INTRODUCTION

The MCRF355 passive RFID device is designed for low cost, multiple reading, and various high volume tagging applications using a frequency band of 13.56 MHz. The device has a total of 154 memory bits that can be reprogrammed by a contact programmer. The device operates with a 70 kHz data rate, and asynchronously with respect to the reader’s carrier. The device turns on when the coil voltage reaches 4 VPP and outputs data with a Manchester format (see Figure 2-3 in the data sheet). With the given data rate (70 kHz), it takes about 2.2 ms to transmit all 154 bits of the data. After transmitting all data, the device goes into a sleep mode for 100 ms +/- 50%.

The MCRF355 needs only an external parallel LC resonant circuit that consists of an antenna coil and a capacitor for operation. The external LC components must be connected between antenna A, B, and ground pads. The circuit formed between Antenna Pad A and the ground pad must be tuned to the operating frequency of the reader antenna.

MODE OF OPERATION

The device transmits data by tuning and detuning the resonant frequency of the external circuit. This process is accomplished by using an internal modulation gate (CMOS), that has a very low turn-on resistance (2 ~ 4 ohms) between Drain and Source. This gate turns on during a logic “High” period of the modulation signal and off otherwise. When the gate turns on, its low turn-on resistance shorts the external circuit between Antenna Pad B and the ground pad. Therefore, the resonant frequency of the circuit changes. This is called detuned or cloaking. Since the detuned tag is out of the frequency band of the reader, the reader can’t see it.

The modulation gate turns off as the modulation signal goes to a logic “Low.” This turn-off condition again tunes the resonant circuit to the frequency of the reader antenna. Therefore the reader sees the tag again. This is called tuned or uncloaking.

The tag coil induces maximum voltage during “uncloaking (tuned)” and minimum voltage during cloaking (detuned). Therefore, the cloaking and uncloaking events develop an amplitude modulation signal in the tag coil.

This amplitude modulated signal in the tag coil perturbs the voltage envelope in the reader coil. The reader coil has maximum voltage during cloaking (detuned) and minimum voltage during uncloaking (tuned). By detecting the voltage envelope, the data signal from the tag can be readily reconstructed.

Once the device transmits all 154 bits of data, it goes into “sleep mode” for about 100 ms. The tag wakes up from sleep time (100 ms) and transmits the data package for 2.2 ms and goes into sleep mode again. The device repeats the transmitting and sleep cycles as long as it is energized.

FIGURE 1: VOLTAGE ENVELOPE IN READER COIL
FIGURE 2: (A) UNCLOAKING (TUNED) AND (B) CLOAKING (DETUNED) MODES AND THEIR RESONANT FREQUENCIES

(a) SW = OFF

(b) SW = ON

(c) SW = OFF

(d) SW = ON

\[f_0 = 13.56 \text{ MHz} \]

\[f_0' = (13.56 + \Delta f) \text{ MHz} \]

\[f_0 = 13.56 \text{ MHz} \]

\[f_0' = (13.56 - \Delta f) \text{ MHz} \]
ANTICOLLISION FEATURES

During sleep mode, the device remains in a cloaked state where the circuit is detuned. Therefore, the reader can’t see the tag during sleep time. While one tag is in sleep mode, the reader can receive data from other tags. This enables the reader to receive clean data from many tags without any data collision. This ability to read multiple tags in the same RF field is called anticollision. Theoretically, more than 50 tags can be read in the same RF field. However, it is affected by distance from the tag to the reader, angular orientation, movement of the tags, and spacial distribution of the tags.

FIGURE 3: EXAMPLE OF READING MULTIPLE TAGS
EXTERNAL CIRCUIT CONFIGURATION

Since the device transmits data by tuning and detuning the antenna circuit, caution must be given in the external circuit configuration. For a better modulation index, the differences between the tuned and detuned frequencies must be wide enough (about 3 ~ 6 MHz).

Figure 4 shows various configurations of the external circuit. The choice of the configuration must be chosen depending on the form-factor of the tag. For example, (a) is a better choice for printed circuit tags while, (b) is a better candidate for coil-wound tags. Both (a) and (b) relate to the MCRF355.

In configuration (a), the tuned resonance frequency is determined by a total capacitance and inductance from Antenna Pad A to Vss. During cloaking, the internal switch (modulation gate) shorts Antenna Pad B and Vss. Therefore, the detuned inductance L2 is shorted out. As a result, the detuned frequency is determined by the total capacitance and inductance L1. When shorting the inductance between Antenna Pad B and Vss, the detuned (cloak) frequency is higher than the tuned (uncloak) frequency.

In configuration (b), the tuned frequency (uncloak) is determined by the inductance L and the total capacitance between Antenna Pad A and Vss. The circuit detunes (cloak) when C2 is shorted. This detuned frequency (cloak) is lower than the tuned (uncloak) frequency.

The MCRF360 includes a 100 pF internal capacitor. This device needs only an external inductor for operation. The explanation on tuning and detuning is the same as for configuration (a).

Figure 4: VARIOUS EXTERNAL CIRCUIT CONFIGURATIONS

\[
\begin{align*}
 f_{\text{tuned}} &= \frac{1}{2\pi}\sqrt{\frac{L}{C}} \\
 f_{\text{detuned}} &= \frac{1}{2\pi}\sqrt{\frac{L}{C}} \\
 L_T &= L_1 + L_2 + 2L_m \\
 L_m &= \text{mutual inductance} \\
 K &= \text{coupling coefficient of two inductors} \\
 0 \leq K \leq 1
\end{align*}
\]

(a) Two inductors and one capacitor

(b) Two capacitors and one inductor

(c) Two inductors with one internal capacitor
PROGRAMMING OF DEVICE

All of the memory bits in the MCRF355/360 are reprogrammable by a contact programmer or by factory programming prior to shipment, known as Serialized Quick Turn ProgrammingSM (SQTPSM). For more information about contact programming, see page 69 of the \textit{microIDTM 13.56 MHz System Design Guide} (DS21299). For information about SQTP programming, please see TB032 (DS91032), page 19 of the design guide.
Worldwide Sales and Service

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6189
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0037

Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575

Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75241
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Microchip Technology Inc.
Two Prestige Place, Suite 150
Farmington Hills, MI 48334
Tel: 937-291-1654 Fax: 937-291-9175

Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)

Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC

Hong Kong
Microchip Asia Pacific
Unit 2101, Tower 2
Metropolis
233 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431

Beijing
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing 100027 PRC
Tel: 86-10-85282100 Fax: 86-10-85282104

India
Microchip Technology Inc.
Microchip India Office
No. 6, Legacy, Heritage Court Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062

Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200033
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

ASIA/PACIFIC (continued)

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore 189880
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-1775 Fax: 886-2-2545-0139

EUROPE

United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berks, England RG41 5TU
Tel: 44-118 921 5858 Fax: 44-118 921-5835

Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hol 1-3
Ballerpark DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trappu
Batiement A - 1er Etage
91300 Massy, France
Tel: +33-1-69-53-63-20 Fax: +33-1-69-30-90-79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 Munchen, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company’s quality system processes and procedures are QS-9000 compliant for its PIC® microcontrollers, KEELOQ® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.