
btfss STATUS,Z ; Are we in State3?
goto State4 ; No, check for next state.....
movf SSPBUF,W
clrf Index ; Clear the buffer index.
load RXBuffer,Index ; Point to the buffer
movf INDF0,W ; Get the byte from buffer.
call WriteI2C ; Write the byte to SSPBUF
incf Index,F ; Increment the buffer index.
return
© 2008 Microchip Technology Inc. DS00734B-page 15

AN734

State4

btfsc SSPCON1,CKP ;
goto State5
movlw b'00101100' ; buffer is empty.
xorwf Temp,W
btfss STATUS,Z ; Are we in State4?
goto State5 ; No, check for next state....
movf Index,W ; Get the current buffer index.
sublw RX_BUF_LEN ; Subtract the buffer length.
btfsc STATUS,Z ; Has the index exceeded the buffer length?
clrf Index ; Yes, clear the buffer index.
load RXBuffer,Index ; Point to the buffer
movf INDF0,W ; Get the byte
call WriteI2C ; Write to SSPBUF
incf Index,F ; Increment the buffer index.
return

State5
movf Temp,W ;
andlw b'00101000' ; Mask RW bit in SSPSTAT
xorlw b'00101000'
btfss STATUS,Z ; Are we in State5?
goto I2CErr ; No, check for next state....
return

I2CErr
nop ; Something went wrong! Set LED
bsf PORTB,7 ; and loop forever. WDT will reset
goto $; device, if enabled.

;---
; WriteI2C
;---
WriteI2C

btfsc SSPSTAT,BF ; Is the buffer full?
goto WriteI2C ; Yes, keep waiting.

DoI2CWrite
bcf SSPCON1,WCOL ; Clear the WCOL flag.
movwf SSPBUF ; Write the byte in WREG
btfsc SSPCON1,WCOL ; Was there a write collision?
goto DoI2CWrite
return
end
DS00734B-page 16 © 2008 Microchip Technology Inc.

AN734
APPENDIX C: DIFFERENCES
BETWEEN THE I2C
STATES IN PIC16
AND PIC18 DEVICES

This application note and its accompanying code
(Appendix A: “Example Slave I2C Source Code”)
were originally written to describe the implementation
of I2C slave operations in PIC16 devices. This revision
(August 2008) updates the description to make it com-
patible with PIC18 devices. The original document
defined the five states of the I2C state machine, in
terms of SSPSTAT status bits, as follows:

• State 1: (Write operation, last byte is an address
byte)
- S = 1
- D/A = 0
- R/W = 0
- BF = 1

• State 2: (Write operation, last byte is a data byte)
- S = 1
- D/A = 1
- R/W = 0
- BF = 1

• State 3: (Read operation, last byte is an address
byte)
- S = 1
- D/A = 0
- R/W = 1
- BF = 0

• State 4: (Read operation, last byte is a data byte)
- S = 1
- D/A = 1
- R/W = 1
- BF = 0

• State 5: (Logic reset by NACK from master)
- S = 1
- D/A = 1
- R/W = 0
- BF = 0

Older PIC18 devices, as defined in Section C.1 “Older
PIC18 Devices with the PIC16 State Machine”,
implement the I2C state machine with the same bit
definitions as previously described.

Later PIC18 devices implement with these changes in
States 3 and 5:

• State 3: In PIC16 and older PIC18 devices, the BF
flag is not set. In newer PIC18 devices, the BF
flag is set and needs to be read and cleared for
State 3.

• State 5: In PIC16 and older PIC18 devices, the
R/W flag is expected to be cleared. In newer
PIC18 devices, R/W remains set. Instead of test-
ing this bit, the state machine tests the CKP bit,
expecting it to be set.

C.1 Older PIC18 Devices with the
PIC16 State Machine

These PIC18 family devices use I2C state machines
that behave the same as PIC16 devices:

• PIC18C452 Family (PIC18C242/252/442/452)
• PIC18C458 Family (PIC18C248/258/448/458)
• PIC18C601/801
• PIC18F4431 Family

(PIC18F2231/2431/4231/4431)
• PIC18F8720 Family

(PIC18F6520/6620/6720/8520/8620/8720)
• PIC18F1220/1320

Any PIC18 device not explicitly listed here uses the I2C
state machine with the updated definitions of States 3
and 5.
© 2008 Microchip Technology Inc. DS00734B-page 17

AN734
NOTES:
DS00734B-page 18 © 2008 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:
• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
© 2008 Microchip Technology Inc.
Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC and SmartShunt are registered trademarks
of Microchip Technology Incorporated in the U.S.A. and other
countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2008, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.
DS00734B-page 19

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS00734B-page 20 © 2008 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

01/02/08

	Introduction
	The I2C Bus Specification
	The SSP Module
	FIGURE 1: Typical I2C™ Write Transmission (7-Bit Address)
	FIGURE 2: Typical I2C™ Read Transmission (7-Bit Address)
	FIGURE 3: PIC® Devices’ SSP Module Block Diagram (I2C™ Slave Mode)
	SSP Bits that Indicate Module Status
	BF (SSPSTAT<0>)
	UA (SSPSTAT<1>)
	R/W (SSPSTAT<2>)
	S (SSPSTAT<3>)
	P (SSPSTAT<4>)
	D/A (SSPSTAT<5>)
	WCOL (SSPCON<7>)
	SSPOV (SSPCON<6>)
	SSPIF (PIR1<3>)

	SSP Bits for Module Control
	SSPEN (SSPCON<5>)
	CKE (SSPSTAT<6>)
	SMP (SSPSTAT<7>)
	CKP (SSPCON<4>)
	SSPM3:SSPM0 (SSPCON<3:0>)
	SSPIE (PIE1<3>)

	Configuring the SSP for I2C Slave Mode
	Setting the Slave Address

	Handling SSP Events in Software
	State 1: Master Write, Last Byte was an Address
	State 2: Master Write, Last Byte was Data
	State 3: Master Read, Last Byte was an Address
	State 4: Master Read, Last Byte was Data
	State 5: Master NACK

	SSP Error Handling

	Source Code Example
	I2C Acronyms
	References
	Appendix A: Example Slave I2C Source Code
	Appendix B: Example Slave I2C Source Code (Modified for Newer PIC18 Devices)
	Appendix C: Differences Between the I2C States in PIC16 and PIC18 Devices
	C.1 Older PIC18 Devices with the PIC16 State Machine

	Worldwide Sales and Service

